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Glossary 

Formal methods. Formal methods are mathematically based techniques for the specification, development, 
and verification of software aspects of digital systems. The mathematical basis of formal methods consists of 
formal logic, discrete mathematics, and computer-readable languages. The use of formal methods is 
motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical 
analyses can contribute to establishing the correctness and robustness of a design [1]. 

Learning assurance. All of those planned and systematic actions used to substantiate, at an adequate level 
of confidence, that errors in a data-driven learning process have been identified and corrected such that the 
system satisfies the applicable requirements at a specified level of performance, and provides sufficient 
generalisation and robustness guarantees [2]. 

Operational Design Domain (ODD). Operating conditions under which a given AI-based system is specifically 
designed to function as intended, in line with the defined ConOps, including but not limited to environmental, 
geographical, and/or time-of-day restrictions. ODD defines the range of operating parameters within which 
the AI-based system is designed to operate, and as such, will only operate nominally when the parameters 
described within the ODD are satisfied. The ODD also considers correlations between operating parameters 
in order to refine the ranges between these parameters when appropriate; in other words, the range(s) for 
one or several operating parameters could depend on the value or range of another parameter [2]. 

Data completeness. A dataset is complete if it sufficiently (i.e., as specified in the data quality requirements) 
covers the entire space of the operational design domain for the intended application [2]. 

Data representativeness. A dataset is representative when the distribution of its key characteristics is similar 
to the actual input state space for the intended application [2]. 

ML model1. Mathematical model that is generated as an output of a learning algorithm. Its parameters are 
determined during the training process and fixed after it is finished. 

ML inference model. Implementation of the trained ML model on the target platform (software and/or 
hardware). 

ML constituent. A collection of traditional hardware and/or software items (e.g., pre-processing and post-
processing elements) and at least one specialized hardware or software item that contains one or more ML 
inference models. 

ML constituent ODD. Operating conditions under which a given ML constituent is expected to work as 
intended. 

Learning algorithm stability. Learning (training) algorithm is stable if in the presence of perturbations in the 
dataset in the training phase of learning assurance (e.g., replacement/removal of data points, additive noise, 
labelling errors) it produces a model that is similar, in terms of its properties and characteristics, to the one 
trained on the original dataset. For example, for classification models this would mean that model decision 
boundaries do not change significantly in case of training dataset perturbation. 

 
 
1 Sometimes in this report it is also referred to as “trained ML model”. 
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ML model stability. ML model is stable if a small, bounded perturbation applied to its inputs in normal 
operating conditions, i.e., when the inputs are inside the ML constituent’s operational design domain, does 
not cause a significant deviation in its output2. 

ML model robustness. ML model is robust if it does not exhibit unexpected behavior neither in normal 
operating conditions (i.e., the model is stable) nor in adverse conditions, for example, in response to out-of-
distribution inputs, adversarial inputs, or edge/corner cases.  

ML model generalization. The capability of the ML model to exhibit required performance on unseen inputs 
within its operational design domain, i.e., those inputs that have not been part of training and validation 
datasets. Generalization is typically evaluated using a test (holdout) dataset in order to demonstrate that the 
model has a reasonable bias-variance trade-off, i.e., does not underfit or overfit the training data. While such 
testing approach measures ML model generalization capability with respect to the chosen test dataset, 
additional analytical approaches may be required to assess model generalization to the entire admissible 
input space (e.g., see the discussion in [3]). 

  

 
 
2 In general, a discontinuity in the ML model’s output does not necessarily represent its instability. If the phenomenon/process that 
the ML model describes has known discontinuities, i.e., large changes in the output in some input region, these should be 
documented and considered expected during the ML model stability assessment. 
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Executive summary 

The aim of this report is to present the outcome of the collaboration between EASA and Collins Aerospace  
on an Innovation Partnership Contract (IPC) that investigated the use of formal methods as part of the 
learning assurance building block of the EASA AI Roadmap [4]. The project ran from Oct 2021 to Mar 2023. 

The IPC project titled "Formal Methods use for Learning Assurance” (ForMuLA) focused on emphasizing 
opportunities for the adoption of formal methods techniques in the design assurance process of machine 
learning enabled systems. This resulted in the following key achievements: 

• Proposed use of formal methods as anticipated means of compliance for a set of key certification 
objectives from the EASA Concept Paper for Level 1&2 Machine Learning Applications. This 
supported the update of definitions in the concept paper and the clarification of objective LM-11 on 
learning algorithm and trained model stability, which has been split into objectives LM-11 and LM-
12 in the transition to the new version of the concept paper. 

• Detailed discussion of relevant formal methods (FM) technologies and supporting statistical 
methods, and their possible role in the development and validation and verification (V&V) of machine 
learning enabled systems. Emphasis has been made on innovative FM applications specific to the 
robustness assessment of machine learning models. 

• Practical demonstration of the use of formal methods on an industrial use case of a deep learning-
based estimator for remaining useful life of mechanical bearings in airborne equipment.  The output 
of the estimator is used for on-ground maintenance applications. Demonstrations provided concrete 
evidence of how FM and supporting statistical techniques can be used as part of the verification 
activities to deal with data quality assessment, ML stability, robustness and intended behavior 
verification. 

The considerations summarized in the report apply to machine learning in general, but particular emphasis 
has been placed on specific challenges related to neural networks. Discussion of formal methods applications 
are purposefully kept generic. This report does not recommend specific methods or tools, but is rather 
intended to motivate opportunities from a theoretical perspective. Where applicable, a reference is made to 
concrete methods and tools. 

European Union Aviation Safety Agency (EASA) is the centerpiece of the European Union’s strategy for 
aviation safety. Its mission is to promote the highest common standards of safety and environmental 
protection in civil aviation. The Agency develops common safety and environmental rules at the European 
level. It monitors the implementation of standards through inspections in the Member States and provides 
the necessary technical expertise, training and research. The Agency works hand in hand with the national 
authorities which continue to carry out many operational tasks, such as certification of individual aircraft or 
licensing of pilots. 

Collins Aerospace, a Raytheon Technologies company, is a leader in technologically advanced and intelligent 
solutions for the global aerospace and defence industry. Collins Aerospace has the capabilities, 
comprehensive portfolio, and expertise to solve customers’ toughest challenges and to meet the demands 
of a rapidly evolving global market. The Applied Research & Technology (ART) organization of Collins 
Aerospace is an agile centrally held enterprise level technology organization that works to identify, develop 
and demonstrate innovative technology solutions, products, services, and intelligent systems supporting 
Collins Aerospace businesses with the vision of “accelerating transformative technologies for a safer more 
connected and sustainable world”. As part of the ART organization, the Advanced Model Based Engineering 
Methods (AM2) department works to develop, mature, and transfer model-based methods, technologies 
and tools from conception to validation and verification of Collins products from sales to operation. 
  



    
Collins Aerospace – EASA 

ForMuLA IPC extract 

 
Page 11 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

1 Introduction 

Artificial Intelligence (AI) in aviation is a disruptive technology that will impact various products and services. 
The aviation industry is being increasingly driven towards the application of Machine Learning (ML) in new 
products to assist human operators or implement enhanced automation. Such products, in particular safety-
critical ones, require certification and must provide a high level of trustworthiness and guarantees of the 
absence of unintended behaviors. This is achieved by providing design assurance, i.e., evidence that certain 
guidelines and verification processes have been followed during the design process or that the product 
possesses necessary safety features (e.g. redundancy, runtime monitors, or safety nets). 

The aviation industry currently does not have a consensus on the design assurance of ML constituents 
because they are not fully amenable to current design assurance processes and standards.   In particular, ED-
12C/DO-178C provides guidance to produce traditional (i.e., non-ML) software that performs the intended 
function with a level of confidence in safety that complies with airworthiness requirements [5]. The standard 
focuses on a process for software design that starts from functional and non-functional requirements and 
transforms them into the software code. This code shall be traced to and verified against the requirements 
to ensure it is correct, i.e., it performs the intended function, and, more importantly, does not expose 
behaviors that are unintended by the designer or unexpected by operators.  

ML constituent development, instead, is data-driven. An ML model is trained through a learning procedure 
that starts from data, not from requirements3. Thus, the use of traceability of the implementation back to 
requirements as a means to minimize the risk that the ML constituent includes unintended behaviors is not 
effective. Additionally, the use of structural coverage metrics may not be effective in identifying unintended 
behavior in ML models such as neural networks (NN) [6]. Instead, as part of learning process verification 
activities, ML generalization and robustness assessment have been proposed as key criteria that, when 
fulfilled, can help to mitigate such risks in these typically “black-box” systems [2]. Therefore, it is critical to 
identify promising methods to evaluate generalization and robustness of ML models.  

This report provides a theoretical overview and practical demonstrations of how formal methods (FM) 
techniques can be leveraged in the design assurance process of ML-enabled systems, also called learning 
assurance [2], with particular emphasis on the learning process verification activities dealing with ML stability 
and robustness.  

According to ED-216/DO-333 [1], formal methods can be used as a source of evidence for the satisfaction of 
verification objectives when a formal model of the software artifact can be established, and properties they 
have to comply with can be verified via formal analysis. It is worth noting that formal methods provide 
comprehensive assurance of properties for those aspects that are formalized in the formal model. The key 
requirement of any formal verification method is soundness: only properties that are actually valid shall be 
declared valid by a sound method (see the full definition in Section 3.2). 

The report summarizes the progresses that the research community is achieving in identifying proper 
languages and formal models to capture ML models/constituents and their properties, as well as in 
developing novel formal verification algorithms and tools able to extend the applicability of traditional formal 
verification capabilities to the assurance of ML robustness and beyond. 

1.1 Background 

The path towards ML certification is not yet defined, but several reports have been published by aviation 
authorities and research groups addressing foundational certification aspects of ML-enabled systems. In 
February 2020 the European Aviation Safety Agency (EASA) published their Artificial Intelligence Roadmap, 

 
 
3 In fact, datasets may implicitly represent some functional requirements for the system. 
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including the timeline shown in Figure 1. The roadmap establishes the Agency’s initial vision for the safety 
and ethical dimensions of development of ML in the aviation domain [4]. Its main scope is to create a 
framework for ML trustworthiness and establish conditions for use of ML applications in aviation.  

In March 2020 and May 2021 EASA released two technical reports entitled Concepts of Design Assurance for 
Neural Networks (CoDANN) I and II [3] [7]. These reports provide a detailed study of several ML-specific 
development and assurance aspects such as robustness, generalization and explainability topics, and propose 
a W-shaped ML development process (Figure 2) outlining the essential steps for learning assurance.  

In March 2021, the DEEL (Dependable and Explainable Learning) certification working group published a 
whitepaper entitled Machine Learning in Certified Systems [8] summarizing the necessary conditions and 
objectives for certifying ML-based systems. Auditability, data quality, explainability, maintainability, 
robustness, resilience, specifiability and verifiability are the identified certification objectives.  

In April 2021, the SAE G-34/EUROCAE WG-114 joint international committee on Artificial Intelligence in 
Aviation published a statement of concern document reviewing “current aerospace software, hardware and 
system development standards used in the certification/approval process of safety-critical airborne and 
ground-based systems,” and assessing “whether these standards are compatible with a typical artificial 
intelligence (AI) and machine learning (ML) development approach” [6]. This was followed by a technical 
paper [9] presenting a new ML development lifecycle which will constitute the core of the new aeronautical 
standard on ML called AS6983 jointly being developed by EUROCAE and SAE. The paper covers the design 
assurance process at the item level (analogously to ED-12C/DO-178C for traditional avionics software) and 
proposes development and V&V lifecycle activities compatible with the ones identified by EASA. 

In December 2021, EASA published a concept paper titled “First Usable Guidance for Level 1 Machine 
Learning applications in aviation,” [10] which is the first milestone in the implementation of the EASA  
Roadmap. The guidance anticipates a set of assurance objectives (compatible with the ones proposed by 
DEEL), and additionally proposes means of compliance supporting applicants in the identification of 
certification means for ML-based safety-critical systems. In February 2023 EASA has published the update of 
the concept paper, extending it to Level 2 ML applications [2]. 

 
Figure 1. EASA AI Roadmap. 

1.1.1 IPC: CoDANN I and CoDANN II 

One important aspect of the development of machine learning systems is that it is based on a data-driven 
process. Specific activities on data management (data collection, data preparation, and data quality 
verification) need to be present in the process. Furthermore, the development process cannot go directly 
from requirements and data to programming, but must include a new paradigm of learning, i.e., creating and 
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training a mathematical model (ML model) from the data. This model can then be transformed to software 
and deployed on a target computer. As part of the two IPCs, titled Concepts of Design Assurance for Neural 
Networks (CoDANN I and II) [3] [7], a new AI development process, called the W-model, has been proposed. 
It is illustrated in Figure 2.  

 
Figure 2. W-shaped development cycle for machine learning (W-model). 

 
The left-hand side of the W-model covers the development activities specific to ML components, including 
the following: 

• Data management, which includes collection of the data (e.g., real, or synthetic data), its pre-processing 
(e.g., normalization, filtering, feature selection, annotation, labelling), and data quality verification. 

• Learning process management, which covers all steps required prior to training the model, such as model 
architecture selection, training algorithm, quality metrics, and hyperparameters.  

• Model training, a self-explanatory step in ML to find a best-performing model.  

The key element in the process, which transforms the V into a W, is the Learning process verification, where 
specific tests and analyses must be applied to ensure that the trained model meets the key criteria – 
generalization and robustness. The former means that the model performs well on previously unseen data. 
The latter demonstrates that the performance of the model does not degrade in case of perturbations 
applied to its inputs and in case of adverse inputs, such as adversarial attacks and out-of-distribution data. 
Both criteria are key challenges in ML and must be fulfilled to demonstrate the absence of unintended 
functionality in these typically black-box systems, which is a crucial condition for their certification by aviation 
authorities.  

The model verification step is followed by the second “V” of the W-model, with one more development 
activity, Model implementation.  This phase covers creation of code that implements the trained model (also 
called the inference model) and its deployment on target hardware, as well as verification and integration 
activities of the inference model to ensure that the properties of the trained model are preserved in the 
deployed version. 
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1.1.2 EASA concept paper for level 1&2 ML applications 

The EASA’s Concept Paper: Guidance for Level 1&2 ML Applications4 “introduces a first set of objectives, in 
order to anticipate future EASA guidance and/or requirements to be complied with by safety-related ML 
applications. Where practicable, a first set of anticipated Means Of Compliance (MOC) has also been 
developed, in order to illustrate the nature and expectations behind the objectives. The aim is to provide 
applicants with a first framework to orient choices in the development strategy for ML solutions” [2]. Among 
the proposed MOCs, formal methods are considered promising, especially for the verification of stability and 
robustness properties of the trained and inference models.  

The concept paper also provides the following definition of learning assurance: “All of those planned and 
systematic actions used to substantiate, at an adequate level of confidence, that errors in a data-driven 
learning process have been identified and corrected such that the system satisfies the applicable requirements 
at a specified level of performance, and provides sufficient generalisation and robustness guarantees.” 

1.1.3 ED-216/DO-333 formal methods supplement 

In commercial aviation, the use of formal methods in the development of software-based aerospace systems 
is allowed through the ED-216/DO-333 [1] supplement to the ED-12C/DO-178C [5] standard. The supplement 
identifies the modifications and additions to ED-12C/DO-178C objectives, activities, and software life cycle 
data that should be addressed when formal methods are used as part of the software development process. 
The standard highlights that the extent to which formal analysis can be used varies according to the ability 
to construct appropriate formal models, the choice of analysis techniques, and the availability of tools. 
Therefore, it is critical to define formal models provided with the appropriate level of detail representing a 
conservative approximation of the important software properties and of the properties stated by the natural 
language requirements, and to adopt tools able to process such models and perform analyses leveraging 
mathematical reasoning. 

1.1.4 Limitations of formal methods 

As discussed in DO-333, applicability of formal methods to any particular software development activity is 
bounded by the ability to construct an appropriate formal model. Requirements specified in natural language 
may include properties that cannot be verified with a formal method. Models can also be insufficiently 
detailed to allow meaningful analysis of some properties and yet be perfectly adequate for others. Despite 
these limitations, formal methods can be a means of completely and accurately describing important 
software properties. Formal analyses can then be applied to provide assurance of these properties [1].  

In recent years, new approaches – including the use of formal methods – have been proposed for the 
verification of ML components and ML-enabled systems. Furthermore, new formal methods tools are in 
development that permit mathematical analysis of ML models, such as neural networks. These are currently 
limited by scale and the need to precisely define requirements for analysis. Current state-of-the-art tools 
today could not be applied to large open input spaces and complex ML models, such as vision-based models. 
However, they are making rapid progress and have been used and applied at scale for low-complexity models 
(e.g., shallow NNs) with well-defined input spaces to prove critical robustness properties for real systems. At 
the same time, the research community is actively working on overcoming the existing barriers of FM tools 
scalability by developing novel techniques and tools that may be able to address higher complexity ML 
verification problems in the future. 

 
 
4 For short, in the remainder of the report it is referred to as “EASA AI Concept Paper”. 
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1.2 Scope of the ForMuLA project 

The ForMuLA project focuses on identifying opportunities for adopting formal methods as means of 
compliance for the assurance and certification objectives for ML constituents. The following topics have been 
addressed: 

• Identification of available state-of-the-art FM technologies specific to ML. Such technologies have 
been adapted to or specifically developed for machine learning and are able to support several 
development and V&V activities, including data quality assessment, improvement of the learning 
process, ML model stability and robustness verification,and explainability. For those activities, where 
FM may face scalability or applicability limitations, statistical methods have also been explored as 
supporting means for the analysis. 

• Identification of key FM applications for the learning process verification, especially for the 
assessment of ML model stability, robustness, and verification of intended behaviors. To overcome 
current limitations of FM tools in verifying global properties, the project identifies a method that 
reduces the problem of global properties verification to a set of local pointwise verifications 
performed relying on a conservative approximation.  This method could be acceptable if the selected 
points and corresponding properties are representative of the ML constituent ODD. 

• Practical demonstration of the use of formal methods on an industrial use case of a deep learning-
based estimator for remaining useful life (RUL) of mechanical bearings in aircraft equipment in 
support of on-ground maintenance activities. A number of innovative FM technologies have been 
selected based on their applicability to the use case and used to evaluate the ML model stability, 
robustness and compliance with intended behaviors. At the same time, selected technologies have 
been evaluated in terms of efficiency and effectiveness. Furthermore, the use of statistical methods 
for data quality assessment has also been demonstrated. 

Based on both theoretical and experimental studies, the project has come up with proposals for the use of 
formal methods as anticipated means of compliance for a set of key certification objectives from EASA AI 
Concept Paper [2]. It supported the update of definitions in the concept paper and the clarification of 
objective LM-11 on learning algorithm and trained model stability, which has been split into objectives LM-
11 and LM-12 in the transition to the new version of the concept paper. 

1.3 Outline of the report 

After the brief introduction provided in Section 1 summarizing the scope of the ForMuLA project and the 
related background, Section 2 presents a concrete use case that will be used to contextualize the discussions 
in the following sections of the document. The selected use case consists of an ML-based Remaining Useful 
Life (RUL) estimator which is used in the context of a Prognostics and Health Management (PHM) system. 
After a short description of what RUL is and what solutions can be adopted to implement it, the ConOps and 
the architecture of the ML-based system incorporating the RUL functionality are described. Several details 
are offered to clarify the ML constituent operational design domain, the system-level and the ML constituent 
requirements, the datasets, the ML model characteristics, and, finally, the safety considerations related to 
the use case. 

Section 3 provides the necessary background on formal methods, covering their capabilities and range of 
applications. Definitions are offered to help the reader to understand the FM taxonomy and associated 
technologies. Examples complement the technology overview to guide the reader in gaining confidence on 
how formal methods can be used for validation and verification activities, as well as for supporting some 
development activities for ML. Complementary to FM technologies, selected statistical methods are 
discussed that can support the analysis for key ML assurance objectives for which FM are either not 
applicable or not scalable. 
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Section 4 is the core of the report, as it describes the innovative applications of formal methods in the context 
of ML assurance. These approaches go beyond the traditional V&V applications of FM that are described in 
existing standards (e.g., ED-216/DO-333). The intent is to stress that FM can be used as anticipated means of 
compliance for the objectives that address new challenges specific to ML, such as robustness of ML models, 
as prescribed by existing guidance.  

Section 5 demonstrates the application of formal methods on the use case described in Section 2. The 
demonstration focuses on a selected subset of FM approaches that includes data representativeness 
assessment and verification of ML model stability, robustness, as well as several other use case specific 
properties defined based on the ML model requirements. An example toolchain is described to offer practical 
insight of how the existing technologies can be combined, and the experimental evaluations provide an idea 
of the applicability and the scalability of the described toolchain solution.  

Finally, Section 6 (Conclusions) reviews the current accomplishments and discusses subjects for future work.  
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2 Concept of Operations and use case 

2.1 ConOps and use case selection  

2.1.1 Background 

Remaining Useful Life (RUL) is a widely used metric in Prognostics and Health Management (PHM) that 
manifests the remaining lifetime of a component (e.g., mechanical bearing, hydraulic pump, engine). Existing 
RUL calculation procedures often use physics-based degradation models [11]. Such models typically include 
a set of coefficients, such as component degradation coefficient and operating environment coefficient, 
which can come from engineering knowledge or be estimated using system identification methods. Another 
group of methods are similarity-based methods [12], where condition indicators of the component are 
compared to degradation trends of similar components available from historical data. 

While model-based approaches for RUL estimation tend to be more accurate if the complex system 
degradation is modeled precisely, they require extensive prior knowledge about physical systems, which is 
often unavailable in practice. Therefore, creation of accurate physics-based models may not be possible. 
Similarity-based methods often suffer from poor accuracy. In the recent decade, the focus has been gradually 
shifting towards data-driven approaches that are able to model the degradation characteristics based on 
historical sensor data and infer the underlying correlations and causalities in the collected data without 
relying on a physics model. Various machine learning approaches have been proposed [13] [14] [15], out of 
which the use of deep learning (DL) is of particular relevance [16]. The main advantage of applying DL in PHM 
is that highly nonlinear, complex multi-dimensional systems can be modeled without prior expertise on the 
system behavior provided that enough data is available. Raw sensor readings can be directly used as inputs 
to DL models, and their automatic feature extraction capabilities can be leveraged to discover the 
relationships between the inputs, the degree of impact on the RUL, as well as other contributions to the RUL 
that may be unknown to the expert [17]. This is similar, for example, to image data, where raw inputs to a 
neural network are pixels, while various features on the input image (e.g., presence of different objects, 
forms or shapes) are internally extracted by the network in the hidden layers. Therefore, DL methods require 
less domain expertise as they alleviate the need of feature engineering activities, which could be difficult and 
time-consuming, since it requires prior knowledge of machine health prognostics and signal processing. 

The ML-based (more precisely, DL-based) RUL estimation component is expected to accept time series data 
–  a sequence of input values taken at several subsequent time steps, i.e., within a time window [16]. 
Therefore, a 2D input is expected, where the first dimension corresponds to the number of time steps (e.g., 
historical) and the second dimension corresponds to the number of input features. Considering a reasonable 
time window size and all ML constituent ODD inputs (see Table 1 and Table 2 in Section 2.2.3), the total 
number of input values, i.e., the number of entries in the time window (number of features × number of time 
steps), may be on the order of 103, which is a high-dimensional input. This motivates to apply a deep learning 
solution to this use case. More details about the inputs are available in Section 2.2.  

Additionally, current application scope is limited to offline training only. A trained ML model is assumed to 
be frozen, i.e., no further (online) updates to the model are made during operation.  

Remark: As mentioned above, DL can perform automatic feature extraction from raw data. Extracted 
features, such as, for example, filters in the hidden layers of a convolutional neural network, may not be 
interpretable by system developers and users. Understanding the meaning of such features shall play an 
important role both for developers and users of the ML system. Even though explainability is not the central 
topic of the ForMuLA report, its role in the development and for the end user are highly acknowledged, and 
relevant aspects are discussed in the report whenever applicable. 
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2.1.2 ConOps alternatives 

RUL estimation function can be used in the following application categories: 

1. On-ground 

a. Condition-Based Maintenance (CBM), where the estimated RUL could contribute to such tasks 
as augmented manual inspection of components and scheduling of maintenance cycles for 
components, such as repair or replacement, thus moving from preventive maintenance to 
predictive maintenance (do maintenance only when needed, based on component’s current 
condition and estimated future condition). This could allow to eliminate or to extend service 
operations and inspection periods, prevent unsafe component conditions, optimize component 
servicing (e.g., lubricant replacement), generate inspection and maintenance schedules, and 
obtain significant cost savings.  

2. In-flight 

a. Pilot decision support, where estimated RUL is directly provided to the pilot via a dedicated 
screen/interface (e.g., cockpit display), so that they can be aware of the current state and 
remaining life of different components of the aircraft and take corresponding decisions in the 
scope of current flight mission. For example, low RUL value of an engine provides the pilot with 
critical information for managing a hazardous contingent situation, e.g., suggests to immediately 
abort the current mission (e.g., initiate emergency landing) or re-plan the mission (e.g., discard 
some objectives, land at the nearest runway, etc.).  

b. Airborne software applications, where RUL is communicated to other avionics software (SW) 
components, such as automated planners and decision makers. Such applications can use the 
RUL information to recommend appropriate mitigations (e.g., suggest an altitude change), direct 
the crew in case of missed recognition of hazardous situations, as well as provide real-time 
decision aids in the scope of the current flight mission. 

Aforementioned applications of RUL estimation provide support to information analysis (RUL value is more 
comprehensible by the pilot/maintenance engineer than raw component sensor measurements or statistical 
condition indicators) and support to decision/action selection (pilot can use RUL to take mission-related 
decisions such as mission abort or re-planning; similar case for maintenance; decisions and mitigations can 
also be suggested by avionics software). Therefore, they map onto Level 1A and Level 1B in the EASA 
classification [2]. In future products (in particular, for 2b – Airborne applications) higher autonomy may be 
introduced, so that the use of RUL estimation function in Level 2 – Human-AI collaboration applications, may 
be expected. 

It is currently premature to detail the use of in-flight RUL applications 2a-b, i.e., “real-time” RUL prediction 
of aircraft components, in the civil aviation context. First, rapid in-flight component degradation is unlikely 
due to periodic maintenance and inspections. Therefore, timely detection of degradation and possible 
failures is performed by on-ground operations. Second, real-time RUL monitoring appears to be more 
applicable in dynamic contexts with rapidly changing conditions (one may consider military applications or 
unmanned aerial vehicles with short dynamic missions). Finally, required Design Assurance Level (DAL) of 
avionic SW functions that predict RUL in-flight would likely be one of the highest, i.e., DAL A-B, which 
currently has many open challenges due to stricter assurance objectives. Therefore, ForMuLA IPC considers 
an on-ground application for RUL as a support for flight preparation. 

2.1.3 Selected use case and associated ConOps 

As discussed in Section 2.1.2, RUL estimation function is a PHM metric that shall be used for condition-based 
maintenance to support aircraft maintenance and flight preparation. RUL estimation could contribute to 
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augmented manual inspection of components and scheduling of maintenance cycles. RUL could also highlight 
areas for inspection during the next planned maintenance, i.e., it could be used to move up (prioritize) a 
maintenance/inspection action to prevent component failure. Additionally, the failure probability of the 
component during the next flight mission could be estimated based on RUL. 

RUL estimation discussed in the ForMuLA IPC is performed for a mechanical bearing component installed in 
the drivetrain assembly of a rotorcraft. 

End users that are intended to interact with the ML-based RUL function include the MRO (Maintenance, 
Repair and Overhaul) team, the CAMO (Continuing Airworthiness Management Organization) team5, and the 
pilots. MRO could use the RUL as a support for ongoing maintenance actions (e.g., collecting additional 
information on component’s state and estimated remaining life), while CAMO could use it for 
planning/scheduling future inspection activities. The pilot could consult the estimated RUL of different 
aircraft components during pre-flight checks to detect possible problems and expected failures,  so that they 
can be reported to on-ground services6. Pilots shall interact with the RUL function via a cockpit display – the 
function can be integrated into an existing display. MRO/CAMO users shall use a ground station display to 
consult the RUL value. 

The CBM application of RUL estimation provides support to information analysis, because RUL value is more 
comprehensible by a human (pilot/MRO/CAMO) than raw component sensor measurements or statistical 
condition indicators. RUL can also provide support to decision/action selection: for example, during pre-flight 
check the pilot may decide to abort the departure and to communicate a possible component problem to 
MRO/CAMO; MRO may decide to prioritize some maintenance/inspection action; CAMO may decide to 
adjust the maintenance schedule of the aircraft. Therefore, the use case maps onto Level 1A and Level 1B in 
the EASA classification [2], because estimated RUL does not automatically drive the maintenance and 
inspection tasks, but only supports the human user in taking a related decision7.  

ML-based RUL estimator is a part of the Vehicle Health System (VHS) – a software system that monitors the 
health state of the aircraft and its components/subsystems. It constitutes a RUL estimation function to be 
implemented as an ML constituent (see Figure 3). It accepts a set of statistical indicators (also called condition 
indicators – CIs) describing the state of the monitored component, as well as the information about the 
current flight phase, mission and environment, and outputs the predicted RUL value (time-to-failure). 
Therefore, ML model performs a regression task. Predicted RUL value corresponds to the remaining life of 
the monitored mechanical bearing and is provided  to the pilot via a cockpit screen (see example in Figure 
3a), to the MRO/CAMO team member via a ground display, and to the failure prediction function that 
computes the current probability of failure of the component (the latter is out of scope of ForMuLA). 

 
 
5 CAMO is a civil aviation organization authorized to schedule and control continuing airworthiness activities on aircraft and their 
parts (https://en.wikipedia.org/wiki/Continuing_airworthiness_management_organization). A CAMO can also be the operator of the 
aircraft. The term CAMO is used in the European Union. CAMOs are audited by EASA. MRO performs the scheduled maintenance 
under the requirements of CAMO. Similarly,  in the USA operators are required to have a Continued Airworthiness Maintenance 
Program (CAMP) that must be approved by FAA. MRO performs the scheduled maintenance under the requirements of the CAMP. 
Hereafter, the term CAMO is used for the entity that plans and schedules maintenance activities (for the US this would typically mean 
the operator of the aircraft). 
6 Note that ground services and pilots may require to observe the degradation trend within different timeframes (a longer trend may 
be required by MRO). 
7 In future products one may also expect higher autonomy levels, for example, for automated scheduling and optimization of 
maintenance cycles, automated pre-flight checks with single-pilot operations. Therefore, in the future, CBM application of RUL may 
also fall under Level 2 – Human-AI collaboration. This is out of scope of the current use case and the ForMuLA project. 

https://en.wikipedia.org/wiki/Continuing_airworthiness_management_organization
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Figure 3. (a) VHS view on a cockpit display (example); (b) ML subsystem and ML constituent. 

Remark: VHS monitors the health state of different aircraft components (e.g., engines, bearings, hydraulic 
system, fans). These components may or may not have a dedicated RUL estimation function. If present, the 
RUL estimation function may be implemented both with and without ML. There may be multiple ML 
constituents implementing the RUL function, each of them dedicated to a different aircraft component. Each 
ML constituent is part of the ML subsystem that may also include functional elements implemented with 
traditional software, e.g., signal processing from raw sensor data to compute inputs for the ML constituent. 

2.2 Definition of the ML-based system 

2.2.1 System architecture 

VHS is an ML-based system since it includes a component/function based on machine learning, namely the 
RUL estimation function. It is assumed to be the only ML-based function in the VHS. The concept architecture 
of the VHS is illustrated in Figure 4. It includes multiple subsystems/components, among which an ML-based 
subsystem is responsible for estimating the state of the mechanical bearing component mentioned above. It 
incorporates an ML constituent that is a deep learning based RUL estimator further detailed in Section 2.2.2. 
The constituent includes an ML-based RUL estimation function (ML inference model) and pre/post-
processing elements implemented in traditional software. Health and Usage Monitoring System (HUMS)8, as 
well as other avionics systems, provide inputs to the ML constituent. ML subsystem additionally includes 
traditional SW components that perform other, non ML-based functions, for example, estimation of failure 
probability of a mechanical component given its predicted RUL (out of scope of the ForMuLA project). 
 

 
 
8 HUMS is a generic term given to activities that utilize data collection and analysis techniques to help ensure availability, reliability 
and safety of vehicles (https://en.wikipedia.org/wiki/Health_and_usage_monitoring_systems).  

https://en.wikipedia.org/wiki/Health_and_usage_monitoring_systems
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Figure 4. ML-based system, ML-based subsystem and ML constituent in the ForMuLA use case. 

2.2.2 Machine learning constituent 

The use case of ForMuLA focuses on a single ML constituent that implements the RUL estimation function 
for a mechanical bearing installed in a drivetrain assembly of a rotorcraft. It is monitored by a vibration 
sensor, which is a single axis piezoelectric accelerometer mounted on the outside of the gearbox near the 
bearing. From this sensor measurements, a set of Condition Indicators (CIs) is computed by the HUMS using 
signal processing algorithms (this computation is done outside of ML constituent). A typical CI is an energy 
value, e.g., Ball Energy for the bearing, that manifests some degradation pattern.  

Additional inputs are provided by other avionics systems: current flight regime (e.g., ascent, cruise), current 
mission, and current environment. The main factor that affects bearing degradation and its RUL is how the 
component is used. This depends on the load of the bearing, which is different across flight regimes, and, 
consequently, on the flight missions that the aircraft executes, because each mission is a sequence of flight 
regimes; also duration of each regime varies across missions. A set of mission patterns (types) that may be 
executed is known and specified in the operational design domain of the aircraft. RUL is also dependent on 
the environment conditions. 

