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Chapter 1

Executive summary

This is a public extract of the report that resulted from the collaboration between EASA and

Daedalean in the frame of an Innovation Partnership Contract (IPC) signed by the Agency.

The project ran from June 2019 to February 2020.

The project titled “Concepts of Design Assurance for Neural Networks” (CoDANN) aimed

at examining the challenges posed by the use of neural networks in aviation, in the broader

context of allowing machine learning and more generally artificial intelligence on-board aircraft

for safety-critical applications.

Focus was put on the “Learning Assurance” building-block of the EASA AI Roadmap 1.0

[EAS20] which resulted in significant progress on three essential aspects of the “Learning

Assurance” concept:

1. The definition of the W-shaped Learning Assurance life-cycle as a foundation for future

guidance from EASA for machine learning / deep learning (ML/DL) applications. It

provides an outline of the essential steps for Learning Assurance and their connection

with traditional Development Assurance processes.

2. The investigation of the notion of “generalization” of neural networks, which is a crucial

characteristic of neural networks when ensuring the level of confidence that a ML model

will perform as intended. The reviewed theoretical and practical “generalization bounds”

should contribute to the definition of more generic guidance on how to account for NNs

in Safety Assessment processes.

3. The approach to accounting for neural networks in safety assessments, on the basis of a

realistic use case. Guidance that is more generic will have to be developed but this report

paves the way for a practical approach to achieve certification safety objectives when

ML/DL are used in safety-critical applications. The Safety Assessment in this report

includes an outline of a failure mode and effect analysis (FMEA) for an ML component

to derive quantitative guarantees.

Many concepts discussed in this report apply to machine learning algorithms in general, but an

emphasis is put on the specific challenges of deep neural networks or deep learning for computer

vision systems.

It was one of the primary goals to keep the guidelines for Learning Assurance on a generic level,

in an attempt to motivate these guidelines from a theoretical perspective. Where applicable,

reference is made to concrete methods.

5
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A note about this document

This extract is a public version of the original IPC report. Several parts have been shortened

for conciseness and some details from the original report have been removed for confidentiality

reasons. The main outcomes from the work between EASA and Daedalean have been retained

for the benefit of the public.
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Introduction

2.1 Background

In recent years, the scientific discipline known as machine learning (ML) has demonstrated

impressive performances on visual tasks relevant to the operation of General Aviation aircraft,

autonomous drones, or electric air-taxis. For this reason, the application of machine learning

to complex problems such as object detection and image segmentation is very promising for

current and future airborne systems. Recent progress has been made possible partly due to

a simultaneous increase in the amount of data available and in computational power (see for

example the survey [LBH15]). However, this increase of performance comes at the cost of

more complexity in machine learning models, and this complexity might pose challenges in

safety-critical domains, as it is often difficult to verify their design and to explain or interpret

their behavior during operation.

Machine learning therefore provides major opportunities for the aviation industry, yet the trust-

worthiness of such systems needs to be guaranteed. The EASA AI Roadmap [EAS20, p. 14]

lists the following challenges with respect to trustworthiness:

• “Traditional Development Assurance frameworks are not adapted to machine learning”;

• “Difficulties in keeping a comprehensive description of the intended function”;

• “Lack of predictability and explainability of the ML application behavior”;

• “Lack of guarantee of robustness and of no ’unintended function’”;

• “Lack of standardized methods for evaluating the operational performance of the ML/DL

applications”;

• “Issue of bias and variance in ML applications”;

• “Complexity of architectures and algorithms”;

• “Adaptive learning processes”.

This report investigates these challenges in more detail. The current aviation regulatory frame-

work and in particular Development Assurance do not provide a means of compliance for these

new systems. As an extension to traditional Development Assurance, the elements of the

Learning Assurance concepts defined in the EASA AI Roadmap are investigated to address

these challenges.

7



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract – Chapter 2 8

2.2 Learning Assurance process elements

This report has identified crucial elements for Learning Assurance in a W-shaped development

cycle, as an extension to traditional Development Assurance frameworks (see Figure 6.1 and

the details on Page 43). They summarize the key activities required for the safe use of neural

networks (and more generally machine learning models) during operation.

Figure 6.1: W-shaped development cycle for Learning Assurance.

The reader is encouraged to use these as a guide while reading the report. Each of these items

will be motivated from a theoretical perspective and exemplified in more detail in the context

of the identified use case in Chapter 4.

2.3 Other key takeaways from the IPC

To cope with the difficulties in keeping a comprehensive description of the intended function,

this report introduces data management activities to ensure the quality and completeness of

the datasets used for training or verification processes. In particular, the concepts outlined in

this document advocate the creation of a distribution discriminator to ensure an evaluation of

the completeness of the datasets.

The lack of predictability of the ML application behavior could be addressed through the con-

cept of generalizability that is introduced in Section 5.3 as a means of obtaining theoretical

guarantees on the expected behavior of machine learning-based systems during operation. To-

gether with data management, introduced in Section 6.2, this allows to obtain such guarantees

from the performance of a model during the design phase.

The report identified risks associated with two types of robustness: algorithm robustness and

model robustness. The former measures how robust the learning algorithm is to changes in

the underlying training dataset. The latter quantifies a trained model’s robustness to input

perturbations.

The evaluation and mitigation of bias and variance is a key issue in ML applications. It was

identified that bias and variance must be addressed on two levels. First, bias and variance

inherent to the datasets need to be captured and minimized. Second, model bias and variance

need to be analyzed and the associated risks taken into account.

This report assumes a system architecture which is non-adaptive (i.e. does not learn) during
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operation. This does not impair the capability of retraining or reusing portions of NNs (transfer

learning) but creates boundaries which are easily compatible with the current aviation regulatory

frameworks.

2.4 Aim of the report

The aim of this report is to present the outcome of the collaboration between EASA and

Daedalean AG, in an Innovation Partnership Contract (IPC) on the Concepts of Design Assur-

ance for Neural Networks (CoDANN).

The purpose of this IPC was to investigate ways to gain confidence in the use of products

embedding machine learning-based systems (and more specifically neural networks), with the

objective of identifying the enablers needed to support their future introduction in aviation.

More precisely, the collaboration aimed at:

1. Proposing a first set of guidelines for machine learning-based systems facilitating future

compatibility with the Agency regulatory framework (e.g. [CS-25]/[CS-27]/[CS-29].1309

or [CS-23]/[SC-VTOL-01].2510), using one of the specific examples (landing guidance)

proposed by Daedalean;

2. Proposing possible reference(s) for evaluating the performance/accuracy of machine

learning-based system in the context of real-scale safety analyses.

The scope of this assessment will include but may not be limited to airworthiness and operations.

Note however that only software questions are addressed in detail: specific hardware might have

to be used and certified for neural networks, but we leave discussions on this subject for future

work.

This report has been prepared under the conditions set within the IPC. Its duration has been

of ten months, between May 2019 and February 2020.

The European Union Aviation Safety Agency (EASA) is the centerpiece of the European

Union’s strategy for aviation safety. Its mission is to promote the highest common standards of

safety and environmental protection in civil aviation. The Agency develops common safety and

environmental rules at the European level. It monitors the implementation of standards through

inspections in the Member States and provides the necessary technical expertise, training and

research. The Agency works hand in hand with the national authorities which continue to carry

out many operational tasks, such as certification of individual aircraft or licensing of pilots.

Daedalean AG was founded in 2016 by a team of engineers who worked at companies such

as Google and SpaceX. As of February 2020, the team includes 30+ software engineers, as

well as avionics specialists and pilots. Daedalean works with eVTOL companies and aerospace

manufacturers to specify, build, test and certify a fully autonomous autopilot system. It has

developed systems demonstrating crucial early capabilities on a path to certification for airwor-

thiness. Daedalean has offices in Zürich, Switzerland and Minsk, Belarus.

2.5 Outline of the report

Chapter 3 investigates the existing regulations, standards, and major reports on the use of

machine learning-based systems in safety-critical systems.

Afterwards, Chapter 4 presents the identified use cases and Concepts of Operations of neural

networks in aviation applications. These will be used to illustrate the findings on a real-world

example for the remainder of the report.
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Chapter 5 provides the reader with the necessary background knowledge required for the con-

cepts of Learning Assurance.

In Chapters 6 and 7, guidelines for Learning Assurance are introduced. Furthermore, a set of

activities that appear to be necessary to guarantee a safe use of neural networks are detailed.

Each of these activities are visited in detail and motivated from a theoretical perspective. This

framework is kept in a flexible way such that the concrete implementation of each activity can

be tailored to the specific use case of future applicants.

Chapter 8 explains how the overall system described in Chapter 4 is evaluated. Chapter 9

discusses the Safety Assessment aspects of the system.

A use case summary is given in Chapter 10, with a few more concrete ideas for implementation.

Finally, the conclusion (Chapter 11) revisits assumptions made throughout and discusses sub-

jects for future work.

2.6 Terminology

In this section, the definition of machine learning is recalled, and common terminology that

will be used throughout the report is set up.

Automation is the use of control systems and information technologies reducing the need for

human input and supervision, while autonomy is the ultimate level of automation, the ability

to perform tasks without input or supervision by a human during operations.

Artificial intelligence (AI) is the theory and development of computer systems which are able

to perform tasks that “normally” require human intelligence. Such tasks include visual percep-

tion, speech recognition, decision-making, and translation between languages. As “normally”

is a shifting term, the definition of what constitutes AI changes over the years. This report

will therefore not discuss this specific term in more detail.

Machine learning (ML) is the scientific field rooted in statistics and mathematical optimization

that studies algorithms and mathematical models that aim at achieving artificial intelligence

through learning from data. This data might consists of samples with labels (supervised

learning), or without (unsupervised learning).

More formally, machine learning aims at approximating a mathematical function f : X → Y

from a (very large and possibly infinite) input space X to an output space Y , given a finite

amount of data.

In supervised learning, the data consists of sample pairs (x, f (x)) with x ∈ X. This report will

mostly consider parametric machine learning algorithms, which work by finding the optimal

parameters in a set of models, given the data.

An approximation f̂ : X → Y to f is usually called a model. Together, the computational

steps required to find these parameters are usually referred to as training (of the model).

Once a model f̂ for f has been obtained, it can be used to make approximations/predictions

f̂ (x) for values f (x) at points x which were not seen during training. This phase is called

inference. The sample pairs (x, f (x)) (or simply the values f (x)) are often called ground

truth, as opposed to the approximation f̂ (x).

Artificial neural networks (or simply neural networks) are a class of machine learning algo-

rithms, loosely inspired by the human brain. They consist of connected nodes (“neurons”) that

define the order in which operations are performed on the input. Neurons are connected by

edges which are parametrized by weights and biases. Neurons are organized in layers, specif-

ically an input layer, several intermediate layers, and an output layer. Given a fixed topology

(neurons and connections), a model is found by searching for the optimal weights and other

parameters. Deep learning is the name given to the study and use of “deep” neural networks,
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that is neural networks with more than a few intermediate layers.

Convolutional neural networks (CNN) are a specific type of deep neural networks that are

particularly suited to process image data, based on convolution operators. A feature is a

derived property/attribute of data, usually lower dimensional than the input. While features

used to be handcrafted, deep learning is expected to learn features automatically. In a CNN,

they are encoded by the convolutional filters in the intermediary layers.

A system is adaptive when it continues to change (e.g. learn) during real-time operation. A

system is predictable/deterministic if identical inputs produce identical outputs. In the scope

of this report, only non-adaptive and deterministic systems will be considered.

A machine learning model is robust if small variations in the input yield small variations in the

output (see also Section 6.4 for a precise definition).

Refer to the index at the end of the document for an exhaustive list of the other technical

terms used throughout the report.
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Existing guidelines, standards and
regulations, and their applicability
to machine learning-based systems

3.1 EASA AI Roadmap

As far as EASA is concerned, AI will have an impact on most of the domains under its mandate.

AI not only affects the products and services provided by the industry, but also triggers the rise

of new business models and affects the Agency’s core processes (certification, rule-making, or-

ganization approvals, and standardization). This may in turn affect the competency framework

of EASA staff.

EASA developed an AI Roadmap [EAS20] that aims at creating a consistent and risk-based

“AI trustworthiness” framework to enable the processing of AI/ML applications in any of the

core domains of EASA, from 2025 onward. The EASA approach is driven by the seven key

requirements for trustworthy AI that were published in the report from the EC High Level

Group of Experts on AI (see also Section 3.2). Version 1.0 of the EASA AI Roadmap focuses

on machine learning techniques using, among others, learning decision trees or neural network

architectures. Further development in AI technology will require future adaptations to this

Roadmap.

3.1.1 Building blocks of the AI Trustworthiness framework

The EASA AI Roadmap is based on four building blocks that structure the AI Trustworthiness

framework. All four building blocks are anticipated to have an importance in gaining confidence

in the trustworthiness of an AI/ML application.

• The AI trustworthiness analysis should provide guidance to applicants on how to address

each of the seven key guidelines in the specific context of civil aviation;

• The objective of Learning Assurance is to gain confidence at an appropriate level that

an ML application supports the intended functionality, thus opening the “AI black box”

as much as practically possible and required;

• Explainability of AI is a human-centric concept that deals with the capability to explain

how an AI application is coming to its results and outputs;

12
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• AI safety risk mitigation is based on the anticipation that the “AI black box” may not

always be opened to a sufficient extent and that supervision of the function of the AI

application may be necessary.

Figure 3.1: Relationship between AI Roadmap building blocks and AI trustworthiness.

3.1.2 Key objectives

The main action streams identified in the EASA AI Roadmap are to:

1. “Develop a human-centric Trustworthiness framework”;

2. “Make EASA a leading certification authority for AI”;

3. “Support European Aviation leadership in AI”;

4. “Contribute to an efficient European AI research agenda”;

5. “Contribute actively to EU AI strategy and initiatives”.

3.1.3 Timeline

The EASA AI Roadmap foresees a phased approach, the timing of which is aligned with the

industry AI implementation timeline. Phase I will consist of developing a first set of guidelines

necessary to approve first use of safety-critical AI. This will be achieved in partnership with the

industry, mainly through IPCs, support to research, certification projects, and working groups.

Phase II will build on the outcome of Phase I to develop regulations, Acceptable Means of

Compliance (AMC) and Guidance Material (GM) for certification/approval of AI. A phase III

is foreseen to further adapt the Agency process and expand the regulatory framework to the

future developments in the dynamic field of AI.

3.2 EU guidelines for trustworthy AI

On April 8th, 2019, the European Commission’s High-Level Expert Group on Artificial Intel-

ligence (AI HLEG) issued a report titled “Ethics and Guidelines on Trustworthy AI” [EGTA],
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which lays out four ethical principles and seven requirements that AI systems should meet in

order to be trustworthy, each further split out into multiple principles that should be adhered

to.

3.2.1 EGTA, EASA, and this report

The seven EGTA requirements, their constituting principles, the four building blocks of the

EASA AI Roadmap and this report form a narrowing sequence of scopes. The EGTA report

intends to address any kind of AI the European citizens might encounter, many of which will

deal with end-user data, affecting them directly.

This report is not focused on all possible applications of AI in all of EASA’s domain of com-

petency, but specifically on machine-learned systems applied to make better and safer safety-

critical avionics. This report is not intended or expected to be the end-all and be-all of this

topic, but addresses a subset of the concerns raised by the guiding documents. As an aid to

the reader, Table 3.1 presents an overview of how parts of this report may be traced to the

EASA building blocks, and to the principles and the requirements.

EGTA key re-

quirement

Constituting

principles

(Example of) ap-

plicability to AI in

safety-critical avion-

ics

EASA

building

block

This report

Human

agency and

oversight

Fundamental

rights

Must improve safety

of life and goods
TA –

Human agency
Public must be al-

lowed choice of use

Human oversight Human-in-command

Technical ro-

bustness and

safety

Resilience to at-

tack and security
Potential for sabotage TA –

Fallback plan
Runtime monitoring,

Fault mitigation
TA Chapter 9

General safety
Hazard analysis, pro-

portionality in DAL
TA/SRM Chapter 9

Accuracy
Correctness and accu-

racy of system output LA Ch. 5, 6, 7

Reliability and

reproducibility

Correctness and accu-

racy of system design

Privacy and

data gover-

nance

Privacy and data

protection

Passenger/pilot pri-

vacy when collecting

training/testing data

[GDPR] –

Quality and in-

tegrity of data

Core to quality of ML

systems
LA Ch. 5 and 6



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract – Chapter 3 15

EGTA key re-

quirement

Constituting

principles

(Example of) ap-

plicability to AI in

safety-critical avion-

ics

EASA

building

block

This report

Access to indi-

vidual’s data

(n/a, Individual pas-

senger/pilot data not

required)

TA –

Transparency Traceability
Datasets and ML pro-

cess documentation
LA/EX Chapter 6

Explainability

Justification and fail-

ure case analysis of

ML system outputs

EX Chapter 11

Communication
Mixing human and AI

on ATC/comms
TA –

Diversity,

non-

discrimination

and fairness

Avoidance of un-

fair bias

Must not unfairly

trade off safety of

passenger vs public
TA –

Accessibility and

universal design

May enable more peo-

ple to fly

Stakeholder par-

ticipation

EASA, pilots and op-

erators, passengers,

public at large

Societal and

environmental

well-being

Sustainable and

environmentally

friendly AI

Increase ubiquity of

flying, with environ-

mental and societal

consequences TA –

Social impact

Society and

democracy

Accountability Auditability
Core competency of

the regulator (EASA)
TA –

Minimization

and reporting of

negative impacts

Trade-offs

Redress

Table 3.1: EGTA requirements and principles, EASA building blocks and this report. The EASA

building blocks are referred to as TA (Trustworthiness Analysis), LA (Learning Assurance), SRM

(Safety Risk Mitigation) and EX (Explainability).
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3.3 Existing guidelines and standards

3.3.1 ARP4754A / ED-79A

The Guidelines for Development of Civil Aircraft and Systems [ED-79A/ARP4754A] were

released in 2010. The purpose of this guidance is to define a structured development process

to minimize the risk of development errors during aircraft and system design. It is recognized

by EASA as a recommended practice for system Development Assurance. In conjunction with

[ARP4761], it also provides a Safety Assessment guidance used for the development of large

aircraft and their highly integrated system.

It is essentially applied for complex and highly integrated systems, as per AMC25.1309:

“A concern arose regarding the efficiency and coverage of the techniques used for

assessing safety aspects of highly integrated systems that perform complex and

interrelated functions, particularly through the use of electronic technology and

software based techniques. The concern is that design and analysis techniques

traditionally applied to deterministic risks or to conventional, non-complex systems

may not provide adequate safety coverage for more complex systems. Thus, other

assurance techniques, such as Development Assurance utilizing a combination of

process assurance and verification coverage criteria, or structured analysis or as-

sessment techniques applied at the aeroplane level, if necessary, or at least across

integrated or interacting systems, have been applied to these more complex sys-

tems. Their systematic use increases confidence that errors in requirements or

design, and integration or interaction effects have been adequately identified and

corrected.”