Inputs to the ML constituent represent a time window, i.e., an ordered sequence of snapshots of bearing 
state (represented by CIs and other quantities described above). Snapshots can be recorded both between 
and during flight missions. The data is recorded with a fixed time step and stored in memory to be later used 
in predictions9.  

Figure 5 illustrates the ML constituent that includes the ML model (deep learning; see Section 2.2.6 for 
description) and pre-/post-processing components implemented in traditional software and used for feature 
computation, (de-) normalization, monitoring of ML constituent ODD, and other relevant tasks. The output 
of the RUL estimator is provided to human users (MRO, CAMO, pilot) for CBM purposes, and to the 
component failure probability estimation function. Data recording and generation/update of time windows 
is performed outside of the ML constituent and, therefore, it is not part of its preprocessing functions. 

 
 
9 All inputs to the RUL function are also available during flight. This means that, in principle, RUL estimation can also be performed 
in-flight. Corresponding airborne applications are not part of the use case discussed in this report. 
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Figure 5. Overview of the ML constituent for RUL estimation, and its operating environment. 

2.2.3 ML constituent operational design domain 

2.2.3.1 Definition 

Operational design domain of the ML constituent is defined at its boundary. Dimensions of the ML 
constituent ODD, as well as their expected limits and/or probability distributions, are summarized in the 
following subsections. 

The aircraft operates by flying a set of missions. The bearing component is expected to operate under 
different loads that depend on the flight regime and, consequently, on the mission. Therefore, current 
mission, being part of the aircraft-level ODD, is also part of the ML constituent ODD. Duration of flight regimes 
in different missions follow a Gaussian distribution (with different parameters across different regimes). 
Condition indicators for the bearing component, provided by HUMS, are also expected to follow specified 
probability distributions. The aircraft is expected to operate under different environment conditions. All 
these dimensions frame the ODD of the ML constituent. Their descriptions, measurement units (if 
applicable), data types and sources are summarized in Table 1. Numerical values for ODD dimensions (ranges, 
categorical values, distribution parameters) are available in Table 2. 

ML constituent ODD does not include abnormal loads, abnormal (unexpected) CI values, unknown flight 
regimes and missions, unexpected environment. These should be verified by robustness verification 
methods. In general, adverse inputs should be prevented from entering the ML model. For that, runtime 
monitoring techniques can be employed (discussed in Section 2.2.3.2). 

Table 1. ML constituent ODD dimensions (AvS = Avionics Software; G ~ m/s2). 

Input name Description Unit Data type Source 
Ball energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Cage energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Inner race energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Outer race energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Shaft order 1 Condition Indicator (CI) G Numeric (float) HUMS 

Shaft order 2 Condition Indicator (CI) G Numeric (float) HUMS 

Shaft order 3 Condition Indicator (CI) G Numeric (float) HUMS 

Torque Aircraft Parametric Data % Numeric (float) HUMS 

Current regime Current flight regime (flight phase) n/a Categorical (string) AvS 

Nominal load Nominal load of the component. Each 
flight regime has a different nominal load. 

n/a Numeric (float) AvS 

Current mission 
profile 

Information about current mission of the 
vehicle: sequence of flight regimes, 
duration in each regime.  

n/a Regimes: Categorical (strings)  
Durations: Numeric (integers)  

AvS 

Environment  Condition, in which the mission is flown. n/a Categorical (string) AvS 
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Table 2. ML constituent ODD ranges. 

Dimension name Limits Comment 
Ball Energy Weibull distribution (𝜆 =  1.29𝐸 − 04, 𝑘 = 0.419)   𝜆 – scale, 𝑘 – shape 
Cage Energy Weibull distribution (𝜆 =  9.09𝐸 − 04, 𝑘 = 0.242)   Same as above 

Inner Race Energy Weibull distribution (𝜆 =  7.69𝐸 − 05, 𝑘 = 0.549)   Same as above 

Outer Race Energy Weibull distribution (𝜆 =  8.73𝐸 − 05, 𝑘 = 0.387)   Same as above 

Shaft Order 1 Weibull distribution (𝜆 =  0.705, 𝑘 = 3.59)   Same as above 

Shaft Order 2 Weibull distribution (𝜆 =  0.280, 𝑘 = 2.056)   Same as above 

Shaft Order 3 Weibull distribution (𝜆 =  0.970, 𝑘 = 2.666)   Same as above 

Torque Min: 0; Max: 160  

Current regime One of the following: Ground, Takeoff, Ascent, 
Forward Flight, Descent, Hover, Land 

 

Nominal load One of the following values:  
 

• 2.1 (Ground) 

• 9.2 (Takeoff, Land) 

• 8.2 (Ascent) 

• 4 (Forward Flight) 

• 7.6 (Descent) 

• 7 (Hover)  
 

Nominal load is the mean of the Gaussian distribution 
with the following parameters (NOTE: only positive 
values are allowed):  
 

• Ground: 𝜇 = 2.1 and 𝜎 = 0.5 

• Takeoff: 𝜇 = 9.2 and 𝜎 = 1.5 

• Ascent: 𝜇 = 8.2 and 𝜎 = 1.5 

• Hover: 𝜇 = 7 and 𝜎 = 1.0 

• Forward Flight: 𝜇 = 4 and 𝜎 = 1.5 

• Descent: 𝜇 = 7.6 and 𝜎 = 1.5 

• Land: 𝜇 = 9.2 and 𝜎 = 0.5 

There is no easy way of 
measuring current (actual) 
component load during 
operation. Statistically, in each 
flight regime, actual load shall 
be within ±𝜎 of the provided 
probability distribution. 
 
NOTE: Higher loads may occur 
during a flight regime if there is 
an abnormal maneuver (e.g., 
banked turn).  
 

Current mission Sequence of mission regimes – one of the pre-
defined patterns. 
Example of a mission pattern: Ground – Takeoff – 
Ascent – Forward Flight (Short) – Descent – Land.  
 
Flight regime duration: 
Within ±𝜎 of the Gaussian distribution with 

• Ground:  𝜇 = 10 and 𝜎 = 5 

• Takeoff:  𝜇 = 1 and 𝜎 = 0 

• Ascent:  𝜇 = 10 and 𝜎 = 5 

• Hover (Short):  𝜇 = 5 and 𝜎 = 3 

• Hover (Long):  𝜇 = 10 and 𝜎 = 10 

• Forward Flight (Short): 𝜇 = 50 and 𝜎 = 20 

• Forward Flight(Long): 𝜇 = 180 and 𝜎 = 20 

• Descent:  𝜇 = 10 and 𝜎 = 5 
Land:  𝜇 = 1 and 𝜎 = 0 

Full list of mission patterns is not 
provided here for brevity. 

Environment 
condition 

One of the following: desert, normal (non-desert)  
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2.2.3.2 ML constituent ODD monitoring aspects 

Correct function of the RUL estimator (ML constituent) shall be guaranteed inside its operational design 
domain. During operation, unexpected/adverse inputs may occur, for example, due to abnormal maneuvers 
of the aircraft, unexpected environment phenomena. While ML model’s behavior for such inputs shall be 
evaluated via robustness verification methods, an appropriate risk mitigation for preventing adverse inputs 
and possible unintended behavior of the model is the use of runtime monitoring in the ML constituent, in 
particular, the ML constituent ODD monitoring. 

In case of the RUL estimator, some checks on the quality of certain model inputs, such as condition indicators, 
shall be performed outside of ML constituent by the HUMS using data quality indicators. As further 
elaborated in Section 5.4.3.1, such checks can detect, for example, fluctuations in the CI values over multiple 
time steps in the time window, flag the incoming data correspondingly, and block it from entering the ML 
constituent (in this case no RUL prediction will be provided). 

Other checks for out-of-ODD inputs can be implemented as monitors inside the ML constituent to perform, 
for example, range checks for inputs, which have min/max values prescribed by the ML constituent ODD 
(e.g., Torque), correctness of one-hot encoded categorical inputs (e.g., exactly one category is equal to “1” 
at every time step), and out-of-distribution checks. Further discussion and investigation of ODD monitoring, 
in particular, of out-of-distribution detection, is out of scope of the ForMuLA report. 

2.2.4 Requirements 

Provided lists of requirements are not complete and have exemplary purpose for the discussion and 
demonstration of formal methods carried out in the ForMuLA IPC. 

This section provides information about the functional requirements both at the level of the RUL estimator 
function and at the system level. It also describes the main categories of non-functional requirements for the 
ML constituent.  

2.2.4.1 Functional requirements 

Table 3 provides several functional requirements for the aircraft/vehicle (VH) and its maintenance that are 
related to the RUL function of the Vehicle Health System (VHS). A selected list of system-level functional 
requirements for the VHS (ML system) is shown in Table 4. These requirements can be refined into more 
detailed requirements for the RUL ML constituent, provided in Table 5.  

Table 3. Selected aircraft (vehicle)-level requirements related to RUL. 

ID Requirement 
VH-1 The vehicle shall operate in two different environments: desert and non-desert (normal), which 

differently affect the degradation of the mechanical bearing component. 

VH-2 The vehicle shall execute a set of predefined flight mission types. Each mission type (pattern) is an 
ordered sequence of flight regimes. 

PHM-1 The vehicle shall provide means for estimation of RUL of the bearing component on ground, i.e., during 
flight preparation. 

 
Table 4. Selected ML system-level requirements (VHS). 

ID Requirement 
VHS-1 The VHS shall provide a function for estimation of RUL of the bearing component. 

VHS-2 The VHS RUL function shall accept as inputs statistical condition indicators for the bearing component, 
current flight regime, nominal load in the current flight regime, current environment condition, and 
current mission. 
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VHS-3 The VHS RUL function shall compute the RUL desertic and non-desertic environments. 

VHS-4 The VHS shall accept a sequence of input snapshots within a time window. The last snapshot in the time 
window shall correspond to most recent timestamp. 

VHS-5 The VHS shall store snapshots for current and preceding time steps in memory and update it at every 
time step. 

VHS-6 The VHS RUL function shall operate inside its operational design domain. 

VHS-7 The VHS RUL function shall have a maximum admissible error of +30% (RUL over-estimation) and -10% 
(RUL under-estimation) in the “normal” range, i.e., when bearing component health state is not 
low/critical. 

VHS-8 The VHS RUL function shall have a maximum admissible error of +5% (RUL over-estimation) and -15% 
(RUL under-estimation) in the “critical” range, i.e., when bearing component health state is low or critical 
– greater prediction accuracy is required for degraded component to avoid incorrect decisions for 
component inspection and maintenance. 

VHS-9 The average absolute error of the RUL function shall not exceed 15 hours. 

 
Table 5. Selected functional requirements for the RUL ML constituent. 

ID Requirement 
RUL-ML-1 The ML constituent shall return a numerical value corresponding to the predicted remaining useful 

life of the bearing component in hours. 

RUL-ML-2 The ML constituent inputs, encoded as numerical features, shall include statistical condition 
indicators for the bearing component, current flight regime, nominal load in the current flight 
regime, current environment condition, and current mission. 

RUL-ML-3 The ML constituent shall have a categorical feature related to current environment. Its  domain 
shall include two values: desert and non-desert. 

RUL-ML-4 The ML constituent shall accept multivariate time series data as input. 

RUL-ML-5 The time series data shall be organized as a two-dimensional array, where rows represent 
consecutive time steps and columns represent input features. 

RUL-ML-6 The time step for the time series data shall be equal to 60 minutes. 

RUL-ML-7 The number of time steps in the time series data array shall be equal to 40. 

RUL-ML-8 The ML constituent shall update the input and perform inference with the new input every 60 
minutes. 

RUL-ML-9 The ML constituent shall ensure correct function within the input ranges specified by the ML 
constituent ODD. 

RUL-ML-10 The over-estimation error of the ML constituent shall not exceed 30% in the “normal” range. 

RUL-ML-11 The under-estimation error of the ML constituent shall not exceed 10% in the “normal” range. 

RUL-ML-12 The over-estimation error of the ML constituent shall not exceed 5% in the “critical” range. 

RUL-ML-13 The under-estimation error of the ML constituent shall not exceed 15% in the “critical” range. 

RUL-ML-14 The “critical” range shall correspond to the last 100 hours of component RUL; the “normal” range 
shall correspond to all hours before the last 100 hours.  

RUL-ML-15 The ML constituent average RMSE on the test dataset shall not exceed 15 hours. 

 

The main performance requirement for the RUL estimator is the accuracy of the estimation (percentage of 
admissible error) that can be measured by comparing the estimation accuracy at each input point in the test 
dataset to the ground truth. Metrics, such as RMSE, can also be applied to quantify the error [18]. Respective 
requirements include the bound on over-estimations and under-estimations of the RUL, in particular, in the 
“critical zone”. RUL estimation accuracy also has safety considerations, as elaborated in Section 2.2.7. 

2.2.4.2 Non-functional requirements 

In Table 6, a selected list of non-functional requirements for the RUL estimator is provided. They include 
stability and monotonicity of the estimator (formal definitions of these properties can be found in Section 
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3.4), as well as the impact of the operating environment on the RUL prediction. These requirements can be 
formalized as properties and verified using formal methods, as demonstrated in Section 5.4. 

Table 6. Selected non-functional requirements for the RUL ML constituent. 

ID Requirement 
RUL-ML-Stab-1 The maximum admissible perturbation that can occur to a condition indicator input shall be equal 

to 40% of the average initial value of that CI that corresponds to a fully healthy state of the bearing 
component. This value is estimated from available degradation data for the bearing. 

RUL-ML-Stab-2 For a perturbation of a single condition indicator at a single time step within any input time 
window in the ML constituent ODD, the output deviation of the RUL estimator shall not exceed 10 
hours. The max perturbation value for which the requirement must hold corresponds to RUL-ML-
Stab-1. Requirement applies to each condition indicator. 

RUL-ML-Stab-3 For a simultaneous perturbation of all condition indicators at a single time step (e.g., due to a 
resonance frequency) within any time window in the ML constituent ODD, the output deviation 
of the RUL estimator shall not exceed 10 hours. The maximum perturbation value for which the 
requirement must hold corresponds to RUL-ML-Stab-1. 

RUL-ML-Mon-1 For an increased growth rate of a single condition indicator (may occur, for example, when a 
particular failure/damage occurs in the bearing, which increases its degradation) within any input 
time window in the ML constituent ODD, the estimator shall output a non-increasing value of the 
RUL. Requirement applies to each condition indicator. 

RUL-ML-Mon-2 For an increased growth rate of all condition indicators (may occur, for example, due to 
simultaneous development of a number of failures or due to excessive load) within any input time 
window in the ML constituent ODD, the estimator shall output a non-increasing value of the RUL. 

RUL-ML-Env-1 RUL estimator shall predict a smaller RUL for a desert environment than for a non-desert 
environment, all other inputs being equal.  
(A desert operating environment has higher impact on the bearing degradation than a non-desert  
environment) 

2.2.5 Data description 

Presented use case does not represent any concrete product of Collins Aerospace. ForMuLA project only 
used synthetic data from simulations, both for training and testing, because real data from the field was 
not immediately available during IPC execution for the selected application and mechanical component. 
The main goal of ForMuLA is the analysis of applicability of FM as means of compliance for the assurance and 
certification objectives for ML constituents and practical demonstration on a use case, not the verification or 
certification of a final product. Therefore, synthetic data was sufficient for the project. However, in general 
the importance of using real data, in particular for testing, is highly acknowledged. 

The data for the RUL use case is in a form of multivariate time series10 that describe the degradation of 
bearings installed in the same type of assembly (drivetrain). Data is related to a specific type of aircraft 
(rotorcraft) and specific type of sensor, which is a single axis piezoelectric accelerometer mounted on the 
outside of the gearbox near the bearing. The time series start at a healthy state and end at a failure state of 
the bearing. Additional sequences may be provided that either do not start at a 100% healthy state or end 
earlier than the component fails.  

Currently available data comes from simulations. Collins Aerospace possesses physics-based bearing 
degradation models that can be configured to run the data collection process under a set of simulation 
scenarios. Following model parameters can be varied: component and cross-component degradation 
coefficients, environment factor (imitates different operational environments; affects the degradation rate), 

 
 
10 In the remainder of this report, they are referred to as degradation sequences that capture run-to-failure conditions of the 
component. 
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which allows to collect data for different types of bearings installed in different mechanical assemblies, as 
well as model the uncertainties (e.g., manufacturing, installation) within the component. These simulation 
parameters have associated probability distributions. Additional parameters can be introduced in the 
simulation model to consider other important types of uncertainties, for example, aberrations and/or aging 
of sensors that monitor the component. 

Each simulation is traced to a simulation scenario. The latter consists of a sequence of flight missions, while 
every mission, in turn, includes a sequence of flight phases. Each flight phase has a duration described by a 
Gaussian distribution (see Table 2). To generate a new executable scenario, a sequence of missions is 
randomly sampled from a set of predefined mission patterns (see example of a mission pattern in Table 2). 
The scenario is then simulated to obtain a new run-to-failure sequence. Altogether, these sequences form 
the dataset that undergoes data preparation activities (e.g., normalization, labeling, feature engineering) and 
is split into training, validation and test sets. 

Summary of bearing datasets to be used in the RUL use case of the ForMuLA IPC is provided in Table 7. There 
is a number of degradation sequences. Each such sequence has samples corresponding to subsequent time 
steps. Each sample is a snapshot of inputs (e.g., condition indicators) at a given time step. Samples are labeled 
with RUL values at current time step. The average number of samples in the sequences is also provided. 

Table 7. Summary of the available bearing degradation data. 

Item Value 
Number of degradation sequences 100 (more can be generated) 

Number of features 21 (some are categorical) 

Number of categorical features 3 

Average sequence length (steps) 631 

Time step duration 1 (flight) hour 

Missing or wrong data entries None 

Data preparation toolchain Available: Includes feature engineering, labeling, normalization, split 
into training/validation/test datasets. 

Metadata  Available: Includes simulation scenario (for traceability), simulation 
model version and timestamp, random seed, environment condition. 

2.2.6 ML model description 

The ML model is trained offline using available time series data and a supervised learning method.  

To achieve an accurate RUL prediction at current time step, the snapshot of inputs (e.g., CIs, flight phase, 
current component load) taken at this single step is often not sufficient. Instead, as discussed in Section 2.1.1, 
RUL estimation functions typically accept a sequence of inputs, also called a time window [16]. The last row 
in this window is the current time step, i.e., the step at which the RUL is being estimated, while all preceding 
rows are “historical” (preceding) time steps. This suggests a 2-dimensional (2D) input structure, with the first 
dimension being the number of time steps in the window, and the second dimension being the number of 
features. Based on the available bearing degradation data (number of condition indicators and other 
features) and considering that categorical features need to be one-hot encoded, the total number of input 
features at each time step is 40. Similarly, 40 hours is the reasonable size of the time window validated with 
Collins Aerospace SME (each step is 1h, therefore, the number of time steps is 40 as well) needed to get an 
accurate RUL prediction. Altogether, the number of inputs to the ML model, i.e., the cumulative number of 
entries in the time window for all time steps, is on the order of 1000.  

Given the complexity of the input space, a deep learning solution has been selected for the RUL estimator, 
namely, a convolutional neural network (CNN). The choice of CNN is justified with the fact that this type of 
neural network is capable of automatically extracting features from a large number of raw inputs, thus 
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reducing or completely removing the need of manual feature engineering. This is particularly relevant to 
images, where raw data is represented by pixels, and crafting interpretable features from pixel data is often 
impractical. Two-dimensional input to the RUL estimator is similar to the image input representation. 
Moreover, despite the fact that certain inputs, such as CIs, are precomputed outside of ML constituent based 
on sensor data (i.e., these features are not purely “raw”), higher-level features for RUL may include 
degradation trends. Domain experience may not be sufficient to define such trends and consider them in 
predictions. Such trends could be automatically extracted by a CNN. 

Neural network architecture of the RUL estimator is adapted from [17] and is summarized in Table 8. As 
discussed above, it accepts as input a sequence of time steps. A number of convolutional layers is used to 
apply one-dimensional convolutions along the time sequence direction, thus extracting trends in separate 
features. These trends are then merged together via a fully connected layer. Activation functions at all layers 
are Rectified Linear Units (ReLUs). Dropout is used to mitigate overfitting. The CNN performs a regression 
task and outputs a numerical value, which is the predicted RUL value. 
 

Table 8. Summary of the CNN architecture for the RUL estimator. 

Item Value 
Input size two-dimensional; 40x40 window 

Output size 1 

Model type convolutional neural network 

Model task regression 

Number of convolutional layers 4 

Type of convolutions one-dimensional convolutions 

Types of layers convolutional, fully connected 

Type of activations ReLU 

Total number of layers 12 

Total number of learnable parameters 94500 

Dropout probability 0.1 

2.2.7 Safety considerations 

Provided lists of failure conditions are not complete and are provided for exemplary purpose to support 
the discussion and formal methods demonstration carried out the ForMuLA IPC. 

Rationales in EASA NPA 2022-03 guidance on (d) VHM (vibration health monitoring) system safety 
requirements [19] have been considered to derive the proposed classification. For an actual certification 
project associated assumptions would be listed in the functional hazard analysis and validated during the 
project. 

Remaining useful life estimation function can be subject to various functional failures that may affect the 
safety, therefore, the use case is safety relevant. This is illustrated in Table 9, where a set of representative 
failures of the RUL function, corresponding failure effects and the classification based on severity of the 
failure conditions effects (MAJ = Major; MIN = Minor) has been captured. 
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Table 9. Representative list of RUL use case failure conditions classified by hazard levels. 

ID Failure description Failure effect Class Rationale 

FC1 Undetected loss of 
RUL function 
combined with a 
critical degradation of 
the bearing or an 
actual failure. 

MRO or Pilot mistakenly 
considers the component 
RUL “sufficient” to 
execute the flight mission 
without an inspection or 
maintenance action (in 
reality the component 
may develop a failure). 

MAJ Loss of RUL function may lead to both 
under-estimation and over-estimation 
of the RUL.  In the latter case, there is a 
possible safety impact, i.e., lack or 
delay in critical decision making: 
pilot/MRO does not know that the 
component may fail soon and starts 
the flight mission – large reduction in 
safety margins. 

FC2 Non-monotonic 
variation of RUL 

Same as above MAJ Critical inspection of the component 
may be mistakenly skipped (especially 
if the variation is near the decision 
threshold) 

FC3 Frozen value of RUL Same as above MAJ Critical inspection of the component 
may be mistakenly skipped (especially 
if the variation is near the decision 
threshold) 

FC4 Undetected loss of 
runtime monitoring of 
ML constituent ODD  

Same as above MAJ Out-of-ODD input value may not be 
detected due to runtime monitor 
failure. Correctness of ML model 
outputs for out-of-ODD inputs may not 
be guaranteed, therefore, an 
undetected incorrect RUL prediction 
may appear (e.g., an overestimation), 
which may lead to skipping a critical 
inspection of a component that lead to 
an unexpected failure. 

FC5 Use of outdated 
(untimely) inputs 

Same as above MAJ Out-of-date inputs may reflect some 
previous component state with less 
degradation compared to the actual 
state. Consequently, the system may 
predict the RUL that is higher than real 
one, which may lead to skipping a 
critical inspection of the component. 
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3 Formal methods technologies for machine learning 

This chapter provides necessary background on formal methods, including main definitions and high-level 
application categories. It then discusses property specifications and formal methods technologies that have 
been adapted to or specifically developed for machine learning. In addition, the chapter offers a discussion of 
other categories of methods, such as statistical methods, that can complement the analysis for some 
assurance objectives where formal methods are not applicable or face scalability limitations. 

3.1 What are formal methods? 

Formal Methods (FM) are typically defined as mathematical techniques used to develop software systems 
and verify their correctness. In commercial aviation, the use of formal methods in the development of 
software-based aerospace systems is allowed through the ED-216/DO-333 [1] supplement of the ED-12C/DO-
178C [5] standard. ForMuLA report refers to the following definition of formal methods taken from DO-333: 

Formal methods are mathematically based techniques for the specification, development, and verification of 
software aspects of digital systems. The mathematical basis of formal methods consists of formal logic, 
discrete mathematics, and computer-readable languages. The use of formal methods is motivated by the 
expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can 
contribute to establishing the correctness and robustness of a design. For example, formal methods, because 
of their mathematical basis, are capable of: 

• Unambiguously describing requirements of software systems. 
• Enabling precise communication between engineers. 
• Providing verification evidence such as consistency and accuracy of a formally specified representation of 
software. 
• Providing verification evidence of the compliance of one formally specified representation with another. 

Possible applications of formal methods span across the entire development lifecycle of a software system, 
including (1) formal specification of the system and its requirements using different mathematical formalisms 
(e.g., first-order logic, finite state machines) that are used by effective reasoning tools; (2) support for system 
development activities, such as design exploration and architecture/program synthesis, and (3) formal 
verification that aims to provide formal proofs of correctness of intended algorithms, programs, and systems. 
Verification is the largest area that includes a number of traditional FM applications11. For example, model 
checking provides a sound, complete, and automatic verification method for finite-state models of software 
and hardware against specifications by exhaustive exploration12. Proof assistants are able to produce reliable 
proofs of mathematical theorems, often in an interactive fashion. Static program analysis techniques 
perform a direct and automated analysis of programs without executing them (for example, this is often used 
in compilers). ForMuLA report focuses on the use of formal methods for machine learning, thus leaving out 
of scope the detailed discussion of aforementioned traditional approaches. We refer an interested reader to 
FM survey works, such as [20].  

Remark: Formal methods are traditionally associated with rigorous and exhaustive analyses. To explore a 
broader scope of techniques for assurance and verification of ML, ForMuLA also considers statistical methods. 
The use of statistical methods is intrinsic to the design assurance process for ML as possible means of 
compliance for such objectives as data quality and ML model generalization. They can also be applied to 
property verification of ML models, for example, to mitigate scalability issues of exhaustive analyses of 
traditional FM, while increasing the thoroughness of the analysis.  

 
 
11 Of course, both development and verification applications of FM are informed by a formal specification. 
12 Extensions exist to address the tractability of the analysis (for example, bounded model checking, symbolic mode checking).  
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3.2 Formal methods main definitions 

This section provides a set of key definitions related to formal methods. Some definitions (e.g., soundness, 
completeness) are provided in the context of property verification,. However, they similarly apply to other 
applications of FM. 

Property. A property is a mathematical statement, i.e., a declarative sentence which is either true or false. A 
formal method can be used to determine whether a given property is valid or invalid. 

For example, let 𝑓 be a function 𝑋 → 𝑌,  𝑋 and 𝑌 being, respectively, the input space (domain) and the output 
space (codomain) of 𝑓. Also, let both input and output of 𝑓 be two-dimensional, i.e., 𝑋 ∈ ℝ2 and 𝑌 ∈ ℝ2. For 
a given subset of input points 𝑋′ ⊂ 𝑋, the following property 𝑃 can be formulated13: 

𝑃: ∀𝑥 ∈ 𝑋′,   𝑓(𝑥) ∈ 𝑌′ = {(𝑦1, 𝑦2) ∈ ℝ2| 𝑦1 ≤ 𝑦2} (3.1) 

where 𝑌′ ⊂ 𝑌 is a region of the output space 𝑌. An equivalent formulation is given below: 

𝑃: 𝑓(𝑋′) ⊆ 𝑌′ (3.2) 

where 𝑓(𝑋′) is the image of 𝑋′ by 𝑓, i.e., the set of all elements of the output space 𝑌 ∈ ℝ2 that correspond 
to the output of 𝑓 when applied to input points in 𝑋′. Formally, it is defined as 𝑓(𝑋′) = {𝑓(𝑥) | 𝑥 ∈ 𝑋′}. Image 
𝑓(𝑋′) is often referred to as the set of outputs reachable from the inputs 𝑋′, or output reachable set. 

A property is valid14 (resp. invalid) if it evaluates to True for each input 𝑥 in 𝑋′ (resp. False for at least one 
input 𝑥 in 𝑋′). An illustration of a valid property 𝑃1 is shown in Figure 6. Here, the output reachable set 𝑓(𝑋1

′ ) 
is fully contained in the region (half-space) 𝑌′ = {(𝑦1, 𝑦2) ∈ ℝ2| 𝑦1 ≤ 𝑦2}, therefore, the property is valid 
w.r.t. the input subset 𝑋1

′ ⊂ 𝑋. Instead, an invalid property 𝑃2 is illustrated in Figure 7. Here, part of the 
output set 𝑓(𝑋2

′ ) is out of the required region, i.e., certain inputs from 𝑋2
′ ⊂ 𝑋 lead to outputs that violate 

the condition 𝑦1 ≤ 𝑦2, thus invalidating 𝑃2. 

A property is satisfiable (SAT) if there exists at least one input that makes it evaluate to True. The property is 
unsatisfiable (UNSAT) in the opposite case. 

 
Figure 6. An example of a valid property. 

 
Figure 7. An example of an invalid property. 

 

 
 
13 This example of property is a universal (“for all”) statement. It is supposed to be true for all members of a set, which is expressed 
through a universal quantifier. Such properties are most common, and the remainder of this report focuses on such universal 
statements (i.e., “for all inputs…”, rather than “there exists some input such that…”). 
14 Commonly used synonyms: true (false) property, the property holds (does not hold). Mathematically, valid property is written as 
𝑃 ⊧ ⊤ ("P entails True") and invalid property is written as 𝑃 ⊧ ⊥ ("P entails False").  



    
Collins Aerospace – EASA 

ForMuLA IPC extract 

 
Page 32 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

Counterexample. Consider a property 𝑃, which is a universal statement. A counterexample (CEX) to 𝑃 is an 
instance 𝑥̃ in 𝑋′ for which the negation ¬𝑃 is true. If there exists a counterexample to 𝑃, then 𝑃 is invalid. 
Inversely, if there exists no counterexample to 𝑃, then 𝑃 is valid. 

An illustration of a counterexample to an invalid property 𝑃2 is given in Figure 8. 𝑃2 is as in the previous 
example, i.e., 𝑃2: 𝑓(𝑋2

′ ) ⊆ 𝑌′ = {(𝑦1, 𝑦2) ∈ ℝ2| 𝑦1 ≤ 𝑦2}. A counterexample is an element 𝑥̃ ∈ 𝑋2
′   such that 

¬𝑃2 is true, i.e., such that 𝑓(𝑥̃) ∉ 𝑌′.  

 
Figure 8. A counterexample to an invalid property. 

 
Falsification. The falsification approach is a common way of property verification using formal methods, that 
aims at finding a counterexample for the property. To do so, the negation of the property (¬𝑃) is considered. 
If a formal method can identify at least one input from the input (sub)space specified for 𝑃 that makes this 
negation evaluate to True, this, consequently, disproves 𝑃. This is because the universal statement in 𝑃 
becomes false, i.e., the property does not hold for all required inputs. Instead, if the verification problem for 
¬𝑃 has no solutions then 𝑃 is declared valid. 

To reason about the validity of properties, FM may rely on approximations. For example, rather than 
reasoning on an exact property formulation 𝑃: 𝑓(𝑋′) ⊆ 𝑌′, the method may consider an approximation 

𝑃̃: 𝑓(𝑋′) ⊆ 𝑌′, where 𝑓(𝑋′) approximates the set 𝑓(𝑋′). Approximations in FM have practical value as they 
can be less computationally expensive to verify than the original property. However, considerations on 
method soundness exist, discussed below. 

Soundness. A verification method is sound if for any property 𝑃 it returns that 𝑃 is valid ONLY IF 𝑃 is valid. In 
other words, a sound method never has a missed violation, i.e., an invalid property is never declared valid.  

Remark: Missed violations are often referred to as false negatives. In this case, “negative” is an answer to the 
falsification problem, i.e., “Is there some point that violates the property?”. A negative answer, i.e., “No, there 
are no points that violate the property”, means that the property itself is valid. Therefore, false negative 
means that the property has been mistakenly declared valid, that is, a property violation has been missed. 

If a sound method relies on an approximation 𝑃̃ of 𝑃, then this must be a conservative approximation: 𝑃̃ ⇒

𝑃. In this case, if the method can prove that 𝑃̃ holds and returns True, then necessarily  𝑃 is valid. For instance, 

a conservative approximation of 𝑃: 𝑓(𝑋′) ⊆ 𝑌′ could be a property 𝑃̃: 𝑓(𝑋′) ⊆ 𝑌′ where 𝑓(𝑋′) is a superset 

of 𝑓(𝑋′) i.e., such that 𝑓(𝑋) ⊇ 𝑓(𝑋). Figure 9 illustrates an output set 𝑓(𝑋1
′ ) of the function 𝑓 and its 

conservative approximation 𝑓(𝑋1
′) for a valid property 𝑃1. It can be seen that the approximation subsumes 

the “real” output set, which shows its conservativeness. In this case, if the approximation meets the output 
constraint 𝑦1 ≤ 𝑦2, it can be concluded that 𝑃1 is valid. Figure 10 illustrates that when a property is invalid 

(𝑃2 on the figure), the conservative approximation 𝑓(𝑋2) ⊇ 𝑓(𝑋2) captures the invalidity as well. 
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Figure 9. An example of a conservative approximation for 

a valid property. 

 
Figure 10. An example of a conservative approximation for an 

invalid property. 

Completeness. A verification method is complete if for any property 𝑃 it returns that 𝑃 is valid IF 𝑃 is valid. 
In other words, if a solution to the falsification problem exists, it will always be found by a complete method15; 
a false alarm16 is never raised, i.e., a valid property is never declared invalid.  