One key aspect is highlighted by [ED-79A/ARP4754A, Table 3]: When relying on Functional

Development Assurance Level A (FDAL A) alone, the applicant may be required to substantiate

that the development process of a function has sufficient independent validation/verification

activities, techniques, and completion criteria to ensure that all potential development errors,

capable of having a catastrophic effect on the operations of the function, have been removed

or mitigated. It is EASA’s experience that development errors may occur even with the highest

level of Development Assurance.

3.3.2 EUROCAE ED-12C / RTCA DO-178C

The Software Considerations in Airborne Systems and Equipment Certification [ED-12C/DO-

178C], released in 2011, provide the main guidance used by certification authorities for the

approval of aviation software. From [ED-12C/DO-178C, Section 1.1], the purpose of this

standard is to

“provide guidance for the production of software for airborne systems and equip-

ment that performs its intended function with a level of confidence in safety that

complies with airworthiness requirements.”

Key concepts are the flow-down of requirements and bidirectional traceability between the

different layers of requirements. Traditional “Development Assurance” frameworks such as

[ED-12C/DO-178C] are however not adapted to address machine learning processes, due to

specific challenges, including:

• Machine learning shifts the emphasis on other parts of the process, namely data prepa-

ration, architecture and algorithm selection, hyperparameter tuning, etc. There is a
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need for a change in paradigm to develop specific assurance methodologies to deal with

learning processes;

• Difficulties in keeping a comprehensive description of the intended function and in the

flow-down of traceability within datasets (e.g. definition of low level requirements);

• Lack of predictability and explainability of the ML application behavior.

The document also has the following three supplements:

• [ED-128/DO-331]: Model-Based Development and Verification;

• [ED-217/DO-332]: Object-Oriented Technology and Related Techniques;

• [ED-216/DO-333]: Formal Methods.

The two first supplements are addressing specific Development Assurance techniques and will

not be applicable to address machine learning processes. The Formal Methods supplement

could on the contrary provide a good basis to deal with novel verification approaches (e.g. for

the verification of the robustness of a neural network).

Finally, for tool qualification aspects, it is also worth mentioning:

• [ED-215/DO-330]: Tool Qualification Document that could also be used in a Learning

Assurance framework to develop tools that would reduce, automate or eliminate those

process objective(s) whose output cannot be verified.

3.3.3 EUROCAE ED-76A / RTCA DO-200B

The Standards for Processing Aeronautical Data [ED-76A/DO-200B] provides the minimum

requirements and guidance for the processing of aeronautical data that are used for navigation,

flight planning, terrain/obstacle awareness, flight deck displays, flight simulators, and for other

applications. This standard aims at providing assurance that a certain level of data quality is

established and maintained over time.

Data Quality is defined in the standard as the degree or level of confidence that the provided

data meets the requirements of the user. These requirements include levels of accuracy,

resolution, assurance level, traceability, timeliness, completeness, and format.

The notion of data quality can be used in the context of the preparation of machine learning

datasets and could be instrumental in the establishment of adequate data completeness and

correctness processes as described in Section 6.2.

3.3.4 ASTM F3269-17

The Standard Practice for Methods to Safely Bound Flight Behavior of Unmanned Aircraft

Systems Containing Complex Functions [F3269-17] outlines guidance to constrain complex

function(s) in unmanned aircraft systems through a runtime assurance (RTA) system.

Aspects of safety monitoring are encompassed in the building block “Safety Risk Mitigation”

from the EASA AI Roadmap (see Section 3.1).
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3.4 Other documents and working groups

3.4.1 EUROCAE WG-114 / SAE G-34

An EUROCAE working group on the “certification of aeronautical systems implementing artifi-

cial intelligence technologies”, WG-114, was announced in June 2019 (see https://eurocae.

net/about-us/working-groups/). It recently merged with a similar SAE working group, G-

34 (“Artificial Intelligence in Aviation”). Their objectives are to:

• “Develop and publish a first technical report to establish a comprehensive statement of

concerns versus the current industrial standards. [. . . ]”

• “Develop and publish EUROCAE Technical Reports for selecting, implementing, and

certifying AI technology embedded into and/or for use with aeronautical systems in both

aerial vehicles and ground systems.”

• “Act as a key forum for enabling global adoption and implementation of AI technologies

that embed or interact with aeronautical systems.”

• “Enable aerospace manufactures and regulatory agencies to consider and implement

common sense approaches to the certification of AI systems, which unlike other avionics

software, has fundamentally non-deterministic qualities. (sic)”

At the time of writing, draft documents list possible safety concerns and potential next steps.

Most of these are addressed in this report and a detailed comparison can be released when the

WG-114 documents are finalized.

The working group includes representatives from both EASA and Daedalean, in addition to

experts from other stakeholders.

3.4.2 UL-4600: Standard for Safety for the Evaluation of Autonomous

Products

A working group, led by software safety expert Prof. Phil Koopman, is currently working with

UL LLC on a standard proposal for autonomous automotive vehicles (with the goal of being

adaptable to other types of vehicles). The idea is to complement existing standards such as

ISO 26262 and ISO/PAS 21488 that were conceived with human drivers in mind. Notice that

this is very similar to what this IPC aimed to achieve for airborne systems. A preliminary draft

[UL-4600] has been released in October 2019, and the standard is planned to be released in

the course of 2020.

Section 8.5 of the current draft of UL-4600 is dedicated to machine learning, but the treatment

of the topic remains fairly high-level. In this report, the aim is to provide a more in-depth

understanding of the risks of modern machine learning methods and ways to mitigate them.

3.4.3 “Safety First for Automated Driving” whitepaper

In June 2019, 11 major stakeholders in the automative and automated driving industry, including

Audi, Baidu, BMW, Intel, Daimler, and VW, published a 157-page report [SaFAD19] on safety

for automated driving. Their work focuses on safety by design and verification & validation

methods for SAE levels 3-4 autonomous driving (conditional/high automation).

In particular, the report contains an 18-page appendix on the use of deep neural networks in

these safety-critical scenarios, with the running example of 3D object detection. The conclu-

sions that surface therein are compatible with those in this IPC report.

https://eurocae.net/about-us/working-groups/
https://eurocae.net/about-us/working-groups/
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3.4.4 FAA TC-16/4

The U.S. Federal Aviation Administration (FAA) report on Verification of adaptive systems

[TC-16/4], released in April 2016, is the result of a two-phase research study in collaboration

with the NASA Langley Research Center and Honeywell Inc., with the aim of analyzing the

certifiably of adaptive systems in view of [ED-12C/DO-178C].

Adaptive systems are defined therein as “software having the ability to change behavior at

runtime in response to changes in the operational environment, system configuration, resource

availability, or other factors”.

At this stage, adaptive machine learning algorithms are anticipated to be harder to certify than

models that are frozen after training. Restricting ourselves to non-adaptive models creates a set

of realistic assumptions in which the development of Learning Assurance concepts is possible.

Following this, aspects of recertification of existing but changed models (i.e. retrained models)

are very briefly discussed in Section 7.1.3.

3.4.5 FDA April 2019 report

The Proposed Regulatory Framework for Modifications to AI/ML-based Software as a Medical

Device [FDA19], released by the U.S. Food and Drugs Administrations in April 2019, focuses

on risks in machine learning-based systems resulting from software modifications, but also

contains more general information on the regulation/certification of AI software. Note that

such software modifications include the adaptive algorithms studied in length in the FAA report

[TC-16/4] discussed above.

3.4.6 AVSI’s AFE 87 project on certification aspects of machine learning

This is a one-year project launched in May 2018 and includes Airbus, Boeing, Embraer, FAA,

GE Aviation, Honeywell, NASA, Rockwell Collins, Saab, Thales, and UTC. According to a

presentation given in the April 2019 EUROCAE symposium, the goal is to address the following

questions (quoting from [Gat19]):

1. “Which performance-based objectives should an application to certify a system incorpo-

rating machine learning contain, so that it demonstrates that the system performs its

intended function correctly in the operating conditions?”

2. “What are the methods for determining that a training set is correct and complete?”

3. “What is retraining, when is it needed, and to which extent?”

4. “What kind of architecture monitoring would be adapted to complex machine learning

applications?”

Note that these questions are all addressed in this report, respectively in Chapter 10, Sec-

tion 6.2, Section 7.1.3/Section 7.1 and Section 6.6.

3.4.7 Data Safety Guidance

The Data Safety Guidance [SCSC-127C], from the Data Safety Initiative Working Group of

the Safety Critical Systems Club, aims at providing up-to-date recommendations for the use

of data (under a broad definition) in safety-critical systems. Along with definitions, principles,

processes, objectives, and guidance, it contains a worked out example in addition to several
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appendices (including examples of accidents due to faulty data). Section 6.2 will explain the

importance of data in systems based on machine learning.

3.5 Comparison of traditional software and machine learning-

based systems

3.5.1 General considerations

A shift in paradigm In aviation, system and software engineering are traditionally guided

through the use of industrial standards on Development Assurance like [ED-79A/ARP4754A]

or [ED-12C/DO-178C]. The use of learning algorithms and processes constitutes a shift in

paradigm compared to traditional system and software development processes.

Development processes foresee the design and coding of software from a set of functional

requirements to obtain an intended behavior of the system. Whereas in the case of learning

processes, the intended behavior is captured in data from which a model is derived through

the training phase, as an approximation of the expected function of the system. This con-

ceptual difference comes with a set of challenges that requires an extension to the traditional

Development Assurance framework that was used for complex and highly integrated system

development so far. Machine learning shifts the emphasis of assurance methods on other parts

of the process, namely data management, learning model design, etc.

Still some similarities. . . It is anticipated that Development Assurance processes could still

apply to higher layers of the system design, namely to capture, validate and verify the functional

system requirements.

Also the core software and the hardware used for the inference phase are anticipated to be

developed with traditional means of compliance such as [ED-12C/DO-178C] or [ED-80/DO-

254].

In addition, some of the processes integral to Development Assurance are nevertheless antic-

ipated to be still compatible and required with Learning Assurance methods. This concerns

mainly processes such as planning, configuration management, quality assurance and certifica-

tion liaison.

Planning, quality assurance, and certification liaison processes These elements of tra-

ditional Development Assurance require adaptations for the Learning Assurance process, in

particular for the definition of transition criteria but their principles are anticipated to remain

unchanged.

3.5.2 Configuration management principles

The principles from existing standards are anticipated to apply with no restriction. For applica-

tions involving modification of parameters through learning, a strong focus should be put on the

capability to maintain configuration management of those parameters (e.g. weights of a neural

network) for any relevant configuration of the resulting application. Specific consideration may

be required for the capture of hyperparameters configurations.

Considerations on the use of PDIs Considering the nature of neural networks, parametrized

by weights and biases that define the behavior of the model, it may be convenient to capture

these parameters in a separate configuration file.

It is however important to mention that the Parameter Data Item (PDI) guidance as introduced

in [ED-12C/DO-178C] cannot be used as such, due to the fact that the learned parametrized
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model is inherently driving the functionality of the software and cannot be separated from the

neural network architecture or executable object code.

As indicated in [ED-12C/DO-178C, Section 6.6], PDIs can be verified separately under four

conditions:

1. The Executable Object Code has been developed and verified by normal range testing to

correctly handle all Parameter Data Item Files that comply with their defined structure

and attributes;

2. The Executable Object Code is robust with respect to Parameter Data Item Files struc-

tures and attributes;

3. All behavior of the Executable Object Code resulting from the contents of the Parameter

Data Item File can be verified;

4. The structure of the life-cycle data allows the parameter data item to be managed

separately.

At least the third condition is not realistic in the case of a learning model parameter data item.

In conclusion, even if PDIs can be conveniently used to store and manage the parameters

of a machine learning model resulting from a learning process, the PDI guidance from [ED-

12C/DO-178C] (or equivalent), which foresees a separate verification of the PDI from the

executable object code, is not a practicable approach.
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Use case definition and Concepts of
Operations (ConOps)

The use of neural networks in aviation applications should be regulated such that it is propor-

tionate to the risk of the specific operation. As a running example throughout the report, a

specific use case (visual landing guidance) will be considered, described in detail in this chapter.

Chapter 9 will use this example to outline a safety analysis and Chapter 10 aims to present a

summary of the Learning Assurance activities in the context of the use case.

The contents of Chapters 5 to 8 are generic, and apply to general (supervised) machine learning

algorithms.

4.1 Use case and ConOps

Visual landing guidance (VLG) facilitates the task of landing an aircraft on a runway or vertiport.

Table 4.1 proposes two operational concepts for our VLG system, one for General Aviation [CS-

23] Class IV and another for Rotorcraft [CS-27] or eVTOL [SC-VTOL-01] (cat. enhanced),

with corresponding operating parameters.

To assess the risk of the operation, two levels of automation are proposed for each operational

concept: pilot advisory (1a and 2a) and full autonomy (1b and 2b).

Operational Concept 1 Operational Concept 2

Application
Visual landing guidance

(Runway)

Visual landing guidance

(Vertiport)

Aircraft type
General Aviation [CS-23] Class

IV

Rotorcraft [CS-27] or eVTOL

[SC-VTOL-01] (cat.

enhanced)

Flight rules
Visual Flight Rules (VFR) in daytime Visual Meteorological

Conditions (VMC)

Special

considerations

Marked concrete runways, no

ILS equipment assumed

Vertiports in urban built-up

areas, no ILS equipment

assumed

22
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Operational Concept 1 Operational Concept 2

Level of

automation

Pilot

advisory

Full

autonomy

(1a) (1b)

Pilot

advisory

Full

autonomy

(2a) (2b)

System interface Glass cockpit

flight

director

display

Flight

computer

guidance

vector and

clear/abort

signal

Glass cockpit

flight

director

display

Flight

computer

guidance

vector and

clear/abort

signal

Cruise/Pattern Identify runway Identify vertiport

Descent

Disambiguate alternatives,

eliminate taxiways, find

centerline, maintain tracking

over 3o descents (even if

runway out of sight)

Find centerpoint and bounds,

maintain tracking over 15o

descents (assume platform

stays in line of sight)

Final approach

Maintain tracking, identify

obstruction/clear at 150m

AGL

Maintain tracking, identify

obstruction/clear at 30 – 15m

AGL

Decision point

Decide to land/Abort at any

point including after

touchdown

Decide to land/Abort down to

flare

Go Around Maintain tracking until back in pattern

Relevant Operating Parameters

Number of

airfields
50’000 100’000

Distance 100 – 8000m 10 – 1000m

Altitude 800m AGL 150m AGL

Angle of view 160o

Time of day (sun

position)
3o below horizon and 3o after sunset (VFR definition)

Time of year Every month sampled

Visibility > 5km > 1km

Runways visible At most 1

Temporary

runway changes

Landing lights out, temporary

signs obstructing aircraft

Obstructing aircraft, person or

large object (box, plastic bag)

Table 4.1: Concepts of Operations (ConOps). Note that these are only meant to be an

illustration, in the scope of the report and, for example, do not address all possible sources of

uncertainty (e.g. other traffic, runway incursions, etc.).
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Camera 2448 x 2448px 512 x 512px

Pre-
processing

Tracking/
filtering

CNN
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Corners 
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Figure 4.1: System architecture overview (perception).

4.2 System description

This section describes and analyzes the system that performs visual landing guidance from

the above ConOps. It consists of traditional (non machine learning-based) software and a

neural network. A focus will be put on the machine learning components and their interactions

with the traditional software parts, since the existing certification guidelines can be followed

otherwise.

End-to-end learning The proposed system includes several smaller more dedicated, compo-

nents to simplify the design and achieve an isolation of the machine learning components.

This split will make the performance and safety assessments easier and more transparent (see

Chapters 8 and 9).

This is in contrast to recently proposed systems that attempt to learn complex behavior such

as visual landing guidance end-to-end, i.e. learning functions that directly map sensor data to

control outputs. While end-to-end learning is certainly an exciting area of research, it will not

be considered in this report for simplicity.

4.2.1 System architecture: perception

The system used in operation is shown in Figure 4.1 and consists of a combination of a camera

unit, a pre-processing component, a neural network and a tracking/filtering component.

Sensor The camera unit is assumed to have a global shutter and output 5 megapixels RGB

images at a fixed frequency.

Pre-processing The pre-processing unit reduces the resolution of the camera output to 512×

512 pixels and normalizes the image (e.g. so that it fits a given distribution). This is done

with “classical software” (i.e. no machine learning).

Neural network A convolutional neural network (CNN) as shown in Figure 4.2 is chosen as

the reference architecture for this document. The model’s input space X consists of 512×512

RGB images from a camera fixed on the nose of the aircraft. The model’s output space Y

consists of:

• A likelihood value (in [0, 1]) that the input image contains a runway;

• The normalized coordinates (e.g. in [0, 1]2) of each of the four runway corners (in a

given ordering with respect to image coordinates).

The model approximates the “ground truth” function f : X → {0, 1} × [0, 1]4×2 defined

similarly.

Such networks are usually called object detection networks. They are generally based on a fea-

ture extraction network such as ResNet [ResNet], followed by fully connected or convolutional

layers. Examples of such models (for multiple objects detection) are the Single Shot MultiBox
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...

Convolution + Pooling 
+ Activation

Input RGB Image
(512 x 512 x 3) PredictionsConvolution + Pooling 

+ Activation
Convolution + Pooling 

+ Activation
Corner Predictions + 

Uncertainty

Likelihood

Normalized
Coordinates

Figure 4.2: A generic convolutional neural network as considered in this report. This corre-

sponds to the red box in Figure 4.1.

Detector (SSD) [Liu+16], Faster R-CNN [Ren+15] or Mask R-CNN [He+17] (the first two

output only bounding boxes, while the third one provides object masks; our proposed model

outputs quadrilaterals corresponding to the detected object and therefore, lies in-between).

The neural network satisfies all hypotheses that will be made in Chapter 5. In particular, all

operations in the CNN are fully defined and differentiable, the network’s topology is a directed

acyclic graph (so that there are no recurrent connections), it is trained in a supervised manner,

and the whole system is non-adaptive, as defined in Section 2.6.

Post-processing (tracking/filtering) The tracking/filtering unit post-processes the neural

network output to:

• Threshold the runway likelihood output to make a binary runway/no runway decision;

• Reduce the error rate of the network, using information on previous frames, and eventually

on the movement/controls of the aircraft.

Similarly to pre-processing, this post-processing is also implemented with “classical software”.

4.2.2 System architecture: actuation

The second part of the system takes as input the output of the perception component, namely

an indication whether a runway is present or not, and corner coordinates (these are relevant

only if the runway likelihood is high enough). It then uses those to perform the actual visual

landing guidance described in Section 4.1, in full autonomy or for pilot advisory only.

As the report focuses on certification concerns related to the use of machine learning, the

actuation subsystem is not described further and assumed to be developed with conventional

technologies. Similarly, the Safety Assessment outlined in Chapter 9 will only consider the

perception system.