An example of a false alarm is provided in Figure 11. It illustrates a valid property 𝑃3: 𝑓(𝑋3
′ ) ⊂ 𝑌′: all possible 

outputs 𝑓(𝑋3
′ ) of the function 𝑓 belong to the correct half-space 𝑌′ = {(𝑦1, 𝑦2) ∈ ℝ2| 𝑦1 ≤ 𝑦2}. The figure 

also shows the output of a sound method that deals with a conservative approximation of 𝑃3, 𝑓(𝑋3
′ ), where 

𝑓(𝑋3
′ ) ⊇ 𝑓(𝑋3), as a red rectangular area. The bottom right part of this conservative over-approximation 

𝑓(𝑋3
′ ) lies outside of 𝑌′. Therefore, such method may declare 𝑃3 invalid as it intersects with an undesired 

region, while in fact the property is valid. The method may also return a counterexample, i.e., some input 

from the region 𝑓(𝑋3
′ ) ∖ 𝑌′ that is a spurious (misleading) counterexample for verification, i.e., a false alarm.  

 

Figure 11. An example of a false alarm (false positive) for a valid property. 

Soundness is a mandatory requirement for a formal method. Some FM are sound and complete, i.e., they 
can correctly prove or disprove any property that can be expressed in the formalism used by the method. 
Such methods do not rely on approximations and provide maximum precision of the analysis. Other types of 

 
 
15 Note that no assumption is made on the method scalability, i.e., even if the solution is guaranteed to be eventually found, this may 
not be done in reasonable time. Scalability is a typical problem for FM, especially for complete methods. 
16 Often referred to as a “false positive”. 
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FM are instead sound but incomplete. Such methods typically use conservative approximations to preserve 
soundness, while they trade off completeness to reduce the computational burden. As discussed above, they 
may not be able to prove property violations. To avoid returning false alarms, they typically return an 
“unknown” answer when they determine that the property is invalid. This is because the invalidity is with 
respect to an approximation, which means that the property may in fact be valid if the exact analysis without 
approximation is performed. 

3.3 High-level application categories of formal methods 

Possible uses of formal methods span across specification, development, and verification. While analysis is 
considered the main FM activity (various formal analyses for systems and software exist, including ML), they 
can also perform synthesis functions, i.e., generate artifacts that can be used during development and 
verification. Generally, FM applications belong to one of the three following areas: 

Property Inference. In the absence of, or in addition to, known properties to be verified, it may be possible 
to automatically infer characteristics of a model behavior, either related to parts of the model or to the model 
as a whole. In other words, this is a synthesis activity for the properties. For example, this is the case for 
neural networks, where techniques have been developed to extract layer properties or relationships 
between NN input and output.  

Property Verification. Formal analyses can be employed to provide evidence that a property of interest is 
valid on a given model. The applicability of this approach is constrained: it depends on the extent to which 
the property is formalizable and verifiable from a theoretical and practical perspective. On the other hand, 
the formal model has to be a conservative representation of the original artifact to guarantee that, if the 
property holds for the model, then it holds for the artifact as well. 

Automated Test Generation. Manual testing is an expensive and time-consuming activity. Many different 
methods have been proposed in the literature to automate the generation (synthesis) of test cases, according 
to the availability of a model for the artifact under test and to the chosen testing criteria: random and 
adaptive random testing, search-based testing, combinatorial testing, scenario-based testing, structural 
coverage-based testing, and others.   

3.4 Property specifications for machine learning 

Formal methods can be used to verify properties of machine learning models. As per the state-of-the-art, 
existing FM technologies and tools, in particular those for neural networks, only address a specific type of 
property formalization that associates a desired or a forbidden output region (or class) to a given input region. 
Such formalizations are referred to as input-output relationships or input-output properties17. This section 
provides an overview of key properties that are relevant to machine learning. For a more detailed overview 
the reader can consider [21] or [22].  

The scope of ML properties can be either local or global. A local property is defined for a given input point 
𝑥 ∈ 𝑋 or a subset of points 𝑋′ ⊂ 𝑋 of the input space 𝑋. That is, local properties must hold for some specific 
inputs. A global property is defined over the entire input space 𝑋 of the ML model. Global properties must 
hold for all inputs. 

 
 
17 Sometimes, also the term reachability property is used. The rationale is that formal analysis computes, possibly with approximation, 
all possible ML model outputs that are reachable from (can be the result of ML model computation for) a given set of inputs. 
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3.4.1.1 Generic input-output relationship 

Properties of ML models are typically expressed over their inputs and outputs, without involving internal 
model structure18. This is because application experts can use domain knowledge to require certain output 
behavior of the ML model based on certain inputs, while the internal organization of the model is often a 
black box to them (e.g., model architecture or learnable parameters, such as weights and biases). A generic 
form of these properties is expressed as an if-then relationship: 

𝑃(𝑥)
 

⇒ 𝑄(𝑦), (3.3) 

where 𝑃(𝑥) is a precondition on the input 𝑥 (premise), and 𝑄(𝑦) is a postcondition over the output 𝑦 
(consequent). Both precondition and postcondition can be expressed differently depending on the type of 𝑥 
and 𝑦. For example, for a numeric input a precondition may impose a range (or a multi-dimensional subspace 
if multiple inputs are considered), while for a categorical value a set of admissible values (e.g., classes) may 
be specified. Arithmetic and logical relationships between the inputs can also be imposed by the 
precondition. The same applies to the outputs and the postcondition. 

Let 𝑓 be an ML model that approximates some function 𝑓: 𝑋 → 𝑌. For the example below, let 𝑋 = {(𝑥1, 𝑥2) ∈
ℝ2} and 𝑌 = {(𝑦1, 𝑦2) ∈ ℝ2}. An input-output property can be exemplified as follows: 

(𝑥1 ≥ 0) ∧ (𝑥1 ≤ 3) ∧ (𝑥1 ≥ 𝑥2)
 

⇒ (𝑦1 <  𝑦2) 

This property requires the first output 𝑦1 of the ML model to be strictly less than its second output 𝑦2, given 
that the input 𝑥1 is in the interval [0, 3] and is greater than or equal to 𝑥2.  

At the “base” (lowest) level all ML model properties discussed below are expressed as input-output 
relationships. They specify desired output behavior based on a set of constraints over the ML model input. 

3.4.1.2 Stability 

Following the definition of ML model stability19, this type of properties limits the admissible deviation of the 
ML model output, given a bounded perturbation of its inputs. Stability properties are defined for 
perturbations in normal operating conditions, that is, perturbations over the inputs inside the ML constituent 
ODD. Input perturbation is bounded by a value often referred to as 𝛿 (delta). Similarly, the maximum 
admissible deviation of the output, such that the output can be still considered “expected” or “correct”, is 
often denoted as 𝜀 (epsilon). This results in the following “delta-epsilon” formulation of stability properties: 

‖𝑥′ − 𝑥‖ <  𝛿 ⇒ ‖𝑓(𝑥′) − 𝑓(𝑥)‖ <  𝜀, (3.4) 

where 𝑥 ∈ 𝑋 is the original input belonging to the input space 𝑋 of the ML model, 𝑥′ ∈ 𝑋 is the perturbed 

input, 𝑓(𝑥) and 𝑓(𝑥′) are ML model outputs for, respectively, 𝑥 and 𝑥′, 𝛿 and 𝜀 are as discussed above (𝛿, 𝜀 ∈
ℝ>0), and ‖∙‖ is a norm that measures the distance between original and perturbed inputs and outputs. The 

 
 
18 In general, it is possible to define properties that also involve internal structure of ML models (e.g., hidden layers of a neural 
network) if they have meaningful semantics and can be traced to some system/model requirements. In particular, explainable AI 
methods could help to understand the behavior of internal elements of models and to make use of these elements for improved 
traceability and richer specifications. Formal methods can also be used to infer properties from datasets and ML models, as discussed 
in Sections 3.5.1.1 and 4.3.1-4.3.4. 
19 Note the distinction between stability and robustness of the ML model, where the former has the scope of only normal operating 
conditions, while the latter subsumes it and considers both normal and adverse conditions (that is, stability, as well as edge cases, 
adversarial cases, etc.). Current academic literature on the verification of neural networks does not make any distinction between 
the two terms and only uses “robustness” to describe the properties. 
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right-hand side of Equation (3.4) suggests a regression output. Instead, if 𝑓(∙) returns a class, then a stability 
property shall impose that the class does not change in the presence of an input perturbation20: 

‖𝑥′ − 𝑥‖ <  𝛿 ⇒ 𝑓(𝑥′) = 𝑓(𝑥). (3.5) 

If input/output perturbations, i.e., 𝛿 and 𝜀, are relative values (e.g., “an input perturbation of 1%”) then the 
following form would apply for a given input point 𝑥:  

∀𝑥′ ∈ 𝑋: ‖𝑥′ − 𝑥‖ <  𝛿‖𝑥‖ ⇒ ‖𝑓(𝑥′) − 𝑓(𝑥)‖ <  𝜀 𝑓(𝑥). (3.6) 

One can observe that the formulations above contain an implication (⇒). Therefore, as discussed above, they 
establish relationships between ML model inputs and outputs. 

Local stability. A property that captures the stability of the ML model around a given input point is a local 
stability property: a perturbation of a concrete input shall result in a slight or no change in the output of the 
model (e.g., bounded error in the case of regression or no change in prediction class in the case of 
classification). Local stability properties are accepted by the majority of FM tools for ML, e.g., tools for neural 
networks verification. 

Global stability. A more general formulation is global stability property, that states that for any input point 
from the ML model’s input space (∀𝑥 ∈ 𝑋) the property formulated as in Equation (3.4) must be valid. Global 
stability can also be expressed as a bound on the ratio between the change in the output and the change in 
the input. This is a notion of Lipschitz continuity [23] discussed in Section 3.4.1.4. 

Perturbation measurement. Input perturbations (and, respectively, deviations in the ML model outputs) can 
be quantified in different ways using different types of norms. For example, the 𝐿1 norm (also known as 
Manhattan distance) and the 𝐿2 norm (Euclidean distance) are different ways of measuring the distance 
between the two inputs or outputs. The infinity norm (𝐿∞) that records the greatest perturbation magnitude 
among all input elements is also widely used for measuring perturbations. The norms are defined as below: 

𝐿∞:  ||𝒙 − 𝒙′||
∞

= max
𝑖

|𝑥𝑖 − 𝑥𝑖
′| (3.7a) 

𝐿1:   ||𝒙 − 𝒙′||
1

= ∑|𝑥𝑖 − 𝑥𝑖
′|

𝑖

(3.7b) 

𝐿2:   ||𝒙 − 𝒙′||
2

= (∑|𝑥𝑖 − 𝑥𝑖
′|2

𝑖

)

1
2

(3.7c) 

3.4.1.3 Robustness 

As discussed above, in general ML model robustness captures both the stability in normal operating 
conditions, with respective property defined as in Section 3.4.1.2, as well as the capability of the ML model 
to not exhibit unintended behavior in the presence of adverse inputs, such as the ones outside of the ML 
constituent ODD, as well as edge/corner cases, adversarial cases, and out-of-distribution cases. There is no 
specific formalization of a robustness property that is different from the one defined above (Equation 3.4)21, 
therefore, in this section we focus on certain variations of this formulation that can be used for identification 
of adversarial examples, which can be considered adverse inputs. 

 
 
20 Typically, raw outputs of a classification model are probabilities or scores of different classes. Therefore, for classification models, 
stability properties can also be formalized similarly to (3.4) imposing that the score of some class shall deviate by no more than 𝜀 . 
21 It is a matter of input region where the property is defined; if the region is outside of ODD or near the ODD boundary, then the 
same stability property may be referred to as “robustness property”, because it considers inputs outside of the normal range. 
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Some FM technologies, such as the ones based on optimization (e.g., MILP) can be employed to search for 
inputs that are “challenging” for the ML model. For example, such inputs may be located close to a decision 
boundary of the model, such that a small perturbation would change the output class, or near an unknown 
discontinuity of the function, such that the function output may deviate significantly in the neighborhood of 
an input. These challenging inputs may be used both as tests and as dataset augmentations to improve ML 
model robustness and mitigate the risks of adversarial attacks. Several formulations of the optimization 
problem can be used. The first one aims at minimizing the input perturbation. To express it, the delta-epsilon 
formulation in Equation (3.4) can be modified as follows: 

min
𝛿

𝜇(𝛿) (3.8) 

                                                             𝑠. 𝑡.  𝛿 ∈ ∆ 

                                                                      ∃(𝑥, 𝑥′): ‖𝑥′ − 𝑥‖ <  𝛿 ⇒ ‖𝑓(𝑥′) − 𝑓(𝑥)‖ ≥  𝜀 

Here, 𝜇 is a cost function defined for the perturbation, and ∆ is a set of possible perturbations. The 
formulation aims to find a minimum-cost perturbation for the output deviation to exceed the bound of 𝜀. For 
instance, in the context of adversarial attacks, using a smallest/cheapest perturbation helps the attacker to 
stay undetected. Another formulation aims at maximizing the loss: 

argmax 𝛿
 

‖𝑓(𝑥′) − 𝑓(𝑥)‖ (3.9) 

𝑠. 𝑡.  𝛿 ∈ ∆ 
         ‖𝑥′ − 𝑥‖ <  𝛿 

This formulation focuses on finding a worst-case error (the “most incorrect” output) of the model given a set 
of possible input perturbations.  

3.4.1.4 Lipschitz continuity 

Lipschitz continuity is a global property, characterizing the behavior of the ML model over its whole input 
space. It consists of a Lipschitz constant which measures the sensitivity of the model to input perturbations: 

‖𝑓(𝑥′) − 𝑓(𝑥)‖ ≤ 𝜽‖𝑥′ − 𝑥‖, (3.10) 

where ‖∙‖ is a norm that measures the distance between original and perturbed inputs and outputs, e.g., 𝐿1, 
𝐿2 or 𝐿∞ norm, as in Equations (3.7a) - (3.7c), and 𝜃 is the Lipschitz constant. In other words, the constant is 
an upper bound on the ratio between the variations of the outputs and the variations of the inputs of an ML 

model 𝑓 (more generally, of some function 𝑓). The smaller the constant 𝜃, the more robust is the ML model 
with respect to perturbations. 

As shown in [24], neural networks with low Lipschitz constants offer better generalization capabilities 
together with stronger robustness against adversarial attacks. Thus, it is of major interest to enforce and to 
demonstrate the existence of such low Lipschitz constant.  

3.4.1.5 Monotonicity 

In certain applications, the function that is represented by the ML model is required to exhibit monotonic 
behavior. For example, given a monotonic change in some input feature(s), the output of the model should 
also change monotonically, i.e., increase or decrease. Monotonicity is a typical requirement for regression 
models of various kinds, such as those that perform monitoring of degradation conditions of various 
components, in particular, PHM applications. 

One possible definition of monotonicity of the ML model, adapted from [25], could be the following. Let 

𝑓: 𝑋 → 𝑌 be an ML model that approximates the function 𝑓: 𝑋 → 𝑌, and let 𝑆 be the set of inputs of 𝑓 (input 

features). The output of the model 𝑓 is monotonically increasing in features 𝑆’ ⊆ 𝑆 if and only if each feature 
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in 𝑆’ is totally ordered and for any two inputs 𝑥, 𝑥′ ∈ 𝑋 that are (1) non-decreasing in features 𝑆’, ∀𝑖 ∈
𝑆′  𝑥[𝑖] ≤ 𝑥′[𝑖], and (2) are equal in all other features 𝑘 ∈ 𝑆 ∖ 𝑆′: ∀𝑘, 𝑥[𝑘] = 𝑥′[𝑘], the output of the model 

𝑓 is non-decreasing: 𝑓(𝑥) ≤ 𝑓(𝑥′). From this definition, a global monotonicity property for monotonic 
increase can be defined in the following way: 

∀(𝑥, 𝑥′) ∈ 𝑋  (∀𝑖 ∈ 𝑆′ 𝑥[𝑖] ≤ 𝑥′[𝑖] ) ∧ (∀𝑘 ∈ 𝑆 ∖ 𝑆′ 𝑥[𝑘] = 𝑥′[𝑘] )
 

⇒ 𝑓(𝑥) ≤ 𝑓(𝑥′) (3.11) 

A similar formulation can be created for a monotonically decreasing (non-increasing) model output. 

It is also possible to define local monotonicity properties, which may be more amenable to verification using 
FM, given the complexity of the global formulation. A local property is formulated in the neighborhood of a 

given point 𝑥 in the input space 𝑋 of 𝑓. In case of monotonicity, given a monotonic “shift” (change) in selected 

features from the input point 𝑥 ∈ 𝑋, a monotonic change (increase or decrease) in the output of 𝑓 is imposed. 

As an example, consider a model 𝑓 , with a one-dimensional input and output spaces 𝑋 ∈ ℝ and 𝑌 ∈ ℝ , 
where the output is expected to monotonically decrease with the increasing value of the input. Given an 
input point 𝑥, one can define following local properties: 

∀ 𝑥′: 𝑥 ≤  𝑥′ ≤ 𝑥 + 𝛿 ⇒ 𝑓 (𝑥′) ≤ 𝑓(𝑥) (3.12a) 

∀ 𝑥′: 𝑥 − 𝛿 ≤ 𝑥′ ≤ 𝑥 ⇒ 𝑓 (𝑥′) ≥ 𝑓(𝑥)  (3.12b) 

where 𝑥’ is an input point in the neighborhood of 𝑥, to which a monotonic shift 𝛿 has been applied. Equation 
(3.12a) is a forward decreasing monotonicity property stating that for any monotonic increase bounded by 
𝛿, the output must be non-increasing. Equation (3.12b) is a backward decreasing monotonicity that requires 
that, locally to the point 𝑥, decreasing value of the input shall lead to a non-decreasing output.  

Limited non-monotonicity. An additional term 𝜀 can be added to the right-hand side of the equations to 
account for non-monotonic behavior that is admissible. In this case, the properties impose that the output is 
allowed to have a limited change in the direction that is opposite to the expected one (but not an unlimited 
growth/decrease); such properties are locally applicable to show a bounded deviation from the desired 
behavior. The addendum 𝜀 turns the forward and backward decreasing local monotonicity properties, shown 
in Equations (3.12a)-(3.12b), into limited increasing monotonicity properties: 

∀ 𝑥′: 𝑥 ≤  𝑥′ ≤ 𝑥 + 𝛿 ⇒ 𝑓 (𝑥′) ≤ 𝑓(𝑥) + 𝜀 (3.13a) 

∀ 𝑥′: 𝑥 − 𝛿 ≤ 𝑥′ ≤ 𝑥 ⇒ 𝑓 (𝑥′) ≥ 𝑓(𝑥) − 𝜀 (3.13b) 

Example of non-monotonic regions of 𝑓  are shown in Figure 12. Function 𝑓(𝑥) is shown in orange color, while 
the blue line represents an ideal decreasing monotonic behavior with increasing 𝑥 and is shown for reference. 
There are two non-monotonic regions. In the first (left) one, for a bounded increase 𝑥′1 of the input 𝑥 around 

the point 𝑥1 (𝑥1 ≤ 𝑥′1 ≤ 𝑥1 + 𝛿), there is an increase of 𝑓  that exceeds the admissible value of 𝜀, therefore, 
the limited increasing monotonicity is violated around the point 𝑥1. Instead, for the second (right) region, a 

bounded increase 𝑥′2 from the point 𝑥2 (𝑥2 ≤ 𝑥′2 ≤ 𝑥2 + 𝛿) leads to only a slight increase in 𝑓  (less than 𝜀), 
hence, it does not violate the property. 
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Figure 12. Example of valid and invalid monotonicity properties in non-monotonic regions of the function. 

3.4.1.6 Other types of properties for ML 

Additional property types may also be considered for some types of ML models. For some input spaces, 
equivalence classes can be defined, each of them containing certain object types. These classes can be used 
to specify invariance properties, for example, enforcing that certain transformations of an object on an image 
(scaling, rotation, etc.) shall lead to the same output of the classifier. Such properties, sometimes also 
referred to as semantic invariance properties [26], are domain specific. For models that contain a state, such 
as recurrent neural networks, temporal specifications could be provided using conventional formalisms, such 
as temporal logics. Temporal behaviors can also be exhibited in reinforcement learning applications. The 
reader is referred to [26] for more details. 

3.5 Formal methods technologies applied to machine learning 

Current section provides an overview of existing FM-based technologies and tools applicable to or specifically 
developed for machine learning. A significant part of this overview focuses on property verification which is 
the main FM application in ML design and V&V. Interested readers may refer to [27] and [28] for more 
detailed discussions on formal verification tools. In addition, certain FM technologies also find their 
applications in ML development processes [27]. 

At present moment, neural networks (NN), in particular deep learning, is the most popular technology in ML. 
They have gained significant interest in the aviation industry due to their remarkable performance at solving 
complex problems, with potential applications in safety-critical avionics systems [29] [30]. In safety-critical 
contexts, assurance and verification of NNs is crucial. According to the state-of-the-art, verification of neural 
networks (VNN) is currently the main focus of formal methods applications to ML [27] [31]. For this reason, 
the FM technology overview in this report focuses on VNN. However, other FM approaches applicable to 
broader areas/types of machine learning are also discussed when this is relevant. 

3.5.1 Complete formal methods 

Complete formal methods refer to algorithms and solvers that are both sound and complete: they can 
precisely report whether a given property holds on a model, generally providing a counterexample in case 
the property does not hold. Such methods do not miss property violations stating that a property holds on a 



    
Collins Aerospace – EASA 

ForMuLA IPC extract 

 
Page 40 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

model while in reality it does not22. Furthermore, they also prevent false alarms (false positives), i.e., they 
state that the property is violated only if it is indeed so.  

Completeness is not always achievable from a theoretical perspective. In practice, when achievable, it comes 
with soundness at a price of high execution time. Neural network verification problems are NP-hard 
problems23, therefore, sound and complete VNN algorithms face scalability issues. In the current practice, 
complete FM generally do not scale to large NN architectures. For VNN, execution time may grow 
exponentially with the increase of either the NN complexity (number of layers, number of neurons, different 
types of activation functions) or the property complexity (e.g., larger input perturbations increase the 
complexity of robustness properties), or both. Complete FM are often also limited to certain NN architectures 
and activations, for example, neural networks with piecewise linear activation functions, such as ReLU. 

3.5.1.1 SMT-based 

Satisfiability Modulo Theories (SMT) [32] solvers aim at automatically determining the satisfiability of a 
formula within a given theory, such as Boolean logic or linear arithmetic, or within a combination of theories. 
For example, an SMT solver can determine the satisfiability of the formula (𝑥 ≥ 2) ∧ (𝑦 ≥ 3) ∧ (𝑥 + 𝑦 ≤ 6) 
within the linear real arithmetic theory. Here, the solver will return that the formula is satisfiable, together 
with an instance that satisfies the formula, e.g., (𝑥 = 2.5, 𝑦 = 3). At their core, SMT solvers, such as Z3 [33] 
or CVC5 [34], use SAT (Boolean satisfiability) algorithms that are complemented by dedicated theory solvers. 
An example of a theory solver is a simplex algorithm used to reason about linear real arithmetic theory. 

SMT-based formal methods have been developed to verify or infer properties of ML models [27]. The 
literature has mainly focused on SMT-based approaches for verification of neural networks [35] [36] [37]. 
Such approaches reduce the NN verification problem to a constraint satisfaction problem by encoding the 
neural network and the negation of the property of interest as a set of linear arithmetic and logical 
constraints over the variables that represent the inputs and the outputs of NN elements (neurons). A solution 
to the constraints, if it exists, represents a counterexample to the property, i.e., the property is violated when 
this CEX is used as input. Otherwise, if the constraints are unsatisfiable, then no CEX exists, and the property 
is valid. For reasoning on neural network models, dedicated theory solvers have been proposed. One example 
is the Reluplex method [35], which is based on the simplex algorithm extended to support constraints that 
describe ReLU activations. State-of-the-art VNN tools, such as [35] and [38], have been developed using this 
method. They are currently limited to piecewise linear activation functions, such as ReLU, and to certain types 
of NN layers, such as fully connected, max- and average pooling, and convolutional layers. 

SMT-based FM have also been developed to verify decision tree models. A decision tree is a type of ML that 
can perform both regression and classification. Except the leaves, each node of a decision tree branches 
either to the left or to the right subtree, depending on a Boolean condition over the input. The leaves of the 
decision tree correspond to the labels that can be assigned to the input (for classification) or values such as 
real numbers (for regression). Different formal methods approaches have been developed to reason about 
decision trees and their ensembles (e.g., random forests) [27]. Among them, [39] uses SMT for the 
verification of an input-output property over a decision tree ensemble. Additionally, [40] introduces a SMT-
based tool called VeriGB (Verifier of Gradient Boosted models) which can verify stability properties of 
gradient boosted decision trees. 

One critical obstacle to the verification of neural networks is the lack of definition of their intended behavior. 
Sometimes, NN functional requirements are “hidden” in the datasets, i.e., they are not available in explicit 

 
 
22 Note, however, that soundness is not typically guaranteed with respect to floating-point arithmetic, but only with respect to 
computations on real arithmetic that ignores rounding errors and may thus differ from the actual computations. 
23 Problems that are “at least as hard as the hardest problems in the NP space” (NP stands for “non-deterministic polynomial time” 
class of computation problems; more details can be found, e.g., in https://en.wikipedia.org/wiki/NP-hardness).  

https://en.wikipedia.org/wiki/NP-hardness
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form. Hence, comprehensive specifications for verifying neural networks are often missing. Recently, SMT-
based FM approaches have been proposed to perform property inference from trained neural networks. 
One approach, introduced by Gopinath et al. [41], allows an automated discovery of input-output properties. 
The method works on DNN with ReLU activation functions and uses the SMT-based Reluplex backend 
mentioned above. These properties are of the form 𝑷(𝒙)

 
⇒ 𝑸(𝒚), as in Equation (3.3); both the precondition 

𝑃(𝑥) and the postcondition 𝑄(𝑦) must be convex, respectively, over the NN inputs 𝑥 and NN outputs 𝑦. The 
inference of such properties relies on the notion of an activation pattern, which is a partial mapping from the 
set of neurons to their ReLU activation statuses (on, off). The idea is to discover a minimal activation pattern 
that yields a given postcondition 𝑄(𝑦). Similarly, the approach can infer inner layer properties. Such 
properties are of the form 𝝈𝒍 => 𝑸(𝒚), where 𝝈𝒍 is the neuron activation status at layer 𝒍. Neural network 
property inference using formal methods can have applications in learning assurance and explainability, as 
further discussed in Section 4. 

Important information about the intended behavior of the ML model can be explicitly present in the datasets. 
Recently, the use of SMT has been proposed for property inference from datasets. For example, in [42], a 
non-greedy iterative algorithm with SMT solving is used for automatic extraction of rules from data that 
contains feasible and infeasible examples. It is able to infer mathematical expressions with Boolean logic and 
linear arithmetic over the rationals, where each expression must be valid (resp. invalid) for all feasible (resp. 
infeasible) examples in the data. Current limitation is the assumption on data accuracy, i.e., absence of noise 
in the labels. However, methods for extracting rules from noisy data have also been proposed (e.g., see [43]). 

SMT-based methods have also been employed in guiding the learning process for neural networks, which 
allows the NNs to be correct-by-construction with respect to certain properties. For example, in [25] a 
counterexample-guided training procedure is employed to iteratively train a new NN instance during the 
training phase and to identify monotonicity counterexamples, i.e., inputs that violate the monotonicity 
property (see definitions in Section 3.4.1.5) of a feedforward neural network during verification. These 
counterexamples are then added to the training dataset to improve monotonicity of the function at the next 
training iteration. An optimization extension of the SMT technology, Optimization Modulo Theories (OMT) 
[44], is used for this purpose.  

In the same work [25], SMT/OMT is also used to construct a safety envelope for a neural network, namely, 
the monotonicity envelope. The method can be used to construct the envelope on-the-fly at prediction time 
with minimum overhead. Such envelope can be used to enforce the monotonicity of the output at runtime. 
In case if non-monotonic output of the NN is identified, it is overridden by the monotonicity envelope value. 

3.5.1.2 MILP-based 

A Mixed Integer Linear Program (MILP) is an optimization problem involving both real and integer decision 
variables, and linear constraints over these variables. State-of-the-art MILP solvers can find solutions to 
optimization problems with thousands of variables and constraints using the branch-and-bound algorithm 
and its extensions, the linear relaxation technique to quickly estimate lower and upper bounds of the optimal 
solution, as well as advanced heuristics to improve performance. MILP is a sound and complete method.  

MILP-based techniques and tools have been developed for the verification of neural networks. Similarly to 
SMT, neural network models can be reduced to a MILP via a number of different encodings, such as the ones 
proposed in [45] and [31]. The key challenge is to capture the behavior of the ReLU activation function for 
NN elements. So far, piecewise linear activation functions, such as ReLU, have been the only type of 
activations supported by sound and complete MILP-based FM24 [27]. For example, the encoding in [31] uses 

 
 
24 Other activation functions, such as 𝑡𝑎𝑛ℎ, are also supported by some tools (e.g., [101]) via piecewise linear approximations. With 
these approximations MILP-based tools are sound (but not complete). 
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the traditional big-M method [46] to capture the branching in the ReLUs. Several MILP-based VNN tools exist, 
such as [45], [47] and [48]. 

Similarly to SMT, MILP-based FM have been used to guide the learning process and obtain correct-by-
construction neural networks with respect to certain properties, such as monotonicity. For example, the 
authors of [49] propose a procedure that iteratively trains a neural network with heuristic monotonicity 
regularizers, verifies the trained model monotonicity using MILP (NNs with piecewise linear activations are 
supported), and tightens the regularization term in the objective function until the NN passes the verification. 
Numerical evaluation is performed on shallow networks, but an extension to deep learning is also discussed. 

MILP has been employed to estimate Lipschitz constants in neural networks with ReLU activation functions 
under 𝑙1 or 𝑙∞ norms. A MILP-based formulation and a corresponding algorithm are discussed in [50]. 

Being an optimization-based method, MILP also supports analyses related to model robustness described in 
Section 3.4.1.3, such as adversarial example generation (finding minimal perturbations to violate certain 
property, identifying inputs maximizing the effect of an attack). 

Mixed integer linear programming has also been employed for inference of properties from the data. 
Similarly to the SMT-based approach discussed above, the key idea is to formulate the problem as a MILP 
that, using a grammar (structure of expected rules to be found), aims at finding the rules that (1) comply 
with the grammar, (2) satisfy all feasible ("positive”) examples in the data and (3) violate all infeasible 
("negative”) examples in the data. Following this idea, the method in [51] is capable of producing linear, 
quadratic and trigonometric constraints. The authors of [52] propose an iterative algorithm to improve the 
scalability of the inference. 

3.5.1.3 Reachability analysis 

Reachability analysis aims at computing the set of reachable outputs of an ML model for a given set of inputs. 
For instance, a set of inputs, as well as corresponding set of reachable outputs, can be represented as 
polytopes, or some other structure25. Sound and complete verification procedures with reachability analysis 
are available for neural networks. For example, the approach in [53] leverages structures called star sets to 
represent input and output sets of NN layers. Affine transformations can be efficiently computed for star 
sets. Starting from the NN input layer, they are propagated through inner layers, estimating their reachable 
output sets, all the way to the output layer. The final output set can be checked for intersection with the 
negation of the property of interest to check its validity (no intersection means that the property holds, and 
vice versa). In other words, one can analyze whether the output set contains some undesired/unexpected 
outputs that invalidate the property. The verification method is complete for ReLU activations, but involves 
a lot of branching, because each possible combination of ReLU activation statuses produces a distinct star 
set for each neuron, therefore, their number can grow rapidly leading to scalability problems for large NNs. 

Interval arithmetic (also known as interval analysis or bound propagation) is an efficient technique for 
rigorously estimating the output range of a function from its input range, and can be seen as a type of 
reachability analysis. It works by computing and propagating the output intervals for each operation in the 
function. The technique can be used to evaluate bounds of the NN output. Typically, initial bounds of the 
outputs of NN elements are a coarse abstraction that may result in a significant over-approximation of the 
output interval, thus preventing the property validity check (unknown answer from the solver). Completeness 
of the analysis can be achieved by iterative refinement, i.e., iteratively tightening the bounds via abstraction 
refinement on symbolic intervals. A number of state-of-the-art VNN methods, such as [54], [55] and [56], are 
based on such symbolic interval analysis approach and offer various improvements and extensions of the 

 
 
25 Depending on representation, reachability analysis can be either complete or incomplete. In the latter case, an over-approximation 
of inputs and outputs is used, i.e., abstract interpretation (see Section 3.5.2.1). 
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method to scale the formal analysis. For example, these methods are known to outperform SMT-based FM 
tools on the aerospace benchmark ACAS XU [57] by orders of magnitude in terms of execution time.  

3.5.1.4 Other complete formal methods 

Many complete verifiers for neural networks, such as, for example, [58] and [37], rely on the traditional 
branch and bound method. They explore the entire search space by (1) recursively splitting the original NN 
verification problem into subproblems (e.g., by splitting each neuron piecewise into positive and negative 
outcomes of the ReLU activation), i.e., branching and (2) using some incomplete verifier to estimate a best 
possibly achievable solution for each subproblem, i.e., bounding. A large body of recent work focuses on 
proposing such incomplete verifiers that can compute more precise bounds for NN elements in a faster way.  

Other types of encodings and solvers have also been proposed for sound and complete verification of neural 
networks, such as quadratic programming and semidefinite programming. An interested reader is referred 
to comprehensive technology overviews in [28], [27] and [31] for additional information. 

3.5.2 Incomplete formal methods 

Incomplete formal methods trade off completeness of the analysis for an improvement in scalability. In case 
of verification of neural networks, these methods typically outperform complete FM by orders of magnitude 
in terms of analysis time for NNs with thousands of neurons, as reported in the recent benchmarking results 
of some state-of-the-art tools [59]. Incomplete methods are sound26, but suffer from false alarms (false 
positives). This is often caused by approximations that these methods use in computations, which often 
makes it unclear whether a property valid. When a violation is detected, a counterexample produced by such 
methods may be spurious, that is, it may represent an input that in practice does not violate the property. 
Incomplete FM are generally less limited to specific neural network architectures and activations. For 
example, they support a variety of activation functions beyond ReLU. Also, incomplete FM approaches have 
been recently proposed for verification of recurrent neural network (RNN) models [60]27. 

3.5.2.1 Abstract Interpretation 

Abstract interpretation is a verification approach that uses approximation and abstraction in a mathematical 
setting. It consists of an abstract domain (representation of input/output spaces, e.g., polyhedra, intervals, 
zonotopes), a pair of abstraction and concretization functions, and a sound abstract semantic function. In 
this approach, verification is still treated as a reachability problem, as described in Section 3.5.1.3, but it is 
solved by reasoning over an abstract system obtained from the reduction of the original model. Abstract 
interpretation methods are used in many VNN tools [53] [61] [62] [63], where they typically symbolize each 
node of the NN, apply an abstraction function over its computation, and eventually check whether the 
property is valid by considering the estimated output values of the NN after their concretization. In other 
words, starting from an abstraction of NN inputs, the method propagates this abstraction through NN layers 
by applying affine transformations and activation functions in the hidden layers, until it reaches the output 
layer, where the final abstraction represents an over-approximation of the output reachable set. 

Several abstract domains have been proposed for neural networks. For example, along with exact analysis 
using star sets, the approach in [53] also provides sound over-approximations for ReLU, as well as other, non-
piecewise linear activation functions. These abstractions represent the input set of the NN as a polytope. In 
the case of ReLU, instead of branching on each neuron to capture all possible activation combinations 

 
 
26 Often also with respect to floating point arithmetic. 
27 Note that formal verification approaches for RNN are currently seminal works and have low maturity. VNN community currently 
primarily focuses on verification of feedforward and convolutional neural networks. Therefore, technologies for RNN verification 
are not further discussed in the ForMuLA report. 
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(described in Section 3.5.1.3), the method accumulates all possible outputs in a single star set structure 
(corresponding polytope abstraction of ReLU is shown in Figure 13a). The method is complemented with a 
dedicated star set based structure, called ImageStar [64], that is efficient for representing image data, thus 
supporting the analysis of convolutional networks.  

In [62], several other abstract domains are proposed, both polytope and zonotope. Corresponding ReLU 
approximations are illustrated in Figure 13b (zonotope) and Figure 13c-d (polytope). These approximations 
are coarser w.r.t. [53], therefore, the method scales better to large neural networks, but this may result in 
larger amount of unknown answers (more properties remain unproven by the analysis). 

Optimized abstractions have also been recently proposed [63]. Here, the coarseness of the abstraction can 
be controlled by several parameters, while the verification problem is formulated as an optimization problem 
aimed at finding the smallest abstraction that is sufficient to prove the property. Corresponding ReLU 
polytope abstraction is shown in Figure 13e. Here, the slope of the lower bound is controlled by a parameter 
𝛼 that is optimized by the method. It can be seen that, as corner cases, when α = 0 (resp., α = 1), abstraction 
reduces to the one in Figure 13c (resp., Figure 13d). Therefore, the method can provide more accurate 
analysis with respect to [62], yet possibly more expensive in terms of computation overhead. 

 
Figure 13. Approximations of ReLU activation function.  

ReLU function is shown in red color on each subfigure. Approximations are shown with (a) polytope, (b) zonotope, (c-d) coarser 

polytopes, (e) polytope abstraction with optimizable lower bound. 

Verification of other types of ML models is also possible with abstract interpretation. For example, 
incomplete FM approach for verification of local robustness properties of Support Vector Machines (SVMs) 
has been proposed in [65]. Similarly to neural networks, the input set of an SVM is propagated through the 
model, yielding an over-approximation of the reachable outputs. To this end, the method uses a zonotope 
abstraction together with a dedicated abstract transformer that soundly approximates the semantics of 
SVMs. In particular, it uses new abstract transformers for the most commonly used kernels of SVMs, e.g., it 
can verify SVMs with linear, polynomial and gaussian radial basis function (RBF) kernels. 

3.5.2.2 Other incomplete methods 

Incomplete FM often make part of complete methods. For example, incomplete approaches are used as 
background theory solvers to estimate the bounds of the outputs of neurons and entire layers of a neural 
network. This is a key step of the majority of VNN methods and it has to be implemented as efficiently as 
possible to reduce the overall analysis time. Various symbolic interval analysis and bound propagation 
methods mentioned in Section 3.5.1.3 have been developed and can be used both as standalone incomplete 
verifiers, as well as parts of complete verification methods (e.g., see [55], [66], [63]). One important direction 
for such incomplete approaches is their effectiveness on specialized hardware, such as GPUs, which can 
provide a significant boost to scalability of VNN tools (e.g., consider [67] and [68]). 

A set of incomplete methods provide a sound approximation of the Lipschitz constant, i.e., an upper bound, 
under 𝐿1, 𝐿∞ and also 𝐿2 norms [69] [70] [71]. They support not only ReLU but also sigmoid and tanh 
activation functions. Some of these approximate methods frame the Lipschitz estimation problem as a semi-
definite program (SDP) [71]. 
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3.5.3 Standard formats used in formal methods for ML 

With the rapidly growing number of published VNN methods and tools, a standardized exchange format 
becomes important in order to reduce the effort for evaluating different tools in an industrial setup, as well 
as to enable efficient tool benchmarking. The Open Neural Network eXchange (ONNX) format [72] becomes 
a de-facto community standard for ML interoperability. Most of existing VNN tools provide support for ONNX, 
while major ML development frameworks (PyTorch, Keras/TensorFlow, Matlab) provide import/export 
functions to convert their internal formats to ONNX. Similarly, the VNN-LIB format [73] is a community effort 
to standardize the I/O format of VNN tools and benchmarks. It builds on the aforementioned ONNX format 
for model description, and on the Satisfiability Modulo Theories Library (SMT-LIB) format for property 
specification. VNN-LIB is currently supported by most state-of-the-art VNN tools. Another initiative is the 
DNNV framework [74], which gathers 13 state-of-the-art VNN tools and ease their use by proposing a unified 
I/O format. This format is the combination of an ONNX neural network, the related expected property in an 
expressive domain-specific language, and the name of the VNN tool to be used. 

3.6 Scalability limitations of formal methods 

As anticipated in Section 1.1.4, formal methods often target exhaustive analysis of the state space, therefore, 
they are typically computationally heavy and face scalability issues. Their applications to machine learning 
are not an exception. FM scalability is affected by several factors, among which the main ones are complexity 
of the model and complexity of the property. In the case of neural networks, model complexity can be 
measured, for example, in number of neurons, number of hidden layers, or activation function types. This is 
similar also for other ML models. Property complexity may be related to the size of the input space, covered 
by the property, number of conditions to be verified, and non-linearity of the constraints. Due to the fact 
that many FM-based analyses are related to solving NP-hard problems, one may often observe exponential 
growth in analysis/solving time with the increase in either model complexity, or property complexity, or both. 
This is particularly relevant for exact analyses discussed above, however, approximate (incomplete) methods 
are also subject to the same issues. The problem is further exacerbated by the fact that the number of 
properties may be large, for example, if one needs to define and verify properties on every point in a 
(potentially large) test dataset. 

Scalability problems may lead to unreasonable analysis time, thus making the use of FM impractical. There is 
a wide body of recent academic research focusing on improving the scalability of formal methods for ML, 
where the most effort is focused on neural networks and deep learning. Existing VNN tools improve every 
year, while new techniques and tools also appear. Tool authors (mainly, academic research groups) tweak 
the core algorithms of their tools to support more challenging use cases and also develop various heuristics 
to speed up the analysis. ForMuLA IPC does not discuss algorithmic improvements of particular VNN (or 
other) tools, but rather provides an overview of some recent tool-agnostic approaches and activities that 
have the potential to boost the FM performance for ML. The overview below does not aim to be exhaustive, 
therefore, it is organized as a (non-exhaustive) list of examples. 

Verification of close-to-output NN layers. The approach in [75] presents a scalable verification approach of 
safety properties of direct perception neural networks. It addresses the problems of formal specification of 
NNs and of scalability by (1) specifying the expected behavior of the NN through training an input property 
characterizer and (2) proposing a scalable verification which only considers the last layers (also called close-
to-output layers) of the NN. The input property characterizer is itself a neural network that takes as inputs 
the outputs of the 𝑙-th layer of the original NN, with 𝑙 close to 𝐿, 𝐿 being the last layer. For instance, the 
characterizer could be trained to output True when the outputs of the 𝑙-th layer of the NN correspond to an 
input image where “the road strongly bends to the right”. As a result, the safety verification becomes a 
decision problem: decide if there exists an output of the 𝑙-th layer of the NN such that the input property 
characterizer network outputs True and the NN outputs an undesired value, e.g., “strongly steer to the left”. 



    
Collins Aerospace – EASA 

ForMuLA IPC extract 

 
Page 46 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

This decision problem only involves the 𝑙-th, 𝑙+1-th, … 𝐿-th layers of the original NN and the input property 
characterizer NN, which dramatically reduces the size of the verification problem, making it amenable to FM 
analysis. Although the motivation of [75] is to verify direct perception neural networks, the approach also 
applies to any deep neural network for which input constraints are hard to characterize. 

Proof reuse for continuous verification. Similarly to other analyses, there is an expectation that property 
verification completes in reasonable time, but the latter is defined differently based on application, business 
need, available budget, and so on. For example, when an ML model is trained only once and is then frozen 
without any further updates, several days can be allocated to complete rigorous property verification 
activities. This may not be acceptable if the model has to undergo frequent updates. ForMuLA IPC only covers 
offline learning when the inference model is frozen, i.e. not updated during operation. However, offline 
updates to the ML model with subsequent updates of the inference model could be possible. Such updates 
may include, for example, re-training due to availability of new data or fine-tuning of model parameters. In 
such cases, previously established verification results may no longer be valid. Property verification is often a 
time-consuming process, therefore, continuous (re)verification with FM may introduce significant overhead 
in the ML lifecycle. The authors of [76] suggest several approaches to minimize this overhead for neural 
networks by reusing previously generated proofs and verification results. The methods rely on reusing state 
abstractions, network abstractions, and Lipschitz constants at different NN layers to speed up formal 
verification of the updated NN with enlarged input space and/or modified network parameters. 

VNN competition. The trend of using ML-enabled systems in different contexts, including safety-critical ones, 
has accelerated the research in the area of FM tools for VNN in the recent years. The VNN research 
community is currently setting up a “common ground” for benchmarking of new and existing tools in the 
form of a competition (VNN-COMP [59]). It intends to bring together researchers working on VNN techniques 
and invites both academic institutions and industries to participate either as tool providers or benchmark 
providers. Each year state-of-the-art VNN tools are evaluated on a set of challenging benchmarks. By the 
moment of publishing of the ForMuLA report, the competition has been held 3 times. Image benchmarks and 
computer vision applications are still the main focus of the competition, but the organizers also welcome 
benchmarks from other domains, including aerospace that has by far been represented by the ACAS XU 
system, as well as the Remaining Useful Life use case discussed in the ForMuLA report. 

3.7 Statistical methods 

A variety of formal methods technologies for machine learning has been developed. These technologies 
primarily target ML model verification, though they also find applications in other phases of the ML 
development lifecycle, as further discussed in Section 4. However, scalability is a typical barrier for using FM, 
for example, on complex ML models, such as deep neural networks. Sound and complete verification is often 
not achievable, whilst on certain models and/or properties of high complexity no formal verification result, 
even with approximate incomplete analyses, may be available in a reasonable timeframe (see discussion on 
complexity in Section 3.6).  

Among alternative approaches, statistical methods are particularly relevant for supporting assurance 
activities. For example, in the absence of a formal guarantee, one could rely on setting up a statistical 
argument, such as checking a number of random trials to estimate the probability of property violation. 
Beyond that, these methods may be employed for analyses that are out of reach of FM, e.g., not amenable 
to formal verification or a-priori intractable for FM. While the main focus of ForMuLA is the role of formal 
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methods in the ML development lifecycle, this section provides a brief overview of relevant statistical 
approaches28. The practical use of some of these techniques is further demonstrated in Section 5. 

Data quality assessment. Statistics is one of the key instruments in a data scientist’s toolbox. In particular, 
they may provide effective means for verification of data quality requirements. A large body of work is 
available on the use of statistical methods for e.g., detection of anomalies and novelty in the data and 
independence testing (e.g., one can refer to [77] and [78]).  

Data completeness with respect to requirements and ML constituent ODD is an important consideration to 
ensure the capability of the ML model to generalize to unseen data. Various statistical methods exist to assess 
dataset completeness. The basic idea is to divide the ML constituent ODD into subspaces of some form, by 
the granularity required for associated operating parameters, and to check that there is a sufficient number 
of “examples” (inputs) in the dataset that belong to each subspace. Design of Experiment (DoE) methods are 
typically used for this purpose (e.g., refer to [79] and [80]). DoE is also relevant for other activities, such as 
synthetic data generation and test scenario generation. Here, one needs to perform sampling of 
datasets/scenarios in a way that guarantees high coverage of the ML constituent ODD, e.g., by using Latin 
hypercube sampling, or another similar approach. For highly multi-dimensional data, DoE methods may 
become challenging due to high computational cost.  

Another noteworthy application of statistical methods for data verification is the assessment of data 
representativeness, where the aim is to ensure that datasets contain examples that have been independently 
sampled from the input space and follow the right (expected) distribution. For low-dimensional data, if the 
expected distribution is known, statistical methods, such as goodness-of-fit tests (e.g., Chi-Square) can be 
applied to check data representativeness. For high-dimensional data, other techniques are required. One 
example is the generic framework called distribution discriminator that has been introduced in the CoDANN-
1 report [3].  

ML model generalization. The possibility of the ML model to generalize to unseen data is one of the key 
aspects of its trustworthiness. A traditional approach for assessing the generalization capability of the ML 
model is the use of the test (holdout) dataset. However, this would only allow to estimate the in-sample error 
of the model, while more rigorous guarantees may be required for assurance29. Relevant statistical methods 
(e.g., statistical learning theory techniques) are discussed in [3]. 

Property verification. Complete formal methods discussed in Section 3.5 guarantee that the property of 
interest will eventually be proven but make no assumption on termination and available computational 
resources. Incomplete FM sacrifice completeness to terminate faster, but due to approximations used in the 
analysis, may not be able to verify the property, i.e., an unknown answer may be provided. Additionally, they 
may also face scalability barriers on complex ML models and properties. When a formal guarantee cannot be 
provided, one may resort to statistical methods. For example, falsification may be performed by a simulation-
based method, where several random inputs are sampled from the input space and corresponding outputs 
are checked against the property of interest. If at least one of them is violated, it is returned as a 
counterexample, and the property is declared invalid. For a “softer” (e.g., probabilistic) requirement on 
property validity, one can apply the Monte-Carlo method and compute some statistic on violations within a 

 
 
28 One can argue that being mathematically based techniques, statistical methods may also fall under the category of FM, as per 
definition in Section 3.1. However, ForMuLA refers to conventional use of the term “formal methods” in aviation (e.g., as defined by 
ED-216/DO-333), therefore, statistical methods in this report are discussed as complementary means of achieving certain assurance 
objectives that may also be (partially) addressed by FM. 
29 Basically, one needs to demonstrate that the model can generalize to any data input that follows the input distribution, not just to 
the examples that are present in the test dataset. The latter is only an approximation of the overall generalizability of the model. 
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given number of trials. A statistical argument about property validity can then be built by showing that the 
number of detected violations does not exceed some required percentage. 

3.8 Hybrid verification procedures 

Another mitigation for scalability issues of sound and complete FM-based approaches is a combination of 
methods. Several types of techniques can be used together to maximize thoroughness of verification, while 
ensuring termination of the analysis in reasonable time. Resulting hybrid verification procedures can include, 
for example, multiple FM tools (e.g., one complete and one incomplete) invoked in sequence or in parallel, 
or a combination of FM and statistical methods. This may be especially relevant when the number of 
properties to be verified for the ML model is high. Even if verification of a single property instance may be 
reasonable by some complete FM (in terms of computation time), the total verification time could easily 
become impractical. This is further discussed and exemplified in Section 5.4. 

Following are examples of possible hybrid verification procedures: 

1. Properties are verified with an incomplete FM to obtain a formal proof of validity for as many 
properties as possible. The properties, for which the method returns an “unknown” answer, have 
been neither proved nor disproved. As a second step, they could be verified with a complete FM. 
Overall execution time can be significantly reduced due to “pre-solving” by an incomplete method. 

2. For complex ML models and/or properties, instead of using an exact (complete) verification method, 
unknown properties could be verified by a simulation-based method in an attempt to falsify them 
[53]. If no counterexample is found, the property remains unknown (or a statistical argument can be 
made, as discussed in Section 3.7). 

3. Several FM tools could be run in parallel. 
4. If completeness is the priority, one may start instead from a complete FM (exact verification) and 

resort to incomplete FM or statistical approaches if verification time exceeds the threshold. Similarly, 
timeout could be used in other combinations of methods, e.g., invoking a complete method for some 
limited time in case neither incomplete methods nor statistical methods were able to verify the 
property. 

Remark: Some FM tools already incorporate several different verification options, or a combination of steps 
for solving the verification problem (e.g., LP, MILP and heuristics) within the same tool. In principle, these can 
also be considered hybrid.  

Verification at system level. Hybrid procedures can also be employed to facilitate verification of properties 
at ML system/subsystem level. One example is the neural network based controller ACAS Xu [57] where NNs 
aim at avoiding a collision between the two aircrafts (ownship and intruder). Here, verification of properties 
at the level of ML model (e.g., see [35]) may not suffice to demonstrate that the safety requirement is met. 
Instead, it may be necessary to verify properties at system level, e.g., “for all the possible initial states of the 
intruder and ownship, no collision shall happen”. In this case, FM can be used in combination with simulation 
techniques to reason about the property and decide whether it holds or not [30]. 
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4 Applications of formal methods specific to ML 

This section discusses FM applications that are specific to machine learning and can address existing 
challenges in learning assurance. These applications aim at supporting the training process, as well as at 
improving ML model robustness and generalization capabilities. Furthermore, novel algorithms and tools 
developed in the recent years are extending the applicability of traditional formal methods also on ML models, 
allowing to increase confidence in ML model functional correctness, and to provide new means supporting 
model optimization and development explainability. Throughout Chapter 4, the process steps on which formal 
methods are proposed to be applied are linked to the associated objectives from the W-shaped learning 
assurance process that was introduced in the EASA Concept Paper for Level 1&2 ML30. 

4.1 Formal methods for supporting the learning process 

This group of FM applications aims at contributing to the learning process, from the improvement and 
verification of the datasets and of the learning algorithm stability, to the assessment of ML model 
generalization capability in specific cases. Certain applications discussed in this section are amenable to 
analysis using statistical methods31.  

Figure 14 illustrates the allocation of FM applications of this group on the W-cycle diagram. Each symbol 
(square, triangle, diamond) refers to one of the subgroups discussed below. Each application is allocated to 
the W-cycle phase that it can support. For example, inference of constraints from datasets is intended to 
support the training process, therefore, this application is allocated to the Model Training phase on the 
diagram. Applications, for which the use of statistical methods is envisioned, are marked with an asterisk (*). 

 

Figure 14. Applications of FM for supporting the learning process allocated on the W-cycle diagram.  

4.1.1 Data quality 

Ensuring high quality of the data is at the heart of learning assurance processes and is specifically emphasized 
in the existing guidance. Certain objectives can be supported by formal methods. For example, FM can 
support data augmentation. In image recognition applications, new images can be obtained from existing 
ones by applying linear transformations that affect characteristics such as lighting and color, position and 
orientation of objects in space. These images are added to the training dataset. One of the goals of data 

 
 
30 Note that some FM applications discussed here cannot be directly mapped to and/or suggested as anticipated MoC for objectives 
described in the EASA AI Concept Paper [2]. However, all applications intend to support the development process and the quality of 
resulting ML models. 
31 As explained in Section 3.1, in this report selected statistical methods are discussed as complementary means of carrying out the 
analyses for certain assurance objectives, where FM are not applicable or face scalability limitations. 
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augmentation is to obtain higher coverage of the ML constituent ODD (see [81], [82], [83]) that should 
improve generalization of the resulting model after training. Formal methods can be employed here to 
automate techniques based on linear transformations, once the input space is mathematically defined.   

To support data quality verification, one can use statistical methods discussed in Section 3.7. Both numerical 
and categorical features can be analyzed, for example, by clustering or binning values of particular features 
and analyzing how these groups are allocated along the expected value intervals prescribed by the ML 
constituent ODD. Such checks allow to assess data completeness. Well-known statistical metrics (e.g., 
mean/median values, standard deviation, and beyond) and tools, such as histograms, can be used, depending 
on the application and types of features. 

A remarkable application of statistical methods for data quality regards the verification of data 
representativeness. Some ML model inputs may follow probability distributions (e.g., Gaussian or Weibull). 
In certain cases, a particular distribution is expected, which can be prescribed by the ML constituent ODD. In 
this case, one can check whether available data follows such expected distributions by using goodness-of-fit 
tests, such as Chi-Squared test, Kolmogorov-Smirnov test, or Lillie test (the applicability of a particular test 
depends on the data at hand; sometimes several tests may be applicable and their outcomes can be 
compared to each other). With such tests it is possible to check whether available data is representative w.r.t. 
the expected distribution (and the ML constituent ODD) or not. 

Remark: Data quality requirements prescribe that datasets must be representative with respect to ML 
system’s operational envelope and ML constituent ODD [2]. Even if expected distributions are provided for 
each of ML model’s inputs as part of the ML constituent ODD, certain combinations of inputs may still be 
invalid. Therefore, rigorous representativeness assessment should consider multivariate distributions to study 
how inputs move together. Describing and fitting such distributions, as well as goodness-of-fit tests, can be 
difficult. This poses new challenges for statistical methods, including their scalability and applicability. 

Related EASA AI Concept Paper objectives: DM-06 (data collection), DM-13 (data quality verification). 

Comment: Data augmentation via FM is a way to extend the dataset achieving a higher coverage of ML 
constituent ODD. This is aligned with the expectations of Objective DM-06. Objective DM-13, instead, covers 
all validation and verification activities for the life cycle data objects pertaining to the data management 
process, with reference to the data management requirements; this includes evaluation of data 
completeness, data representativeness, data accuracy, data traceability, datasets independence. As 
mentioned in this section, data representativeness and completeness criteria can be addressed by adopting 
statistical methods. For the remaining criteria, Appendix 1 offers an overview of how traditional FM can 
support the compliance of the data objects with some other data requirements.   

4.1.2 Model training 

The use of formal methods is also envisioned for improving the training process (learning) by assessing how 
stable the process is, as well as for guiding it towards high quality models. 

FM can be used for inference of constraints from the data to support training. Formal properties can be 
inferred from the data based on certain expected grammar. Such properties can be simple input-output 
relationships (if-then) discussed in Section 3.4.1.1, arithmetic constraints, and beyond. Such inferred 
properties can be added as constraints to a customized training algorithm, so that their satisfaction is 
guaranteed (or violation penalized) during training. This is a possible way of obtaining a trained ML model 
correct-by-construction with respect to given constraints (see [84], [85], [49]). An emerging area of Physics-
Informed Machine Learning (PIML) [86] is an example of using physical constraints in the training process.  

The use of formal methods can also be envisioned for guiding the learning process to enforce certain 
properties as constraints during training. This is possible, for example, with employing an iterative 
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counterexample-guided training process with a verification phase in the loop that attempts to identify 
property violations and respective counterexamples in the ML model at current training iteration. They can 
be used to augment the training dataset, thus “navigating” the training towards more satisfiable solutions 
(w.r.t. property of interest) on next iterations. Alternatively, constraints in the objective function of the 
training (e.g., penalties) can be iteratively tightened to enforce “harder” constraints on a property on next 
iterations, in case if verification phase concludes that the property is invalid. Some relevant published works 
include [25] and [49]. 

Learning algorithm stability addresses modifications to the datasets that are either inherent to the data 
sources, e.g. noise, or due to deliberate activities. A robust training algorithm should not be significantly 
affected by the presence of noise in the data. Also, the execution of training on two datasets that are 
semantically similar or equivalent under certain criteria (e.g., same images under different lighting 
conditions) should lead to models that exhibit similar behavior. Assessment of the learning algorithm stability 
can be conducted by modifying or removing one or more points in the training dataset, retraining on this 
modified dataset and comparing with the result with the model trained on the original dataset. Multiple 
experiments can be conducted to achieve desired confidence. The possible use of formal methods is 
envisioned for the selection of points (or regions) to modify in/exclude from the training dataset, based on 
some distance metric, so that the modified dataset is sufficiently different (or “distant”) from the original 
one. If available, some higher level semantic criterion could be employed (e.g., find and exclude all points 
with a certain pattern from the training dataset). 

Related EASA AI Concept Paper objectives: LM-11 (learning algorithm stability). 

Comment: First two applications of this subgroup (inference of constraints from data, guiding the learning 
process) are not currently mapped to any EASA AI Concept Paper objectives, because they are techniques to 
obtain a higher quality ML model and do not directly refer to V&V activities recommended by the guidance. 
Instead, stability verification is directly mapped to the LM-11 objective. 

4.1.3 Generalization capability 

NOTE: The following is a special case and no claim is made that formal methods are generally applicable to 
solve the generalization assessment problem for ML models. For a more general case, for objectives related 
to generalization (estimation of generalization bounds) EASA AI Concept Paper suggests as anticipated means 
of compliance the use of statistical learning theory instruments [2].  

Generalization is the capability of an ML model to perform its intended function on previously unseen inputs. 
In particular cases, when the input space of the ML model is well-defined and bounded32, formal methods 
can be employed to assess the generalization capability of the model. In such cases it may be possible to 
split the entire input space into subspaces that together cover the input space, and to conduct a formal 
analysis on each subspace obtaining possible output classes/ranges for all possible inputs [87]. Traditional 
FM techniques, such as abstract interpretation, may be used for this purpose. If there is no input subspace, 
for which some possible output is wrong and/or exceeds some specified boundaries, then generalizability of 
the ML model can be concluded with respect to its bounded input space, i.e., a formal proof can be obtained 
that none of admissible inputs leads to an incorrect or unexpected output.  

The approach is illustrated in Figure 15, where the (3-dimensional) input space of the ML model is discretized 
into smaller “boxes” (hypercubes). Each box has corner points shown in red, and model performance at these 

 
 
32 One example of a well-defined bounded input space is a lookup table, which is a typical data structure used as part of many avionics 
functions. An ML model (e.g., a neural network) can be trained to surrogate such table in order to reduce the memory footprint in 
the embedded hardware (for example, consider the ACAS Xu collision avoidance system [87]). 
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points can be checked in a conventional way, i.e., by inference. Formal methods allow to estimate error 
bounds for each point inside the box (exemplified as yellow points), for example, to understand the worst-
case error deviation from known corner points. Such deviations from expected values can be used to estimate 
the difference between ML model errors computed from available data (e.g., test dataset) and “unseen” data 
points that may occur during operations. Altogether, exhaustive analysis of the boxes leads to full coverage 
of the input space and, consequently, to a quantifiable generalization guarantee. 

 

Figure 15. Example of well-defined input space split into subspaces to be analyzed by FM. 

Approaches from statistical learning theory (SLT) also provide tools for estimating ML model generalization 
capability. More precisely, they allow to estimate the generalization gap by using metrics, such as VC 
dimension and others. We refer to the CoDANN-1 IPC report [3] for technical details about SLT techniques. 

Related EASA AI Concept Paper objectives: LM-04 (quantifiable generalization guarantees), LM-14 
(verification of anticipated generalization bounds). 

Comment: Quantification of the ML model generalization guarantees is one of the key assurance objectives 
(LM-04) prescribed by the existing guidance, while LM-14 intends to validate these guarantees by means of 
a test (holdout) dataset. FM approaches discussed and referenced in this section are currently limited to low-
complexity ML models, such as shallow NNs, while some of them also have constraints on the input space 
structure and complexity. Statistical learning theory methods may be promising means for analyzing deep 
learning models, however, their effectiveness has to be better understood [3]. Overall, generalization 
capability assessment remains an open research problem. 

4.2 Formal methods for improving ML model robustness 

FM applications from this group contribute to improving the robustness of machine learning models. 
Potential impact of formal methods spans from verification activities to FM-powered robust training 
procedures, as well as runtime monitoring of ML models, where unexpected inputs and outputs to/from the 
ML model could be timely identified and mitigated to avoid unintended behaviors.   

Figure 16 illustrates the allocation of FM applications of this group on the W-cycle diagram. Each symbol 
(square, triangle) refers to one of the subgroups discussed below. Each application is allocated to the W-cycle 
phase that it can support.  
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Figure 16. Applications of formal methods for improving ML model robustness allocated on the W-cycle diagram.  

4.2.1 Verification of model stability 

Verification of stability properties is supported by most of the existing formal verification tools applicable to 
ML, such as VNN tools (see Section 3.5). Following the definition of stability used in the ForMuLA IPC, the 
goal of such verification is to check formally defined properties that relate input perturbations to admissible 
changes in the outputs of the ML model (e.g., class or numeric value). Stability properties consider normal 
operating conditions, i.e., inputs that belong to the ML Constituent ODD33.  

The major part of state-of-the-art FM tools for ML focuses on verifying local stability properties, i.e., the 
effects of input perturbations in the neighborhood of a given point. Local stability properties are usually 
expressed in the delta-epsilon formulation introduced in Equation (3.4), and its variations. 

Instead, global stability property that is imposed on the entire input space of the ML model, is often out of 
reach of current FM approaches. This is because the verification problem, as formulated by existing tools, 
may become intractable if the input space gets large. Some formalizations have still been made available in 
the literature (e.g., [35]) and, as FM tools mature, such verification may become a possibility, even if tractable 
only for simpler models, such as shallow NNs.  

In general, compliance with ML model stability requirements and objectives requires a global stability 
property to be valid up to a specified maximum level of input perturbation. Since verification of such global 
properties is currently impractical, an approximation could be used by replacing a global property with a set 
of local properties. This approach and the role of the test dataset is further discussed in Section 5.4.2. 

Another formal technique to address global stability is the estimation of Lipschitz constants that has been 
discussed in Section 3.4.1.4. Such FM-based estimators (e.g., [50], [71]) also face the scalability problem for 
large-scale ML models. 

In case of neural networks, if the input space of the ML model is well-defined (e.g., it is hyper-rectangular 
and can be discretized as point grid), global stability property can be assessed by conducting an exhaustive 
mathematical analysis over each subspace (e.g., hyper-rectangular cell). In such special cases, growth bounds 
on NN output value and its gradient can be estimated for each subspace based on the boundary values for 
that subspace (corner points) that are known. The method has been applied on low-complexity neural 

 
 
33 In general, a stability property may still be defined over some input point that belongs to ML constituent ODD (i.e., part of nominal 
operating conditions), but some of the perturbed inputs generated in the neighborhood of this point may lie outside of ML constituent 
ODD. This may happen, for example, if the chosen input point is close to the boundary of the ODD.  
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networks [88] but it is unlikely to scale to complex models, such as deep learning. This is also relevant to ML 
model generalization capability assessment, as previously discussed in Section 4.1.3. 

Formal methods can also contribute to identification of boundary cases. These are inputs that can be 
considered “borderline” for the ML model. For example, they may lie close to the decision boundary of a 
classification model or near a singularity that may cause a regression model to provide outputs that 
significantly differ from each other. Technically, this can be achieved by solving optimization problems (see 
Section 3.4.1.3), where the results can be interpreted as boundary cases/points. Methods that are not 
optimization-based (e.g., abstract interpretation) can also be used. For example, a search procedure can be 
developed where an FM tool is tasked to check local stability properties with different values of input 
perturbation until it identifies one that is violated. Boundary cases can then be extracted from 
counterexamples to this property. 

Related EASA AI Concept Paper objectives: LM-12, IMP-07. 

Comment: Verification of ML model stability is the subject of objective LM-12, which states: perturbations in 
the operational phase due to fluctuations in the data input (e.g., noise on sensors) and having a possible effect 
on the trained model output. This includes both nominal cases and boundary cases. While LM-12 regards the 
trained model, verification of stability is also prescribed by objective IMP-07 for the inference model, where 
the proposed techniques may also be applicable, provided that the tools for reducing SW code to a formal 
model amenable to analysis by FM technologies discussed in this report are available. Practical 
demonstration on a use case for LM-12 is provided in Section 5.4. 

4.2.2 Identification of edge and adversarial cases 

Formal methods can support robustness assessment of ML models by searching for vulnerabilities that, once 
identified, can be used to develop a robust training procedure and increase the dataset quality. They can also 
be used for testing purposes. Such information may result either from the specific use of FM tools to search 
for vulnerabilities, or from counterexamples provided by the tools during the verification of ML properties, 
such as stability. 

One example is the generation of adversarial inputs by means of formal methods. For this purpose, some 
VNN tools that are based on optimization algorithms (e.g., MILP) can be used to mimic an adversary searching 
for an input to attack the neural network (e.g., see [26], [89], [90], [22]). For example, the delta epsilon 
property in Equation (3.4) can be reformulated into one of the two optimization problems (see Sec. 3.4.1.3 
for details), i.e., find the smallest delta to exceed the epsilon, or find the largest epsilon in the input 
perturbation space bounded by delta.  

Solutions to such optimization problems are adversarial inputs that, in principle, could be used by an attacker 
to compromise the NN output34. In the assurance process, identifying such inputs can contribute to model 
robustness. They can be added to the training dataset, so that the model is retrained on an augmented 
dataset to increase its robustness w.r.t. such inputs. A robust training procedure that uses FM to search for 
adversarial examples during (or between) iterations can also be developed [91]. 