4.2.3 Hardware

Pre-/post-processing The pre- and post-processing software components described above run

on classical computing hardware (CPUs), for which existing guidance and standards apply.

Neural network While it is possible to execute neural networks on CPUs as well, circuits

specialized in the most resource-heavy operations (e.g. matrix multiplications, convolutions)

can yield significantly higher performance. This can be especially important for applications

requiring high resolution input or throughput.

Nowadays, this is mostly done using graphics processing units (GPUs), originally developed

for 3D graphics, even though there is an increase in the use of application-specific integrated
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circuits1 (ASICs) or field-programmable gate arrays (FPGAs). For example, a recent study

[WWB20] shows an improvement of 1-100 times on inference speed for GPUs over CPUs, and

1/5− 10 times for TPUs over GPUs on different convolutional neural networks, depending on

various parameters (see also Table 4.2).

An important part to prove the airworthiness of the whole system described in this chapter

would be to demonstrate compliance of such specialized compute hardware with [ED-80/DO-

254] and applicable EASA airborne electronic hardware guidance. This will not be addressed

in this report, which focuses on novel software aspects relevant to the certification of machine

learning systems.

Platform Peak TFLOPS Memory (GB)
Memory

bandwidth (GB/s)

CPU (Skylake 32 threads) 2 (single prec.) 120 16.6

GPU (NVIDIA V100) 125 16 900

ASIC (Google TPUv3) 420 16 3600

Table 4.2: Neural network inference hardware compared in [WWB20].

4.3 Notes on model training

The computational operations required to train a neural network are similar to those performed

during inference. Therefore, the observations made on hardware in Section 4.2.3 still apply, with

the difference that requirements are a bit less stringent: one needs to ensure the correctness

of computations, but the training hardware does not need to be airworthy itself.

A typical environment for training neural networks consists of a desktop computer equipped

with a GPU (e.g. NVIDIA K80 or P100), running a Linux-based operating system, with

device-specific acceleration libraries (such as CUDA and cuDNN), and a neural network train-

ing framework. Popular neural network frameworks are TensorFlow2, Keras3, PyTorch4, and

CNTK5. These are all open-source, i.e. their source code is publicly available.

System errors could be introduced through malfunctioning hardware or data corruption. This

is relevant to both the learned model and datasets used for training, validation, and testing.

Another risk could come from deliberate third-party attacks on the learning algorithm and/or

model in training. Adversarial attacks are popular examples to fool neural networks during

operation. During the design phase, one could imagine that malicious attackers obtain access

to the training machine and insert modifications (e.g. backdoors) to the resulting model.

Again, this report will not address these risks further and leave them for future work. Note

that they could for example be mitigated in part by performing evaluations on the certified

operational hardware once the training has finished.

Use of cloud computing It is very common nowadays for complex consumer-grade machine

learning models to be trained in the cloud, given the advantages provided by the hardware

abstractions of remote compute and storage (such as large amount of resources available,

1See for example Google’s Tensor processing units (TPUs): https://cloud.google.com/tpu/
2https://tensorflow.org
3https://keras.io
4https://pytorch.org
5https://github.com/microsoft/CNTK

https://cloud.google.com/tpu/
https://tensorflow.org
https://keras.io
https://pytorch.org
https://github.com/microsoft/CNTK
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lack of maintenance needs, etc.). Popular cloud providers include Google Cloud Platform6,

Amazon Web Services (AWS)7, and Microsoft Azure8. Each of them allows the creation of

virtual instances which provide access to a full operating system and hardware including GPUs

or ASICs for machine learning.

This would introduce additional challenges in a safety-critical setting. For example, the user

has no control over which specific hardware unit the training algorithms are executed on. The

hardware is (at least for the time being) not provisioned with any certifications or qualifications

relevant to safety-critical applications. In this setting, third-party attacks and data corruption

error are particularly important to keep in mind.

Hence, training safety-critical machine learning models in the cloud is not excluded per se,

but should be the subject of extended discussion and analysis (e.g. with respect to hardware

certification, cybersecurity, etc.), which are also left to future work.

4.4 Selection criteria

The use case and system presented in this chapter were chosen because they are a represen-

tative and at the same time a fairly simple example for a machine learning system in aviation.

In this setting, a human pilot has the following cognitive functions:

• Perception (processing visual input). The quality of the image input is equivalent to

perfect human vision in specified VFR conditions.

• Representation of knowledge (information organization in memory and learning/construction

of new knowledge from information stored in memory).

• Reasoning (computation based on knowledge represented in memory).

• Capability of communication and expression. This requires identification of the hu-

man/machine interface and communication protocol.

• Decision making: modeling of executive decisions (e.g. landing: yes/no, if no, go around

or diversion).

This report focuses on the emulation of the perception function.

6https://cloud.google.com
7https://aws.amazon.com
8https://azure.microsoft.com

https://cloud.google.com
https://aws.amazon.com
https://azure.microsoft.com
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Learning process

This chapter provides a background tour of the learning algorithms considered in this doc-

ument. The reader will obtain a more precise technical understanding that is fundamental

to comprehend the theoretical guarantees and challenges of the framework for Learning As-

surance described in Chapter 6. This chapter also provides formal definitions for supervised

and parametric learning and explains strategies to quantify model errors. While most of this

chapter applies to the broader use of general machine learning algorithms, it concludes with a

discussion of generalization behavior specific to neural networks.

For more detailed accounts of learning algorithms, the reader is referred to textbooks including

[LFD; ESL].

5.1 What is a learning algorithm?

The goal of a (supervised) learning algorithm F is to learn a function f : X → Y from an input

space X to an output space Y , using a finite number of example pairs (x, f (x)), with x ∈ X.

More precisely, given a finite training dataset

Dtrain = {(xi , f (xi)) : 1 ≤ i ≤ ntrain},

the goal of the training algorithm F is to generate a function (also called model, or hypothesis)

f̂ (Dtrain) : X → Y

that approximates f “well”, as measured by error metrics that are defined below. In the

following, we will use the notation

F(Dtrain) = f̂
(Dtrain), (5.1)

with the meaning “the model f̂ (Dtrain) is the result of learning algorithm F trained on dataset

Dtrain”.

With a slight abuse of notation, we will also refer to F as a set of possible models produced

by the learning algorithm F , sometimes called hypothesis space:

f̂ ∈ F .

Error metrics The pointwise quality of the approximation of f by f̂ is measured with respect

to a predefined choice of error metric(s) m : Y → R≥0, demanding that

m
(
F(Dtrain), f (x)

)

28
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be low on all x ∈ X. These will not be simply called “metrics” to emphasize that “lower

value means better performance”, nor “losses” to make a distinction with the losses that are

introduced below.

For example, if Y is a subset of the real numbers, one could simply use the absolute values

(resp. squares) of differences m(y1, y2) = |y1 − y2| (resp. (y1 − y2)
2). For further illustrations

in the context of the ConOps, see Sections 5.2.5 and 8.1. In particular, these will explain that

several error metrics can and should be used.

Generalizability Most importantly, the goal is to perform well on unseen data from X during

operation (and not simply memorize the subset Dtrain). This is called generalizability.

Design phase The process of using Dtrain to obtain f̂
(Dtrain) from F is called the training phase.

The design phase of a final model f̂ (Dtrain) comprises of multiple rounds of choosing learning

algorithms, training them, and comparing them using validation datasets (see below).

The models that will be considered are parametric , in the sense that the algorithm F chooses

the model f̂ from a family {f̂θ : X → Y : θ ∈ Θ} parametrized by a set of parameters θ. For

neural networks, θ would include the weights and biases. The choice of θ is usually done by

trying to minimize a function of the form

J(θ) =
1

|Dtrain|

∑

(x,f (x))∈Dtrain

L
(

f̂
(Dtrain)
θ

(x), f (x)
)

,

where L is a differentiable loss function that is related or equal to one or several of the error

metrics m. Usually, the loss function acts as a differentiable proxy to optimize the different

error metrics.

For binary classification tasks (i.e. the number of output classes is two), a popular loss function

is binary cross-entropy:

L(ŷ , y) = CE(ŷ , y) = −y log (ŷ)− (1− y) log (1− ŷ), (y , ŷ ∈ [0, 1]). (5.2)

Hyperparameters In addition to the learned parameters θ, the algorithm F might also come

with parameters, called hyperparameters. For the widely used gradient descent minimization

algorithm, the learning rate is an important hyperparameter.

Validation dataset A second dataset, the validation dataset

Dval = {(xi , f (xi)) : 1 ≤ i ≤ nval},

disjoint from Dtrain, is used during the design phase to

• monitor the performance of models on unseen data, and

• compare different models (i.e. different choices of θ).

For example, an algorithm simply memorizing Dtrain would certainly perform badly on Dval.

Note that Dval is not used explicitly by the algorithm, but the information it contains might

influence the design of the model, leading to an overestimation of the performance on unseen

data. To illustrate this, an extreme example would involve tweaking F at each round of the

design phase depending on the validation scores. This would essentially become equivalent to

using Dval as a training set.

Test dataset To get a more precise estimation of generalizability (and hence of performance

during the operational phase), remedying the issue just mentioned, the final model is evaluated

on a third disjoint dataset, the test dataset

Dtest = {(xi , f (xi)) : 1 ≤ i ≤ ntest}.
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Figure 5.1: The training, design, and operational phases of a learning algorithm. See also the

development life-cycle exposed in Section 6.1.

As Section 6.2.9 will explain, Dtest should also be disjoint from Dval and Dtrain. Importantly,

Dtest should be kept hidden from the training phase, i.e., it should not influence the training

of the model in any manner.

Operational phase During the inference or operational phase, the model can be fed data and

make predictions. It is important to note that once a model has been obtained during the

design phase, it will be frozen and baselined. In other words, its behavior will not be changed

in operation.

5.2 Training, validation, testing, and out-of-sample errors

In this section, different types of errors are considered. These will allow to understand a model’s

behavior on both known and, to a possible extent, on unknown data (i.e. data it will encounter

during operation).

5.2.1 Probability spaces

To be able to quantify performance on unseen data accurately, X is equipped with a probabil-

ity distribution P , yielding a probability space1 X = (X, P ), so that more likely elements are

assigned a higher probability. When evaluating and comparing learning algorithms, worse per-

formance on more likely elements will be penalized more strongly. As described later, identifying

the probability space corresponding to the target operational scenario is essential.

5.2.2 Errors in data

In a real-world scenario, the pairs (xi , yi) in the training, validation, and test datasets might

contain small errors coming from sources such as annotation mistakes or imprecisions in mea-

surements arising from sensor noise. Namely, one rather has2

yi = f (xi) + δi

1The σ-algebra of events will be left implicit for simplicity.
2For the sake of simplicity, the focus is put here on additive errors. Advanced texts would consider the joint

distribution of (x, y).
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for some small but nonzero δi ∈ R
t , assuming that Y ⊂ Rt for some t ≥ 1 (as will be assumed

from now on). These δi are typically modeled as normal independent variables with mean zero

and common variance σ2.

This aspect will be addressed in detail in Section 6.2.3.

5.2.3 In-sample errors

The training error of a model f̂ : X → Y with respect to an error metric m is defined as the

mean

Ein(f̂ , Dtrain, m) =
1

|Dtrain|

∑

(x,f (x))∈Dtrain

m
(
f̂ (x), f (x)

)
,

and the validation and testing errors Ein(f̂ , Dval, m), Ein(f̂ , Dtest, m) are defined similarly. These

are called in-sample errors.

5.2.4 Out-of-sample errors

The out-of-sample error (or expected loss) of a model f̂ , with respect to an error metric m,

can be measured formally by the expected value3

Eout(f̂ , m) = Eδ,x∼X
[
m

(
f (x) + δ, f̂ (x)

)]
,

with the expectation taken over the distribution of the input space X and the errors δ.

Given a dataset size n, one can also consider the average

Eout(F , m, n) = ED∼X n
[
Eout (F(D), D,m)

]
, (5.3)

over all datasets D obtained by sampling n points independently from X , where F(D) = f̂ (D)

is the model resulting from training F on D.

One would generally have

Ein (F(Dtrain), Dtrain, m) < Ein (F(Dtrain), Dval, m) < Ein (F(Dtrain), Dtest, m)

< Eout (F(Dtrain), m) ,

and a desirable property is to have all inequalities as tight as possibly because it would imply

that the performance on unseen data (during the operational phase) can be precisely estimated

during the design phase (see Section 5.3 on generalizability below).

5.2.5 Example

This section gives an example of the above in the context of the ConOps from Chapter 4.

As described in Section 4.2.1, the input space X consists of 512 × 512 RGB images from

a camera fixed on the nose of the aircraft (with the image distribution depending on the

conditions/locations where the plane is expected to fly), while the output space is Y = [0, 1]×

[0, 1]4×2. The goal is to obtain a model f̂ : X → Y approximating the function f : X → Y

indicating the presence or not of a runway in the input image, and the corner coordinates if

relevant.

3Here, E denotes the expected value of a random variable, and x ∼ X denotes a random variable sampled

from the probability space X .
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Datasets A large representative dataset of images x ∈ X in the operating conditions is col-

lected, and the “ground truth” f (x) is manually annotated. Care is given to cover all parameters

correctly (see Sections 6.2.7 and 6.2.8), particularly those that correlate with the presence of a

runway. Splitting the resulting set of pairs (x, f (x)) randomly with the ratios 70%–15%–15%

yields training, validation, and test datasets Dtrain, Dval, Dtest respectively.

Error metric The error metric m has to take into account both the runway presence likelihood,

and the corner coordinates prediction. A linear combination of the cross-entropy (5.2) and the

L2 (Euclidean) norm could be used:

m(f̂ (x), f (x)) := f0(x)
∑

1≤i≤4

‖f̂i(x)− fi(x)‖+ λ · CE(f̂0(x), f0(x)),

where λ > 0 is a parameter to determine during the design/training phase, and

f = (f0, . . . , f4) ∈ {0, 1} × [0, 1]
2 × · · · × [0, 1]2,

f̂ = (f̂0, . . . , f̂4) ∈ [0, 1] × [0, 1]
2 × · · · × [0, 1]2,

with f̂0 the runway presence likelihood and f̂1, . . . , f̂4 the corner coordinates (similarly for the

ground truth f ).

Note that one could also compare the two runway masks using the Jaccard distance; see

Section 8.1 for a discussion of different metrics.

Design phase An algorithm is selected, as described in Section 4.2.1. For example, a first round

gives a model f̂ with a validation error Ein(f̂ , Dval, m) of 0.20. A subsequent modification of

the algorithm yields another model f̂ with a lower validation error Ein(f̂ , Dval, m) = 0.15. This

second model is chosen as the end result of the design phase, fixed and baselined.

Verification phase The fixed model is evaluated onDtest, and gives an error of Ein(f̂ , Dtest, m) =

0.17. This gives further evidence that the performance that will be observed during operation

is close to the performance measured during the design phase.

Operational phase The average error observed during the operational phase (say on ten 5-

minute runway approaches, after a posteriori data annotation) is 0.18. Section 8.2.1 addresses

system evaluation details.

This example illustrates that both in-sample and out-of-sample errors can be measured, re-

spectively estimated. One observes that, in line with (5.4), the errors vary slightly between

the different datasets and during operation. Assuming that the different datasets were pre-

pared and used according to the requirements for Dataset correctness (Section 6.2), these

observations provide an estimate of how the model performs on unseen data.

This motivates an investigation of methods to determine the model’s generalization perfor-

mance more rigorously which will be discussed in the following section.

5.3 Generalizability

As already mentioned in Section 5.1, a learning algorithm could simply memorize4 the train-

ing data and therefore perform very poorly on validation or test data. A fundamental task

of machine learning, which if neglected can pose severe safety risks during the operational

phase, is to assess model performance on previously unseen data. The ability of a learning

algorithm to produce models that perform well on unseen data is referred to as generalizability,

or generalization capacity.

4In machine learning, the term “memorization” is always used as a synonym of “overfitting”.
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In the context of safety-critical systems, to guarantee good generalizability, an estimation of

the out-of-sample errors (Section 5.2.4) is required. This section will review the concept of

generalization gap as a means to characterize the difference in model performance during design

and operational phases.

5.3.1 Definitions

For the sake of structural clarity, we first provide the definitions that will be used throughout

the text. These notions will be put into the context of a concrete example in the following

sections.

Generalization gap Ideally, the in-sample errors (i.e. the errors computed during the design

phase) should be a good approximation of out-of-sample (i.e. operational) errors; however, the

former will usually underestimate the latter. The generalization gap of a model f̂ with respect

to an error metric m and a dataset D is illustrated in Figure 5.2 and can be defined as the

difference:

G(f̂ , D) =
∣
∣Eout(f̂ , m)− Ein(f̂ , D,m)

∣
∣ . (5.4)

Note that in the equation above, the in-sample error Ein can be computed exactly during the

design phase, while Eout is an average over the unknown true distribution and can only be

estimated (after the design phase).

Dataset samples

True data

distribution

Empirical loss

(known)

Expected loss

(unknown)

Losses

generalization gap

Samples

Probabilities

Figure 5.2: In-sample error Ein (empirical loss), out-of-sample error Eout (expected loss), and

the generalization gap between them. The difficulty in guaranteeing any bounds on the latter

raises from the fact that the true distribution is unknown and can only be estimated.

An important objective would be to ensure during the design phase that the generalization gap

is low, which can be used as a guarantee of robust performance during the operational phase,

given that the in-sample error is small. We will address this objective in more detail in the

subsequent sections.

Average model Let F be a fixed learning algorithm to learn a model for a function f : X → Y .

Recall (5.1) that for every dataset D ⊂ X , a model f̂ (D) is obtained by training F on D, i.e.

f̂ (D) = F(D).
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Let us define a function f n : X → Y by
5

f n(x) = ED∼X n
[
F(D)(x)

]
(x ∈ X),

where the average over D is as in (5.3). The average model is mostly a theoretical tool which

is not possible to compute in most cases. Intuitively, the average model can be interpreted as a

“theoretically idealized” model which one could produce by training algorithm F on all possible

datasets of size n.

Bias The quantity bias(F , n) named bias is the average over all points x ∈ X of the difference

between the average model and the target function, that is6

bias2(F , n) = Ex∼X

[(
f n(x)− f (x)

)2
]

.

Intuitively, the bias of a learning algorithm can be interpreted as a measure of how well the

average model deviates from the true one and thus is a measure of model quality. One wants

to make the bias small to have the average model close to the true function f .

Variance First, for every fixed x ∼ X , the variance of F : D 7→ f̂ (D) is the average distance

to the value of the average model f n:

var(F , n, x) = ED∼X n
[(
f̂ (D)(x)− f n(x)

)2
]

.

Second, averaging this quantity over all x ∼ X gives the variance of the learning algorithm

var(F , n) = Ex∼X
[
var(F , n, x)

]
.

Intuitively, variance of a learning algorithm can be interpreted as a measure of its fluctuations

around the average model and thus reflects how stable it is.

5.3.2 Classical ML – Risks

In this section, examples of problems that are related to generalizability in the setting of classical

machine learning will be discussed. The setting of deep neural networks as a special case will

be presented in the subsequent sections.

Bias-variance (approximation-generalization) trade-off As discussed before, in supervised

learning, one typically wants to obtain a model that can both capture the important char-

acteristics of the dataset and at the same time generalize well to unseen data. Conventional

knowledge tells us that it is typically impossible to achieve both simultaneously. This is often re-

ferred to as the approximation-generalization trade-off or bias-variance trade-off as illustrated

in Figure 5.3. One has (see e.g. [LFD, Section 2.3]):

Eout(F , m, n) = bias
2(F , n) + var(F , n) + var(δ), (5.5)

if the random error δ has mean zero, and is independent from x ∼ X . The third term is

usually called irreducible error , since it does not depend on the learning algorithm. It originates

from the errors in data (see Section 5.2.2). The whole decomposition is called bias-variance

decomposition.

5Here, E denotes the expected value of a random variable, with the subscript indicating the variable and

the probability space. In other words, this is an average (possibly over infinitely many elements), taking into

account the likelihood of each event/set of events.
6Some authors (e.g. [LFD]) also alternatively define the bias to be Ex∼X

[

(

f n(x)− f (x)
)2
]

, i.e. the square

of bias(F , n) as defined here.
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Model complexity

Er
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Error

Figure 5.3: Bias-variance trade-off. As the model becomes more complex, it can fit the data

better (i.e. bias decreases) but will become very sensitive to it (i.e. variance increases). Both

facts yield a specific error curve shape (red).

Then, for a fixed irreducible error:

• a high bias means poor approximation of the target, which also means large in-sample

error Ein, while

• a high variance means poor generalization, since small fluctuations in the training data

might lead to large variations in the final model on testing data.

Both bias and variance pose a risk for the operational phase and should be mitigated. For

many machine learning algorithms one can observe that reducing the bias leads to increased

variance and reducing the variance leads to increased bias.

Associated risks Simple models usually have high bias and low variance (sometimes called

underfitting), while more complicated ones have lower bias, but higher variance (sometimes

called overfitting), as illustrated in Figures 5.3 and 5.4. This can easily be observed by taking

the simple case where the algorithm F chooses among a finite set of models:

• When F contains a single model, the variance will be zero, but the bias might be large

if the single model does not approximate well the target;

• When F contains many models, the bias should be smaller, since there is more flexibility

to find a model that approximates f well, but the variance will be non-zero.

Both overfitting and underfitting come with risks: overfitting will lead to models that do not

generalize well, while underfitted models will not achieve a satisfactory performance. A trade-

off between these two extremes must be reached, depending on the performance and safety

requirements.

Domain bias (shift) The hypothesis that the dataset is independently sampled from the input

space X (in particular, with the right probability distribution) is extremely important for these

theoretical results to apply. The operational performance of a model can significantly decrease

if the dataset is sampled from a different distribution, even if the two distributions seem similar

to a human observer. This phenomenon will for example happen if the model is used on a

different input space than the one planned initially.

Associated risks Following [Hof+16], several levels of domain shifts could be envisioned, for

example:

1. City to city (small/medium shift);
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Figure 5.4: Given samples (blue dots) from a function (in orange), three models (in blue) that

underfit (left), overfit (right), or provide a good trade-off (center).

2. Season to season, in the same city (small/medium shift);

3. Synthetic to real images (large shift; see also Section 7.2).

For example,

• Chen et al. [Che+17] observe a drop of 25-30% mean Intersection over Union (IoU;

see Figure 8.3) (higher scores being better here) when a semantic segmentation7 model

trained on cities in Germany and Switzerland (the Cityscapes dataset) is used to make

predictions on similar scenes in Rome, Rio, Taipei and Tokyo;

• Similarly, a segmentation model trained by Handa et al. [Han+16] on synthetic 3D data

achieves a global accuracy of only 54% on the dataset of real images NYUv2 [Sil+12],

while further training increases this number to 68% (the best result at the time being

69.5%).

Note that some of the domain shift comes from the fact that most training data is gathered

under natural conditions (called “human filter” in [KKB19, Sec. 2.2.5]) and it is often difficult

or even impossible to obtain data for highly non-standard operational conditions (e.g. for

emergency landings in marginal visual weather or unusual approach angles), see Figure 5.5 for

illustration.

5.3.3 Classical ML – Mitigation (Theory)

The field of statistical learning theory (SLT) has a two-fold objective:

1. It provides ways to obtain well-generalizing machine learning models, and

2. it provides the means to guarantee bounds on the generalization gap (5.4) (see Fig-

ure 5.2). In other words, it makes the statement that predicting unseen data accurately

from a finite training sample is possible.

This section mainly focuses on the second objective, because guaranteeing performance bounds

is more crucial for the use of machine learning in safety-critical settings. It will first focus on the

classical ML algorithm setting before exploring approaches to mitigate risks specific to neural

networks.

7Semantic segmentation of an image means to classify each of the image’s pixels into a predefined set of

class labels (e.g. road, tree, unknown, etc.).
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(a) Normal operation (b) Non-standard operation mode

(marginal weather)

(c) Non-standard operation mode

(geometry)

Figure 5.5: Domain bias due to inherently non-standard conditions. Example of a final approach

to a runway (see Table 4.1, “ConOps”). (a): Most data is naturally coming from standard

approaches under standard VFR conditions. (b, c): Operational domain shift due to marginal

weather or non-standard approach angles, often irreducible due to the inherent danger of

obtaining such data.

Learning algorithm F

Data X Independent Dependent

Independent Bounding G(. . .) uniformly

over all possible models and

for worst-case datasets: VC-

dimension bounds [VC71]

—

Dependent Bounding G(. . .) uniformly

over all possible models

and for particular dataset:

Rademacher complexity

[BM03]

PAC-Bayesian bounds on

weighted G(. . .) based on

distributional information over

learned models [McA03].

Table 5.1: Summary of theoretical approaches to bounding the generalization gap (5.4). Such

approaches can be dependent on the properties of the data (X ) or the learning algorithm

(F). Exploiting information in the data leads to tighter bounds but makes such bounds use

case-specific.

Guarantees on generalization gap Ensuring theoretical guarantees on the generalization

gap (5.4), also called generalization bounds, has a rich history starting with seminal work

by Vapnik and Chervonenkis [VC71], who established the relation of the generalization capabil-

ity of a learning algorithm with its hypothesis space complexity. Various forms of such bounds

have been derived since then. This section provides a brief overview of them and discusses the

underlying assumptions of each approach.

A generalization bound is by its nature a probabilistic statement with the probability taken over

possible datasets of a fixed size drawn from X . Because of this, such bounds usually output a

probability tolerance δ ∈ (0, 1) for some given generalization gap tolerance ε:

PD∼X |D|
(∣
∣Eout(f̂ , m)− Ein(f̂ , D,m)

∣
∣ < ε

)

> 1− δ. (5.6)
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This yields a more common, “inverted” (i.e. solved for generalization gap tolerance ε while

probability tolerance δ is considered given) form of generalization bounds, which is given below

and used throughout the section:

with probability > 1− δ
︸ ︷︷ ︸

“Probably”

: G(f̂ , D) < ε(δ, |D|, . . . )
︸ ︷︷ ︸

“Approximately Correct”

. (5.7)

The above form is related to Probably Approximately Correct (PAC)-learning setting. The

ingredients behind “. . . ” are dependent on a specific bound, and there are several approaches

for deriving such bounds. For instance, they may or may not rely on knowing the underly-

ing distribution of X , or properties of the learning algorithm F . These types of bounds are

summarized in Table 5.1 and discussed in detail below.

The bounds listed below represent involved theoretical results, however they all manifest an

intuitive idea: models that are more complex are more prone to overfitting and generalize

worse. While the precise meaning of “complex” varies, all bounds have a complexity term on

the right-hand side which controls looseness. It is worth comparing that with the approximation-

generalization trade-off showcased in Section 5.3.2, which identifies learning algorithm variance

as an “overfitting term”.

As the reader will see below, all bounds roughly follow the specific form

with probability > 1− δ,

and for any model f̂ ∈ F : G(f̂ , D) ≤

√

func(model class F complexity) + log(1/δ)

|Dtrain|
.

(5.8)

Note the inverse dependence on the dataset size |Dtrain|, which implies that the more data one

has at hand, the tighter the gap becomes:

G(f̂ , Dtrain)→ 0 as |Dtrain| → ∞.

Below, several of the most prominent types of bounds are outlined.

• Data-independent, algorithm-independent bounds:

This class of bounds was the first to be derived by Vapnik and Chervonenkis [VC71] who

related the gap to the complexity of the class of possible models,

(a) without any explicit information about the learning algorithm (e.g. uniformly over

all possible models) and

(b) independently of the underlying data distribution.

The most important ingredient of this type of bounds is the hypothesis space complexity

expressed in terms of VC-dimension dvc. Informally, VC-dimension defines how “powerful”

the models are in their ability to fit any data8. Intuitively, this makes sense: the more

complex patterns the model class is able to fit, the more it will overfit, hence the bound

will be higher.

• Data-dependent, algorithm-independent bounds:

The notion of VC-dimension does not take into account properties of a particular dataset,

hence yielding worst-case generalization bounds. However, using dataset information, i.e.

8E.g. for the binary classification task, the VC-dimension is the maximal amount of points that can be

arbitrarily labeled by a given set of classifiers. In this sense, linear classifiers have VC-dimension of 3, while more

powerful quadratic classifiers have VC-dimension of 4. Note that the VC-dimension is data-independent.
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exploiting the structure of the data, can help in tightening such bounds. This can be

captured through a more modern measure of complexity which is data-dependent, for

example the Rademacher complexity [cf. BM03]. Omitting technical details9, one can

informally define Rademacher complexity R(F , D) as an ability of a class of models F

to fit the dataset D.

• Data-dependent, algorithm-dependent bounds:

Finally, one can take into account the distributional properties of the learning algorithm

F . An example of such an approach is the PAC-Bayesian framework [McA03]. Informally,

it operates with distributions over models, which involve

(a) a prior distribution PF , i.e. the one chosen before seeing any data and defining what

is the designer’s belief about the complexity of possible solutions to the problem;

(b) a posterior distribution QF , i.e. the distribution of the learned models once seeing

the data.

Typical PAC-Bayesian bounds then enjoy the advantage of being both data- and algorithm-

dependent through PF , QF and the measure of complexity, expressed as a Kullback–

Leibler-divergence KL(QF ||PF). The prior PF defines the foreseen complexity of the

model class, while the posterior QF determines the complexity of the models trained on

given data. The discrepancy KL(QF ||PF) between the two naturally explains how much

complexity is added by observing the data.

Theoretical guarantees using validation Section 5.3.5 below will explain that, in the current

state of knowledge, the values of the generalization upper bounds ε(δ, |D|, . . . ) (cf. (5.7))

obtained for large models (such as neural networks) are often too loose without an unreasonable

amount of training samples.

However, sharper bounds can be obtained during the validation phase (introduced in Sec-

tion 5.1). Assuming that r models f̂1, . . . , f̂r (trained on Dtrain) are considered during validation,

one can can derive bounds similar to the above, where the dependency in δ is only logarithmic,

and there is no dependency on the complexity of the underlying model. The key is that the

in-sample error is now computed over the validation set. This would require to have a large

validation dataset in addition to the training dataset.

For the use case in this report, the size of such a validation dataset is determined in the analysis

in Section 9.5.

5.3.4 Classical ML – Mitigation (Practice)

Mitigating high model bias/variance As mentioned above, high model bias and variance

contribute to suboptimal performance. One can see from (5.5), that it is important to both

estimate and minimize them in order to be able to guarantee good out-of-sample (see Sec-

tion 5.2) performance.

An individual analysis and mitigation of the three terms in (5.5) can provide a better under-

standing of the weaknesses of an algorithm (or dataset) and give stronger safety evidence. It

can also serve as a decision factor in the choice of a model during the design phase: one would

aim for a model whose complexity is high enough to provide a low bias, but not too high as to

cause a high variance.

However, determining bias(F , n) and var(F , n) is not possible in practice since it would require

full knowledge of the ground truth X and the class of all possible models. However, these

terms can be estimated using random resampling methods:

9For precise formulation, refer e.g. to [BM03].
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• Bootstrapping: a class of methods that was introduced by Efron [Efr79] consists in

resampling B “bootstrapped” datasets Di uniformly with replacement from the given

dataset D and training on them. This process produces several models

F(D0), . . . ,F(DB),

which can be used to estimate var(F , n) with good accuracy for a broad family of data-

generating distributions [Efr79].

• Jackknife: a method (see [Efr82]) that consists in sequentially removing a single dat-

apoint from the dataset D and re-training on such a “reduced” version of the original

dataset. The method can be used to both produce an average model with reduced

bias(F , n) and simultaneously estimate var(F , n).

Regularization When working with complex models (such as neural networks), regularization

is often needed to prevent overfitting. A common and simple method for parametric models

is to set constraints on the size of the parameters (which can otherwise take any real value).

The intuition behind this regularization method is that models with smaller weights are less

complex and therefore generalize better. See for example [ESL, Sections 2.8.1, 3.4, Chapter

5].

Mitigating domain bias For solutions towards using models in the presence of domain shift,

see also Section 7.1 on transfer learning.

5.3.5 Deep Learning – Risks

This section is devoted to bringing examples of possible shortcomings of classical approaches

(e.g. outlined in Section 5.3.3) when applied to neural networks.

Neural networks are usually highly overparametrized, in the sense that they contain many more

parameters than training samples are available. From a “classical” perspective, this would

mean that the hypothesis space is extremely rich, allowing to easily overfit to any data. For

example, the ResNet101 model [ResNet] contains over 44 million trainable parameters, while

the ImageNet [ImageNet] and CIFAR-10 [CIFAR10] datasets contain respectively 14 million

and 60’000 images.

As mentioned and discussed below, despite overparametrization and thus high risks of overfit-

ting, neural networks still generalize well.

Classical generalization bounds applied to neural networks As one has seen from (5.8),

any such bound where the complexity function is at least linear in the number of parameters

will not be usable in practice. This is for example the case for the VC-dimension bounds.

In their seminal paper [Zha+17], Zhang et al. also showed that deep neural networks can

memorize the training data (in this case [CIFAR10; ImageNet] or random noise), by achieving

zero training error on the datasets paired with random labels. In this case, the expected test

error is not better than random guessing. Zhang et al. additionally show theoretically that a

two-layer neural network with 2n+d parameters is enough to memorize a training set of size n

in dimension d . This also shows that the Rademacher complexity is close to maximal, implying

that bounds based on it will be converging slowly, thus requiring extensive amounts of data to

become practical.

Good generalizability of neural networks trained on little data The fact that deep neural

networks still generalize well in practice poses a risk of uncontrollable generalizability.

In the context of this chapter, the uncontrollable generalizability means that despite good

(much better than classical ML algorithms) generalization performance in practice, the as-
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sociated theoretical generalization bounds (5.7) are large, which renders them unusable to

theoretically guarantee, and hence control, generalization performance.

It is important to note that the ability to overfit or to fit random data alone doesn’t imply poor

generalizability, but merely that existing approaches are not sufficient to capture this fact10.

Many different approaches to explain the generalization behavior of neural networks have been

proposed since, for example using margin distributions. Essentially, margins measure how

much the input has to be altered to change the output classification and it is believed that

large margins indicate good generalization behavior. They play an important role in the SVM

models. For example, they have recently been used by Bartlett et al. [BFT17] to derive

upper generalization bounds, by Jiang et al. [Jia+19] to estimate the generalization gap, or

by Lampinen and Ganguli [LG19] in the setting of deep linear networks (deep neural networks

with linear activation functions).

5.3.6 Deep Learning – Mitigation

Theoretical approaches Several approaches are worth highlighting in this section, similar

to Section 5.3.3:

• Vapnik–Chervonenkis type bounds:

Recent advances in applying the VC-type bounds resulted in work by [Bar+19] which

derives practical bounds by using a corrected definition of VC-dimension for the case of

neural networks.

• Model compression bounds:

Another promising approach is that of model compression11. The basic idea is that of

Occam’s Razor: if a complex model can be replaced by a simpler one, up to some small

admissible error, it might be possible to obtain stronger generalization bounds on the

simple model. Before theoretical considerations, the idea of reducing the complexity

of models has been very popular for applications of machine learning in low resources

scenarios (e.g. local inference on smartphones), see the survey [Che+18].

• PAC-Bayesian bounds for NNs:

Recent advances in PAC-Bayes bounds that are usable for neural networks include the

work by Dziugaite and Roy [DR17], where the authors optimize the original PAC-Bayes

bound directly and show that one can bound the generalization gap of a two-layer stochas-

tic neural network.

A stochastic neural network (or stochastic ensemble) can be seen as a family of neural

networks with a probability distribution Q, where a random model is selected at each

evaluation according to Q (see Section 5.3.3). One might get stronger generalization

bounds for stochastic neural network than for single models, which intuitively makes

sense, but the trade-off is that inference is not deterministic anymore.

• Hybrid model compression/PAC-Bayesian bounds:

The recent work of Zhou et al. [Zho+19] gives PAC-Bayesian bounds valid for any com-

pression algorithm, obtained by setting a prior that assigns more weight to models with a

10This phenomenon is not new to neural networks. Some classical machine learning algorithm have the same

behavior, for example the k-nearest neighbor (k-nn) algorithm. The latter predicts the outcome of an unseen

data point x by using the majority vote based on the training data of the k nearest neighbors of x . By definition,

it therefore memorizes the entire dataset, but is still able to generalize to unseen data. For more on that, the

reader is referred to [CH67].
11There is earlier work considering data compression as well, see e.g. [LW86].
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small compression. Like PAC-Bayesian bounds, the bounds apply only to a whole stochas-

tic ensemble, but the results obtained with a simple pruning/quantization compression

are usable in practice both for MNIST and ImageNet, unlike previous works (including

[Aro+18]).

The reader is also referred to [JGR19] for a comprehensive and up-to-date survey of general-

ization bounds for deep neural networks.

Practical approaches From a practical perspective, regularization (introduced in Section 5.3.2)

in various forms is still important to prevent overfitting (and hence improve generalization).

Common methods that can be applied during training are:

• Bounding the sizes of the weights/bias as in simpler models (e.g. ℓ1, ℓ2 regularization);

• Activation dropout [Sri+14], that sets to zero certain neuron activations at each step,

leading to implicit model averaging, see Section 6.3.3. More generally, ensemble methods

(see [ESL, Chapter 16]);

• Data augmentation (see Section 7.2 below) is an implicit method;

• Batch normalization [Luo+19] has been shown to have a regularizing effect;

• Early stopping, namely stopping the training process as validation scores stop improving.