Adversarial examples can also be extracted from counterexamples to property verification problems. For 
instance, consider a stability property discussed in Section 3.4.1.2. If the property is violated, many FM tools 
can also return a counterexample, which can be interpreted as a concrete input on which the property does 
not hold (e.g., a perturbation, that makes the ML model output go beyond admissible error bounds). Similarly 

 
 
34 Typical goal of the adversary is to maximize impact of the attack (e.g., damage) and/or not to be detected. 
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to the above, such counterexamples can be used to complement the training dataset to improve model 
robustness. 

Related EASA AI Concept Paper objectives: LM-13, IMP-08, DM-06. 

Comment: Verification of robustness is in the scope of objectives LM-13 and IMP-08 for, respectively, trained 
model and inference model. Non-requirements based adversarial cases are included in these objectives. Test 
cases generated by analyzing the ML model using formal methods can be used for testing both the trained 
model and its implementation, thus contributing to respective objectives. As regards Data Management 
objectives, proposed FM applications can identify inputs that could complement the training dataset to 
improve data quality (e.g., data representativeness) and model robustness. Therefore, objective DM-06 that 
prescribes a data collection process that satisfies data quality requirements becomes relevant, since it 
mentions synthetic data that can be the output of FM analyses discussed in this section.  

4.3 Other formal methods applications for machine learning 

This section discusses several other categories of ML-specific FM applications that can contribute to learning 
assurance, as well as some other objectives of EASA AI Concept Paper. Their suggested allocation on the W-
cycle diagram is shown in Figure 17. Each symbol (square, triangle, diamond, hexagon) refers to one of the 
subgroups discussed below. Note that applications related to explainability (Section 4.3.4) and runtime 
monitoring (Section 4.3.5) are related to, respectively, AI Explainability and Safety Risk Mitigation building 
blocks of the EASA Trustworthiness Analysis [2], therefore, they do not directly map to objectives of the 
Learning Assurance building block. The diagram shows phases of the W-cycle, where these applications can 
be applied/executed. 

 

Figure 17. Other applications of formal methods allocated on the W-cycle diagram.  

4.3.1 ODD and scenarios 

Operational design domain (ODD) defines the range of operating parameters within which the ML-based 
system is designed to operate as intended (see the full definition in the Glossary). Formalization of ODD35 is 
an important step to enable evaluation of ML design artifacts, such as datasets, requirements, and test 
scenarios, against the ODD to assess their completeness and representativeness. Recent work in the 
automotive domain led to creation of taxonomies and ontologies for ODD of relevant applications, as well as 
formal languages for ODD definition, such as the one presented in the ASAM OpenODD concept paper36. For 

 
 
35 Here ODD is referred to in a broader scope, i.e., at different levels (e.g., ML constituent ODD, system-level ODD). Discussed methods 
may be applied at these different levels. 
36 https://www.asam.net/standards/detail/openodd/  

https://www.asam.net/standards/detail/openodd/
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a given ML system/constituent, its defined ODD may not fully represent the real operating conditions, called 
Operational Domain (OD) in the same concept paper, which includes all “known” ontology and attributes. 
Possible role of formal methods is envisioned for checking the coverage of OD by the elements of concrete 
ODD. Here, FM could contribute to identification of gaps in the ODD definition in terms of missing ontology 
elements that must be considered for the ML system/constituent under design. 

Verification and testing of ML models may be challenging due to large input spaces of these models (e.g., in 
case of vision-based systems), as well as due to the lack of explicitly defined functional requirements for all 
intended system behaviors. Furthermore, verification would require to observe behaviors of the model in 
various evolving situations, which are called scenarios. A scenario describes the environment (the “scene”) 
and the actions of agents over a period of time. An agent may represent, for example, the ownship vehicle 
that includes the ML model as part of some ML-enabled system, as well as some other aircraft/entity. Formal 
languages have been proposed for scenarios, such as ASAM OpenScenario37. Consistency and compatibility 
of formal scenario descriptions with the ODD description is another possible application of formal methods 
relevant to learning assurance. 

Related EASA AI Concept Paper objectives: DM-01, LM-10, IMP-09. 

Comment: ODD definition is part of objective DM-01, where ODD coverage analysis w.r.t. the overall 
taxonomy of the operational domain may be applicable. Scenario-based testing methods, including formal 
definition of test scenarios, could be used as part of requirement-based testing activities prescribed both for 
the trained ML model (LM-10) and the inference model (IMP-09). 

4.3.2 ML model optimization 

As discussed in Section 3.5.1, FM approaches exist that allow to perform property inference for ML models. 
In case of neural networks, apart from input-output properties, it is also possible to infer properties that 
consider inner (hidden) layers of the NN. The latter can constitute a relevant technique for model distillation 
that aims at approximating the behavior of a large neural network with a smaller one that is favorable to 
deployment under latency and computation constraints [92]. For example, a distilled classification network 
can only include a subset of layers of the original neural network, given that the properties that map 
activation patterns of neurons of the last of these layers to the outputs of the original NN have been 
identified. In such case, remaining layers of the original NN could be replaced with a simple check that maps 
the activations of the last layer of the distilled NN to an output class. Similarly to neuron pruning, distillation 
is a model optimization technique. 

Related EASA AI Concept Paper objectives: LM-06, IMP-02. 

Comment: Model distillation can be applied after the model training is finished. The distillation procedure 
can be documented – LM-06 – and the distilled model can be validated using FM techniques to guarantee 
behavior and performance compliance and then used to guide the inference model creation. The 
implementation of this simplified distilled model can reduce the need of optimizations at the implementation 
stage, facilitating the adherence with objective IMP-02.  

  

 
 
37 https://www.asam.net/standards/detail/openscenario/v200/  

https://www.asam.net/standards/detail/openscenario/v200/
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4.3.3 Verification of intended behavior 

At the concept level, FM applications specified below are similar to those used for verification in traditional 
software systems. However, formal specifications of ML models and their properties, such as neural 
networks, as well as analysis algorithms and tools are new, specific to machine learning domain. That is, 
traditional solvers (e.g., SMT) cannot be used out-of-the-box to verify intended behaviors of ML models. This 
motivates to include these novel, yet conceptually traditional, FM applications in this report. 

 
Similarly to verification of stability properties, formal verification tools can be employed to verify other types 
of properties that are formally defined from ML constituent functional and non-functional requirements. For 
example, the correspondence of certain categories/subsets of inputs to expected output classes (or ranges, 
in case of regression models) can be formalized as input-output relationships. Properties related to 
monotonicity of the model (function) output can prescribe, for example, non-decreasing or non-increasing 
behavior of the output with respect to certain (typically, monotonic) changes in the inputs. Existing FM tools 
for ML, such as VNN tools, can currently address local (pointwise) monotonicity properties. Formal 
specifications of ML properties are further discussed in Section 3.4. 

Use of counterexamples: As discussed in Section 3.2, traditional FM solvers, such as those based on 
automated reasoning techniques, are often capable of providing a counterexample in case they detect a 
property violation (e.g., see [93]). These counterexamples can be further used to improve the quality of the 
ML model (e.g., stability or monotonicity) by complementing the training dataset and thus serving as extra 
“examples” for the learning algorithm, as anticipated in Section 4.1.2. 

Definition of test cases from functional requirements, as well as robustness testing, are standard methods in 
traditional software verification. Automated Test Generation (ATG) [94] is an FM-based technique to 
produce test cases in an automatic way with the goal of achieving desired coverage criterion. While structural 
coverage is often not applicable to learning assurance (e.g., a single test case would typically provide the full 
coverage of code that implements the neural network), ATG can still be employed to support the coverage 
of requirements. In the past years, novel techniques have been introduced to perform automated test 
generation specific to autonomous systems, including machine learning models [95].  

Finally, automated extraction (inference) of properties from datasets is an innovative recent technique that 
can extract formal properties, such as logical and arithmetic formulas, from labeled data, based on a given 
grammar (formula templates that are expected to be found). Certain techniques are based on an assumption 
that all data is correctly labeled [42], while others also allow to tolerate some noise/errors in the labels [43]. 
Such extracted formulas can contribute to formalization of functional requirements, which, in the case of ML, 
are often implicitly contained in the data. They can also be used as properties to be later verified on trained 
and inference models, also by means of formal methods.  

Related EASA AI Concept Paper objectives: LM-10 (trained model), IMP-09 (inference model). 

Comment: Technologies developed in the recent years are expanding the application of formal methods to 
new contexts, such as property verification and requirement-based testing for ML models. These novel 
technologies have an impact on objective LM-10, extending the set of possible means to deal with ML 
constituent requirements verification and coverage. Traditional FM instead, can be used for requirement-
based verification of inference model – IMP-09 – as suggested in Appendix 1.  

4.3.4 Explainability 

The use of formal methods is also envisioned to support some of the explainability objectives in the EASA AI 
Concept Paper [2]. In particular, FM can be used to produce artifacts for development explainability. Such 
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artifacts could improve developer’s understanding of the data and the model under design, facilitate 
debugging, as well as potentially become a form of a certification evidence. 

One example is inference of properties from datasets, discussed in Section 3.5.1 and Section 4.3.3. Resulting 
formal specifications are interpretable and could help to describe the data and understand it, which supports 
ML model development. Other FM techniques allow to infer properties from a trained model, such as neural 
network, as discussed in Section 3.5.1.1. Such properties (rules) could become useful artifacts for 
development explainability, since they could improve the knowledge of the ML model behavior by 
developers. They could be provided to support assurance cases by explaining the rationale behind ML 
model’s decisions in a formally interpretable way. They can also be used in verification, as well as in runtime 
monitoring. 

Related EASA AI Concept Paper objectives: EXP-03, EXP-14 (input monitoring). 

Comment: Inferred formal properties could be leveraged as explanations (e.g., “ML model produces output 
Y from input X because the property P(X, Y) holds”), therefore, use of FM could be considered a potential MoC 
for EXP-03. Additionally, properties inferred from the data can be used to check the validity of inputs during 
operation, therefore, operational explainability objective EXP-14 that prescribes input monitoring with 
respect to ML constituent ODD and/or expected data distribution can also be considered. In other words, 
rules inferred with FM from the data can support out-of-ODD and out-of-distribution detection. 

4.3.5 Runtime monitoring 

For machine learning, monitoring of the model at runtime (model inputs and/or outputs) is an important 
safety risk mitigation since it may be challenging to guarantee the absence of unintended behaviors over the 
entire input space of the model. Runtime monitors continuously check output values of the inference model 
and can detect, for example, an unexpected trend in the output, and inform the top-level system or the user 
that ML model’s outputs cannot be considered reliable. Similarly, monitoring of ML model inputs can be 
carried out to detect out-of-ODD or out-of-distribution inputs. For such inputs, correct outputs of the model 
may not be guaranteed, and a possible mitigation would be passivate the ML model and switch to a backup 
function that is proven safe, or simply to notify the user. 

Run-time assurance (RTA) architectures add high-assurance components to the system design to ensure that 
a complex or difficult-to-verify component (such as a ML component) cannot cause unsafe or unintended 
system behaviors. The ASTM F3269-17 standard for bounded behavior of complex systems [96], also known 
as a simplex architecture, provides guidance for developing RTA architectures that mitigate unintended 
behaviors through the use of runtime monitors. In this case, the ML component may still produce unintended 
behavior, but the RTA architecture ensures that this behavior is acceptable in terms of system safety.  

One of the steps for design-time assurance is verifying that the RTA architecture satisfies its high-level 
requirements. Traditionally, requirements verification has been achieved using a combination of directed 
testing methods and manual review. However, model-based specification enables a more rigorous approach 
to verification via formal methods analysis. With both the requirements and the architecture represented in 
formal (well-defined, unambiguous) notations, SMT solvers can be employed to determine whether there is 
any possible sequence of inputs that will violate a requirement. Furthermore, failure by the solver to find a 
counterexample is essentially equivalent to a mathematical proof the validity of the requirement, i.e., that it 
can never be violated. 

The possible use of formal methods is envisioned for the automated generation (synthesis) of runtime 
monitors. In particular, abstract interpretation methods could be applied to identify unsafe input regions. 
These techniques compute sets of reachable outputs, given an input set (see Section 3.5.2.1). For monitor 
generation, the analysis can be performed in the opposite direction, i.e., from outputs to inputs (backward 
reachability). Starting from unsafe outputs, i.e., those that violate some requirement or property, counter 
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input sets (input space regions that lead to these outputs) can be computed by some VNN tools. Clearly, 
desired neural network performance cannot be guaranteed in such input regions. A monitoring procedure 
can be employed to check at runtime whether inputs received during operations belong to such unsafe input 
regions. In the latter case, a mitigative action could be taken by the ML constituent, such as a backup function. 

An example of such approach is the design of a hybrid version of the ACAS Xu airborne collision avoidance 
controller [87]. Original system design is a set of Look-Up Tables (LUT), which can be approximated and 
compressed by a set of neural networks, offering a reduced memory footprint [57]. In certain input regions 
the behavior of the NNs differs from the one of the LUT, which may pose the system at risk. Such unsafe input 
regions have been identified by formal methods, which led to the construction of a safety net, which is an 
extract of the LUT corresponding to these regions. The hybrid controller then combines the neural networks 
and the safety net through a monitoring mechanism that switches to the safety net in case if an input from 
an unsafe input region is received during operation.  

Another relevant FM-based approach for runtime monitor generation is inference of properties from 
datasets. A number of techniques based on conventional solvers have been proposed (see Section 3.5.1). If 
these properties are inferred from a reliable dataset, i.e., the one that satisfies data quality requirements, 
then they can be later used to check new inputs during operations with a runtime monitor. If the input does 
not violate any property/rule then it may be considered reliable, otherwise it may be discarded or corrected.  

Another relevant application is the automated online construction of a safety envelope for the ML model. 
For example, the authors of [25] construct a monotonic envelope of a neural network function on-the-fly. 
Optimization Modulo Theories (OMT) [44] is used to identify counterexamples that maximally violate the 
monotonicity specification. If the function has a non-monotonic behavior at a given inference point, the value 
of the upper (or lower) envelope boundary is returned instead of the ML model output in order to preserve 
monotonicity of the output. Numerical evaluation claims that such online incremental construction of the 
monotonicity envelope has minor overhead on small models and is, therefore, can be used in applications 
with small-size neural networks that do not have strict real-time requirements. 

Related EASA AI Concept Paper objectives: SRM-02 (Safety risk mitigations). 

Comment: Runtime monitoring is in the scope of SRM-02 that states that “monitoring of the output of the 
ML constituent and passivation of the AI-based system with recovery through a traditional backup system” is 
an acceptable means to be used to “gain confidence that residual risk is properly mitigated”. [2] Note that 
FM applications to generation of runtime monitors, as well as to construction of safety nets/envelopes, may 
not fall in the direct scope of SRM, because monitors may also be used for other objectives. However, these 
applications still have an indirect impact on SRM, because artifacts generated by FM may be used to detect 
anbormal inputs/outputs of the ML model or constituent, as well as to make part of a backup algorithm when 
the ML component is passivated, thus mitigating the residual risk. 
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5 Assessment of the use of formal methods on the selected use case 

The goal of the ForMuLA project is the analysis of the applicability of FM as means of compliance for 
assurance and certification objectives for ML constituents, and their practical demonstration on a use case. 
There is no aim to demonstrate all verification activities, i.e., to explore and demonstrate all possible FM-
based analyses to cover as many data/model requirements as possible. Datasets and models developed and 
used throughout the project are work-in-progress and will be subject to improvements. Some of them have 
been proposed based on the analyses executed and documented in this section. These improvements are 
out of scope of ForMuLA, i.e., the project does not intend to develop a perfect RUL estimator. Still, the formal 
analyses demonstrated in this section are critical to the application and are performed at realistic scale. 

5.1 Selection of FM applications to be demonstrated 

This section is dedicated to practical demonstration of formal methods on the Remaining useful life use case 
presented in Section 2. In what follows, a number of FM applications to the V&V of machine learning has 
been selected for demonstration based on their applicability to the use case, and on the maturity of the 
method and the tools. Figure 18 illustrates the allocation of these applications on the W-cycle diagram. 

 

Figure 18. FM applications demonstrated in the ForMuLA IPC allocated on the W-cycle diagram. 

Data quality. Data completeness and representativeness are key data quality requirements prescribed by 
the EASA AI Concept Paper objective DM-13. Representative training data (with respect to ML constituent 
ODD) contributes to the generalization capability of the ML model. It is similarly important for the test data, 
because verification results based on representative data provide higher confidence that the ML model 
meets its requirements. In machine learning, it is often assumed that input data comes from a certain 
probability distribution (entire data and/or some of its features). For the RUL use case, such distributions are 
available for certain features as part of the ML constituent ODD. While the use of traditional formal 
verification methods and tools to analyze probability distributions may be impractical, it is possible to support 
this analysis with statistical methods. Section 5.3 provides several examples of such approaches.  

Verification of trained ML model stability. Stability analysis can be carried out by defining and verifying 
stability properties on the trained ML model. A number of inputs to the deep learning model for RUL 
prediction (condition indicators - CIs) are computed from vibration sensor measurements. The sensor can be 
subject to noise and failures, i.e., perturbations may occur to the CI inputs, and not all of them can be timely 
noticed. Therefore, it is critical to demonstrate the stability of the RUL estimator to input perturbations. The 
results of applying a verification approach for stability properties using an abstract interpretation method is 
demonstrated in Section 5.4.3. 
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Assessment of trained ML model robustness to adverse inputs. Stability requirements for the ML model 
prescribe the absence of significant output deviations given a bounded perturbation in the input. Therefore, 
the inputs for which the perturbation bound is exceeded (i.e., it is greater than 𝛿; see Section 3.4.1.3) can be 
considered adverse. Robustness of the ML model to such inputs can be verified with formal methods by 
studying the effects of large input perturbations. For RUL estimator, such perturbations may occur, for 
example, due to abnormal loads of the mechanical bearing that occur due to some unexpected events (e.g., 
maneuvers), as well as due to sensor failures. That said, robustness assessment of the trained RUL estimator 
is a critical assurance activity, fully aligned with EASA AI Concept Paper objective LM-13. Analysis is provided 
in Section 5.4.4. Additionally, same section demonstrates one of the ways of using FM for identification of 
adversarial inputs to the ML model. 

Verification of intended behavior of the trained ML model. Several other requirements for the trained RUL 
estimator define its intended behavior, and formal properties can be defined based on them. These 
properties are amenable to verification with formal methods. Such verification is part of requirements-based 
testing of the trained model behavior, as prescribed by the EASA AI Concept Paper objective LM-10. Selected 
properties include monotonicity of the RUL estimator, and the impact of the operating environment on the 
prediction. Verification approach and results are provided in Section 5.4.5. 

5.2 Assessment framework 

All selected FM application demonstrators are part of the learning assurance process, as defined by the EASA 
AI Concept Paper. Their experimental evaluation is supported by an automated toolchain developed by 
Collins Aerospace Applied Research & Technology. Its key components are discussed in the following 
sections, with a particular focus on formal verification. 

5.2.1 Learning Assurance toolchain 

The main intent of the learning assurance toolchain is to enable a model-based process for the development 
of ML constituents supported by relevant assurance methods at every phase of learning assurance. It 
currently focuses on the RUL use case and will be further extended to support similar deep learning 
applications with regression over time series inputs. 

The toolchain consists of a set of independent modules. Each of them maps to a phase (or several phases) of 
learning assurance. Each module accepts specific user inputs (e.g., datasets, requirements) and produces 
artifacts that are stored in a common workspace, from where they can be accessed by other (subsequent) 
modules. The main output of the toolchain is the inference model. Each module implements functions,  
including verification methods, that can be configured and executed by the user via a graphical user interface. 
Documentation, as well as mapping to objectives of the EASA AI Concept Paper, is also provided in each 
section of each module. A high-level overview of the learning assurance toolchain is provided in Figure 19. 
 
Each module of the toolchain is briefly discussed below: 

1. The Data management module is responsible for corresponding data management activities and 
directly maps to the same phase of the learning assurance process and the W-cycle. It is currently 
the entry point to the toolchain. Its main functions are data preparation (e.g., feature engineering, 
normalization, labeling) and data quality verification. Data collection is currently out of scope of this 
module, therefore, collected raw datasets along with data quality requirements (DQRs) are accepted 
as module inputs. Various verification methods are available for DQRs.  Section 5.3 demonstrates the 
use of statistical methods for data quality assessment. The main outputs of the module are training, 
validation and test datasets, as well as some artifacts that summarize the DQR assessment. 
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Figure 19. Overview of the learning assurance toolchain. 

2. The datasets are then used by the Model training module that focuses on learning process 
management and training of the ML model. User inputs include the model architecture (e.g., NN 
layers), learning algorithm and objective function selection, as well as hyperparameters (e.g., 
learning rate, minibatch size, etc.) The module makes use of training and validation sets to train the 
model, and to optimize its hyperparameters. 

3. The key module of the toolchain is the Verification module that maps to Learning Process Verification 
phase in the W-cycle. Along with basic verification functionalities, e.g., performance estimation 
based on the test dataset, it includes analyses based on formal methods that are demonstrated in 
Section 5.4. As backend, this module implements a collection of automated property verification 
procedures that are able to conduct the analyses selected in Section 5.1.  

4. Finally, the functionalities of the Implementation module are related to creation of the inference 
model. They include code generation procedures, as well as performance estimation and deployment 
functions. The output of the module (and of the entire toolchain) is the inference model. This module 
is out of scope of the ForMuLA IPC and it is not further discussed. 

5.2.2 Formal verification framework 

The core component of the learning assurance toolchain that is used for the assessment of FM on the RUL 
use case is the formal verification framework that is part of the Verification module. The framework currently 
supports formalization and verification of local properties to support the analyses discussed in Section 5.1.  

5.2.2.1 Property parameters setup 

Property formalization is configurable, so that the user can parameterize the properties based on the 
requirements. More concretely, following parameters can be set: 

• Local stability properties: input perturbation 𝛿 (percentage or absolute value), admissible output 
deviation 𝜀 (percentage or absolute value), where to apply input perturbations, i.e., at which time 
step, to which features) 

• Monotonicity properties: percentage 𝛾 of input growth rate change, where to apply the growth rate 
change , i.e., to which features, size of the interval 𝛿 for CI growth trajectories. 

5.2.2.2 Verification methods 

Verification module of the toolchain carries out all property formalization activities, i.e., it creates property 
objects from numerical values provided in the requirements. It then invokes a VNN tool based on abstract 
interpretation to verify the properties. The tool computes the output reachable set from a set of inputs 
specified by the property, and then performs a geometrical check: for the property to be valid, the output 
set of the NN must not intersect with the region of the output space (halfspace) that is associated with the 
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negation of this property (i.e., the “bad” or “unsafe” area). Otherwise, an intersection manifests a property 
violation. Based on the analyses supported by the VNN tool, Verification module provides the following set 
of methods: 

• Exact method. This method performs exact reachability analysis for the neural network, i.e., it 
precisely computes the set of possible outputs (output reachable set) based on the provided input 
set. The method is sound and complete (see definitions in Section 3.2) but may face scalability issues 
when the complexity of the property and/or the ML model is high. 

• Approximate method. This method computes over-approximations of possible outputs of all hidden 
layers of the NN, up to the output layer. This enables faster analysis time and, therefore, scales better 
than the exact method. The resulting output reachable set is a conservative approximation (see 
Section 3.2), that is guaranteed to fully include the real output reachable set, i.e., the one that would 
be computed by an exact analysis. If the region associated with property negation (i.e., unsafe region) 
does not intersect with this over-approximation, it follows that it also does not intersect with the real 
output set, so that the property can be concluded valid. However, the analysis is incomplete and may 
not be able to disprove the property. If an intersection of the approximated output set an the unsafe 
region is identified, it could either be a real violation, from which a counterexample can be computed, 
or a false negative (in this case the CEX would be “spurious”, i.e., misleading, as discussed in Section 
3.2). The tool cannot determine by itself, which of the two is the case. In such situations, to avoid 
raising a false alarm, the tool returns an “unknown” answer. 

• Simulation-based method. This is a statistical approach for property falsification that is neither 
sound nor complete. It randomly generates a number of inputs in the neighborhood (“around”) the 
given verification point38 and performs ML model inference to check the outputs against the 
property. If a violation is observed, then the property is falsified, i.e., it can be declared invalid. 
However, the method it is not able to prove the property on a given input set if input values are 
continuous, because in principle an infinite number of inputs may be generated. Therefore, it is the 
opposite to the approximate method that can prove the property but may not be able to disprove it. 
Instead, simulation-based method may identify a counterexample, thus disproving the property, but 
it can never rigorously prove the property. It is only able to make a statistical argument, e.g., use the 
Monte-Carlo approach to approximate the probability of property violation39. One benefit of this 
approach is that its execution time is constant and does not depend on the complexity of the 
property that is verified. The method scales linearly with the number of properties/input points. 

• Two-step method. This approach combines approximate and simulation-based methods. It can be 
applied when verification with sound and complete methods is impractical. Compared to separately 
using approximate or simulation-based approaches, it aims at maximizing the thoroughness of the 
analysis while still keeping solving time at reasonable values40. The method is illustrated in Figure 20. 
First, the property is verified with the approximate method and, if it is proven valid, the method 
terminates. Otherwise, if “unknown” is returned by the solver, simulation-based method is invoked 
in an attempt to disprove the property by finding a counterexample among a configurable number 
of randomly generated inputs in the neighborhood of the original point. If no CEX is found, the 
method returns unknown. 

 
 
38 For example, for a local stability property the method generates a number of random perturbations (bounded by 𝛿) in the 
neighborhood of the given point. 
39 Formally, valid property requires this probability to be 0%, i.e., no counterexamples to be found. 
40 Compared to sound and complete verification; for highly complex models and/or properties the method may also fail to terminate 
in reasonable time. 
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Figure 20. Two-step verification method: approximate reachability (1st step) and simulation (2nd step). 

5.2.2.3 Verification process setup 

Formal verification framework uses the trained neural network produced by the preceding modules of the 
learning assurance toolchain. It obtains the NN model from the common workspace in an internal framework-
specific format. However, it also accepts models in the ONNX format. This is useful, for example, when the 
model has been provided by another team, or trained in a different environment.  

The type and the number of properties to be verified is also configurable. For local properties, test dataset41 
can be used as a source of input points for which local properties are defined. This leads to the definition of 
one or more properties for each point in the test set. For example, depending on the requirements, local 
stability properties can be formulated as perturbations applied to different input features, one or many, 
which results in multiple properties for the same input point.  

The framework also allows to verify specific sets of properties, and has control on the total number of 
properties to be verified. 

5.2.2.4 Verification process results 

Following results are collected by the verification framework during its execution: 

• For each property 

o Property type 

o Property parameters (e.g., 𝛿 and 𝜀 for stability properties) 
o Verification result: valid, invalid or unknown 

o Verification time 

 
 
41 Quality of the test dataset is an important condition. If the test set meets the data quality requirements, such as completeness and 
representativeness w.r.t. ML constituent ODD, then it is a representative collection of test points. With that, verification of local  
properties defined for these points may be considered sufficient to provide evidences for learning process verification objectives, 
such as LM-12, thus increasing the confidence on the correct behavior of the ML model and the absence of unintended functionality. 
This is further discussed in Section 5.4.2. 
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• Statistics per property type42 
o Number and percentage of valid, invalid and unknown properties 
o Average verification time  
o Total verification time  

• Overall statistics 
o Number and percentage of valid, invalid and unknown properties 
o Average verification time  
o Total verification time  

NOTE: discussion below only aims to provide the “look and feel” of the framework output. Detailed discussion 
on the verification of monotonicity properties and related requirements can be found in Section 5.4.5.1. 

Intermediate results and final statistics generated by the verification framework are printed to the console, 
as exemplified in Figure 21 for monotonicity properties verification. First, verification parameters are printed: 
percentage of CI growth increase within each time window with respect to the original CI trend (delta = 60%) 
and the type of monotonic shift of inputs (“all CIs”, i.e., applied to all condition indicators at once). The total 
number of related properties is then shown (7493), as well as time elapsed during their initialization. Finally, 
the verification method is specified (two-step method), and verification result for each property is shown 
along with elapsed time for its verification. Note that the properties in Figure 21 are proven valid, which is 
done by the first step of the method, which is approximate method. In this case, simulation-based falsification 
method is not invoked. Therefore, verification time is shown for the approximate analysis only. 

 

Figure 21. Example console output of the formal verification framework. 

5.2.3 Toolchain implementation 

This section describes the concrete tools used to implement the learning assurance toolchain. This information 
is commercial proprietary and is not available in the public version of the report. 
  

 
 
42 E.g., one can obtain statistics for all stability properties, without considering results for other property types. 
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5.3 Data quality verification 

This section demonstrates the use of statistical methods, discussed in Section 3.7, for the assessment of data 
completeness and representativeness.  

Provided verification examples focus on several critical aspects pertaining to RUL datasets (component 
degradation sequences), however, no intent is made to demonstrate the full data analysis with respect to 
all relevant criteria and metrics. In the context of the RUL use case, there is a potential of reusing the 
demonstrated techniques for completeness/representativeness assessment of other features, which are not 
discussed in this section. 

5.3.1 Representativeness of flight regime durations 

As discussed in Section 2.2.3, the aircraft can execute several types of flight missions, also called “mission 
patterns”. A number of patterns has been provided by the SME, and they are included in the ML constituent 
ODD (see Table 2 for an example of a pattern). Each mission pattern is a fixed sequence of flight regimes 
(e.g., ascent, forward flight, hover), where the duration of each regime follows a probability distribution that 
is also specified in the ML constituent ODD. A concrete mission is, therefore, a sequence of flight regimes, 
each of them having a fixed duration that is sampled from a distribution. 

Flight regime duration plays an important role in the bearing degradation, because the latter highly depends 
on the physical load of the bearing. For example, if the aircraft frequently executes missions with relatively 
long ascent/descent phases, in which the load is higher, then the bearing is likely to wear and degrade faster. 
In other cases, when flight regimes with smaller component loads prevail, degradation could take more time. 
To obtain correct predictions, both these possibilities should be considered, i.e., present in the training data. 
This means that the datasets must be complete, i.e., contain sufficient number of examples, and also be 
representative w.r.t. expected distributions. Hence, the number of regime durations that are close to the 
distribution mean must be significantly larger than those that are distant from the mean by several standard 
deviations. However, it is also important to have the latter in the training, as well as in the test dataset. 

ML constituent ODD prescribes Gaussian distributions for flight regime durations, with their parameters 
specified in Table 2. These expected distributions are included into each degradation sequence as metadata 
and are automatically parsed by the Data Management module of the learning assurance toolchain. Once all 
sequences are read and preprocessed by the toolchain, representativeness analysis for durations of every 
flight regime can be conducted by taking following (automated) steps: 
 

1. Create a histogram of durations for the given regime; 
2. Perform goodness-of-fit tests with respect to expected distribution (null hypothesis is that the data 

is accurately described by the distribution at a given level of confidence, the latter is configurable). 
 
A number of goodness-of-fit tests can be applied for the analysis, depending on the data. For example, the 
chi-square goodness-of-fit test determines if a data sample comes from a specified probability distribution. 
Parameters of this distribution may be either provided by the user or estimated from the data. The test 
groups the data into a certain number of bins, and then calculates the observed and expected counts of those 
bins. After that, it computes the following test statistic called the chi-square statistic: 

𝜒2 = ∑(𝑂𝑖 − 𝐸𝑖)2

𝑁

𝑖=1

𝐸𝑖⁄ , (5.1) 

where Oi are the observed counts and Ei are the expected counts based on the hypothesized distribution. The 
test then compares the computed value of the statistic to a chi-square distribution with degrees of freedom 
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equal to (a) the number of estimated parameters and (b) difference between number of bins for data pooling 
and the number of parameters, to draw a conclusion on the goodness of fit. Other applicable tests include 
the Kolmogorov-Smirnov test, the Lillie test, as well as the Anderson-Darling test. Together with the decision 
on whether the tested sample comes from the specified distribution or not, these tests also provide the 𝑝-
value based on which the decision was taken. 

Results of representativeness verification of flight regime durations with respect to corresponding probability 
distributions specified in the ML constituent ODD (Table 2) is shown in Figure 22. Several regimes are shown: 
(a) Hover - Short; (b) Hover - Long; (c) ForwardFlight - Short and (d) ForwardFlight – Long. Each diagram 
includes a histogram showing number of occurrences of regime durations in selected intervals (bins). 
Horizontal axis has units of time (minutes), left vertical axis corresponds to the number of occurrences for 
the histogram, while right vertical axis represents the probabilities. Each histogram is overlayed by two 
probability density functions (PDFs). The solid line PDF shows the expected distribution for the respective 
flight regime, with parameters prescribed by the ML constituent ODD. Dotted line PDF is specifically fitted to 
the data using the maximum likelihood method and is shown for comparison purposes (its parameters are 
estimated from the data). Legend on every plot shows parameters (mean and standard deviation) for both 
distributions. 

Above each diagram, the outcomes of the chi-squared goodness-of-fit tests are shown. The test returns “0” 
if the null hypothesis is not rejected by the test, i.e., according to the test the data comes from the expected 
distribution. Instead, if the null hypothesis is rejected at the significance level of 0.05 (5%), then the test 
returns “1”. The choise of the significance level value comes from best practice. For example, for the Hover 
Short flight regime (Figure 22a), the assessment shows values 1/0, which means that the data does not come 
from the ML constituent ODD distribution (“1”), but it is well described by the fitted distribution (“0”)43. In 
other words, the data is not representative of the ML constituent ODD. Same can be observed in Figure 22c 
for ForwardFlight (Short). Here, the result does not appear straightforward, because visually the PDF 
corresponding to the ODD fits the histogram quite well. Still, the fitted PDF is slightly more flattened, and its 
mean is slightly shifted towards smaller values. Increasing the significance level of the goodness-of-fit test 
(e.g., to 20%) leads to the null hypothesis not being rejected, however, the justification for such increase has 
to be further explored. The test instead fails in Figure 22b, because some bins have low expected counts or 
are empty; the answer is 0/0, but a warning is returned by the framework44. This further demonstrates an 
issue with data completeness, since there are not enough missions in the bearing degradation data that are 
able to cover well the range of durations for this regime. Finally, the test returns “0” for the ML constituent 
ODD distribution for regime ForwardFlight (Long), which is shown in Figure 22d. This means that the 
representativeness test is passed for this regime. 