5.3.7 Conclusion

Generalization is a key aspect for building robust machine learning models. Without it, models

simply memorize training samples but cannot make predictions on unseen data during operation.

This chapter showed that theoretical guarantees of generalization can be established for deep

neural networks and that two approaches can be identified:

1. (Training/model complexity approach) This approach applies generalization bounds as

described earlier in this chapter. They depend in particular on the complexity of the

model architecture/algorithm F and/or information on the training process/data. These

bounds usually show that

PDtrain∼X |Dtrain |
(

|Ein(f̂
(Dtrain), Dtrain, m)− Eout(f̂

(Dtrain), m)| < ε
)

> 1− δ(ε,F , n,m).

However, these bounds are sometimes too loose to explain the generalization behavior

of neural networks: they generalize better than the bounds predict, given the fairly

high complexity (e.g. with respect to the number of parameters) of neural networks.

Understanding this phenomenon and finding tighter bounds is an area of active research

and one expects more results in the future.

2. (Validation evaluation-based approach) This approach does not rely on the model com-

plexity, but only on the performance on the validation dataset.

The advantage of this approach consists in the fact that dependency of the generalization

bound on the probability tolerance δ (see (5.8)) is only logarithmic, so that one might

easily make δ very small, at the price of a reasonable increase in the size of the validation

dataset.

For the use case in this report, the size of such a validation dataset is determined in the

analysis in Section 9.5.
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Chapter 6

Learning Assurance

Following from the theoretical considerations in the previous chapter, a framework that could

provide a viable path to Learning Assurance is now presented. For any type of safety-critical

application, Learning Assurance needs to impose strict requirements on the datasets used

for development, the development process itself, and verification of the system behavior both

during development and operation. In fact, [ED-12C/DO-178C, Section 6.0] says that “veri-

fication is not simply testing. Testing, in general, cannot show the absence of errors”. Thus,

for some aspects of Learning Assurance, this chapter will formulate stricter requirements than

what is known from traditional Development Assurance.

6.1 Learning Assurance process overview

An outline of the Learning Assurance process can be defined using a typical V-shaped devel-

opment cycle in which specific steps are added to cover aspects pertaining to the learning

processes. These additional steps are related to the data life-cycle management as well as to

the training phase and its verification. As a result, the V-shaped cycle becomes a W-shaped

cycle as shown in Figure 6.1.

Figure 6.1: W-shaped development cycle for Learning Assurance.
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Requirements management and verification The requirements management and require-

ments verification processes are considered to be covered by traditional system development

methods (e.g. [ED-79A/ARP4754A]).

The novel Learning Assurance processes start below the dotted line. It is however important

to note that this dotted line is not meant to split specific assurance domains (e.g. sys-

tem/software).

Data management The data management process is the first step of the data life-cycle

management. It covers the identification of the various datasets used for training and evaluation

(typically the training, validation, and test datasets) and the dataset preparation (including

collection, labeling and processing). It also addresses the validation objective of completeness

and correctness of the datasets with respect to the product/system requirements and to the

ConOps, as well as considerations on the quality of the datasets. Finally, it should cover

objectives on the independence between datasets and an evaluation of the bias and variance

inherent to the data.

Learning process management The learning process management considers the preparatory

step of the formal training phase. It drives the selection and validation of key elements such as

the training algorithm, the activation function, the loss function, the initialization strategy, and

the training hyperparameters, which all have the potential to influence the result of the training

in terms of performance. Another consideration is on the training environment, including the

host hardware and software frameworks, whose selection should be recorded and analyzed for

potential risks. The metrics that will be used for the various validation and verification steps

should be selected (derived from the requirements) and justified.

Model training The training consists primarily of executing the training algorithm in the con-

ditions defined in the previous step, using the training dataset originating from the data man-

agement process step. Once trained, the model performance, bias and variance are evaluated,

using the validation dataset.

Learning process verification The learning process verification then aims at evaluating the

trained model performance on the test dataset. An evaluation of the bias and variance of

the trained model should be performed, as well. The training phase and its verification can be

repeated iteratively until the trained model reaches the expected performance. Any shortcoming

in the model quality can lead to iterate again on the data management process step, by

correcting or augmenting the dataset.

Model implementation Themodel implementation consists of transforming the training model

into an executable model that can run on a target hardware. The environment (e.g. software

tools) necessary to perform this transformation should be identified and any associated assump-

tions, limitations or optimizations captured and validated. Any optimization (e.g. pruning,

quantization or other model optimizations) should be identified and validated for its impact

on the model properties. The inference hardware should be identified and peculiarities associ-

ated with the learning process managed (e.g. specificities due to GPU usage, memory/cache

management, real time architecture).

Inference model verification The inference model verification aims at verifying that the in-

ference model behaves adequately compared to the trained model, by evaluating the model

performance with the test dataset and explaining any differences in the evaluation metric com-

pared to the one used in the training phase verification (e.g. execution time metrics). This

process step should also include a verification that the model properties have been preserved

(e.g. based on the implementation analysis or through the use of formal methods) and any

differences explained. Finally, it includes typical software verification steps (e.g. memory/stack

usage, WCET, . . . ) that could be strictly conventional (e.g. per [ED-12C/DO-178C]) but for
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which any specificity linked to the learning approach should be identified and managed.

Data verification The data verification step is meant to close the data management life-cycle,

by verifying with independence that the datasets were adequately managed.

6.2 Dataset management and verification

Section 5.3 introduced theoretical results bounding the generalization gap of machine learning

models. In other words, these give performance guarantees of a model on unseen data during

the operational phase, depending on the model performance during the design phase and the

model details.

These results crucially depend on hypotheses on the design datasets, which we call dataset

management:

Dataset management
Performance guarantees

during operational phase

Model performance

during design phase

Generalization

guarantees

This section defines the requirements for dataset management that would allow to apply the

generalization guarantees from Section 5.3. The Standards for Processing Aeronautical Data

[ED-76A/DO-200B] will be taken as a starting point and supplemented in this chapter.

Chapter 9 (Safety Assessment) will illustrate how these can lead to quantitative performance

guarantees during the operational phase, as in the figure above.

6.2.1 Operational domain identification

Recall that the goal of machine learning is to approximate a function f : X → Y . A crucial step,

before considering data quality, is to correctly identify the input space X and its distribution

(i.e. the probability space X ).

Failing to do so would prevent establishing any learning guarantees, even though the data is

“correct” according to the requirements below. This is the common issue of “domain bias”,

that will be illustrated in Section 5.3.2. Recall that [ED-79A/ARP4754A] defines “airworthi-

ness” as the ability to accomplish the intended function safely.

Then, one of the requirements (see Section 6.2.8) is that the training, validation and, test

datasets are independently sampled according to the input distribution, and that the distribution

during the operational phase also corresponds to X .

For example, in the setting of the ConOps (Chapter 4), that would require to identify precisely

the possible locations of operations, weather conditions, sensor specifications, likelihood of

different inputs (i.e. the distribution on X), etc.

The issue of verifying that the domain X has been correctly identified, and ways to transfer

from one domain to another, will be addressed in Section 6.6 and Section 7.1 respectively.

6.2.2 Data quality characteristics

[ED-76A/DO-200B, Section 2.3.2, Appendix B] provides an outline of data quality charac-

teristics in the scope of aeronautical databases. The quality of data is “its ability to satisfy
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the requirements for its safe application in the end system”. In the following sections, an

analysis is provided of how the requirements from [ED-76A/DO-200B] could apply to mod-

ern machine learning systems and whether they need modifications. The requirements from

[ED-76A/DO-200B] are:

Accuracy Based upon its intended use. See Section 6.2.3 for details.

Resolution Based upon its intended use. The original formulation applies.

Assurance level Confidence that the data is not corrupted while stored or in transit. Original

formulation applies.

Traceability Ability to determine the origin of the data. See Section 6.2.4 for details.

Timeliness Confidence that the data is applicable to the period of intended use. Original

formulation applies.

Completeness Definition of any requirements that define the minimum acceptable set of data

to perform the intended function. See Sections 6.2.7, 6.2.8 and 6.2.10 for details.

Format When loaded into the end application, the data can be interpreted in a way consistent

with its intent. Original formulation applies.

The reader is referred to [SCSC-127C] for a modern overview of data best practices and

implementation guidelines.

6.2.3 Data accuracy

Sufficient evidence should be gathered to show that the data errors δi from Section 5.2.2 are

minimal and independent. This means that the model was provided on average with correct

pairs (xi , yi) during the learning process.

More precisely, “minimal errors” means zero mean and low variance σ2, which can be assessed

using statistical testing. Systematic errors in the data (i.e. nonzero mean or non-independence

of the errors) are also called data bias.

At a minimum, the following type of errors should be addressed:

Capture errors One possible source of errors stems from how the data (x or f (x)) was cap-

tured. For example, a degraded camera sensor may introduce erroneous information in the

data samples. Similarly, humans are prone to introducing a bias through unconscious yet spe-

cific collection patterns, for example by making erroneous assumptions, such as rounding all

measurements. From a data perspective, it is also very important that the design phase takes

into account the sensors that will be used during the operational phase. If the data is collected

with one particular type of sensor and another type of sensor is used during operation, this may

lead to significantly degraded performance and erroneous behavior.

Single-source errors If the data used to train a model has only been collected from a single

source, there exists a risk that the resulting dataset (and therefore model) encodes undesired

artifacts of that particular source. In addition to showing functional correctness of individual

sources, one should demonstrate that the model will either only be used with that single source

during operation or, in a more general setting, that the model has been trained, validated, and

tested on multiple capture sources.

Labeling errors If the value f (x) is evaluated from x by manual or automatic labeling, instead of

being captured, this process creates another source of possible errors. This could be mitigated

by having all annotations verified by multiple independent processes.

In the case of manual labeling, this could be achieved through the use several independent
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annotators. Then, disagreements can be measured, monitored and reported. Any disagreement

should be flagged and the corresponding samples considered for re-annotation. As the number

of independent annotations per datapoint grows and assuming that each annotator has roughly

the same probability of making a mistake, the error rate decreases exponentially (see the

discussion and examples on ensemble learning in Section 6.3.3).

This double- (or multiple-)reading practice is widespread in radiology and is continued in related

machine learning datasets. For example, Google’s work on diabetic retinopathy prediction

[Gul+16] used 54 independent human expert annotators.

It is crucial that the annotators’ errors are independent. If all make the same faulty assumption

(e.g. because of incorrect requirements), then the errors that follow will not be detected.

6.2.4 Traceability

Similar to the definition of traceability in [ED-76A/DO-200B], the ability to determine the

origin of each data item is required. For data used to train and evaluate machine learning

models, each data pair (xi , yi) needs to contain artifacts that allow full back-to-birth traceability.

Depending on how each data pair is obtained, the following aspects need to be considered:

• Data pairs are obtained by collecting both xi and yi as part of the data recording process,

i.e. both are measured directly. A trace of changes from the origin of each data pair to

when it is used by the learning algorithm needs to be established;

• Input data xi is measured as part of the data recording process and yi requires addi-

tional (human) annotation. If yi requires annotation, additional information about the

annotation process need to be provided to guarantee traceability. The volumes for such

annotations are usually quite large and so the annotation process needs to be carefully

designed and documented. Each yi is annotated according to a set of annotation require-

ments which need to become part of the item’s trace. See a list of potential artifacts

below in Section 6.2.6 for more details.

In both cases, the aim of such traceability is that the root cause of any errors or anomalies can

be identified and traced back to their origin.

6.2.5 Digital error protection

To protect the integrity and to detect loss or alteration of the data, an error-detection scheme

such as Cyclic Redundancy Check (CRC) needs to be employed at all relevant stages of the

development process. This is particularly relevant during the transfer between different (cloud)

compute machines, but also during storage, or even after deliberate modification of the data.

6.2.6 Data artifacts

Following from the previous section, each data pair (xi , yi) should have the following artifacts

to provide full back-to-birth traceability:

• Link to higher-level requirement(s);

• Collection protocols to describe procedures that are used to gather the data, date and

location of recording, checksums for digital error protection, and any other relevant

information;
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• Annotation details, if relevant, including input data item, annotation requirements, anno-

tator identification, name of annotation tool, date and time of annotation, disagreement

between annotators, and any other notes;

• Data transformation steps that are applied to each data item after collection/annotation

for reproducibility, including code artifacts, if applicable.

6.2.7 Explicit operating parameters

It is often possible to associate explicit and interpretable operating parameters to the com-

plex input space X . These could originate from the system requirements, derived software

requirements and the application ConOps.

One can make the simplifying assumption that there is a finite number of operating parameters

ϕ1, . . . , ϕn, each belonging to either a compact interval or a finite set, say ϕi ∈ Pi , forming an

operating space

OS = P1 × · · · × Pn,

with a surjective map

ϕ : X → OS, x 7→ (ϕ1(x), . . . , ϕn(x)),

i.e. every point of the operating space gives the parameters of at least one point in the input

space. By definition, the parameters are well-defined, in the sense that ϕi(x) ∈ Pi for every

datapoint x ∈ X.

Example If X is the space of all 512 × 512 RGB aerial images captured with a camera on

the nose of an aircraft in the context of the ConOps, one might consider ϕ1 as the altitude

in P1 = [0,MAX ALT], ϕ2 the time of day in P3 = [6, 21] for daylight operations, etc. See

Chapter 10 for an extended example.

Limitations It is important to note that the operating parameters will invariably fail to describe

subtleties from X . While classical software tends to operate on a lower-dimensional space like

OS, machine learning models tend to directly process the full input from X and therefore

require the full consideration of the latter.

Nevertheless, the development of explicit operating parameters is still useful since:

• This is reminiscent of “classical” aeronautical tests, where parameters can be enumerated

and combinations exhaustively tested;

• This might be easier to verify, interpret and visualize, due to lower dimensionality and/or

compactness;

• They provide necessary (although not sufficient) conditions that can be checked as “sanity

checks” during verification.

6.2.8 Dataset completeness

From Section 5.1, the training, validation, and test datasets should each be independently

sampled in the input space X (i.e. a dataset of size n is obtained by sampling a point from X n

with the product distribution). This means in particular that the datasets should be “complete”,

in the sense that “most elements1 in X should be close to a datapoint”.

1If X is infinite, this can be made sense of by discretizing X and its distribution with respect to an arbitrary

threshold.
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Hence, this requirement replaces the “completeness” requirement (“all the data needed to

support the function”) of aeronautical data quality from [ED-76A/DO-200B, Section 2.3.2].

This is vital to ensure that all the work done during the design phase actually translates to

guarantees for the operational phase.

One example where this is violated is data collected in a specific region while it is supposed to

cover a much larger area. Another example is a pilot flying similar maneuvers towards a runway

throughout the collection process, while the data is supposed to cover a much larger variety of

patterns.

Distribution of operating parameters A necessary condition for the above is that the ele-

ments of the datasets have operating parameters that are independently distributed in

OS = ϕ(X)

with respect to the image by ϕ of the distribution on X .

However, as described above under Limitations of operating parameters, this is not sufficient.

For example, one can easily imagine a dataset covering all possible altitudes, angles of ap-

proaches, time of day, and presence of rain, but missing a whole class of images likely to

appear during operation (i.e. from X ). Therefore, one needs to consider the more complex

approaches below.

A general verification framework In this section, a high-level framework is described, under

which candidates to certification could provide evidence that they possess datasets indepen-

dently sampled from the input probability space X . The framework is general in the sense

that it does not require the regulator to specify explicit methods or to provide costly annotated

datasets.

The framework demands that, in addition to the trained model f̂ , one develops

• an input distribution discriminator D :
∐

n≥1 X
n → [0, 1];

• an out-of-distribution dataset Dood: see Section 6.6.2.

The former should estimate the likelihood that a sample of size n is independently sampled

from distribution X, while Dood is used to test D and prevent it from simply outputting 1 for

any dataset. The following properties should then be satisfied:

1. D(D) is close to 1 for all datasets considered that should be independently sampled from

X (e.g. the training/validation/testing datasets);

2. D(D) is small for all subsets D ⊂ Dood.

Note that further testing of the discriminator D can be performed at very low cost, since testing

only requires unannotated data from or outside the input distribution. Once verified, D can be

used to check the representativity of a dataset at any point, to perform runtime monitoring and

to help assess the similarity between different datasets (e.g., real-world vs. synthetic datasets).

Of course, there is a risk of making a circular argument, since D also has to satisfy learning

assurances if it is a machine learning model. For example, one should make sure that D did

not simply overfit to Dtrain ∪Dval ∪Dtest ∪Dood. However, this concern is alleviated by noting

that D is a binary classification problem, where the input space is well-defined (any input that

could be produced by the sensor, e.g. all 512× 512 RGB images).

Example constructions Note that this framework essentially asks to develop ways to correctly

identify the operational space X and to check the datasets for independence and goodness

of fit. There is a large body of work on outlier/anomaly/novelty detection, goodness of fit
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and independence testing (see e.g. [Pim+14; Hub+12]) and it would not make sense to

impose a single method. However, the above conditions formulate the desirable properties in

an implementation-agnostic manner. Still, explicit examples will be given in Section 6.6.3.

6.2.9 Independence between datasets

Chapter 5 showed the importance of having independent training, validation, and test datasets

to be able to correctly estimate the operational performance of a machine learning model.

More precisely:

• Training/validation and test datasets need to be prepared by independent individuals, so

that the latter can truly be used to estimate real-world performance of the model;

• The test dataset should be elaborated as a first step of the design phase, at the same

time as the selection of the error metrics. The next steps of the design phase should

have no access to the test dataset at all : only the validation dataset can be used for

intermediate evaluations and model tuning;

• At the very end of the design phase, the evaluation on the test set should be done without

knowledge of the detailed test data characteristics and by individuals having either no

involvement in curating it or no involvement in the past or future design phases.

These considerations are motivated by the independence of verification activities from [ED-

12C/DO-178C, Section 6.2] which states that:

“Verification independence is achieved when the verification activity is performed

by a person(s) other than the developer of the item being verified.”

[. . . ]

“The person who created a set of low-level requirements-based test cases should

not be the same person who developed the associated Source Code from those

low-level requirements.”

In the context of machine learning systems, the learned model becomes the equivalent of

source code. Therefore, independence between the person who developed the model and the

individual that created the corresponding set of requirements-based test cases is required.

Intra-dataset independence Note that it is also required that the elements of the datasets

be independent; this has already been taken care of in Section 6.2.8.

6.2.10 Dataset sizes

The validation and test datasets need to be large enough such that good model performance on

these leads to adequate guarantees on the required operational performance. This is dictated

by the theoretical bounds on generalization gaps introduced in Section 5.3.

The training set must be large enough to be able to train a model having adequate performance

on the validation and test sets.

The training, validation, and test sets must also be large enough to cover the entire ConOps

space with large enough precision, as required by Section 6.2.8.