Distributions of flight regime durations can also be analysed more in-depth, i.e., separately for each mission. 
This analysis has also been performed, however, the dataset size was too small to ensure reliable results of 
goodness-of-fit tests. Future work shall focus on obtaining larger datasets. In the current report, the 
feasibility of representativeness assessment via statistical methods has been demonstrated, so that it can be 
further applied to other features and groups of features45. All cases where the actual data had a mismatch 
with the expected distribution (i.e., was not representative) have been communicated to the SME for further 
investigation. 

 
 
43 Correspondence of the data to the fitted distribution is, of course, expected, but in general not guaranteed (fitting method is 
independent from the goodness-of-fit test). 
44 The warning message is not visualized in Figure 22. It is generated in the tool console available to the user. 
45 One limitation of this representativeness assessment method is that expected distribution and its parameters, or at least the 
distribution type, must be known a priori and specified in the ML constituent ODD. 
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Figure 22. Representativeness assessment results for selected flight regime durations. 

Remark: For the RUL use case, same analysis can also be performed for CIs (condition indicators) because 
these inputs also have an expected distribution (Weibull) specified in the ML constituent ODD. This analysis is 
not demonstrated in this report due to time limitations of the project.  

5.3.2 Completeness of mission profiles for different operating environments 

Operating environment significantly affects the bearing degradation. Two environments have been 
considered as part of the ML constituent ODD: desert and normal (non-desert). For the former, small pieces 
of sand and dust from the atmosphere could penetrate inside the bearing and lead to increased vibrations 
and, consequently, to faster degradation. Therefore, RUL estimator should be able to distinguish between 
the two environments, and smaller remaining lifetime should be predicted for the desert conditions. 

In each degradation sequence used to train the RUL estimator, the aircraft executes (“flies”) a series of 
different missions, as discussed in Section 2.2.3. Possible mission patterns (sequences of flight regimes with 
durations described by a distribution) is limited and specified in the ML constituent ODD. To ensure that the 
ML model is able to correctly account for differences in the operating environment, training data should 
include “examples” of all types of flight missions in each environment. This is a data completeness 
requirement. It can be checked by visualizing statistics on how many missions of each type are executed in 
both environments within the entire training dataset46. Result is shown in Figure 23. 

 
 
46 Of course, same check must be performed for other datasets (validation, test). 
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Figure 23. Completeness test – coverage of mission profiles by operational environments. 

From the visualization above, data completeness issues are evident. Several flight mission patterns (e.g., MO-
Mixed-1, SC-1) do not have any data for the desert environment, which could negatively affect the 
predictions for these missions. In other words, in the entire available data the aircraft never “flew” any of 
these two missions in the desert. Also, a bias towards the normal environment can be observed. Based on 
this completeness check, the datasets have been improved to more balanced ones that include sufficient 
examples for both operating environments for every flight mission. 

5.4 Formal verification of the trained ML model 

This section provides evaluation results for FM applications selected in Section 5.1 on the RUL use case. First, 
the details of the RUL estimator that are relevant to the analysis are identified. Then, a detailed description 
of the V&V activities is given, including the formalization of relevant properties that are traced to 
requirements in Section 2.2.4.2. For each application, numerical results and discussion are provided. 

5.4.1 RUL estimator interface 

Recall that the input of the RUL estimator is a time window including the features listed below and of length 
of 40 time steps (each step equals to 1h). More details are provided in Section 2.2.6. Specifically, following 
features from Section 2.2.3 are inputs to the estimator function: 

1. Seven condition indicators (CIs) that provide numerical information about the bearing degradation 
status, obtained from the processing of vibration sensor measurements. They are numeric variables 
of type float, and each of these quantities independently follows a Weibull distribution with different 
parameter values. 

2. Torque, a numeric variable of type float, ranging between 0 and 160.  
3. Flight regime, a categorical variable of type string, taking values in {ground, takeoff, ascent, forward 

flight, descent, hover, land}. One-hot encoding is employed to convert the variable into seven binary 
variables, one per categorical value.  

4. Nominal load, a numeric variable of type float, with values in {2.1, 9.2, 8.2, 4.0, 7.6, 7.0}. Each value 
corresponds to one of the flight regimes. 

5. Environment, a categorical variable of type string, taking values in {desert, normal}. Same as the flight 
regime, it is transformed into two binary variables via one-hot encoding. 

6. Mission ID, a categorical variable of type string; a mission ID is associated with a sequence of flight 
regimes, beginning with ground and ending with land. Flight regimes have durations independently 
drawn from a Gaussian distribution with different parameter values. 
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The only output of the estimator is a numerical value of type integer with non-negative values which 
represents the remaining useful life of the bearing component in hours. 

The knowledge of the domain and of the data characteristics allows to determine a set of relationships and 
constraints on the inputs and outputs of the ML model:  

a. Mission ID uniquely determines a corresponding sequence of flight regimes.  
b. Regime, torque, load, CIs, RUL are related as follows:  

a. Flight regime affects the applied torque: it is very low while on ground, low while descending 
and landing, medium during forward flight, high while hovering, very high during takeoff and 
ascent.  

b. Flight regime uniquely determines the nominal load value: ground → 2.1; takeoff/land → 9.2; 
ascent → 8.2; forward flight → 4.0; descent → 7.6; hover → 7.0. 

c. The heavier the applied load, the more stress the bearing is subject to. 
d. Higher torque places heavier load on the bearing, leading to a faster increase of CIs and faster 

decrease of RUL; however, high torque is not necessarily correlated with a high load.  
c. A localized bearing defect, manifesting itself as an increase of the energy value of one CI, tends to 

have an impact (possible less evident) on the values of other CIs as well; for this reason, a sudden 
increase of a single CI may denote an issue with the data and should not significantly affect the output 
of the estimator function. This is captured by requirements RUL-ML-Stab-1 – RUL-ML-Stab-3. 

d. In principle, component RUL is a monotonically non-increasing function, and each CI is a 
monotonically non-decreasing function. However, due to factors such as sensor noise and data 
inaccuracies, CIs can locally decrease; similarly, a degree of tolerance is to be applied in case of a 
temporary increase of the RUL. Monotonicity of the RUL estimator is prescribed by requirements 
RUL-ML-Mon-1 and RUL-ML-Mon-2 (see Section 2.2.4.2).  

e. A single degradation sequence corresponds to a scenario, i.e., a sequence of flight missions. The 
environment is not expected to change throughout the scenario.   

5.4.2 Use of test dataset 

Non-functional requirements of the RUL estimator are imposed on the ML constituent in its entire ODD. That 
is, formal properties that are defined for selected requirements (e.g., stability, monotonicity) are in fact 
global properties. Formal guarantees on the validity of these properties are desirable to demonstrate that 
the requirements are met. For that, the properties must be shown to hold on any input to the RUL estimator 
that is within its ODD. However, due to the high complexity and the dimensionality of the ML constituent 
ODD, formal analysis of all possible inputs belonging to the ODD is intractable. Existing VNN tools are 
currently not scalable to such analysis.  

As verification of global properties cannot be achieved, one needs to rely on approximating this analysis. A 
reasonable approximation would be to reduce the analysis to a set of input points and verify local properties 
for these points. The result of such replacement of global property verification with a set of local pointwise 
verifications could be acceptable if altogether selected input points and corresponding properties are 
representative of the ML constituent ODD and cover it sufficiently. In other words, a discretization of the ML 
constituent ODD could be performed with a representative set of input points that approximate all possible 
input points within the ODD. Consequently, analysis of local properties for these points would approximate 
the verification of the corresponding global property.  

According to the data quality requirements prescribed by the objective DM-13 of the EASA AI Concept Paper, 
each dataset (training, validation, test) must be complete and representative with respect to the ML 
constituent ODD. Relevant data verification techniques, such as the one demonstrated in Section 5.3, could 
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be applied to assess these characteristics of the data. Since the verification of both trained and inference ML 
models has to be performed on a test (holdout) dataset, as prescribed by the existing guidance, as well as 
by the common ML practice, this dataset could be used as an approximation of the ML constituent ODD, 
provided that its completeness and representativeness are demonstrated47.  

Test dataset for the RUL estimator is obtained by (i) concatenating degradation sequences in an arbitrary 
order and (ii) flattening this concatenation into a numbered list of time windows. That is, the inputs are locally 
adjacent and consecutive, but there is a discontinuity between the degradation sequences (last time window 
of the previous degradation sequence and first time window of the next sequence are not consecutive). There 
is no specific ordering of degradation sequences in the test dataset, they are independent from each other. 
Overall, the concatenated sequences result in 7493 time windows that are inputs to the CNN model. Test 
dataset contains 15% of overall available data for the RUL estimator (remaining 70% and 15% are allocated 
to, respectively, the training set and the validation set).  

Completeness of the test dataset has been assessed with several methods to make sure it contains sufficient 
“examples” from different ODD regions. In particular, completeness and representativeness analyses shown 
in Section 5.3 have been employed. Revealed issues with dataset completeness have been mitigated by 
adding additional degradation sequences that complement identified gaps, while some of the identified 
problems with representativeness of certain features are currently under investigation. 

Remark: From previous paragraph, it follows that in the ForMuLA IPC no claim is made that available data is 
complete and representative. The purpose of the project is to demonstrate how certain analyses (including 
data quality) can be carried out using formal methods and statistical methods.  

5.4.3 Stability verification of the trained ML model 

5.4.3.1 Formalization of stability properties 

Following notation is used in the remainder of the report. Bold font (e.g., 𝒙) is used to denote a vector or a 
matrix, depending on the context, while normal font (e.g., 𝑥) denotes a scalar. 

Recall that a single input point48 for the RUL estimator function corresponds to an 𝐿 × 𝑛 time window of 
predefined number of time steps 𝐿 with 𝑛 features (1 ≤ 𝑖 ≤ 𝑛). Formally, an input point is a matrix 𝒙 =

[𝒙1, … , 𝒙𝑛], where each column 𝑖 contains values 𝑥𝑖
𝑡 of some input feature 𝑖 at consecutive time steps 𝑡 (1 ≤

𝑡 ≤ 𝐿), i.e., a vector 𝒙𝑖 = [𝑥𝑖
1, … , 𝑥𝑖

𝐿]𝑇 .  

Assumption. In the following, when considering two input points 𝒙 and 𝒙′, some step 𝑡∗, and a subset 𝑆 of 
indexes of features, the values of the features not explicitly mentioned (i.e., their indexes not belonging to 𝑆) 

are assumed equal, i.e., 𝑥𝑗
𝑡 = 𝑥𝑗

′𝑡 for 𝑗 ∉ 𝑆, 𝑡 ≠ 𝑡∗. 

Trained model stability verification considers perturbations of certain inputs to the RUL estimator, namely 
the CIs, which are anticipated to be up to 40% of their initial values, as per requirement RUL-ML-Stab-1, while 
an acceptable discrepancy between actual and expected outputs is up to 10h, as per requirements RUL-ML-
Stab-2 and RUL-ML-Stab-3 (see Section 2.2.4.2). Stability properties can be formulated either with respect to 
a single CI, or a subset of CIs, assuming that other inputs do not change; applied perturbation is limited to a 
single step in the time window. The rationale of this setting is that, on one hand, a resonance frequency being 
excited could temporarily increase one or multiple CI values. On the other hand, the persistence of such 
perturbation could be interpreted by HUMS data quality indicators as an issue in the sensor measurements, 

 
 
47 Note that completeness and representativeness of the dataset are considered necessary conditions for approximating a global 
property with local properties defined for the elements of this dataset. 
48 In the following, “input window” and “input point” are used interchangeably, both meaning a single element in the test dataset. 
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so that the data would be flagged as invalid and not provided to the ML Constituent, i.e., no RUL prediction 
will be computed (see Section 2.2.3.2 on ODD monitoring). Therefore, perturbations to single or multiple CIs 
over multiple steps in the time window are not considered realistic, and corresponding properties are neither 
formulated nor verified.  

To overcome the limitations of FM in dealing with the verification of global properties of deep neural 
networks and to provide evidence for aforementioned stability requirements, local stability properties have 
been formulated and verified for each point in the test dataset, as motivated by Section 5.4.2. 

Stability to single CI perturbation at a single time step. Let 𝒙𝑖 be the vector of values of some CI 𝑖 in the time 

window, 𝑥𝑖
𝑡 being the CI value at time step 𝑡. The formulation of a local stability property for a single CI is:  

∀𝒙′: |𝑥𝑖
′𝑡 − 𝑥𝑖

𝑡| <  𝛿|𝑥𝑖
∗| ⇒ |𝑓(𝒙′) − 𝑓(𝒙)| <  𝜀 (5.2) 

where prime (′) denotes a perturbed item (i.e., 𝒙′ is the time window, where one or more elements have 

been perturbed; 𝑥′𝑖
𝑡 is a perturbed value of the CI 𝑖 at time step 𝑡;  𝑓(𝒙′) is the ML model output computed 

from the perturbed input), 𝑥𝑖
∗ represents the average initial value of the CI 𝑖, computed over all degradation 

scenarios, 𝛿 is the bound on the input perturbation w.r.t. 𝑥𝑖
∗ (expressed as a percentage), and 𝜀 is the 

maximum admissible output change. 

Stability to multiple CI perturbations at a single time step. In case of perturbations over multiple CIs, the 
parametric formulation of the stability property is 

∀𝒙′: ∀𝑖 ∈ 𝑆: |𝑥𝑖
′𝑡 − 𝑥𝑖

𝑡| < 𝛿𝑖|𝑥𝑖
∗| ⇒ |𝑓(𝒙′) − 𝑓(𝒙)| <  𝜀 (5.3) 

where 𝑆 is a subset of the indexes corresponding to perturbed CIs, 𝑥𝑖
∗, 𝛿𝑖   and 𝜀 are as before (the only 

difference is that for each perturbed CI a different bound 𝛿𝑖  can be specified), and prime denotes a perturbed 

time window (𝒙′) or value (𝑥𝑖
′𝑡). 

Considering stability requirements RUL-ML-Stab-2 and RUL-ML-Stab-3 with 𝛿 = 40% (same perturbation 
magnitude for each CI) and 𝜀 = 10ℎ for a given input, concrete formulations of local stability properties for, 
respectively, single CI perturbation and multiple CI perturbations become 

∀𝒙′: |𝑥𝑖
′𝑡 − 𝑥𝑖

𝑡| <  0.4|𝑥𝑖
∗| ⇒ |𝑓(𝒙′) − 𝑓(𝒙)| <  10ℎ 

∀𝒙′: ∀𝑖 ∈ 𝑆: |𝑥𝑖
′𝑡 − 𝑥𝑖

𝑡| < 0.4|𝑥𝑖
∗| ⇒ |𝑓(𝒙′) − 𝑓(𝒙)| <  10ℎ 

Informally, if the value(s) of the CI does (do) not change at a step 𝑡 of the analyzed time window by more 
than 40% of their initial value(s), then the RUL predicted for that time window must not deviate by more than 
10h at 𝑡. 

5.4.3.2 Verification process summary 

Properties. Two types of stability properties have been considered: stability to a single CI perturbation 
(verified for each of the CIs separately), and stability to simultaneous perturbations to all CIs, as described in 
the previous subsection. 

Datasets. The analysis was executed on a test dataset organized as described in Section 5.4.2.  

Time steps. CI perturbations were applied to time step 20 (out of 40) of each time window; a single step per 
window was considered sufficient for the analysis, due to time windows being adjacent. Although the analysis 
encompassed the entire degradation scenario, emphasis was given to the last 100h of the RUL, identified as 
a critical range in the requirement RUL-ML-14 (Section 2.2.4.1, Table 5). 
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Verification methods. Both the exact method and the two-step method described in Section 5.2.2.2 were 
chosen for evaluation. These approaches are complementary. On one hand, the exact method is sound and 
complete; it guarantees to return a correct answer (valid/invalid) for any property, but in practice its 
execution can be infeasible due to time and/or memory considerations. The two-step method, on the other 
hand, is itself the combination of more efficient incomplete techniques, i.e., approximate verification and 
simulation. Approximate verification is sound in determining the validity of a property, but not complete: it 
may possibly return a false alarm, as discussed in Section 3.2. Therefore, instead of invalid answers this 
method reports unknown answers. Simulation is used to compute the actual output for a given set of input 
points, and can be used to check (again, without guarantee of completeness) whether the unknowns 
obtained from approximate verification actually correspond to invalid properties. This is a property 
falsification approach, which is detailed in Section 3.7. 

5.4.3.3 Verification results 

Verification process had 3 phases. All results are summarized below. 

• Phase 1. Exact verification method was tested in the presence of a single CI perturbation at a single 
time step, as formulated in Equation (5.2). The encoding produced ~52500 stability properties. The 
framework was able to verify all properties with an average execution time of ~0.36s; 100% of the 
properties were proven valid. Since all properties could be verified with a sound and complete 
method, it was considered redundant to test other verification methods in this phase. 

• Phase 2. Exact method was tested on properties involving simultaneous perturbations of all CIs at a 
single time step, according to Equation (5.3). The encoding produced ~7500 properties, one per input 
time window. The method could not verify any property within a time limit of 3h, or sometimes also 
due to failures caused by out-of-memory events. This is a scalability limitation. 

• Phase 3. Two-step verification method was tested on the same properties as in Phase 2. The adoption 
of an approximate method allowed to overcome the difficulties experienced with the exact method: 
all properties have been verified, ~98.3% of them were proven valid, with an average verification 
time of ~0.63s. Invalidity was detected, and an unknown answer was given, respectively, in ~0.08% 
and ~1.58% of the cases.  

Results are summarized in Table 10, showing the total number of properties verified (or intended to be 
verified) at each verification phase, and a breakdown into amounts of valid, invalid, and unknown answers 
computed by the verification framework. Finally, average verification time per property is provided (avgTime) 
– total, as well as average times for valid, invalid, and unknown properties (in brackets). Total verification 
time is also provided in the last column. It can be noted that Phase 2 is redundant to Phase 3 and in fact 
provided no results, however, it is also shown here to demonstrate the scalability problem. Since in Phase 3 
invalid and unknown (unproven) properties have been present, the table additionally specifies the results for 
the critical range of the RUL to see whether some of these properties could have potential safety impact. 

Table 10. Verification results for local stability properties of the RUL estimator. 

setting #properties #valid #invalid #unknown avgTime (s) totTime (s) 

Phase 1  
(single CI, exact method) 

52451 52451 0 0 0.3255 
(0.3255, -, -) 

17074 

Phase 2 
(all CIs, exact method) 

7493 - - - Timeout 
(-, -, -) 

Timeout 

Phase 3 
(all Cis, 2-step method) 

7493 7369 6 118 0.6347 
(0.57, 6.49, 4.18) 

4756 

1414 
(critical range) 

1414 0 0 0.3313 468.45 

 



    
Collins Aerospace – EASA 

ForMuLA IPC extract 

 
Page 74 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

Figure 24 shows how RUL estimator inputs that resulted in invalid and unknown stability properties are 
located within their degradation sequences. Recall that each property is associated with a time window, and 
that within each degradation sequence in the test dataset49 local stability properties correspond to adjacent 
and consecutive time windows. Black solid vertical bars in Figure 24 mark the ends of the degradation 
sequences, i.e., a vertical bar represents the end of a previous sequence, i.e., the failure of the bearing, and 
the beginning of a next one (full healthy state of the bearing). Red and blue dotted vertical bars identify, 
respectively, invalid and unknown properties. 

 

Figure 24. Location of inputs related to invalid (top) and unknown (bottom) properties for all sequences in the test dataset. 

According to verification results, unknown and invalid properties have been identified in several degradation 
sequences, but they tend to be concentrated within the first half of the sequence time frame. Focusing on 
the only degradation sequence where invalid properties appear (Figure 25), it becomes clear that the RUL 
estimator behavior is problematic at the very beginning of the sequence. There are only 6 invalid properties, 
which are preceded and followed by a larger number of unknown properties. These properties may also be 
invalid, but the simulation-based part of the two-step verification method was not able to falsify them, i.e., 
to identify any counterexample. 

 

Figure 25. Location of inputs related to invalid (top) and unknown (bottom) properties in a selected degradation sequence. 

  

 
 
49 Recall that test dataset is obtained as a concatenation of all time windows in all degradation sequences, i.e., as a flattened list of 
time windows (see Section 5.4.2 for details). Degradation sequences are independent from each other. Sequence boundaries are 
shown on the plots to understand where violated/unknown properties are located relatively to their degradation sequence. 
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Noteworthy, when limiting the Phase 3 analysis to the critical range (last 100h of remaining lifetime of the 
bearing) for each degradation sequence in the test dataset, all properties pertaining to this range are valid. 
This increases confidence in the correctness of the behavior of the RUL estimator with respect to safety 
considerations discussed in Section 2.2.7. Consider the last row of Table 10. Accuracy and stability of the 
estimator in the critical range are particularly important, because of the possible safety impact related to the 
incorrect RUL estimation (e.g., resulting from a perturbed input). 

Verification results are further discussed in Section 5.5. 

5.4.3.4 Visualization of valid properties 

Verification framework allows to visualize the information about valid properties. An example is shown in 
Figure 26 that corresponds to one of the verified stability properties with multiple CI perturbations. The sub-
charts show CI trends over the input window (in blue color), except the last one that shows (again, in blue) 
the RUL value for that time window. Black horizontal bars denote the perturbation bounds for each CI (±𝛿), 
while on the last subchart they denote the admissible RUL deviation (±𝜀). Several different perturbations 
with different magnitudes 𝛿 ≤ 40% have been applied to each CI (green circles). It can be seen that the 
estimated RUL never exceeded 𝜀 = 10ℎ. 

 
Figure 26. Visualization of a valid local stability property. 

5.4.3.5 Visualization of counterexamples 

For each property that has been proven invalid by the verification framework, one or more counterexamples 
have been provided. For stability properties, all counterexamples come from the simulation-based method, 
i.e., they are the result of applying bounded random perturbations on selected CIs corresponding to the 
property. This is because exact method was only applied to verify stability properties with single CI 
perturbations, and all these properties have been proven valid. It did not scale to properties with multiple 
perturbed CIs, where invalid properties have been identified only by the two-step method. 

It is important to analyze counterexamples to gain insights on the possible reasons of property violation. 
Verification framework permits visual analysis of the counterexamples. An example is illustrated in Figure 27 
for a stability property to multiple (all) CI perturbations at a single time step. 
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Figure 27. Visualization of a counterexample to a local stability property. 

First seven sub-charts show the CIs trends (in blue) over the input window. A perturbation to each of the CIs 
at step 20 is shown in red color. Black horizontal bars denote the perturbation bounds for each CI (±𝛿). The 
last sub-chart on the right shows the original RUL estimator output (in blue) and the output deviation (red 
cross) due to input perturbations; the output exceeds the admissible deviation 𝜀 = 10ℎ. 

Several observations can be made: 

1. Each CI received a positive perturbation, i.e., a spike towards higher values that are associated with 
higher bearing degradation. 

2. Three last CIs (ShaftOrder 1-3) got perturbed more than others. The perturbation applied to these 
CIs is almost the maximum admissible one (𝛿). The shaft is a cross-component for the bearing, so if 
the shaft health decreased substantially, as manifested by the ShaftOrder CIs, it would have a 
multiplicative effect on the degradation coefficient, which could significantly decrease the RUL. 
However, a spike increase in the shaft CIs at a single time step should not lead to such decrease as 
resulted from the CEX in Figure 27. Therefore, such counterexample demonstrates a non-stable 
behavior of the RUL estimator, i.e., stability requirement RUL-ML-Stab-3 is not currently met. 

5.4.4 Robustness assessment of the trained ML model 

5.4.4.1 Summary of the analysis 

Robustness analysis intends to assess the performance of the RUL estimator in the presence of unexpected 
deviations. This is particularly relevant to the CI inputs. Possible reasons for CI perturbations to occur with 
unexpectedly high magnitudes vary from abnormal aircraft maneuvers that may lead to a spike in the bearing 
load, to unexpected environment conditions. Requirements RUL-ML-Stab-2 and RUL-ML-Stab-3 prescribe a 
stable behavior of the ML model in the presence of input CI perturbations bounded by 𝛿. Formal analysis has 
been conducted to determine the effect of CI perturbations that exceed this boundary, thus stepping outside 
of the admissible perturbation range. The analysis boils down to verification of stability properties formulated 
same as in Section 5.4.3.1 (perturbations on multiple CIs), but with an increasing value of 𝛿. The results for 
each selected 𝛿 are compared to observe the effect of increased perturbation magnitudes on the RUL, i.e., 
to study how the model performance degrades in the presence of high (more than expected) input 
perturbations. 

5.4.4.2 Verification results 

Robustness assessment has been executed by verifying local stability properties for values of 𝛿 ≥ 40% for CI 
perturbations, which exceeds the maximum admissible CI perturbation prescribed by requirement RUL-ML-
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Stab-1. Such perturbed inputs are unlikely to occur and can be considered out-of-distribution inputs. Testing 
of the ML model on such inputs is prescribed by the objective LM-13 of the EASA AI Concept Paper [2].  

A number of perturbation magnitudes with increasing 𝛿 (step of 10%) has been explored – up to 70%, which 
was considered sufficient by the SME. Results are summarized in Table 11. Trends for the number of valid, 
unknown and invalid properties, as well as the verification time, are shown in Figure 28. Same as in Table 10, 
verification time reports the average time for all outcomes, and, separately (in brackets), average times for 
valid, invalid, and unknown properties. 

Table 11. Results of robustness assessment of the RUL estimator. 

setting range 𝜹 #properties #valid #invalid #unknown avgTime (s) totTime (s) 

2-step 
method 
𝜺 = 𝟏𝟎𝒉  

full 
 

40% 7493 
 

7369 6 118 0.6347 
(0.57, 6.49, 4.18) 

4756 

50% 7493 
 

7119 146 228 1.1267 
(0.89, 6.29, 3.04) 

8442 

60% 7493 
 

6528 528 437 1.8961 
(1.26, 7.31, 4.89) 

14208 

70% 7493 
 

5462 1285 745 3.11 
(1.70, 8.53, 4.09) 

23303 

critical 40% 1414 1414 0 0 0.3313 468 

50% 1414 1414 0 0 0.6078 859 

60% 1414 1414 0 0 0.9969 1409 

70% 1414 1414 0 0 1.4954 2114 

 

Figure 28. ML model robustness assessment for increasing CI perturbation magnitudes (over 40%). 

The impact of the perturbation magnitude 𝛿 on the results is noticeable: as 𝛿 grows one can observe an 
increase of unknown and invalid properties. This is because with the larger perturbation applied to CI,  
resulting input to the RUL estimator becomes more “distant” from the original test point, therefore, it 
becomes more likely that this difference will be reflected in the RUL value. Noteworthy, increasing 
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perturbation magnitudes did not affect the critical zone50 of RUL estimator, i.e., degraded component states 
in which its RUL is below 100h (no invalid properties have been identified for perturbations of up to 70%). 
This is an important result that demonstrates the robustness of the ML model at component states where 
possible safety impact may occur. 

Identified counterexamples are very similar to the one shown in Figure 27 with the difference that some of 
the CIs are perturbed by a value (𝛿) that exceeds 40%. These CEX are omitted for brevity. 

From the computational perspective, the growth of the verification time is evident. This is because, as 𝛿 
grows, the solver has to consider a larger input space for each property, and this increases (often, 
significantly) the analysis time. Perturbation magnitude is one of the key aspects of stability property 
complexity that affects the scalability of existing FM tools. It can also be observed that detecting the invalidity 
of a property is more computationally demanding than proving its validity. This is because the two-step 
method is used. If the property is valid, only the first step (approximate reachability analysis) would suffice 
to prove it by showing the absence of intersection between the property negation and the over-
approximated output set of the ML model. If an intersection is found, the second step (running simulations) 
is invoked in an attempt to falsify the property by identifying a counterexample. This brings additional 
overhead for verification. 

5.4.4.3 Identification of adversarial cases 

An adversarial case relates to an input that causes significant performance degradation of the ML constituent, 
with a low probability of being detected during input preprocessing or runtime monitoring. In other words, 
such inputs, often called “adversarial attacks”, intend either to maximize performance degradation or to 
minimize the input modification while still exceeding some performance degradation boundary (e.g., change 
of an output class). As discussed in Section 4.2.2, formal methods can be employed to search for adversarial 
inputs in a form of solving an optimization problem (maximize output deviation or minimize input 
perturbation while significantly changing the output). VNN tools based on optimization are applicable for 
such tasks.  

In the current verification framework, FM backend is based on abstract interpretation and thus does not 
support such optimization problem solving. However, smallest input change that results in a property 
violation could be identified by setting up a procedure that iteratively verifies same properties while varying 
their parameters related to ML model input change. This approach is exemplified on local stability properties 
with the goal of identifying a smallest perturbation 𝛿 for condition indicators that leads to a violation of some 
property. Differently put, this is a form of sensitivity analysis of the RUL estimator to the magnitude of CI 
fluctuations that can determine a threshold value of the 𝛿 parameter at which unknown and/or invalid 
properties begin to be reported by the verifier. 

A simple technique to identify such threshold consists in iteratively performing stability verification according 
to a binary search on the interval [0%, 40%]. The upper bound of 40% comes from the requirement RUL-
ML-Stab-1. It is the highest admissible devitation for each input CI, therefore, to remain undetected, adverse 
perturbations should stay below 40%. Analysis focused on identifying the smallest 𝛿 for which perturbations 
on all CIs at a single time step lead to RUL estimation that exceeds 𝜺 = 𝟏𝟎𝒉 (violation) or to impossibility of 

proving the property (unknown) for some input points. Results are reported in Table 12. 

  

 
 
50 This is an empirical observation from the verification conducted in this project. Additional analysis of the data and/or the ML model 
would be required to explain the result (e.g., using more test data pertaining to the critical range, cross-validation, etc.). 
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Table 12. Identification of a boundary CI perturbation for the RUL estimator. 

setting range #prop #valid #invalid #unknown avgTime(s) totTime(s) 

𝜹 = 𝟐𝟎%  full 7493 7493 0 0 0.1805  1352.51 

𝜹 = 𝟑𝟎% 7488 0 5 0.3693 2767.24 

𝜹 = 𝟐𝟓% 7493 0 0 0.2803 2100.12 

𝜹 = 𝟐𝟕. 𝟓% 7493 0 0 0.3263 2445.12 

𝜹 = 𝟐𝟖. 𝟕𝟓% 7493 0 0 0.3536 2649.44 

𝜹 = 𝟐𝟗. 𝟑𝟕𝟓% 7491 0 2 0.3639 2726.84 

𝜹 = 𝟐𝟗. 𝟎𝟔𝟐𝟓% 7493 0 0 0.3522 2639.63 

𝜹 = 𝟐𝟗. 𝟐𝟏𝟖𝟕𝟓% 7492 0 1 0.3553 2667.84 

 
Smallest input perturbations that may lead to ML model instability are around 𝛿 = 30%. More precisely, the 
very first unknowns have been detected at a value slightly larger than 29% (last row in Table 12). These 
perturbation magnitudes are smaller than those prescribed by the stability requirement RUL-ML-Stab-1, 
where 𝛿 = 40%. For the current model they can be considered smallest input changes to obtain an 
adversarial result (in this case, hampering ML model stability).  

5.4.5 Verification of intended behavior of the trained ML model 

Several RUL estimator functional requirements that define its intended behavior can be formalized as 
properties and then verified on the trained ML model. This section reports the verification approach and the 
results for these requirements. 

5.4.5.1 Monotonicity properties 

Differently from stability requirements, the requirements on monotonicity of the RUL estimator concern all 
steps of the input window, i.e., within the entire window. This is a realistic situation that may occur, for 
example, due to damage or excessive load in the bearing that leads to an increased degradation rate. 
Therefore, such changes in the CIs over the entire time window shall not be identified by data quality 
indicators in the HUMS as abnormal (unlike random spikes/perturbations occurring at multiple time steps). 
Monotonicity requirements prescribe a non-increasing behavior of the estimator given a change in the 
growth rate (higher or smaller) of one or more condition indicators. 

Condition indicators are correlated with component degradation and failures. Their values are expected to 
monotonically increase during the use of the bearing component, which reflects its degradation. 
Consequently, the bearing RUL is expected to monotonically decrease. Expected behavior of the RUL 
estimator output is monotonic with respect to the inputs (CIs), i.e., when CIs increase the RUL should 
decrease. Monotonicity requirements in Table 6 consider realistic situations when the bearing degradation 
rate increases (for example, due to some failure that develops in the bearing). Faster degradation means that 
CIs (one or many) grow faster. Expected behavior of the RUL is monotonic, i.e., it should decrease faster, or 
at least not increase. 

Formalization of requirements RUL-ML-Mon-1 and RUL-ML-Mon-2 leads to global monotonicity properties, 
same as for the stability analysis in Section 5.4.3. These properties would be challenging to address with 
formal verification. A reasonable approximation to such global properties, as discussed in Section 5.4.2, 
would be a set of local properties specified for input points from a representative test dataset. In the 
following, the approach and the results of such analysis of local monotonicity properties is presented.  
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According to the definition of monotonicity properties provided in Section 3.4.1.5, a monotonic51 change in 
selected input features of the ML model, all other features being constant, shall lead to a monotonic change 
in the output. For the RUL estimator, the increase of one or more condition indicators manifests component 
degradation and, consequently, the decrease of the RUL. A shift in the CI over the time window may be 
expressed as adding a constant term to the CI value at each time step, as illustrated in Figure 29a for 
ShaftOrder3 CI (blue line – original CI trend, red line – increased by a step change at every time step). 
However, such step changes over the entire window are rather unexpected and will not be considered. 
Instead, a realistic CI increase, as prescribed by RUL-ML-Mon-1 and RUL-ML-Mon-2, is an increase of its 
growth rate within the time window. Figure 29b illustrates such increase, where the blue line is the original 
CI trend in the time window, and the red line (with higher slope) is the CI with increased growth rate. 