General criteria cannot be given, as the required sizes depend on the precise model, design

phase details, error metrics, and bounds used. These would typically be determined during the

model design phase and the system Safety Assessment. A numerical example will be given in

Chapter 9 in the context of the use case.
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Figure 6.2: Three cases of approximation-generalization behaviors when training models. Early

stages of model training are typically underfitting (left), as the model parameters have not

fully approximated the target function yet. Overfitting behavior (right) can be observed when

the model parameters have memorized the training data, resulting in the model’s inability to

generalize to unseen data. Good model parameters (center) both approximate the training

data well and generalize to unseen data at the same time. Note that each of the three cases

visualizes a single error metric computed on the training and validation datasets (where lower

is better), but there might be several error metrics.

6.3 Training phase verification

6.3.1 Training curves

Early indications of adequate learning properties can be obtained by examining the approximation-

generalization behavior (see Section 5.3.2) of the model as training progresses. This behavior

is captured by gathering losses and metrics during the training phase and plotting them into

so-called training curves.

Most notably, the relationship between the training loss, the training error metrics, and the val-

idation error metrics are indicative signs of whether the model parameters are in an underfitted

state, an overfitted state, or a “satisfactory” state. This satisfactory state is often referred

to as a state where the model has converged into an optimal trade-off between approximation

and generalization.

Examples of training curves and how they relate to various levels of over-/underfitting and

training process stages can be found in Figure 6.2. These training curves should be provided

as part of the design phase artifacts to validate that trained model has converged correctly.

6.3.2 Reproducibility and replicability

Reproducibility and replicability are key elements of the scientific method and so are they

for certification of machine learning-based systems, since learning assurances are based on

experiments and measurements.

In particular, any learning process that is run with the same inputs (training dataset Dtrain,

learning parameters) should produce equivalent or similar models, despite parts of the learning

process being random (weight initialization, sampling, stochastic optimization, . . . ).

Model equivalence will be defined in Section 6.4.1: the model outputs are the same for every

input, up to some tolerance factor. From there, performance assurances of one model would

follow from performance assurances of the other.

There are further ways to measure model similarity, such as:



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract – Chapter 6 52

• Distances between the parameters/weights (from which model equivalence could follow);

• Correlation of network activations (on intermediary and final layers), using various corre-

lations measures (see the survey and new methods given in [Kor+19]).

These are distinct notions from model equivalence and the similarity measure to use should be

determined and analyzed as part of the Safety Assessment.

6.3.3 Multiple version dissimilarity considerations

From [ED-12C/DO-178C, Section 2.4.2]:

“Multiple-version dissimilar software is a system design technique that involves

producing two or more components of software that provide the same function in

a way that may avoid some sources of common errors between the components.”

It is also possible to take advantage of multiple version dissimilarity for machine learning sys-

tems, in a strategy called ensemble learning [ESL, Chapter 16].

In ensemble learning, multiple models are combined to perform the same function. Typically,

through the “wisdom of the crowd effect”, the final predictions will be more accurate and/or

with less variance. This can be easily seen through the following two examples:

1. Given 21 classifiers each having independent error rate ε = 30.0%, one forms a classifier

by taking the majority vote. The error rate of the new classifier is only

20∑

i=12

(
20

i

)

εi(1− ε)20−i < 0.52%;

2. If X1, . . . , Xn are independent variables with mean µ and variance σ
2, then the average

X = 1
n

∑n
i=1Xi still has mean µ, but has lower variance σ

2/n.

Models in an ensemble can differ in multiple ways, for example:

• The model parameters are initialized differently at the beginning of training, as proposed

by Lakshminarayanan et al. [LPB17];

• They are trained with different learning algorithms;

• They could be shown a different subset of data (but evaluated on the same test set).

There exist several methods for combining models, see [Zho12]. For example:

• Given a learning algorithm, Bootstrap aggregating (bagging) proposes to train a certain

number of models using random subsets of the training dataset and then average (or

take majority voting for classification) the predictions. The goal is to reduce variance,

as in the second example above. See also e.g. [ESL, Section 8.7];

• Boosting algorithms work by successively training models, where previously misclassified

example are given higher weights for the training of the subsequent models. The models

are then combined with a weighted average or majority vote. The goal is to reduce bias

and eventually variance. For example, random forests combine simple decision trees with

boosting (see e.g. [ESL, Chapter 10]).

Usually, a requirement of ensemble learning is that the errors of each model are independent (as

seen in the examples above). This could be probed using statistical testing and the performance

gains can be mathematically estimated. An example will be given in Chapter 9.
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Measuring ensemble agreement An ensemble allows to measure the agreement score of the

individual classifiers during the design phase. Section 6.6.4 explains how this can be used for

runtime/uncertainty monitoring during the operational phase.

6.4 Machine learning model verification

The ability to verify model behavior during the design phase helps establish trust in the model’s

performance during operation. This section explores several verification strategies, from run-

ning systematic tests to formally proving model properties, and discusses their limitations and

applicability in the context of safety-critical applications.

6.4.1 Definitions

Algorithm robustness and model robustness According to the definitions of Section 5.1,

the learning algorithm F during the training phase produces a trained model f̂ (Dtrain) : X → Y ,

which represents a function mapping from the data input space X to prediction space Y . It

is often important to understand, which properties this function exhibits when it comes to

perturbations of input, i.e. how stable it is. This task is known as sensitivity analysis.

Phase Input Output Relevant fluctuations Type

design Dtrain F(Dtrain) Those in the train-

ing dataset (replace-

ment of data points,

additive noise, label er-

rors etc).

learning algo-

rithm stability

operational x ∈ X,

F(Dtrain)

F(Dtrain)(x) Those in the data in-

put and prediction out-

put or in the model it-

self (model alteration).

model stability

Table 6.1: Two sources of robustness: algorithm and model stability.

To this end, there are two sources of instability which might be considered here and they

naturally stem from the fact that there are two inputs contributing to the final prediction of

such a trained function: the training dataset and the datapoint which is fed to a trained model.

This is summarized in Table 6.1.

The above two sources of fluctuations allow for slight variability in definitions of robustness.

Robustness of learning algorithms (Figure 6.3, (a,b)) is the type of robustness which ensures

that the produced model does not change a lot under perturbations of the training dataset

Dtrain. Traditionally, this is referred to as learning algorithm stability. Robustness of trained

models (Figure 6.3 or model stability, (b,c)) refers, on the contrary, to keeping input-output

relations2 of a trained model, e.g.:

‖x ′ − x ′′‖ < δ ⇒ ‖f̂ (x ′)− f̂ (x ′′)‖ < ε, where x ′, x ′′ ∈ X and δ, ε ∈ R>0.

2Here and below the notion of “closeness” is deliberately not defined. It can be any norm or any distance in

any respective space, whose choice is specific to the task at hand. For example, in case of adversarial attacks,

the “closeness” is typically defined as per-pixel p-norm. In case of rotation invariance, the “closeness” is a more

complex notion, captured by norms such as the Wasserstein norm.
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(a) Original classification (b) Training phase perturbation (c) Operational phase perturbation

Figure 6.3: A simple showcase illustrating the notions of learning stability and inference ro-

bustness. Margin-maximization classifier (in this case, linear SVM) is (a → b): not robust to

perturbations during training — one datapoint is removed leading to change in the resulting

model, but (b → c): is robust to perturbations during inference — all datapoints are now

perturbed and classification result yet remains the same.

6.4.2 Overview of neural network verification methods

There is a tendency (see Sun et al. [SKS19] and Liu et al. [Liu+19]) to divide all verification

methods into several (partially intersecting) categories:

• Coverage-based white-box testing: aims at running trained models through a systematic

testing of both the extrinsic (outputs) and intrinsic (architecture-dependent properties)

behaviors of the model;

• Falsification: adversarial attacks that make use of special artifacts of the training process

to generate corner-cases for the trained models;

• Formal verification: aims at obtaining formally-derived worst case robustness bounds.

(a) Input image (b) Intrinsics: activations (c) Analysis of statistics

Figure 6.4: White-box testing aims at analyzing the network extrinsics and intrinsics when

being run through a set of tests. Example of a final approach to a runway (see the ConOps,

Table 4.1). (a → b): Input image results in a set of inner activations “reacting” to runway

semantics (approach lights and touchdown) or geometry (lines) (b→ c): the latter is analyzed

to check that the intrinsics behaves as expected, or to generate new test examples.
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Soundness and completeness Verification algorithms can be sound and complete (those prop-

erties are not mutually exclusive). Informally speaking, one says that a verifier is sound, if the

fact that it returns “property holds” implies that the property actually holds. One says that a

verifier is complete, if the fact that the property actually holds will imply that such a verifier

returns “property holds”. Intuitively, a sound verifier minimizes false positive returns and a

complete verifier minimizes false negative returns (see Figure 6.5).

property

actually

holds

verifier

confirms

property

soundness

completeness

Figure 6.5: Soundness ensures that if the verifier returns “property holds”, then it actually

holds. Vice versa, completeness ensures that if the property holds, the verifier will be able to

“catch” this.

Verification via white-box testing Methods of this group aim at efficient procedures to explore

the behavior of a neural network through testing. “White-box” in this context (see Figure 6.4)

refers to the fact that the test is allowed to see not only the final output behavior (“extrinsics

tests”), but the behavior of the neural network’s internal parameters — such as neural cover-

age, activation patterns, etc. Typical examples of the methods are DeepXplore [Pei+17] and

DeepTest [Tia+18].

Verification via semi-formal falsification Methods of this group apply a white-box approach

in an attempt to generate “hard” test examples for the neural networks, hence “falsification”.

However, they do not provide any formal guarantees of the existence or non-existence of

an edge/failure case for the network, hence “semi-formal”. Such methods typically do not

guarantee completeness, but attempt to maximize soundness, i.e. expand test coverage in

meaningful and efficient ways. Recent examples include [DDS19] and [Zha+18b], which use

specialized search procedures for finding hard test cases.

Verification via formal approaches This set of methods attempts to solve the main issue of

the verification approaches above: it is impossible to test the network outputs on the set X of

all possible inputs, due to the continuum cardinality of the latter. To circumvent this issue, it

is suggested to formally verify verification properties which are generally defined [Liu+19] as

“if-then” statements of a predicate form:

propf̂ (Xc , Yc) : x ∈ Xc ⇒ F(Dtrain)(x) ∈ Yc ,

for Xc ⊆ X, Yc ⊆ Y . The pair C = (Xc , Yc) is called verification constraint.

For a given verification constraint C, a typical formal verification algorithm shall output one of

the following types of verification results (see Liu et al. [Liu+19]):

• Counterexample result: the verification algorithm finds an input x∗ ∈ Xc that violates

the constraint: f̂ (x∗) 6∈ Yc (Figure 6.6b). In plain language, it answers the question:

“Are there any inputs that violate the given constraint?”.

Methods that can be mentioned here include Reluplex [Kat+17] or ReluVal [Wan+18];

• Adversarial result: for any given input x0 ∈ Xc , the verification algorithm finds perturba-

tion guarantees, that is, the largest possible ε-ball around x0, such that the constraint is

satisfied:

min ε such that f̂ (Bε(x0)) 6⊆ Yc ,
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(a) Legend (b) Counterexample result (c) Adversarial result (d) Reachability result

Figure 6.6: Three types of formal verification results. (a): notation. Light-blue and light-

red areas X, Y depict input and output spaces; blobs Xc , Yc depict the constraint sets. (b):

a counterexample result represents a single datapoint x∗ that violates the constraint. (c):

an adversarial result represents the minimum perturbation ε of the input around x0 that still

violates the constraint. (d): reachability result represents the image f̂ (Xc) in the output space.

effectively ensuring that if the constraint input set Xc does not exceed this perturbation,

the whole constraint is satisfied (Figure 6.6c). In plain language, it answers the question:

“What is the largest tolerable perturbation to the input constraint such that the output

constraint is still satisfied?”

Formal verification methods that return adversarial results include for example DLV [Hua+17]

which aims at searching adversarial guarantees along with falsifying the properties;

• Reachability result: for the constraint Xc , the reachability result outputs its image

f̂ (Xc) (Figure 6.6d). In plain language, it answers the question: “What are the out-

puts for the given set of inputs?”

Methods of this group include maximum sensitivity approach [XTJ18] (called MaxSens

in [Liu+19]), exact reachability analysis of [XTJ18] or DeepZ, a method of [Sin+18].

The latter method uses a framework of abstract interpretation [CC77] which aims at

constructing tight over-approximation bounds for each of the transformations in the

neural network.

6.4.3 Challenges and issues of formal verification methods

Verification of machine learning models and, more precisely, deep learning models has gained

significant attention from the research and industrial community, primarily as a means to

mitigate the risks typically exhibited by such models (learning instability, model instability,

inequivalence, etc.). This has led to extensive work in various specific sub-domains. Despite

this ongoing extensive effort, several challenges yet persist, as outlined by Leofante et al.

[Leo+18]:

Computational costs and scalability Verifying NNs is a computationally hard problem (falling

into the category of NP-complete ones, see [Kat+17]). The approaches outlined above gen-

erally struggle to scale well both in the number of hidden units and the number of hidden

layers. An intuitive reason for that is the fact that the amount of constraints for the underly-

ing optimization problems (primal, dual, SAT, SMT) grows exponentially with the number of

layers.

Guarantees There is an inherent trade-off between the runtime of a verification algorithm and

the completeness of results it returns. A possible intuitive explanation would refer to the fact
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that many methods (especially those returning reachability results) make use of various over-

approximations for network operations (e.g. ReLU activations). Such approximations trade

exactness with computational simplicity.

Applicability The applicability of formal verification methods depends on:

• The type of network activations. Verification methods are generally not universal, i.e.

most of them target specific activations such as ReLU or piecewise linear. There are

only a few methods that extend to arbitrary types of activations and typically come at a

cost of runtime, completeness or over-approximation;

• The type of network architecture. Very few methods aim at verifying recurrent neural

networks (RNNs). An advantage of the feed-forward architecture is that the algorithm

does not need to unroll complicated looping execution branches. Recent work that

investigates RNNs is [Aki+19].

Lack of benchmarking Since there are many desirable properties that may be required from

typical verifiers (speed, completeness, soundness), it would be natural to benchmark them on

some common tasks, similar to how modern machine learning models are benchmarked on

common datasets.

Comparison with software formal verification It is worth noting that a software engineering

counterpart to model verification is provided in [ED-216/DO-333]. However, given the com-

plexity of the input space and the number of parameters for a modern deep neural network

(on the order of millions), it is infeasible to exhaustively or nearly-exhaustively verify all possi-

ble computation branches and build exact reachable sets of outputs. This is the reason why

there exist a lot of sub-divisions in neural network verification methods, ranging from exact to

approximate.

6.4.4 Conclusion

Machine learning model verification represents a rich class of methods which can provide rig-

orous performance guarantees that are highly desirable for safety-critical applications, e.g. to

mitigate unexpected behavior. These methods establish robustness properties of neural net-

works, such as stability under random or adversarial perturbations, or full coverage of possible

outputs.

More recent verification methods, including semi-formal approximate methods, provide a promis-

ing path to overcome the computational challenges described in this chapter. The applicability

of new approaches coming from this field should be constantly evaluated.

6.5 Inference stage verification

The inference model verification consist of identifying the differences introduced by the im-

plementation phase and verifying the conservation of the training model properties after the

transformation to the inference model.

This report does not focus on these verification steps, which will be addressed in future work.

6.6 Runtime monitoring

[ED-12C/DO-178C, Section 2.4.3] describes safety monitoring as a means to protect “against

specific failure conditions by directly monitoring a function for failures that would result in a
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failure condition”. This section investigates how such monitoring should be done for machine

learning models during the operational phase.

Correct operational space As seen in the previous chapter, most of the arguments guaran-

teeing correct output rely on the assumption that the input data follows the target distribution

X against which the model has been trained. Therefore, a first concern is to verify that this

hypothesis holds during operation.

Quantification of uncertainty Furthermore, in line with the system architecture (Section 4.2.1),

it is assumed that machine learning models receive raw sensory input, perform low-level fea-

ture extraction and classification. Their outputs are then fed into higher-level systems, such

as tracking algorithms or decision making systems. In this setting, models must not only be

accurate, but one would also like to obtain a measure of their uncertainty. If the network

were to output an accurate uncertainty alongside its predictions, results with high uncertainty

could be discarded by higher-level systems. Understanding a model’s uncertainty can avoid that

higher-level systems blindly rely on incorrect results. For example, in assistive systems, a good

fallback option would be to pass control back to a human.

6.6.1 Traditional software considerations

While [ED-12C/DO-178C] mentions that monitoring functions can be implemented in hard-

ware, software, or a combination of both, the following focuses on software only.

Separation of concerns A common approach is to separate separate functionality execution

from monitoring. For example, Koopman, Kane and Black [KKB19] refer to this as the “Doer”

and “Checker” separation. The Doer subsystem executes the normal, untrusted functionality

(e.g., execution of a neural network) while the Checker subsystem implements failsafe behavior.

That way, if the Checker knows how the behavior of the Doer looks like in normal conditions, it

can flag any abnormal output which can be taken into account by higher-level decision making

systems.

This can and should of course be applied to the operation of machine learning models.

6.6.2 What can be encountered during operation?

Ideally, the distribution of the input provided to machine learning models during operation

should precisely match that of the input space X identified during the design phase. This can

however not be fully guaranteed in practice and, unfortunately, it is as easy to come up with

aphorisms about expecting the unexpected as it is hard to define it in practice. Nonetheless,

it is important to at least obtain a broad categorization of any input that could be practically

observed during operation, so that risks associated with out-of-distribution scenarios can be

properly mitigated. Below, such a classification is attempted:

Expected input These are samples coming from the distribution X , say having high enough

probability.

Long-tail examples / edge cases These are samples coming from the distribution X , but

that have low or very low probability. This implies that the model might not perform well on

these inputs, even though the model metrics are high (since these are often taken as averages

over datasets).

Static Aberrations These are sensor artifacts that perturb samples from X , such as (in the

case of a camera) humidity condensation, unexpected aircraft parts in view, camera misplace-

ments, bent parts, etc. They can be, but are not exclusively malicious in nature.
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Dynamic Aberrations These are dynamic sensor artifacts that perturb samples from X such

as (in the case of a camera) laser pointing, physically blocking camera view, image capture

processing noise, etc. They can be, but are not exclusively malicious in nature. This input

category relates to the data accuracy errors described in Section 6.2.3.

Adversarial attacks These are methods to purposely produce input (in the target distribution

X or not) on which the model f̂ gives “bad” approximation to f (say with respect to one of

the metrics m).

• White-box adversarial attacks require access to the model intrinsics (architecture, weights,

training data, . . . );

• Black-box adversarial attacks are model-agnostic: one assumes that the adversary only

has access to the output of the model.

Others The final category comprises other types of out-of-distribution samples, such as (in

the context of the ConOps from Chapter 4) images of a geographic region not contained in

X , or images taken after 9pm.

6.6.3 Detecting out-of-distribution data

Out-of-distribution/anomaly/novelty/outlier detection was already touched on in Section 6.2.8

and the generic distribution discriminator D : ⊔n≥1X
n → [0, 1] used to verify the distribution of

the design phase datasets can directly be used to ensure that the inputs during the operational

phase match the design distribution X . For example, one can set thresholds 0 < δ1 < δ2 < 1,

such that a sample x ∈ X satisfying

• D(x) > δ2 is considered in-distribution;

• D(x) ∈ [δ1, δ2] is considered an edge case;

• D(x) < δ1 is considered out-of-distribution.

Note that more generally, discriminators can be agnostic to the model f̂ that they might be

used with, or actually use parts of it.

Section 6.2.8 referenced two surveys on outlier detection methods. Another recent example,

this time using the intrinsics of the model, is the Out-of-DIstribution detector for Neural

networks (ODIN) method by Liang et al. [LLS18].

6.6.4 Estimating uncertainty during operation

Uncertainty types Understanding which different types of uncertainty a machine learning

model has, can help understand and mitigate operational risks. Der Kiureghian and Ditlevsen

[DD09] identified seven high level sources of uncertainty, which they categorize into two types

of uncertainty:

1. Epistemic uncertainty refers to the situation where the model f̂ has not been exposed

to the relevant input domain area X . In other words, the function’s parameters θ do not

correctly fit the input data.

2. Aleatory uncertainty refers to the intrinsic randomness in the data, which was introduced

in Section 5.2.2. This can come from data collection errors, sensor noise, or noisy labels.

In other words, the model has seen such data during training but expects it to be difficult.
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Crucially, the main difference is that epistemic uncertainty can be reduced by adding more data

to the training set, while aleatory uncertainty will always be present to a certain extent. Given

that there is complete dataset with a correct learning process as defined in Sections 6.2 and 6.3

respectively, one can consider that all epistemic uncertainty has been sufficiently minimized

within the ConOps input domain.

Probability outputs and miscalibration of models Many machine learning models already

output a probability as their prediction (often the output of a logistic function, the result of

mapping any real number to [0, 1]). An example of this is the model described in Section 4.2.1

(runway presence likelihood).

However, it has been shown that these probabilities are usually not calibrated, in the sense that

they measure likelihood, but do not match with the empirical error rates that would be observed

on data. For example, Guo et al. [Guo+17] showed that modern neural network architectures

tend to suffer from overconfident probability estimates. Furthermore, Hendrycks and Gimpel

[HG17] used this approach as a baseline to empirically demonstrate that model predictions are

not directly useful as confidence estimate to distinguish in- from out-of-distribution samples.

Still, there are methods to address this issue, such as simply rescaling the probabilities a

posteriori (a variant of Platt scaling), as suggested by [Guo+17].

Other methods for measuring uncertainty There also exist multiple methods to estimate

the uncertainty of arbitrary models, that do not already intrinsically estimate it:

• Section 6.3.3 explained that instead of training a single model, one can train an ensemble

of models. When used in operation, one expect the members of the ensemble to mostly

agree on their outputs (i.e. have low variance). On the other hand, “disagreement” can

be used to measure uncertainty.

• Variational dropout [KSW15], or Monte Carlo dropout, is a Bayesian view on dropout

which applies dropout during both training and testing. It follows that if dropout is

applied during test time repeatedly, a probability distribution is obtained instead of a

point estimate. That probability distribution can then be used to obtain statistics such

as mean value and variance. For samples that the model has seen during training, one

intuitively expect a low variance around the mean. However, for unseen samples, a high

variance is expected among the forward passes. More generally, this implies that one can

estimate how well the model fits the mean and variance and use that as a measure of

confidence.

6.6.5 Risks and mitigation

Monitoring the operational input- and output space during operation by functionality separation

(Section 6.6.1) is subject to the following non-exhaustive set of possible risks that one needs

to be mindful of. Sculley et al. [Scu+14] have identified several risks that are relevant to

the runtime monitoring of machine learning models in operation and are referred to where

applicable. Aside risks specific to runtime monitoring, Sculley et al. identify other machine

learning related risks, but these are considered to be mitigated by [ED-79A/ARP4754A] and

[ARP4761] standards and the strict specification of ConOps in Chapter 4.

Assumption turns into fallacy First and foremost, it is important to realize that any means

to introduce robustness to undefined phenomena comes with inescapable assumption-making.

It is equally important to treat these assumptions as such at each stage during development

and testing. [ED-79A/ARP4754A] and [ARP4761] define assumptions as “Statements, prin-

ciples and/or premises offered without proof” and provide guidelines and methods on how to

assess the assumptions made as a part of Functional Hazard Assessments. Consequently, every
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assumption made on the unknown space described by the designer should be held to iterative

scrutiny at each evaluation stage, which is described in more detail in Chapter 9. For illus-

trative reference, assumption validation and adjustment is one of the first steps — the “first

iterations” — in the Fault Tree Analysis example given by [ARP4761, Appendix D.3.b].

Edge case or out-of-distribution? There is a fine line between edge cases (in-distribution

elements that are unlikely) and out-of-distribution samples. Given Operational Concept 1 from

Table 4.1, one can try to decide whether the following illustrative scenarios are edge cases or

out-of-distribution examples:

1. The input images are taken from an altitude of 1800M AGL, instead of the specified

800M AGL;

2. A solar eclipse darkens the camera view;

3. An airshow is being held next to the runway, resulting in an abnormal amount of visual

obstructions and distractions around the runway;

4. An unusual springtime flower “super bloom” happens around the runway.

The above examples highlight the difficulty of deciding whether a particular scenario is out-of-

distribution or an edge case. The classification can be subjective to the reader without careful

analysis. As an example, the first scenario is only clearly out-of-distribution after reviewing the

altitude parameters specified in the ConOps from this report.

Empirical out-of-distribution thresholds do not hold during operation Most methods that

estimate the distribution origins of inputs are thresholded methods, whether that is a threshold

on uncertainty, entropy, or other measures.

These thresholds are typically estimated during test phases and validated using more annotated

data. Specifically, human bias in selecting in- and out-of-distribution samples may be skewed

towards certain unknown distributions. For example, the list of scenarios in the previous risk is

a display of the author’s bias; an unbiased observer, i.e. somebody that has not seen that list,

may think of entirely different cases.

The discriminating threshold that was found during the test phase may not hold during oper-

ation, resulting in unjustified amounts of in-distribution samples labeled as out-of-distribution

(a false positive; the threshold was placed too high), or out-of-distribution samples labeled as

in-distribution (a false negative; the threshold was placed too low).

Scully et al. [Scu+14] address this risk in section “Fixed Thresholds in Dynamic Systems”,

under the scenario that these thresholds are tuned manually. The authors propose to mitigate

this strategy by tuning these thresholds on held-out data, which is exactly the method outlined

above. Rather, an emphasis should be placed on validating this held-out dataset and its

representativity of the target ConOps, as described in Section 6.2.

Common mode failures in ensembles This final risk of common mode failure applies to using

multiple versions of the same model architecture for joint decision making as described in

Section 6.3.3. A common mode failure describes the event of multiple instances failing in the

same manner, where they were otherwise considered independent and therefore should not fail

in such a way.

It specifically addresses the risk of assuming that having more versions of slightly different, but

still the same component increases independence, when they actually have a common unseen

flaw and/or vulnerability. Similar to the first risk (that addresses assumptions specifically),

these assumption should be thoroughly tested through safety assessments. Section 9.4 is

dedicated to the description of the way in which such assessments should be conducted to

prevent common mode failure.
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Sculley et al. [Scu+14] address a similar risk in “Monitoring and Testing”, under the scenario of

a single operational model. The authors propose two starting points for mitigation strategies.

The first mitigation approach is using the prediction bias as a diagnostic for indicating sudden

changes in the environment. The second mitigation proposal suggests to enforce a limit on

the system’s actions as a sanity check.

6.7 Learning Assurance artifacts

The following list provides a summary of the minimum (i.e. not exhaustive) artifacts whose

generation is recommended during the development of airworthy machine learning models:

PLAC: Plan for Learning Aspects of Certification A summary of all aspects of machine

learning safety and how it relates to certification.

The training, validation, and test datasets Dtrain, Dval, Dtest ⊂ X. alongside evidence that

the datasets satisfy the data quality requirements outlined in Section 6.2.

The design phase details. Model architecture (including the type of NN, number of lay-

ers/neurons, activation function(s), loss function), training procedure and hyperparameters

(including random seeds), training curves (see Section 6.3).

The end model f̂ : X → Y .

The input distribution discriminator D : ⊔n≥1X
n → [0, 1]. To ensure that the datasets

considered are independently sampled from the input space X , see Section 6.2.8. This dis-

criminator should satisfy the conditions therein with respect to the training, validation, test,

and out-of-distribution datasets.

An out-of-distribution dataset Dood. To test the distribution discriminator.

The error metrics m used to evaluate the model, and corresponding performance thresh-

olds. These should be determined prior to the training process and included here.
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Chapter 7

Advanced concepts for Learning As-
surance

In the last chapter, elements of Learning Assurance that can be considered absolutely necessary

for the operation of complex machine learning algorithms in any safety-critical application are

provided. This chapter gives a discussion of more advanced concepts alongside their potential

risks and benefits. Some of the concepts presented here are active areas of research and the

reader is invited to follow progress in these closely.

7.1 Transfer learning

In real-world applications, data collection and model training is often expensive, and models for

related tasks and domains should be able to share characteristics. In short, the idea of transfer

learning is to use information from one model to help obtain another one on related tasks

and/or domains, in a less data- and/or computation-intensive way. Parallels can be drawn with

human behavior: it is easier to learn how to drive a truck, if one already knows how to drive a

car.

There exist multiple variants of transfer learning: transfer between tasks, between input types,

between input domains, etc. For simplicity, this section will focus on the important category

of homogeneous domain transfer (albeit a majority of the remarks apply to other variants).

Namely,

• one has a model f̂ : X → Y that has performance guarantees when the inputs x ∈ X

follow a probability distribution P (i.e. X = (X, P )), and

• one would like to obtain a model f̂T : X → Y that performs well when the inputs x ∈ X

are sampled from a probability distribution PT (i.e. the new domain is XT ?(X, PT )).

In other words, the type of outputs and the task remain the same, but the underlying probability

distributions change. A simple but important example is when X is a set of RGB images

collected over a specific geographical region and one would like to make the model work in a

different region (with different visual characteristics).

7.1.1 Domain transfer methods

There are many methods to perform transfer learning, up to the extent that giving a complete

overview would deserve a report of its own. Instead, the reader is referred to [PY09; WD18]
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Training
Model 1 Model 2

Accuracy Precision Accuracy Precision

Real data (baseline) .719 .792 .781 .792

Synthetic data .643 .753 .637 .755

Synthetic data, fine-tuning on real data .767 .809 .787 .800

Table 7.1: Training on synthetic data, table from [Gai+16]. Higher scores are better.

and the following rather explains a few selected methods to motivate the discussion on risks in

the next section.

Based on the availability of labels, the methods can be classified into supervised (requires

labels), semi-unsupervised (partially requires labels) and unsupervised (does not require labels).

If the domain gap is small enough, unsupervised methods would be a prime choice, as they

require no additional annotated data, only data from the new domain. In any case, these

methods usually have trade-offs between the amount of data (annotated or not) necessary,

and the complexity added on top of the original learning algorithm.

Note that the results presented below are mostly empirical. While general patterns can be

observed, no general statement can be made, and performance gains must be assessed on a

case-by-case basis, in the setting of Chapters 5 and 6. In other words, it is the final model that

has to be evaluated, and no credit can be directly taken from the performance of the original

model on its original input space. This will be further explained in Section 7.1.2.

Fine-tuning To perform homogeneous domain transfer, one might simply resume the learning

algorithm F used to obtain the original model at the end of the training phase, and continue

training with data from XT instead of the data from X used so far. Note that fine-tuning is a

supervised approach.

At the beginning, the loss will be higher than the one seen at the end of the first training phase,

but the additional training steps should help bring the loss closer to the earlier one.

A few examples of this approach are the following:

• Girshick et al. [Gir+14] have demonstrated that supervised, domain-specific fine-tuning

is an effective method to learn high capacity models even when the target domain data is

scarce. Using a model that was trained on the large ILSVRC dataset, the authors observe

an 8% increase in the mean average precision metric when fine-tuning using the smaller

PASCAL dataset compared to a model trained on the PASCAL dataset from scratch.

• Gaidon et al. [Gai+16] observe the scores in Table 7.1 on a multi-object tracking model,

evaluated on real data. Note that for evaluation on real data, synthetic-only training is

always worse than real-only training, which is also always improved by synthetic training

followed by fine-tuning on real data.

• Raghu and Zhang et al. [Rag+19] provide insights into the effect of transfer learning be-

tween a benchmark natural image domain [ImageNet] and two medical image domains.

Among other findings, the authors most notably demonstrate that transfer learning does

not always significantly improve model performance, and that smaller model architec-

tures trained solely on the target domain can perform comparably to larger, fine-tuned

architectures. This underpins the point made earlier that performance gains must be

measured on case-by-case bases.
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Bridging the domain gap as a pre-processing step Another approach is to try to make input

from the new domain “look similar” (i.e. have the same distribution) to the original inputs

as a pre-processing step. If X (resp. XT ) is constituted of synthetic (resp. real) images,

this pre-processing might make “real images look synthetic”, for example by adding some blur

or sharpening edges. Of course, this pre-processing function can also be learned through as

complex machine learning model, trained on samples the two domains.

As an example of this approach, Zhang et al. [Zha+18a] train (among other strategies) a model

on synthetic data, and evaluate it on real data as is, or after transforming it with a domain

adaptation function. The first naive method gives a mean intersection over union score of

29%, while the second one improves this to 46%.

More advanced approaches More complex methods for domain adaptations can for example:

• Adapt not only the domain, but the representations/features inherent to the original

domain;

• Perform the adaptation while jointly optimizing for the performance of the task at hand

(this could be semi-supervised or supervised).

For such examples, the reader is referred to [GL15; Zha+18a; Shr+17; SS14] (as well as the

survey [WD18]. In there, Ganin and Lempitsky [GL15] propose an approach where the final

predictions are based on input representations that are discriminative and invariant to target

domain transfer. In digit image classification, the authors show performance increases ranging

from 42.6% − 79.7% when comparing their method to models that were only trained on the

source domain. The work of Zhang et al. [Zha+18a] is an example of joint task optimization.

7.1.2 Risks and mitigation

Transfer learning can provide the advantage of reducing the cost of creating models (be it

in terms of data, computations, or other), but new risks are also added, compared with the

design pipeline handled in the previous sections. In this section, important risks are underlined

and suggestions to mitigate them are provided.

Performance verification As already noted in Section 7.1.1, it is fundamental that the per-

formance of the “transferred” models are evaluated on the target input space, rather than

taking any safety credit from the performance of the original model on the original input space.

Domain transfer is mainly an empirical method, whose results must be verified. The risk in not

doing so can be seen in the phenomenon exposed in the next paragraph.

Negative transfer When the source domain and target domain are sufficiently unrelated, it

gives rise to the risk of negative transfer. This is a phenomenon where the source domain X

contributes to poor performance of the target model f̂T . A prerequisite for transfer learning,

regardless of the availability of target domain labels, is the availability of a representative test set

for the target function. See also “Correct optimization target” below for a possible mitigation

stratgy.

Transfer from publicly available models A common form of transfer learning is through the

use models pre-trained on public datasets (see e.g. He et al. [HGD19]; for neural networks,

this is also sometimes called “weights initialization”), which can be seen as domain and/or

task transfer. When used for safety-critical applications, one should consider:

1. It may be more difficult to verify that the correct Learning Assurance requirements have

been fulfilled;
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2. The “link to the intended function/absence of unintended function” is lost or harder to

keep track of;

3. The ability to train several models on different random weight initializations (see Sec-

tion 6.3.3) is lost.

In other words, the full training process should be done in a way to follow the recommendations

exposed in this document.

Correct optimization target As mentioned in Chapter 6, the loss function (whose value is

minimized during the training process) should be a good proxy for the metrics of interest. In

transfer learning, the function optimized might however not be directly related to the metrics

(or a loss) of the target task anymore.

Ideally, the link between the transfer learning method and the optimization of the target metrics

should be shown.

Transfer algorithms Recall that transfer methods can be learning algorithms, as well as clas-

sical algorithms. In the first case, the transfer algorithm should as well satisfy the Learning

Assurance requirements outlined in this chapter. In the second case, the transfer algorithm

should follow usual software airworthiness requirements, e.g. [ED-12C/DO-178C].

7.1.3 Retraining and recertification

Transfer learning is a means to modify a model that complies with the concepts of Learning

Assurance from Chapter 6. Potential risks and possible mitigation strategies were described in

the sections above. This leads to a discussion of requirements for (re-)certification of a newer

or retrained version of such a model. Such modifications can be grouped into:

1. model update, the model is retrained with new or additional data without further changes

to its original functionality;

2. model upgrade, the model is retrained such that its original functionality is (partly)

changed.

These types of changes and the possible implications for recertification will not be addressed

further in this report and left for future work. In the meantime, the reader is referred to

[ED-79A/ARP4754A, Chapter 6].

7.2 Synthesized data

Acquiring high-quality data satisfying the requirements of Section 5.1 can be very costly, while

it is crucial that machine learning algorithms are tested and trained on a very large amount of

data. Consequently, the design and testing of safety-critical machine learning models should

rely on simulated/synthesized data, for which new data can be acquired at a very low cost once

a system is setup. By synthesized data, it is meant any data that was computer-generated or

any data from the target sensors that underwent a processing step that is not included in the

target operational system.

7.2.1 Examples and classification of synthesized data

To better understand the possible benefits and risks of using synthesized data, it is useful to

first give a categorized list of examples, roughly in increasing order of complexity/syntheticity:
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Figure 7.1: Various transformations of the runway image on the top left.

Figure 7.2: Augmentation of real data for the task of object detection: pictures of objects to

be detected are pasted against a background. Note that some additions appear realistic (the

aircraft), while some do not (the helipads).

Basic transformations of real data This type of synthesized data includes applying geometric

transformations (translation, rotation, scaling, flipping, cropping, deformation, . . . ) or trans-

formations of image attributes (brightness, noise, hue, . . . ) to real data. See Figure 7.1. It is

widely used in machine learning and usually known as “data augmentation”: see for example

[SK19].

More advanced transformations of real data It is also possible to perform transformations

that go beyond applying basic transformations to the existing pixels. A common example is to

“paste” new objects into existing images, e.g. adding cars randomly on empty roads, or adding

images of aircraft against a background (see Figure 7.2). The bounding boxes of the objects

added are by definition known, so that there is no need to do new manual annotations. This

was studied by Peng et al. [Pen+15], among others.