 

Figure 29. (a) A step change in the CI over the input time window; (b) Growth rate change of a CI. 

Similarly to stability verification, to overcome the limitations of existing FM tools for verifying global 
properties, the problem of verifying global monotonicity properties has been reduced to the verification of a 
set of local monotonicity properties. The latter describe possible changes of CI growth rates in the 
neighborhood of a representative set of points, i.e, the test dataset (see Section 5.4.2). Formalization of such 
local monotonicity properties has required multiple phases (1-4) to deal with scalability, coverage, and 
effectiveness issues. Each phase considered properties with the change in (1) single CI and (2) all CIs 
simultaneously, as prescribed by the requirements. 

Phase 1. A growth rate increase of a CI by some percentage (as exemplified in Figure 30a) represents a 
different CI “trajectory” within the time window. Such new trajectory can be used as an upper bound, while 
the original CI growth trend represents a lower bound. The strategy is to analyze all possible CI trajectories 
within these bounds, eventually reducing the verification of a global property to verification of such intervals 

specified by multiple local properties. Let 𝒙𝒊 be the vector of values of some CI 𝑖 in the time window, 𝑥𝑖
𝑡 being 

the CI value at time step 𝑡. Local monotonicity property for this CI can be formulated as 

∀𝒙′: ∀𝑡: 𝑥𝑖
𝑡 ≤ 𝑥𝑖

′𝑡 ≤ 𝑥𝑖
𝑡 + 𝛾|𝑥𝑖

𝑡 − 𝑥𝑖
1| ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙), (5.4) 

where prime (′) denotes a modified item (i.e., 𝒙′ is the time window, where one or more CIs have modified 

growth rates w.r.t. the original time window 𝒙; 𝑥′𝑖
𝑡 is a modified value of the CI 𝑖 at time step 𝑡;  𝑓(𝒙′) is the 

ML model output computed from the modified input), and 𝛾 (gamma) is the parameter that regulates the CI 
slope change52. This property states that for any growing CI trajectory bounded by the original CI trajectory 

 
 
51 Note that the term “monotonicity” applies both to the notion of the function (RUL estimator) and of the input sequence (the values 
of features in the time window). 
52 Informally, 𝛾 can be interpreted as the angle by which the CI slope is increased or decreased with respect to the original one. Note 
that no particular value of 𝛾 has been prescribed in the monotonicity requirements. Therefore, this study evaluates a set of 
representative values corresponding to realistic CI slope changes. 
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(lower bound) and the one changed by a percentage 𝛾 (upper bound), i.e., a steeper growth trend, the RUL 

shall be non-increasing w.r.t. the original CI trajectory. The difference |𝑥𝑖
𝑡 − 𝑥𝑖

1| represents an approximation 

of the CI slope in the interval [1, 𝑡]. 

CI slope change affects all CI values in the time window. In particular, the values closer to the end of the 
window have a larger change. Consequently, also the overall intervals to be analyzed by formal verification 
are substantially large, even if the upper bound (increased CI slope) is small. With that, based on experience 
with stability properties in Section 5.4.3, exact verification method would not be applicable. Therefore, the 
two-step method with approximate verification via abstract interpretation has been selected. However, 
several input windows have been evaluated, and no result was provided within a timeout of 3h, even for a 
growth rate change of a single CI. Therefore, scalability did not permit to proceed with the analysis, and 
other approaches have been identified, as described below.  

Phase 2. To address the scalability problem, instead of verifying all possible growing CI trajectories within an 
interval, the behavior of the RUL estimator has been evaluated for a set of steeper CI slopes (with respect to 
original rates) for each test dataset point, with 𝛾 varying from 10% to 50%. Variation of 𝛾 has been chosen 
according to SME feedbacks. Corresponding property for a single CI 𝑖 is formalized as follows: 

∀𝒙′: ∀𝑡: 𝑥𝑖
′𝑡 = 𝑥𝑖

𝑡 + 𝛾|𝑥𝑖
𝑡 − 𝑥𝑖

1| ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) (5.5) 

Informally, for a given input, if the growth rate of the CI value increases by a percentage of the original rate 

then the output RUL should not increase. Similarly to Equation (5.4), the difference |𝑥𝑖
𝑡 − 𝑥𝑖

1| represents an 

approximation of the CI slope in the interval [1, 𝑡]. Formalization for multiple CI slope changes is similar. 
Illustration of different CI slopes is provided in Figure 30b with both higher and smaller CI growth rates w.r.t. 
the ones in the original time window. The analysis does not consider intervals of possible CI growth 
trajectories, but only single trajectories obtained from the original one with a given slope change (𝛾). 
Therefore, simulation-based methods can be used to obtain the results. 

Verification results for single CI slope changes (cumulative results for each distinct CI) and simultaneous slope 
change for all CIs are shown in, respectively, Table 13 and Table 14. For the single CI case, corresponding to 
requirement RUL-ML-Mon-1, the number of invalid properties is on the order of 20%, gradually reducing to 
15% with the increasing (steeper) slope of the CI. Instead, increasing simultaneous growth of all CIs causes 
the estimator to correctly identify the decrease in the RUL, with only few (around 0.3%) properties being 
invalid. Noteworthy, violations also occur in the critical range of RUL, i.e., high degradation states (in case of 
of simultaneous growth of all CIs in Table 14, all invalid properties belong to the critical range). The tables 
also report average time per property and total time for the verification of the entire test dataset.  

Phase 3. The main drawback of the simulation-based verification conducted in Phase 2 is the coverage of the 
input space. For each test point only a selected small number (one per each 𝛾 value) is verified, even though 
various CI growth trajectories may occur “in between” the increased slope and the original one. At the same 
time, the desirable analysis (Phase 1) faces scalability issues. Therefore, the formulation of local monotonicity 
properties has been updated to address the coverage problem. The intent is to keep the verification time 
reasonable while still verifying a large number of possible CI trajectories, rather than single trajectories as in 
Phase 2. 

Current analysis phase still considers a number of increasing CI slopes for selected values of 𝛾, however, it 
defines a space of possible CI trajectories in the neighborhood of the shifted CI (see Figure 30c): 

∀𝒙′: ∀𝑡: 𝑥𝑖
𝑡 + 𝛾|𝑥𝑖

𝑡 − 𝑥𝑖
1| − 𝛿 ≤ 𝑥𝑖

′𝑡 ≤ 𝑥𝑖
𝑡 + 𝛾|𝑥𝑖

𝑡 − 𝑥𝑖
1| + 𝛿 ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) (5.6a) 

∀𝒙′: ∀𝑡: 𝑥𝑖
𝑡 − 𝛾|𝑥𝑖

𝑡 − 𝑥𝑖
1| + 𝛿 ≥ 𝑥𝑖

′𝑡 ≥ 𝑥𝑖
𝑡 − 𝛾|𝑥𝑖

𝑡 − 𝑥𝑖
1| − 𝛿 ⇒ 𝑓(𝒙′) ≥ 𝑓(𝒙) (5.6b) 

where prime (′) denotes a modified item (i.e., 𝒙′ is the time window, where one or more CIs have modified 

growth rates w.r.t. the original time window 𝒙; 𝑥′𝑖
𝑡 is a modified value of the CI 𝑖 at time step 𝑡;  𝑓(𝒙′) is the 
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ML model output computed from the modified input). Parameter 𝛾 regulates the CI growth rate change 
(same as in Equation 5.4), and 𝛿 is a constant that controls the width of the space of possible CI trajectories. 

The difference |𝑥𝑖
𝑡 − 𝑥𝑖

1| represents an approximation of the CI slope in the interval [1, 𝑡]. Equation (5.6a) 

captures the property for steeper CI slopes, i.e., having higher growth rate compared to the original CI slope 
in the time window, and require a non-increasing RUL. Similarly, Equation (5.6b) considers shallower CI slopes 
and prescribes a non-decreasing RUL in that case.  

Table 13. Monotonicity property verification results (Phase 2, single CI, increased CI growth rates). 

setting range gamma #prop #valid #invalid avgTime(s) totTime(s) 

Sim-based 
method 
single CI, 
steeper 
slope  
 

full 
 

10% 52451 41928 10523 0.0250 1313.94 

20% 43029 9422 0.0259 1357.32 

30% 43591 8860 0.0254 1331.59 

40% 43929 8522 0.0254 1335.04 

50% 44163 8288 0.0270 1415.28 

critical 10% 9898 8096 1802 0.0252 249.35 

20% 8267 1631 0.0265 262.17 

30% 8335 1563 0.0254 251.34 

40% 8378 1520 0.0259 256.20 

50% 8398 1500 0.0262 259.36 

Table 14. Monotonicity property verification results (Phase 2, all CIs, increased CI growth rates). 

setting range gamma #prop #valid #invalid avgTime(s) totTime(s) 

Sim-based 
method 
all 7 CIs, 
steeper 
slope  
 

full 
 

10% 7493 7469 24 0.0283 211.77 

20% 7468 25 0.0270 204.99 

30% 7468 25 0.0272 203.89 

40% 7468 25 0.0271 202.93 

50% 7468 25 0.0271 202.96 

critical 10% 1414 1390 24 0.0286 40.52 

20% 1389 25 0.0273 38.66 

30% 1389 25 0.0271 38.34 

40% 1389 25 0.0268 37.93 

50% 1389 25 0.0268 37.96 

 

For simultaneous growth rate change of all CIs, as in requirement RUL-ML-Mon-2, the properties are 
formulated in a similar way and are omitted for brevity. 

Two-step verification method provided answers for each property, because the space of CI trajectories to be 
analyzed is smaller w.r.t. Phase 1. All results are, however, either unknown or invalid. This is because the 
formulation does not prevent “oscillating” CI trajectories, i.e., highly non-monotonic ones, since it only 
defines lower and upper bounds for CI values at each time step, but not prescribes any interdependency 
between the consecutive values. See example in Figure 31. Such CI trajectories may represent excessive noise 
but in general are not realistic. At the same time, they invalidate every property, hampering the effectiveness 
of the verification. Hence, the analysis space has to be further restricted. 

Phase 4. One of the major challenges with monotonicity properties formalization and verification was the 
characterization of a realistic sequence of CI values. Although it is expected that CI values globally exhibit an 
increasing trend in any time window, local oscillations due to noise in the data or other factors prevent the 
sequences from being monotonically increasing. A compromise solution has been found as a tradeoff 
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between input space coverage, analysis scalability, and adherence to the ML constituent ODD. It consists in 
extending the CI shift with the possibility of a constrained fluctuation: this guarantees that, where the original 
CI trajectory is locally monotonically increasing, any trajectory in the defined interval is also monotonically 
increasing; where the original trajectory is not locally increasing, any derived trajectory is at least not “less 
monotonic” (see example in Figure 30d). 

 

Figure 30. Phases of monotonicity analysis.  

(a) Entire space of possible CI trajectories between original and shifted trajectories (Phase 1); (b) Set of CI trajectories with larger and 

smaller growth rate w.r.t. original trajectory (Phase 2); (c) Subspace of CI trajectories defined in the neighborhood of the shifted CI 

trajectory, bounded by ±𝛿; (d) Subspace of CI trajectories with constrained fluctuation (Phase 4). 

 

Figure 31. Example of an oscillating CI trajectory that invalidates the properties in Phase 3.  

Given a CI 𝑖, step 𝑡, constant 𝛾, let 𝑢𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝛾|𝑥𝑖
𝑡 − 𝑥𝑖

1| and 𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 − 𝛾|𝑥𝑖
𝑡 − 𝑥𝑖

1|. Local monotonicity 

properties with constrained fluctuation for a single CI growth rate change can be expressed as: 

∀𝒙′: ∀𝑡: 𝑢𝑖
𝑡 ≤ 𝑥𝑖

′𝑡 ≤ max(𝑢𝑖
𝑡 , 𝑢𝑖

𝑡+1) ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) (5.7a) 

∀𝒙′: ∀𝑡: max(𝑣𝑖
𝑡 , 𝑣𝑖

𝑡+1) ≥ 𝑥𝑖
′𝑡 ≥ 𝑣𝑖

𝑡 ⇒ 𝑓(𝒙′) ≥ 𝑓(𝒙) (5.7b) 

Consider the Equation (5.7a). The given CI 𝑖 is allowed to fluctuate, at step 𝑡, between 𝑢𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝛾|𝑥𝑖
𝑡 − 𝑥𝑖

1| 

and 𝑢𝑖
𝑡+1 = 𝑥𝑖

𝑡+1 + 𝛾|𝑥𝑖
𝑡+1 − 𝑥𝑖

1|, if 𝑢𝑖
𝑡+1 ≥ 𝑢𝑖

𝑡, otherwise it is set to 𝑢𝑖
𝑡, as in Equation (5.5). The 

max function captures this constrained fluctuation. Accordingly, at step 𝑡 + 1, 𝑥𝑖
′ either belongs to the 

interval [𝑢𝑖
𝑡+1, 𝑢𝑖

𝑡+2], or is set to 𝑢𝑖
𝑡+1, if such interval is empty. This procedure guarantees that, if 𝑥𝑖

𝑡 ≤ 𝑥𝑖
𝑡+1, 
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then 𝑥𝑖
′𝑡 ≤ 𝑥𝑖

′𝑡+1, leading to a derived trajectory that is not “less monotonic” than the original one. Similarly, 
Equation (5.7b) captures the constrained CI fluctuation in the opposite direction, i.e., it prescribes a non-
decreasing RUL in cases of a “slower” CI growth rate. 

The formulas are generalized to the case of shifts applied to multiple CIs, as follows: 

∀𝒙′: ∀𝑖 ∈ 𝑆: ∀𝑡: 𝑢𝑖
𝑡 ≤ 𝑥𝑖

′𝑡 ≤ max(𝑢𝑖
𝑡 , 𝑢𝑖

𝑡+1) ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) (5.8a) 

∀𝒙′: ∀𝑖 ∈ 𝑆: ∀𝑡: max(𝑣𝑖
𝑡 , 𝑣𝑖

𝑡+1) ≥ 𝑥𝑖
′𝑡 ≥ 𝑣𝑖

𝑡 ⇒ 𝑓(𝒙′) ≥ 𝑓(𝒙) (5.8b) 

where 𝑆 is a subset of indexes of input features corresponding to CIs. 

Analysis has been performed both for each single CI slope change (and corresponding constrained fluctuation 
interval of CI trajectories) and for all CI slopes changed simultaneously. Both steeper and shallower53 slopes, 
i.e., higher and lower CI growth rates w.r.t. the original CI, have been considered, with 𝛾 varying from 10% 
to 50%. Same as in Phase 3, two-step method has been used. Results are shown in Table 15 - Table 18. Tables 
report numbers of valid, invalid and unknown properties, average verification times per property, and total 
verification times, for different CI growth trajectories (slopes) regulated by the 𝛾 parameter. Statistics for 
properties corresponding to input points in the critical range of the RUL (last 100h) are shown separately. 
 

Table 15. Monotonicity property verification results (Phase 4, single CI, increased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method 
single CI, 
steeper 
slope 

full 
 

10% 52451 41572 7797 3082 0.1716 8999.18 

20% 42875 7624 1952 0.1660 8706.01 

30% 43513 7568 1370 0.1591 8346.08 

40% 43869 7543 1039 0.1632 8563.28 

50% 44108 7524 819 0.1608 8436.01 

critical 10% 9898 8061 1455 382 0.1620 1603.92 

20% 8248 1446 204 0.1568 1551.75 

30% 8316 1445 137 0.1498 1482.74 

40% 8359 1434 105 0.1533 1517.10 

50% 8387 1426 85 0.1515 1499.57 

Table 16. Monotonicity property verification results (Phase 4, all CIs, increased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method 
all 7 CIs,  
steeper 
slope 

full 
 

10% 7493 7364 59 70 1.049 7858.03 

20% 7458 26 9 1.075 8052.77 

30% 7457 25 11 1.068 8005.68 

40% 7458 24 11 1.104 8274.89 

50% 7458 22 13 1.080 8098.44 

critical 10% 1414 1373 26 15 0.984 1392.05 

20% 1379 26 9 1.010 1428.61 

30% 1378 25 11 1.004 1419.15 

40% 1379 24 11 1.027 1451.68 

50% 1379 22 13 1.008 1426.42 

 
 
53 Mechanical degradation of bearing components suggests increasing CI trend as the only one expected, therefore, higher CI growth 
rates (steeper slopes) must be considered to assess monotonicity properties. In this study, lower CI rates (shallower slopes) have also 
been considered to evaluate the sensitivity of the RUL estimator to different growth rates. 
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Table 17. Monotonicity property verification results (Phase 4, single CI, decreased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method 
single CI,  
shallower 
slope  

full 
 

10% 52451 36450 13984 2017 0.1792 9399.18 

20% 41508 10114 829 0.1666 8740.32 

30% 43242 8726 483 0.1621 8500.42 

40% 43966 8163 322 0.1588 8327.44 

50% 44288 7965 198 0.1259 8230.24 

critical 10% 9898 6877 2454 567 0.1722 1705.08 

20% 7965 1755 178 0.1560 1543.98 

30% 8218 1570 110 0.1537 1521.87 

40% 8324 1488 86 0.1504 1488.42 

50% 8382 1451 65 0.1483 1467.76 

Table 18. Monotonicity property verification results (Phase 4, all CIs, decreased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method 
all 7 CIs,  
shallower 
slope 

full 
 

10% 7493 6254 887 352 1.089 8158.06 

20% 6975 291 227 1.057 7923.25 

30% 7274 117 102 1.068 8000.55 

40% 7376 71 46 1.168 8755.21 

50% 7401 55 37 1.079 8087.06 

critical 10% 1414 1180 162 72 1.032 1459.96 

20% 1334 52 28 0.985 1393.47 

30% 1380 13 21 0.992 1403.40 

40% 1401 1 12 1.081 1528.29 

50% 1405 0 9 1.006 1422.03 

Given the results summarized in Tables 15 - 18,  the following observations can be made: 

• The estimator is more likely to correctly react, i.e., exhibit monotonic behavior, to simultaneous 
change in all CIs rather than a single CI. Considering increased CI growth rates for single CI and all CIs 
(resp. Table 15 and Table 16), the total percentage of valid properties in the former case varies 
between 79% and 84% (depending on 𝛾), while for the latter 98%-99.5% of properties are valid. This 
is because multiple increasing CI trends in the input window provide more “evidence” to the 
estimator that the bearing is degrading. To better understand why individual CI growth rates cause 
a higher number of property violations, additional investigations have been conducted. The largest 
number of violations occur with condition indicators related to the shaft (ShaftOrder1 and 
ShaftOrder3) – at least a half of these properties is invalid. Shaft is a cross-component for the bearing, 
so if the shaft health is decreased substantially (which is manifested by increased shaft CI growth 
rate), this could have a multiplicative effect on the RUL of the bearing. In other words, the estimator 
may indeed be more sensitive to changes in shaft CIs. A large (around 30%) amount of unknown 
answers have also been provided for the CageEnergy CI growth rate changes, which requires further 
investigation. 

• The estimator is more monotonic when CI growth rate change is large: 𝛾 = 50% has much fewer 
property violations compared to 𝛾 = 10%. Larger changes make it more evident to the estimator 
that the degradation is happening. This holds for both changes in single CI and in all CIs. 

• For single CI slope changes, property violations, as well as unknown answers, are uniformly 
distributed across the RUL range. For changes in all CIs, violations and unknowns mainly belong to 
the critical range of the RUL. 
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• For decreased CI growth rates (shallower slopes), same trend can be observed: bigger changes in 𝛾 
lead to the estimator being more monotonic. While it is unexpected for a CI to start decreasing during 
operation, a noteworthy observation from this analysis is that the estimator’s behavior seems more 
random for shallower slopes. This can be seen, for example, from Table 16 and Table 18: possible CI 
trajectories around the increased CI slope by 𝛾 = 10% result in a total of 129 invalid and unknown 
properties, while for decreased CI slope by same percentage, the number of invalids and unknowns 
amounts to 1239, which is an order of magnitude difference. This possibly suggests that the 
estimator’s sensitivity to changes grows as the slope diminishes. 

Statistics on property validity and average verification time (in seconds) per property for Phase 4 experiments 
are shown in Figure 32. The trend discussed above can be observed: the behavior of the estimator becomes 
more monotonic for higher changes in the CI growth rate, both for individual CIs and multiple (all) CIs. 
Average solving time for verification of a single property is a fraction of a second for individual CIs and around 
1 second for all CIs. The verification of properties that consider multiple CIs is more complex since more 
inputs are considered variable (as intervals) rather than fixed: for a time window length of 40, individual CI 
properties result in 40 intervals to be defined (one per time step for a single CI), while 280 intervals (40 by 7 
CIs) must be considered for all CI properties. Therefore, the input space is larger for the latter analysis. 
Overall, total verification times for both types of properties are comparable, since more properties need to 
be verified for individual CIs (each CI is considered separately), even if average verification time per property 
is smaller. 

 

Figure 32. Statistics on the property validity and average solving time for Phase 4 monotonicity analysis. 

Same as for stability properties, monotonicity verification can generate counterexamples for invalid 
properties. Such CEX can be fed back to SME for further analysis. An example is shown in Figure 33 for one 
of the input windows in the critical region of the RUL. Here, the growth rate of all seven CIs has been increased 
by 𝛾 = 10%. Original CI trajectories are shown in blue and modified ones in red. The RUL value (red cross on 
the rightmost plot) is larger than the original one (blue horizontal line), therefore, the property is violated. In 
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fact, even though the new CI trajectory with higher CI growth rate has values strictly larger than the original 
one, the estimator fails to predict a decreasing RUL. One can observe non-monotonicity in some of the CIs 
(e.g., BallEnergy and CageEnergy; they are present even in the original trajectories). These fluctuations may 
be due to flight regime or mission change within the time window steps. The counterexample has been 
provided to SME for further investigation. 

Overall, verification of local monotonicity properties defined from requirements RUL-ML-Mon-1 and RUL-
ML-Mon-2 reveals that current version of the ML model does not meet either of the two requirements. This 
is due to:  

• Significant number of property violations on relatively small changes of the CI growth rate (e.g., 𝛾 =
10%) – 20% for all single-CI properties, with the majority of invalid properties belonging to the 
changes in ShaftOrder1 and ShaftOrder3 CIs. Additionally, there is a large number of unknown 
properties, also in the critical RUL range. This shows that the estimator is often not capable of 
associating growing CI trends with component degradation. 

• Despite the number of invalid properties for growth rate changes in all CIs (RUL-ML-Mon-2) being 
small (around 0.3%), all violations belong to the critical region of the RUL. 

 

Figure 33. Counterexample for a monotonicity property with a 10% growth rate increase for all CIs. 

Limited non-monotonicity. Results obtained from the monotonicity verification show that the behavior of 
the RUL estimator behavior is not fully monotonic: it is possible that it provides a higher RUL value, instead 
of a lower one in the presence of an increased growth rate of one or more condition indicators. Additional 
analysis has been carried out to understand to which extent monotonicity properties are not satisfied, e.g., 
if such increase of the RUL value can be bounded from above. For this purpose, the notion of limited non-
monotonicity has been introduced and encoded, based on relaxations of (5.7a) and (5.8a) for, respectively, 
single and multiple CI growth rate increase (based on results in Table 15 and Table 16): 

∀𝒙′: ∀𝑡: 𝑢𝑖
𝑡 ≤ 𝑥𝑖

′𝑡 ≤ max(𝑢𝑖
𝑡 , 𝑢𝑖

𝑡+1) ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) + 𝜀 (5.9a) 

∀𝒙′: ∀𝑖 ∈ 𝑆: ∀𝑡: 𝑢𝑖
𝑡 ≤ 𝑥𝑖

′𝑡 ≤ max(𝑢𝑖
𝑡 , 𝑢𝑖

𝑡+1) ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) + 𝜀 (5.9b) 
 

for step 𝑡, constant 𝛾, constant 𝜀 = 10h54, 𝑢𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝛾|𝑥𝑖
𝑡 − 𝑥𝑖

1|, 𝑆 being a subset of indices 𝑖 of input 

features corresponding to CIs.  

Equations (5.9a-b) impose that a constrained fluctuation in the CIs yields an increase of the estimated RUL 
that is limited by a constant number of hours 𝜀. These analyses are complementary to (5.7a) and (5.8a), and 

 
 
54 This value of 𝜀 does not make part of current monotonicity requirements for the ML constituent. It has been defined based on SME 
feedback to the results of Phase 4 of the analysis. 
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are executed to assess limited non-monotonicity for all properties reported as invalid or unknown during 
Phase 4 verification (see above). 

Results are summarized in Table 19 and Table 20 for, respectively, single CI growth rate increase (i.e., steeper 
slope) and all CIs simultaneous growth rate increase. In the former case, the majority of previously reported 
invalid/unknown properties become valid, i.e., the violation of the original property is bounded by 𝜀 = 10ℎ. 
Noteworthy, there are few exceptions related exclusively to one of the CIs (BallEnergy). A small number of 
properties remains invalid, the analysis shows that they belong to a group of adjacent time windows in a 
critical range of one of the degradation sequences. The violations may be related to fluctuating behavior of 
the CI within the corresponding time windows. Possible reason may be related to errors in the simulations 
that produced synthetic data; it is not currently fully clear and needs to be further analyzed with the SME. In 
the latter case (growth rate change in all CIs) all previously violated properties become valid, i.e., also in this 
case the monotonicity property violation is bounded by 𝜀 = 10ℎ. 

Possible ML model improvements. One possible way of improving the monotonic behavior of the trained 
model is the modification of the learning process: training procedure could be guided towards solutions that 
preserve monotonicity more than others. The authors of [97] introduce a point-wise loss function for 
enforcing monotonicity in deep neural networks. The function incorporates traditional empirical risk 
minimization term, as well as additional terms that penalize non-monotonic behavior in the NN. Another 
approach, presented in [25], also modifies the learning process by making it iterative counterexample-guided. 
Training phases alternate with verification phases, where counterexamples for monotonicity properties are 
identified. These CEX are added to subsequent training phases, therefore, the overall approach is a type of 
an adversarial training method. 

Table 19. Verification results for relaxed property that allows limited non-monotonicity (single CI, increased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method 
single CI,  
steeper 
slope, 
LIMITED 
NON-MON, 
epsilon=10h 

full 
 

10% 10879 10879 0 0 0.1369 1489.97 

20% 9576 9576 0 0 0.1357 1299.40 

30% 8938 8938 0 0 0.1395 1247.25 

40% 8582 8572 9 1 0.1371 1176.95 

50% 8343 8332 11 0 0.1432 1194.60 

critical 10% 1837 1837 0 0 0.1342 246.45 

20% 1650 1650 0 0 0.1412 233.05 

30% 1582 1582 0 0 0.1468 232.32 

40% 1539 1529 9 1 0.1451 223.38 

50% 1511 1500 11 0 0.1489 224.9.4 

Table 20. Verification results for relaxed property that allows limited non-monotonicity (all CIs, increased CI growth rates). 

setting range gamma #prop #valid #invalid #unknown avgTime(s) totTime(s) 

2-step 
method all 
7 CIs,  
steeper 
slope, 
LIMITED 
NON-MON, 
epsilon=10h 

full 
 

10% 129 129 0 0 1.113 143.60 

20% 35 35 0 0 0.8906 31.17 

30% 36 36 0 0 0.8382 30.17 

40% 35 35 0 0 0.8440 29.54 

50% 35 35 0 0 0.8652 30.28 

critical 10% 41 41 0 0 0.8422 34.53 

20% 35 35 0 0 0.8906 31.17 

30% 36 36 0 0 0.8382 30.17 

40% 35 35 0 0 0.8440 29.54 

50% 35 35 0 0 0.8652 30.28 
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To overcome ML model limitations in achieving a completely monotonic behavior, preservation of 
monotonicity could instead be ensured at the ML constituent level. A relevant approach of constructing a 
“monotonic envelope” and its further use as part of runtime monitoring to identify and correct non-
monotonic behaviors has been discussed in Section 4.3.5.  

5.4.5.2 Operational envelope impact 

Desert operating environment is expected to place more stress on the bearing component than a non-desert 
(normal) one during the mission due to the increased presence of sand and dust in the atmosphere, which 
can penetrate the bearing and lead to faster degradation. The impact of the environment on the RUL should 
be observable on a sufficiently large time window. This aspect can be formulated as following properties: 

∀𝒙′: (𝒙𝑒𝑛𝑣 = 𝑛𝑜𝑟𝑚𝑎𝑙 ∧ 𝒙𝑒𝑛𝑣
′ = 𝑑𝑒𝑠𝑒𝑟𝑡) ⇒ 𝑓(𝒙′) ≤ 𝑓(𝒙) (5.9a) 

∀𝒙′: (𝒙𝑒𝑛𝑣 = 𝑑𝑒𝑠𝑒𝑟𝑡 ∧ 𝒙𝑒𝑛𝑣
′ = 𝑛𝑜𝑟𝑚𝑎𝑙) ⇒ 𝑓(𝒙′) ≥ 𝑓(𝒙) (5.9b) 

where 𝒙′ is the new time window derived from the original time window 𝒙 by toggling the environment 
feature in the entire window55 (from normal to desert or vice versa), 𝒙𝑒𝑛𝑣 and 𝒙𝑒𝑛𝑣

′  are column vectors 
representing the environment feature in, respectively, 𝒙 and 𝒙′. Informally, for a given time window, 
executing the mission in a desert environment should yield a lower RUL than in a non-desert one.  

Simulation-based method was used for verification of operational impact properties, since they only required 
a toggle of the Environment feature for all time steps of the input time window, all other features being fixed, 
to compare the estimator output for both operational environments. Results are shown in Table 21.  

Table 21. Verification results for operational envelope impact properties. 

setting range #prop #valid #invalid #unknown avgTime(s) totTime(s) 

Sim-based method 
Environment feature 

full 7493 7414 79 0 0.029 217.92 

critical 1414 1335 79 0 0.029 41.16 

 

• Time window length of 40h is sufficient to observe the effect of the desert environment in terms of 
a lower estimated RUL compared to the normal environment. 

• All invalid properties are in the critical range. This might suggest that, as the RUL of the bearing 
component approaches zero, operating environment impact on the RUL diminishes.  

Possible ML model improvements. Additional examples of input windows corresponding to the critical range 
of the RUL, with same or similar values of all inputs except the Environment feature, and the RUL being 
smaller for the desert environment, may be added to the training dataset to improve the capability of the 
ML model to identify the impact of the operating environment on the estimation. 

5.5 Results of applying formal methods on the RUL use case 

This section discusses the results of the practical assessment of the use of formal methods on the remaining 
useful life use case, and the assessment results are contextualized with verification objectives for the RUL 
estimator. Demonstrated applications leverage formal methods and statistical methods and address several 
EASA AI Concept Paper objectives, including DM-13 (data quality verification), LM-10 (requirements-based 

 
 
55 Recall that, within a degradation sequence, and thus within any time window in that sequence, the environment does not change. 
Also the assumption stated in Section 5.4.3.1 holds: all other input features of x and x′ not explicitly mentioned in Equations (5.9a) – 
(5.9b) are assumed equal. 
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testing), LM-12 (trained model stability verification) and LM-13 (trained model robustness assessment)56. Key 
results are summarized below: 

• Some features in the datasets have known distributions specified in the ML constituent ODD. These 
include condition indicators (Weibull distributions) and flight regime durations (truncated Normal 
distributions). Statistical methods provide efficient instruments to assess data representativeness 
with respect to such features. As a demonstrator, representativeness assessment of flight regime 
durations has been performed using goodness-of-fit testing (Sec. 5.3). Analysis results revealed that 
the durations of certain regimes in the data do not follow expected distributions57. Additionally, 
issues with data completeness for some flight regimes and missions have been identified. Results 
have been communicated to the SME to improve the quality of the datasets, e.g., to check the 
simulation models used to create synthetic data, and to generate more degradation sequences to 
improve data completeness. 

• Several non-functional requirements specified in Section 2.2.4.2 have been expressed as formal 
properties that are amenable to formal verification by existing VNN tools. These include RUL 
estimator stability, monotonicity, and operational envelope impact.  

• Requirements are formalized as global properties (for example, a global stability property is: “For an 
input perturbation up to 40% near any input point in the ML constituent ODD, the output must not 
deviate by more than 10h”). To overcome the limitations of FM in dealing with the verification of 
global properties of DNN and to provide evidence for the requirements, local properties have been 
formulated for each input point (time window) present in the test dataset. A necessary condition for 
such replacement of global properties with local ones is the high quality of the dataset in terms of 
completeness and representativeness with respect to ML constituent ODD. 

• Local stability properties have been verified on the entire test dataset in two variants traceable to 
requirements RUL-ML-Stab-2 and RUL-ML-Stab-3: perturbations of a single CI and perturbations of 
all CIs. For the former, no invalid properties have been identified, i.e., requirement RUL-ML-Stab-2 is 
fully satisfied on the test data. For the latter, a small number of problematic inputs have been 
detected in some degradation sequences, where the property is violated or could not be proven by 
the FM tool. Overall, the number of violations over the test dataset is only 0.08%, while the number 
of unknown answers amounts to 1.58% of all inputs. 

• Problematic inputs only occur in the beginning of some degradation sequences, i.e., on smaller CI 
values, when bearing health state is very high. No violations or unproven properties have been 
detected in the critical zone (with small values of RUL), where a possible safety impact could be 
present. This is an important observation since estimator stability in the critical zone has a relatively 
higher importance due to safety considerations (possible skip of a critical inspection of the bearing). 

• For violated properties, counterexamples have been collected and analyzed. This revealed certain 
trends that could lead to ML model instability (e.g., simultaneous perturbation of several CIs by 40%). 
Such counterexamples have been provided to the SME for further investigation. 

• Robustness assessment of the RUL estimator helped to understand the impact of larger 
perturbations than those prescribed by the model stability requirements, i.e., how much the ML 
model is robust to such unexpected fluctuations, how much its performance degrades. This analysis 
provided another important result: the number of invalid properties naturally grows with increased 
perturbation magnitude, but none of the violations ever occurs in the critical zone of the RUL (for CI 

 
 
56 Recall that ForMuLA project intends to demonstrate the applicability of FM for machine learning applications on a use case, not to 
demonstrate the full verification process to completely meet the assurance and certification objectives. Still, provided demonstrators 
focus on V&V activities that are critical and representative for the selected use case. 
57 Note that representativeness analysis must be conducted for each dataset separately (training, validation, test). 
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perturbations of up to 70%). This shows that the estimator is robust, particularly in the critical zone, 
where possible safety impact may be present. 

• Verification of monotonicity properties has been carried out on the entire test dataset, with two 
variants of properties: growth rate (slope) increase of individual CIs and of all CIs, with an expected 
non-increasing value of the RUL. Verification revealed issues with monotonic behavior of the RUL 
estimator. In particular, invalid properties are present in the critical region of the RUL. Additionally, 
for small increases in the CI growth rate (e.g., 10%) the estimator often provided a higher RUL value, 
i.e., it was not able to correlate the small CI increment to increasing degradation. Counterexamples 
have been collected and communicated to the SME. A set of improvement suggestions for the ML 
model and constituent have been proposed, such as the use of a monotonic envelope as part of 
runtime monitoring, as well as the use of additional terms in the objective function of the training to 
penalize non-monotonic behavior. 

• Operational envelope impact properties have been verified using simulation-based method. For 
most time windows from the test set, the estimator correctly incorporated the impact of the desert 
environment on the bearing degradation yielding a smaller RUL. Several violations have been 
identified, all of them related to time windows in the critical region of the RUL (last 100 hours). This 
reveals that in the critical RUL range other input features may be more relevant than the 
environment for the current ML model. 

• Scalability issues of formal methods have been identified when using the exact (sound and complete) 
verification method. The method was successfully used to analyze local stability properties with 
perturbations applied only to a single condition indicator and provided verification results (still, the 
total time amounted to half a day for the available test dataset), but failed to scale beyond that. For 
example, for verification of stability properties with perturbations on multiple CIs, as well as for 
monotonicity properties, exact method did not provide any answer within the 3 hours timeout. 
Therefore, two-step verification method was used to trade off completeness for scalability of the 
analysis. This resulted in the verification of all properties on the entire test set, but provided a small 
percentage of unknown answers, i.e., some properties could not be neither proven nor disproven. 

• Total execution time of the two-step method and simulation-based method has been reasonable for 
the available test dataset, ranging from several minutes to several hours for different analyses, i.e., 
stability, robustness, monotonicity, operational envelope impact. Verification time depended both 
on the number of properties and on the complexity of a single property that depends on the input 
space to be considered for the property. For example, stability property with single CI perturbation 
of a small magnitude can be verified on the order of seconds, while more complex property with 
multiple CI perturbations and larger magnitudes requires at least several minutes. Since properties 
are independent from each other, significant boost to the overall verification time can be achieved 
via parallelization of the analyses, for example, by leveraging cloud computing platforms.  

5.6 Scalability and applicability assessment of formal methods 

This section discusses the scalability and applicability aspects of formal verification methods provided by the 
learning assurance toolchain (exact, approximate, simulation-based, two-step), which is orthogonal to the 
verification of RUL use case requirements. These aspects have been quantitatively evaluated on a benchmark 
consisting of 1000 stability properties randomly picked from the test dataset for the RUL estimator. Multiple 
verification runs have been executed for each verification method while varying the complexity of stability 
properties. Stability property complexity is varied by including in the property formulation an increasing 
number of perturbed input window elements (e.g., multiple CIs, multiple time steps for a single CI) and 
varying the perturbation magnitude 𝛿 (10%, 40%, 60%), i.e., by modifying the input space related to the 
property. The intent is to observe the scalability, i.e., how execution time changes when property complexity 
is increased, and the applicability, i.e., the ability of providing a definitive answer to the verification problem 
(valid or invalid). 
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5.6.1 Experimental evaluation 

Analysis results are summarized below: 

a. Exact verification method. Results are reported in Figure 34. It is evident that the verification time of 
the exact method grows exponentially when the number of perturbed input window elements is 
increasing, and soon becomes intractable. Approximately 3-5 perturbed input window elements, 
depending on 𝛿, appear to be the empirical boundary on the applicability of the exact method on the 
RUL use case, and scalability limitations of the method are significant. As a baseline, execution time 
of the simulation-based method has been plotted (horizontal orange line). The baseline has been 
computed by generating 1000 modified time windows with random perturbations (bounded by 𝛿) 
applied to CIs from the original time window, performing CNN inference for each of them, and 
repeating this for each property. Simulation-based method has constant time across the experiments, 
because it is only dependent on the number of fixed time windows to be evaluated, while inference 
time of the CNN is (almost) constant. 
 

 

Figure 34. Scalability assessment of the exact verification method. 

b. Approximate verification method. Figure 35 shows the percentage of benchmark properties that 
are proven valid using the approximate verification method, for a different number of perturbed 
input window elements and different perturbation magnitudes. For small 𝛿 the method is very 
efficient, as it can prove most of the properties, even when very many inputs fluctuate. The 
percentage drops significantly with the increasing 𝛿, and with number of perturbations beyond 10. 
If many input elements are perturbed, the method may be able to prove less than a half of properties 
and returns an unknown answer for the rest. As further discussed in (d), approximate method 
exhibits better scalability w.r.t. exact method, however, it also has applicability limitations, because 
for high-complexity properties the number of unknown answers (unproven properties) may grow 
significantly.  
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Figure 35. Percentage of stability properties proven valid by the approximate method (SAT = valid). 

c. Simulation-based method. Figure 36 llustrates the effectiveness of the simulation-based approach 
in formally disproving58 properties, i.e., generating formal counterexamples, with respect to the 
number of perturbed inputs and magnitudes 𝛿. The higher the complexity of the stability property, 
the more effective the method becomes in finding counterexamples. This can be explained by the 
fact that large perturbation magnitudes and/or number of perturbed inputs lead to a higher 
probability of violating the property, if the admissible deviation 𝜀 is fixed. If generation of random 
perturbations is done, e.g., by using a uniform distribution, then the probability of drawing an input 
from input space region that will lead to exceeding 𝜀 becomes significant as well. The plot also shows 
the effect of increasing the number of simulations by an order of magnitude (from 1000 to 10000), 
but mostly a minor increase in the percentage of disproven properties is observed as a result. 
Scalability of the simulation-based method does not depend on the complexity of the property, but 
rather on the number of random trials to be evaluated; as shown in Figure 34 and Figure 37, it 
requires constant time per simulation. 

 

Figure 36. Percentage of stability properties proven invalid by the sim-based method (UNSAT = invalid). 

d. Two-step verification method. Same experiments as in (a) have been conducted for the two-step 
method. Results are shown in Figure 37. The method still exhibits exponential growth59, but can 
analyze more input perturbations, even at large magnitudes. For a small number of perturbed input 
window elements, the method even outperforms the baseline (simulation-based method) in terms 
of analysis time, because approximate reachability analysis (first step of the method) is executed 

 
 
58 As discussed in Section 5.2.2.2, this method is not able to formally prove the property (not being able to find a violation on a set of 
random trials is rather a statistical measure of validity, not a formal guarantee). 
59 Note that the time (Y axis) has a logarithmic scale, therefore, linear growth on this plot is in fact exponential. 
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faster than running 1000 simulations on that input (baseline), and each property that is proven valid 
with approximate reachability no longer requires simulation-based verification. With more 
perturbations, more unknown answers are produced by the approximate verification, and 
corresponding inputs need to be verified with simulation (second step of the method) in an attempt 
to falsify them. Therefore, the overhead increases, but it is still comparable with using only the 
approximate method for a number of perturbations less than 20. Larger amounts of perturbed inputs 
are rather synthetic (not realistic) for the current RUL use case.  

 

Figure 37. Scalability assessment of the two-step verification method. 

5.6.2 Assessment results 

Numerical evaluation has been carried out on a benchmark consisting of a neural network architecture of 
average complexity (~100K learnable parameters), and a set of local stability properties of different 
complexity, which allowed to observe limitations of available formal verification approaches. Following key 
results can be highlighted: 

• Applicability of the verification techniques has been assessed mainly on the complexity of the 
properties, i.e., on the size of the input space for which possible outputs (or output reachable set) 
had to be computed. The size of the input space is controlled by property parameters, such as 
perturbation magnitudes 𝛿 for local stability properties, as well as by the number of inputs on which 
the perturbations 𝛿 are applied. Verification techniques included exact and approximate formal 
analyses based on reachability and abstract interpretation, simulation-based, and hybrid 
approaches. Overall, the methods are applicable, but scalability limitations exist. 

• Exact verification method performs well on properties with relatively small input space, i.e.,  involving 
perturbations applied to single or very few input window elements, and with smaller perturbation 
magnitudes (𝛿). However, as the input space grows (number of perturbed input window elements 
and/or 𝛿 is increasing), exact verification does not scale. 

• Approximate verification method scales better on properties that consider larger input spaces, i.e., 
involving multiple perturbations and larger 𝛿, but for a large number of perturbed input window 
elements its performance also deteriorates and eventually becomes impractical. Moreover, the 
higher the complexity of the property, the fewer properties are proven valid – the number of 
unknown answers grows significantly, which does not allow to make a definitive conclusion on the 
property validity. 

• Simulation-based approach has performance that does not depend on the complexity of the 
property. By generating random bounded perturbations for the elements of the original time window 
related to the property it allows to identify counterexamples that lead to property violation, i.e., to 
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falsify the property. In case a CEX is found the property can be concluded invalid. Otherwise, no 
formal guarantee can be provided, and unknown answer is returned. 

• Hybrid two-step technique involving approximate verification and simulation is an efficient way of 
improving the FM performance both in terms of execution time and the number of proven/disproven 
properties (reducing the number of unknown answers). 

• For properties that involve large number of input perturbations (e.g., multiple input window 
elements over multiple time steps) and/or large perturbation magnitudes 𝛿, both exact and 
approximate verification methods face scalability limitations. In this case, simulation-based approach 
could be used to provide a statistical argument about property validity (not a formal guarantee). 

• Additional complexity of verification arises from the total number of properties to be verified. Even 
if a single property can be verified in reasonable time (e.g., several minutes), this will not be the case 
for thousands or millions of similar properties. This factor must be considered when the applicability 
of FM on a particular use case is assessed60.  

5.6.3 VNN competition and RUL benchmark 

The CNN model of the RUL estimator discussed in this project has also been submitted as a benchmark to the 
2022 Verification of Neural Networks Competition61 (VNN-COMP’22), an event that aims to bring together 
researchers interested in methods and tools providing guarantees about the behaviors of neural networks 
and systems built from them. The competition is held annually to facilitate the fair and objective comparison 
of state-of-the-art NN verification tools and encourage the standardization of tool interfaces. In the 2022 
iteration, 11 different tools participated on a diverse set of 12 scored benchmarks [68]. 

The RUL estimator CNN model from Collins Aerospace Applied Research & Technology has been provided as 
an ONNX model along with a set of properties specified in the VNNLib format (both formats are discussed in 
Section 3.5.3). Benchmark properties included some examples of local stability and local monotonicity 
properties, with different complexity. Despite being a deep learning model, the RUL estimator model had 
average complexity compared with other DNN models that participated in the competition as benchmarks, 
many of them focusing on image classification and relevant applications. Instead, Collins benchmark62 
suggested a prognostics application which, along with being one of the first industry benchmarks of VNN-
COMP, would help to attract attention from VNN tool providers to address the needs of aerospace 
applications. In particular, RUL benchmark focused more on the property complexity as an important 
challenge for VNN tools scalability.  

Results of the competition allowed to identify several VNN tools that demonstrated best performance on the 
RUL benchmark problem. Additional details can be found on the VNN-COMP website [59] and report [68]. 

  

 
 
60 Use of high-performance computing (e.g., cloud infrastructures) and parallelization of verification on multiple workers could be a 
mitigation for this problem. 
61 https://sites.google.com/view/vnn2022  
62 Benchmark description, models and properties are available at https://github.com/loonwerks/vnncomp2022  

https://sites.google.com/view/vnn2022
https://github.com/loonwerks/vnncomp2022
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6 Main conclusions of the project 

Trustworthiness of machine learning enabled systems is an open problem, and barriers to their certification 
still exist. To overcome them, new assurance methods and processes need to be developed and adopted in 
the aviation industry. To make a step towards this goal, the ForMuLA project covered (1) an overview of 
state-of-the-art of ML-specific formal methods technologies and their limitations, (2) efficient ways of 
applying promising FM for ML development and V&V activities with a specific focus on the stability and 
robustness of machine learning models, and (3) identification of a subset of formal methods approaches as 
efficient means of compliance for certification objectives from the EASA AI Concept Paper. 

The project consisted of two parts: 

1. Theoretical part provided a comprehensive overview of formal methods technologies that have been 
adapted to or specifically developed for machine learning. Based on this overview, it then discussed 
possible applications of formal methods to ML-specific development and V&V activities. While key 
FM applications have been identified for the verification of ML models (e.g., property verification), 
various other innovative applications have also been discussed, including improvements of the 
learning process, generalization capability, and explainability. Additionally, statistical methods and 
their applications to data quality assessment and property verification have been discussed. For each 
class of applications, relevant objectives from the EASA AI Concept Paper have been identified, where 
formal methods could potentially contribute. 

2. Experimental part was dedicated to a practical demonstration of applying formal methods and 
supporting statistical methods on a realistic use case of a deep learning-based estimator for 
remaining useful life of mechanical bearings for on-ground maintenance applications. Demonstrators 
covered a number of V&V activities within several ML development processes, namely Data 
Management (completeness and representativeness of the data) and Learning Process Verification, 
including the verification of stability and certain aspects of robustness of the ML model, such as 
identification of adversarial cases, as well as several other properties defined from non-functional 
requirements. Experimental results prove that formal methods could be effective means to support 
a number of critical verification objectives. 

Based on both theoretical and experimental studies, the project has come to the following main conclusions: 

1. Conclusions on available formal methods technologies for machine learning 

a. Formal methods for machine learning are growing and maturing at a high pace, with the 
focus of the research community being on verification of neural networks. Several 
conventional techniques have been adapted to tackle ML verification problems, and novel 
tools are being developed to support them. 

b. Current FM tools for ML are able to verify properties that impose relationships between ML 
model inputs and outputs. Several key ML properties, such as stability, can be expressed in 
this form and, therefore, supported by the FM tools. 

c. Formal methods face scalability limitations that depend on the method, as well as on the 
model complexity and property complexity. While the use of sound and complete methods 
may be impractical for certain applications, other FM use approximations to trade off 
completeness and gain performance. Hybrid verification techniques (e.g., a combination of 
FM with simulation-based techniques) could also be effective means to improve the 
scalability of the verification problem. 

d. FM technologies for ML can be applied beyond verification, but their effectiveness and 
limitations have to be better understood (see Future Work below). 
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2. Conclusions on the efficiency of formal methods for machine learning applications 

a. FM can exhaustively verify regions of inputs of ML models and provide formal guarantees, 
thus ensuring higher confidence with respect to simulation-based verification techniques. 

b. FM currently have scalability limitations in addressing global properties, in particular, for 
high-complexity ML models, such as deep learning. To mitigate this limitation, a reasonable 
approximation would be to instead verify a set of local properties on a test dataset. 
Completeness and representiveness of the dataset with respect to the ML constituent ODD 
is a necessary condition to replace global property analysis with a set of local properties. 

c. Even for local properties, formal methods may not be able to provide complete verification 
due to the complexity of the ML model, or of the properties, or both. In such cases, hybrid 
verification procedures (e.g., combining FM with simulation-based methods) currently seem 
to be the most efficient way for improving verification completeness. 

d. Overall number of properties can be extremely large. Total verification time must be 
considered when choosing to opt for formal verification. Even if the time to prove a single 
property is reasonable, the total time may not be, preventing the deployment at scale of the 
FM-based verification procedure. 

e. Statistical methods are effective means to support objectives linked to data quality for 
known distributions. 

3. Conclusions on effective means of compliance for ML 

a. FM are effective means to support verification objectives linked to model stability, 
robustness (e.g., adversarial case identification, robustness tests), and intended behavior 
verification, as demonstrated on the RUL use case. 

b. Currently, formal methods do not directly support the verification of global properties of ML 
models. However, FM can enable thorough verification of such properties by verifying a set 
of local properties on the test dataset, provided that it meets data quality requirements.  

c. Investigations in ForMuLA supported the update of definitions and clarification of objective 
LM-11 on learning algorithm and trained model stability. The objective has been split into 
two new objectives during transition to the new version of the EASA AI Concept Paper: 
objective LM-11 concerns the stability of the learning algorithm while objective LM-12 deals 
with trained model stability. 
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Future work 

Results of the ForMuLA project suggest several potential directions to further explore the applicability of 
formal methods to the assurance of machine learning. While ForMuLA overviewed a variety of possible FM 
applications, practical demonstrators have focused primarily on the property verification of the trained ML 
model. Future work, therefore, could focus on:  

• Further investigation of the means of achieving complete verification with formal methods, while 
mitigating scalability challenges pertaining to FM.  

• Use of formal methods for high-complexity ML applications, such as vision-based systems. 

• Evaluation of FM applicability to support learning assurance beyond trained model verification – for 
example, data preparation, data quality verification, learning process improvements, ODD coverage, 
and consistency between test scenarios and ODD. 

• Formal methods applications in the ML model implementation phase, in particular, for the 
demonstration of property preservation between trained and inference models. 

• Possible contributions of FM to AI explainability. 
 
These investigations may result in new demonstrators of the use of formal methods in the development and 
V&V of ML constituents, and their possible recommendation as effective means of compliance to an 
extended number of certification objectives  
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Appendix 1: Entire spectrum of FM applications in the ML context  

This Appendix discusses a broader scope of formal methods applications in the ML development lifecycle63. It 
first introduces an extended lifecycle diagram that is aligned with the W-cycle, as well as with available 
published efforts of SAE G-34/EUROCAE WG-114. It then discusses the traditional V&V objectives that can be 
addressed by FM, as per ED-216/DO-333, and gives an intuition of relevant ML applications in ML lifecycle 
processes. In particular, each process is reviewed in detail, and all possible V&V activities that may be 
addressed by formal methods are listed. Alignment with EASA AI Concept Paper objectives is also provided. 

A1.1. Machine learning development lifecycle 

Figure 38 shows, on a V-like diagram, development and verification activities for an ML constituent in a flow 
that moves from system requirements, system architecture, and operational design domain inputs to the 
implemented ML constituent – i.e., the final output. The figure illustrates processes as dotted rectangles, ML 
life cycle artifacts (data objects) as ovals, and activities as arrows. Each process consists of development and 
V&V parts, shown as solid rectangles. Each process takes lifecycle artifacts as inputs and possibly produces 
other artifacts as outputs. Solid line arrows capture the artifact flow among development activities, while 
dashed arrows capture the artifact flow for V&V activities. The diagram can be viewed as an extension of a 
traditional V-model for representing a system development life cycle. Here, the left-hand side of the V 
additionally includes processes and artifacts specific to ML, such as data management (collection, 
preparation) and learning process (part of the ML Model Design process), as well as V&V activities aimed at 
ML requirements, data, and models. The right-hand side of the V corresponds to integration, validation and 
verification of the ML constituent. 

The figure is divided by two green dotted lines into three parts, respectively denoting system level, ML 
Constituent level (scope of this IPC), and item level. The reader is referred to standards ARP4754A, ED-
12C/DO-178C and ED-80/DO-254, for guidance respectively at system/subsystem levels higher than ML 
constituent, and at SW and HW item levels, where traditional processes are expected to apply.  

The lifecycle diagram illustrates several processes along the ML constituent development path. The ML ODD 
and Requirements process regards the definition of the ML constituent ODD and requirements allocated to 
the ML constituent. The ML Data Management process is the same as in the W-model and includes data 
collection and preparation (development activities), as well as data quality verification (V&V activities for 
data). ML Model Design process incorporates selection of the model architecture, training algorithm, 
hyperparameters, objective function and validation metrics, the process of training and the verification 
activities for the trained ML model. Finally, ML Constituent Implementation process deals with the creation 
of the inference model as well as other items that are part of the ML constituent (e.g., preprocessing and 
postprocessing) that could be based on traditional software development processes. 

The proposed lifecycle offers a different perspective on the W-cycle proposed in [3] and further developed 
in the EASA AI Concept Paper [2]. It can be seen as an “unrolled” version of the W-shaped diagram that rather 
follows a “staircase” pattern on the left-hand side. Along with the ML model verification step specifically 
highlighted in the middle of the W-cycle, Figure 38Figure 38 also emphasizes V&V steps for each of the 
development processes, i.e., going up performing a “small right-hand side” step. The key motivation of such 
unrollment and restructuring lies in the alignment with existing standards (ED-216/DO-333), as well as with 
the emerging ML development process that is currently work-in-progress in the SAE G-34 / EUROCAE WG-
114 joint working group on AI/ML in aviation [9]. Elements of the W-model are also shown on the diagram. 

 
 
63 Some FM applications listed in this Appendix may not be ML-specific, that is, applicable to machine learning in the very same way 
as in traditional systems. 
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Figure 38. ML Constituent development lifecycle aligned with the W-cycle. 
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A1.2. V&V objectives for machine learning 

V&V is typically performed by a combination of reviews, analyses and testing. The latter two are offering 
quantitative and repeatable evidence of correctness. Depending on whether the artifacts under verification 
admit a formal model, it is possible to make the V&V process partially or fully automated by relying on the 
use of formal analyses and formal methods.  

The V&V activities are carried out to satisfy verification objectives of different types, associated with 
development processes and life cycle data objects. In the following, an overview of the types of verification 
objectives that may be addressed by means of formal methods is given. A major part of these objectives is 
adopted as in avionics standards (ED-12C/DO-178C; ED-216/DO-333), while some of them include ML-
specific aspects and activities, which are highlighted. 

A. Traceability 

Traceability is defined as an association, typically bidirectional, between life cycle data objects.  

Use of FM: In presence of formal models, traceability can be demonstrated by means of formal methods 
from the inputs to the outputs of a process, as well as from the outputs to the inputs  [1]; compliance (see G 
below), for example, can provide evidence in support of traceability. 

B. Compatibility 

Compatibility refers to the lack of conflicts between two life cycle data objects. 

Use of FM: If data objects are formally modeled, formal methods can be used to show compatibility between 
two such objects, including an object and a formal description of software and/or hardware features of the 
target computer. 

C. Accuracy64 

Accuracy of a life cycle data object refers to the adherence of the data object to its intended behavior or 
functionality. 

Use of FM: The use of a formal notation, with a defined syntax and semantics, favours precision while 
preventing ambiguities, and can be used to show accuracy of a data object representation.   

D. Consistency 

Consistency of a collection/composition of life cycle data objects refers to the presence of harmony and 
agreement among the elements of the compound.   

Use of FM: The adoption of a formal representation for the description of data objects allows to detect a lack 
of consistency in a given collection of such objects. 

E. Verifiability 

Verifiability of a life cycle data object refers to the possibility of determining whether a property of interest 
is valid or not for the data object.  

Use of FM: If a data object is formally modeled, then the use of a mathematically defined syntax and 
semantics makes it amenable to formal verification. 

 
 
64 Note that accuracy in the sense of ED-12C/DO-178C and ED-216/DO-333 is a concept distinct from accuracy of an ML Model, 
which is instead an ML-specific performance metric like e.g. precision and recall.   
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F. Conformance to Standards 

Conformance refers to the adherence of a life cycle data object to the standards defining its development 
process. 

Use of FM: Data objects that are formally represented can be automatically checked for conformance with 
the formal notation by means of formal methods. 

G. Compliance 

Compliance refers to the realization of the intended relationship between inputs and outputs of a 
development process. 

Use of FM: If the life cycle data objects of a process are formally modeled, formal methods can be used to 
provide verification evidence of compliance of one representation with the other. In particular, the output 
of a development process can be shown to satisfy properties derived from the process inputs; in case a 
property is violated, a counterexample is usually provided as evidence, and can be employed to refine the 
relevant life cycle data.  

Compliance between Requirements 

Example (Compliance between HLR and LLR). If a set of higher level requirements (HLR) and a set of lower 
level requirements (LLR), developed from the former, are at a comparable level of detail and formalization, 
then the compliance of the latter with the former can be shown by means of property verification, checking 
the implication:  

𝑙𝑙𝑟1 ∧ … ∧ 𝑙𝑙𝑟𝑛 ⇒ ℎ𝑙𝑟1 ∧ … ∧ ℎ𝑙𝑟𝑚, 

where {ℎ𝑙𝑟𝑖} and {𝑙𝑙𝑟𝑗} are respectively the formal representations of higher and lower level requirements.    

Compliance with a Property 

Example (Functional correctness). A property expressed on the ML model inputs and outputs, for example 
of the form “if the inputs satisfy a condition 𝑃, then the outputs must satisfy a condition 𝑄”, can be subject 
to verification approaches, that return a counterexample showing a violation, in case the property is not valid 
( [26], [98]). The verifiability of such a property depends on the complexity of the model and of the complexity 
of the property, as discussed in Section 5.6. 

H. Coverage 

Requirements Coverage 

Requirements coverage analysis is a verification activity executed to determine whether any requirement is 
missing verification evidence. A noteworthy case is represented by the expectation for the datasets to reach 
a sufficient coverage of the ML data requirements, based on which they are developed, including coverage 
of the ML constituent ODD.  

Example (ODD coverage). Verification of coverage of ODD space by properties (both defined as n-
dimensional polyhedra)65, identification of uncovered ODD regions as counterexamples. If, for example, 
properties are expressed in the premise-conclusion form (e.g.,  “if the inputs satisfy a condition 𝑃, then the 
outputs must satisfy a condition 𝑄”), it can be verified whether the union of the polyhedrals satisfying the 
premises covers the ODD ( [87]). 

 
 
65 A coverage metric needs to be defined for the given ODD. 
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Example (ML Perturbation coverage). Verification of coverage of possible input perturbation space by 
stability and/or robustness properties. The goal is to answer the question: Are the existing tests/properties 
sufficient to assess the stability/robustness of the ML model? 

A1.3. V&V applications of formal methods in the ML development lifecycle 

This section provides detailed analysis of each individual process of the ML constituent development lifecycle 
discussed in Section A1.1. This information is commercial proprietary and is not available in the public version 
of the report. 
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Appendix 2. Requirements formalization for the RUL use case 

In this Appendix, the formalization of requirements related to the ML constituent ODD and to the functional 
capabilities of the RUL estimator are discussed. It is then shown how to apply formal reasoning in view of the 
V&V objectives presented in Appendix 1. 

At system level, VHS-1 introduces a function 𝑠𝑦𝑠_𝑅𝑈𝐿, with output 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿, for estimating the 
remaining useful life of a bearing component while the aircraft is on the ground. According to VHS-2, VHS-3, 
and the data provided by the ML constituent ODD, the function has eight inputs corresponding to the 
condition indicators and the torque for the component, plus four additional inputs: flight regime, nominal 
load, mission, environment condition. Thus, a total of twelve inputs. VHS-4 identifies the inputs as sequences 
of values captured across time steps in a given time window. 

Based on this information, the RUL estimation function can be expressed as: 

𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿(𝑡) = 𝑠𝑦𝑠_𝑅𝑈𝐿(< 𝑖𝑛1
𝑡−𝐿, … , 𝑖𝑛1

𝑡 >, … , < 𝑖𝑛12
𝑡−𝐿, … , 𝑖𝑛12

𝑡 >) 

where 𝑖𝑛𝑗 represents the 𝑗𝑡ℎ input feature for brevity, and 𝐿 + 1 is the size of the time window with respect 

to the current time step 𝑡. 

Requirements VHS-7 and VHS-8 define the tolerance to the discrepancy between the estimated RUL and the 
actual value from the source data, depending on whether the actual RUL is in the “normal” or “critical” range: 

𝑛𝑜𝑟𝑚𝑎𝑙(𝑎𝑐𝑡_𝑅𝑈𝐿) ⇒ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 30%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 ∧ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 10%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑎𝑐𝑡_𝑅𝑈𝐿) ⇒ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 5%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 ∧ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 15%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

VHS-9 places a limit on the overall error of the estimator as the Mean Absolute Error (MAE): 

∑
|𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿(𝑡) − 𝑎𝑐𝑡_𝑅𝑈𝐿(𝑡)|

𝑁

𝑁

𝑡=1

≤ 15ℎ 

where 𝑁 is the number of samples in the dataset of reference. 

At the ML Constituent level, an estimation function 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 = 𝑐𝑜𝑛𝑠_𝑅𝑈𝐿(… ) is introduced, that 
traces to 𝑠𝑦𝑠_𝑅𝑈𝐿 at system level. The requirements are developed maintaining bi-directional traceability to 
system requirements, so that each ML Constituent requirement maps to one system requirement, and vice-
versa each system requirement maps to one or more ML Constituent requirements. 

RUL-ML-1, traced to VHS-1, specifies that the function has a single non-negative output 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 
measured in hours. 

RUL-ML-2 and RUL-ML-3 further develop VHS-2 and VHS-3, by distinguishing between numerical and 
categorical features, derived from the system inputs; each feature domain, as well as its measure unit and 
data type, is indicated by the ML constituent ODD requirements. A formal specification of function output 
and input data types (numeric/float, categorical/string, …) allows for an automated conformance check on 
the values in the source data file, as well as a compatibility check e.g. with respect to the numerical precision 
of the target machine where RUL estimation will be run.  

RUL-ML-4 to RUL-ML-7 trace to VHS-4 in describing 𝑐𝑜𝑛𝑠_𝑅𝑈𝐿 as having as single input a bidimensional 
matrix, where the matrix columns correspond to the individual inputs of 𝑠𝑦𝑠_𝑅𝑈𝐿, and the rows to the time 
steps. The size of the time window, i.e. the amount of time steps, is set to 40; the values of all input vectors 
are intended as associated to consecutive time steps of duration 1h in the source data, so that the last vectors 
values map to the last time step in the data. 𝑐𝑜𝑛𝑠_𝑅𝑈𝐿 input can then be represented as: 
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(
𝑖𝑛1

𝑡−39ℎ ⋯ 𝑖𝑛12
𝑡−39ℎ

⋮ ⋱ ⋮
𝑖𝑛1

𝑡 ⋯ 𝑖𝑛12
𝑡

) 

Compliance between system and ML Constituent input requirements is shown e.g. by equating each 
𝑠𝑦𝑠_𝑅𝑈𝐿 input 𝑖 to column 𝑖 of the 𝑐𝑜𝑛𝑠_𝑅𝑈𝐿 input matrix.  

RUL-ML-8 and RUL-ML-9 directly trace to VHS-6 and VHS-7, which they refine. 

RUL-ML-14 quantifies the “critical” range (and, consequently, the “normal” range), introduced in VHS-7 and 
VHS-8, as 100h; in turn, these requirements are respectively developed into RUL-ML-10, RUL-ML-11, and 
RUL-ML-12, RUL-ML-13, as follows: 

𝑎𝑐𝑡_𝑅𝑈𝐿 > 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 30%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

𝑎𝑐𝑡_𝑅𝑈𝐿 > 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 10%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

𝑎𝑐𝑡_𝑅𝑈𝐿 ≤ 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 5%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

𝑎𝑐𝑡_𝑅𝑈𝐿 ≤ 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 15%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 

Note that the use of a logic representation is a means to ensure accuracy in the description of the expected 
behavior of the RUL estimator; also, it makes the output verifiable against the formalized requirements. 

The formalization above allows to determine consistency among the ML Constituent output requirements 
for the RUL estimator: it is possible, for example, to conjoin the four requirements encodings and feed the 
conjunction to an automated reasoning engine for a satisfiability check.  

In a similar way, compliance between e.g. “normal” range output requirements at ML Constituent level and 
at system level can be shown by noting that:  

𝑎𝑐𝑡_𝑅𝑈𝐿 > 100ℎ ⇔ 𝑛𝑜𝑟𝑚𝑎𝑙(𝑎𝑐𝑡_𝑅𝑈𝐿) 

and formally proving the implication: 

((𝑎𝑐𝑡_𝑅𝑈𝐿 > 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 30%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿)

∧        (𝑎𝑐𝑡_𝑅𝑈𝐿 > 100ℎ ⇒ 𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 10%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿)) 

⇒ 
(𝑛𝑜𝑟𝑚𝑎𝑙(𝑎𝑐𝑡_𝑅𝑈𝐿) ⇒ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≤ (1 + 30%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿 ∧ 𝑠𝑦𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿 ≥ (1 − 10%) ∗ 𝑎𝑐𝑡_𝑅𝑈𝐿) 

RUL-ML-15 refines VHS-9 by further lowering the admissible error, expressed via the RMSE: 

√∑
(𝑐𝑜𝑛𝑠_𝑒𝑠𝑡_𝑅𝑈𝐿(𝑡) − 𝑎𝑐𝑡_𝑅𝑈𝐿(𝑡))

2

𝑁

𝑁

𝑡=1

2

≤ 15ℎ 

Compliance of RUL-ML-15 to VHS-9 is due to the fact that 𝑀𝐴𝐸 ≤ 𝑅𝑀𝑆𝐸 by definition. 
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