Fully or mostly synthetic data Finally, one can also generate data that is fully or almost

entirely synthetic, for example a 3D urban scene as in Figure 7.3 using textures and geometries

partially collected from the real world. Such examples can be found in [Gai+16; Ric+16], along

with analyses of machine learning models trained on this data.



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract – Chapter 7 68

7.2.2 Risks and mitigation

Section 5.3.2 explained that having data independently sampled from the target input space X

is essential to obtain models that perform well during the operational phase and to estimate the

expected operational performance. Thus, the problem of domain shift/bias (see Section 5.3.2)

is a particular concern when using synthesized data in the training/validation sets Dtrain, Dval
or in the test set Dtest.

Handa et al. [Han+16] noted that fine-tuning a synthetic semantic segmentation dataset (with

added noise) on real (target) data leads to an improvement of 5% in the per-class accuracy,

compared to simply evaluating the model trained on synthetic data on real images. Further

examples were given in Section 7.1, on transfer learning:

• Gaidon et al. [Gai+16], who observe drops of up to 15% when passing from synthetic

to real data (while combining both leads to better results than using real data only);

• Zhang et al. [Zha+18a], who report that a model segmenting road scenes trained on

a photorealistic video game (GTA5 [Ric+16], see Figure 7.3) only achieves 29% mean

intersection over union on similar real images from the Cityscapes dataset [Cor+16]

(while an improved transfer strategy raises this number to 46%).

Similarly, even natural transformations of real data could end up changing the distribution of

the training data (which would therefore not match anymore the target distribution of X ).

Hence, the key requirement is that synthetic data should never be used without proper analysis

and mitigation of the domain biases, no matter how realistic it looks. The risks and mitigations

for transfer learning from Section 7.1 apply to this situation.

It is useful to note that there is a dissension between the recent claims of companies producing

synthesized data for training (e.g. that one can train high-quality models using only their data),

and the observations made in academic research (such as the aforementioned works) which

question such claims.

(a) Real image (b) Synthetic image

Figure 7.3: An image from the GTA5 synthetic dataset [Ric+16] and from the Cityscapes

[Cor+16] real dataset.

Use of synthesized data for testing Testing machine learning systems using synthesized data

is extremely useful and important, as it helps to find edge cases that almost never happen in

the real world or that would be difficult or very costly to reproduce.

However, testing using synthesized data can only supplement testing using actual data from

the distribution X that is expected in the operational phase and not to replace it. Otherwise,

the learning assurances (such as the theoretical guarantees) would not apply.

Here, one can diverge from [EAS19] and [UL-4600] (at least in the current version), that claim

respectively that
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“Partial certification credits may still be granted while using a non-conformed test

article, provided that the item to be evaluated is simulated with an adequate level

of representativity.”

“In order to ensure that credit may be taken from the [simulator/test rig] tests,

the [simulator/test rig] must be adequately representative for aircraft systems and

flight dynamics. At the same time the limitations for using the [simulator/test

rig] must be established. This objective can be achieved by a combination of a

controlled development process of the [simulator/test rig], simulator configuration

management, system models behavior (crosschecked when necessary with partial

system bench or flight test results, analysis, desktop simulation) and engineer-

ing/operational judgment. Currently, there is no detailed guidance available on

the qualification of simulators or test rigs for use as a Means of Compliance for

certification. [. . . ] Relying upon simulation results in arguing safety is typically

a practical necessity. Simulation results can be used so long as their accuracy is

justified, simulation run coverage is justified, and an appropriate non-zero amount

of physical testing is used to validate simulation results.”

7.2.3 Conclusion

Many safety-critical applications require a significant amount of training and evaluation data to

obtain strong performance guarantees. Both transfer learning and synthesized data (eventually

used jointly) allow to palliate a lack of data in the target domain and/or task, by taking

advantage of existing or easy to generate data from different domains/tasks. Beyond that, the

use of synthesized data can help identify edge cases and simulate scenarios that are difficult or

impossible to produce in the real world.

However, this comes with additional risks, highlighted in the sections above, that need to

be mitigated to obtain the same levels of performance garantees as those given by the pri-

mary learning assurance processes exposed in this chapter until Section 7.1. For example, no

claim can be made on the real-world performance of models trained on synthesized data, as

photorealistic as it might be, without a careful analysis.
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Performance assessment

In this chapter, the performance assessment of machine learning components, and systems

including these, is discussed. In particular, the choice of adequate error metrics is analyzed,

along with possible risks of performing the model and system evaluations.

8.1 Metrics

Chapter 5 introduced a machine learning model f̂ : X → Y as the approximation of a function

f : X → Y , learned through samples (x, f (x) + δx) ∈ Dtrain. The quality of the approximation

is measured by error metrics m : Y → R≥0, requiring that

m
(
f̂ (x), f (x)

)
be small on all x ∈ X. (8.1)

The learning guarantees presented in Chapters 5 to 7 ensure that (8.1) holds during the

operational phase, on average and up to some small failure probability. Therefore, one should:

1. Discuss adequate choices of error metrics and potential pitfalls, which is the goal of this

section;

2. Understand how to control the failure probability and strengthen the “on average” state-

ment into the validity of (8.1) for all expected inputs. This will be done in Chapter 9

(Safety Assessment).

8.1.1 Context

Section 4.2 outlined that the machine learning systems considered in this report are part of

larger (sub)systems, and do not perform “end-to-end” functions by themselves (for example,

from perception to actuation). This is the case for the model involved in the example of

Chapter 4 (ConOps), which is solely responsible for the perception component of the visual

landing guidance.

Therefore, it is important to realize that the choice of error metrics must be understood in the

scope of the whole subsystem and use case, and not in isolation. To illustrate this risk, one

can easily imagine two systems using the same model f̂ , where good performance of f̂ with

respect to m (in the sense of (8.1)) translates to adequate performance for the first system

but not the second. For example, assuming the model performs object detection, an error

metric might penalize false positives and false negatives differently:

70
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• the first system aims at identifying runways, as in Chapter 4. In this case, one might

want to avoid false positives above all, i.e. avoid that the system predicts the existence

of runways even when they are not present;

• the second system aims at identifying other aircraft to avoid collisions. In this case, it is

better to have false positives than to risk a collision, i.e. avoid that the system misses

other aircraft even when they are present.

The error metrics must be chosen so that they ensure good performance for the whole system

(ultimately the whole aircraft) in the context of the application and must become an artifact

of the development process for certification.

8.1.2 Different tasks and metrics

By definition, error metrics depend not on the input space X of the model but on the output

space Y . In machine learning, one usually distinguishes between two main types of tasks:

Classification When Y is a finite/discrete set, a model f̂ : X → Y has to assign to each input

x ∈ X a “category” or “class” y ∈ Y . Rather than predicting directly a class, these models

usually predict a soft score , or a probability distribution over Y , namely a likelihood for each

class. This allows for finer decision making and error measurements. An example is the runway

presence detection from Section 4.2.1.

Regression When Y is an infinite/a continuous set, such as an interval [a, b] ⊂ R, a model f̂

aims at estimating the continuous responses f (x) ∈ Y to the inputs x ∈ X that the function

f represents. Predicting bounding boxes in an image (e.g. Y = [0, 1]4×2, as in the runway

corner detection from Section 4.2.1) is an example of a regression task. As discussed for

classification, the predicted values can be provided along with uncertainty measures.

A model can perform a combination of classification and regression, such as the one described

in Section 4.2.1. Keeping the slicing philosophy from Section 4.2 in mind, the performances

with respect to the two task types are usually considered separately, before being combined.

The latter can be done by simply using several error metrics or by combining several error

metrics into one (e.g. through a weighted sum, see Section 5.2.5).

There are usually many possible metrics for any classification or regression task, and these

should be carefully selected taking Section 8.1.1 into consideration. Generally, all relevant

metric choices should be analyzed and the validity and precedence of the ones chosen justified.

In practice it is recommended to consider several metrics throughout the whole process and this

should be preferred over dismissing an important metric or because of computational overhead.

In the next sections, a (non-exhaustive) selection of common metrics is given for both types of

tasks. Recall also that Section 5.2.5 gave a complete example for the runway detection case.

8.1.3 Examples of classification metrics

As explained in Section 8.1.2, it is best to phrase a classification task into d categories as

finding a model

f̂ : X → [0, 1]d ,

such that the ith coordinate f̂i(x) gives the likelihood that x belongs to class i , enforcing
∑d
i=1 f̂i(x) = 1. The model approximates the “ground truth” function f : X → [0, 1]

d , where

fi(x) = 1 if and only if x belongs to class i . The predicted class for x ∈ X can be set as

ĝ(x) = argmax
1≤i≤d

f̂i(x). (8.2)
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Figure 8.1: A confusion matrix that summarizes binary classification outputs.

Binary classification Any classification task into d categories can be viewed as d separate

binary classification tasks (i.e. d = 2 and for each class 1 ≤ i ≤ d , whether a sample belongs

to class i or not). The binary classification task, as defined in Chapter 4, to decide if a runway

is visible in the image or not, is a suitable example for this section.

The output of a binary classification model can fall into four categories: true positives, false

positives, false negatives and true negatives. For example, true (resp. false) positives represent

the case where the classifier predicts that a runway is visible and the image does (resp. not)

contain it. False (resp. true) negatives represent the case where the classifier predicts that a

runway is not visible and the image does (resp. not) contain it. Figure 8.1 summarizes these

outcomes as a confusion matrix.

Class imbalances Even in a binary classification setting (but also for multi-class classifica-

tion discussed later in this section), calculating average metrics has to be done carefully. In

particular, the underlying class distribution will likely influence the evaluation results. Class

imbalances can cause significant misinterpretations of model performance. For example, the

accuracy metric
2∑

i=1

I (fi(x) 6= (ĝ(x) = i)) ,

where I is the indicator function taking value 1 if its boolean argument is true, and 0 oth-

erwise, could be chosen. However, if most x ∈ X have class 1 (corresponding for example

to background), the model will have high performance with respect to class 1 while having

abysmal performance on all other classes. A complete evaluation of a classification model’s

performance always requires considering the distribution of classes and different error types.

False positives and false negatives For each of the outcomes 1 ≤ i ≤ d , true (false) positives

and true (false) negatives can be counted using the metrics

mTP(f̂i(x), fi(x)) = I (fi(x) = 1, ĝ(x) = i) ,

mFP(f̂i(x), fi(x)) = I (fi(x) = 0, ĝ(x) = i) ,

mTN(f̂i(x), fi(x)) = I (fi(x) = 0, ĝ(x) 6= i) and

mFN(f̂i(x), fi(x)) = I (fi(x) = 1, ĝ(x) 6= i) .
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According to the definitions of Chapter 5, the numbers of true (false) positives and true (false)

negatives in a dataset D are given by

|D| · Ein(f̂i , D,mζ) =
∑

(x,f (x))∈D

mζ(f̂i(x), fi(x)),

where ζ ∈ {TP, FP, TN, FN}.

Precision is the proportion of correct of positive predictions by the classifier:

Precision(f̂i , D) =
Ein(f̂i , D,mTP)

Ein(f̂i , D,mTP) + Ein(f̂i , D,mFP)
(8.3)

=
# of true positives

# of true positives + # of false positives
.

Recall Conversely, recall measures how many of the positive samples were detected by the

classifier:

Recall(f̂i , D) =
Ein(f̂i , D,mTP)

Ein(f̂i , D,mTP) + Ein(f̂i , D,mFN)
(8.4)

=
# of true positives

# of true positives + # of false negatives

Note that the definition of recall is similar to that of precision but takes into account false

negatives instead of false positives. In the runway example above, this measures how many of

the runways were detected by the classifier.

F1 score If necessary, precision (8.3) and recall (8.4) can be combined into a single score. The

F1 measure considers both and is defined as

F1,(f̂i , D) =
2 · Precision(f̂i , D) · Recall(f̂i , D)

Precision(f̂i , D) + Recall(f̂i , D)
(8.5)

A classifier with high precision and recall has a high F1 score.

A more general form of the F1 score is the Fβ measure where β ∈ R
+:

Fβ(f̂i , D) =
(1 + β2) · Precision(f̂i , D) · Recall(f̂i , D)

β2 · Precision(f̂i , D) + Recall(f̂i , D)
(8.6)

While the F1 score is the harmonic mean, Fβ allows a different weighting of precision and

recall. For example, F2 weights recall higher than precision and F0.5 places more emphasis on

precision than on recall.

Decision thresholds In (8.2), the predicted class i was the one with the maximal soft score

f̂i(x). In the binary case d = 2, this is equivalent to setting a decision threshold at t = 0.5,

namely

ĝ(x) =

{

1 if f̂1(x) ≥ 0.5

2 if f̂1(x) < 0.5,

Other thresholds t ∈ (0, 1) may be used, leading to the decision functions

ĝt(x) =

{

1 if f̂1(x) ≥ t

2 if f̂1(x) < t,
ĝ = ĝ1/2

and having different rates of false negatives/positives (and therefore precision/recall).

During operation, this threshold can also be used as a rejection threshold and prevent the

classifier from outputting a class at all. This is discussed further in Section 6.6.
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Figure 8.2: Precision-recall curve for binary classifier

Precision/recall curve The influence of the threshold ti on the precision and recall values can

be illustrated in a precision-recall curve as shown in Figure 8.2. As ti is varied, different values

for precision and recall are obtained. A higher ti generally results in higher precision and lower

recall (or lower false positive and higher false negative counts). As ti is lowered, one expects

lower precision and higher recall (or higher false positive and lower false negative counts). This

is often referred to as the precision-recall trade-off.

For example, one would typically choose a high ti to ensure that the model only predicts that

particular class (e.g. predicts that the runway is present) if it is “very confident”. Conversely,

a lower ti would ensure that the model predicts a class even if it is “less confident”, i.e. less

runways are missed.

The favorable classifiers are those that maintain a high precision as recall increases. Such

classifiers have a high area under the curve.

Costs A downside of the aggregated F1 score (and in fact many other aggregating metrics)

is that it gives equal importance to precision and recall. As illustrated in Section 8.1.1, in

practice, different types of error types have different associated costs with it. One may want

to penalize certain erroneous outcomes more than others. This is why it is recommended to

always report precision and recall separately.

Multiclass classification False positive and false negatives among all classes can be counted

by considering the error metrics

m(f̂ (x), f (x)) =

d∑

i=1

I (fi(x) = 0, ĝ(x) = i) , resp.

m(f̂ (x), f (x)) =

d∑

i=1

I (fi(x) = 1, ĝ(x) 6= i) .

Micro vs. macro averages The above considered any classification task into d categories

as d binary classification tasks and the performance was evaluated separately for each class.

Calculating an aggregated score over all classes could, for example, be helpful to compare

several models against each other. For this, two approaches can be considered:
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Figure 8.3: Computation of the intersection over union (IoU) of two masks and examples. The

Jaccard distance is respectively 1, 0.5 and 0.

• Per-class metrics are first calculated independently and then averaged (macro-average);

• True positives, false positives, and false negatives are summed up across all classes before

computing the average metric (micro-average).

It can be seen that the macro-average considers all classes to be equally important while the

micro-average takes into account the underlying class distribution. For multi-class classification

problems it is not uncommon that the evaluation differs significantly depending on the type

of average used. This again motivates a careful use of evaluation metrics, especially when

some error types have higher costs than others. [FS10] provides further details on aggregating

metrics and their associated risks.

For a more in-depth analysis of classification metrics, the reader is referred to [SL09].

8.1.4 Examples of regression metrics

Given a general regression task of estimating a function f : X → Y ⊂ Rd , an obvious metric

to use is one of the Lp norms

m(y , ŷ) = ‖y − ŷ‖p, (p ∈ [1,∞]),

‖z‖pp =

d∑

i=1

zpi (p ≥ 1), ‖z‖∞ = max
1≤i≤d

|zi |

(note that p = 2 is the Euclidean norm; d = 1 simply yields the absolute value mentioned in

Section 5.1).

While these are straightforward, other metrics might be more adapted for more structured or

geometric tasks such as predicting corner points of an object in an image. For example, the

Jaccard distance (complement of intersection over union)

1−
µ(A ∩ B)

µ(A ∪ B)
=
µ(A△B)

µ(A ∪ B)
∈ [0, 1]

allows to compare two shapes A,B ⊂ Rd (e.g. bounding boxes) in a scale-invariant manner,

where µ is a measure on Rd (see Figure 8.3).

8.2 Model evaluation

An important part of the Learning Assurance process described in the earlier chapters involves

evaluating models f̂ on datasets (training, validation, testing) with respect to the chosen

metrics m. More specifically, the in-sample error averages

Ein(f̂ , Dtrain, m), Ein(f̂ , Dval, m), Ein(f̂ , Dtest, m)



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract – Chapter 8 76

as defined in Chapter 5 will be computed to serve as approximations for the out-of-sample

operational errors. The following paragraphs give a brief overview of risks to consider.

Software and hardware concerns An important requirement is that the evaluation software

and hardware need to be qualified to ensure the correctness and faithfulness (with respect

to the target hardware) of the evaluation results. See [ED-215/DO-330] on software tool

qualification, and [EAS19] (mentioned in Section 7.2.2). Without this assurance, none of the

learning guarantees would be valid.

Ideally, the evaluation should be run on the target system for representativity. However, this

might not be possible if there is a very large amount of data to evaluate. In this case, it is

important to demonstrate the equivalence of the target and evaluation systems.

Particular concerns arise if cloud computing is used (see Section 4.3), such as cybersecurity,

data integrity, hardware qualification, etc. These are not addressed further in this report.

Beyond averages Recall that the errors evaluated (at least in the setting adopted therein)

are averages over datapoints. However, an average only gives a partial view of the underlying

data: an average equal to 1/2 might mean that all samples are equal to 1/2, or that half of

them are equal to 1, the other half to 0. Obviously, these two cases would give a very different

safety perspective, and it becomes clear that “average performance” alone is not sufficient.

For example, Csurka et al. [CLP13] give an interesting analysis of the pitfalls of averaging in

the case of semantic segmentation (a case of multiclass classification).

The discussion on the Safety Assessment (Chapter 9) will show how to pass from average

statements to probabilistic guarantees about individual datapoints. In particular, this might

require a deeper understanding of the distribution of the model errors.

More generally, the safety argument might necessitate more detailed evaluations than the

averages above. In addition to providing averages, it is strongly recommended to include

variances, higher moments, confidence intervals or maximally-observed error.

8.2.1 System evaluation

As already noted in Section 8.1.1, a machine learning component will likely be part of a larger

(sub)system. Therefore, it is crucial to also evaluate the system as a whole, in particular

to verify the correctness of the assumptions that might have been required to link model

performance and system performance. This report will outline a possible safety analysis in the

next chapter.
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Chapter 9

Safety Assessment

The Safety Assessment process aims at showing compliance with certification requirements

such as [CS-25]/[CS-27]/[CS-29].1309 or [CS-23]/[SC-VTOL-01].2510. This process is per-

formed in parallel with the development, which is highlighted in details in [ARP4761, Figure 7]

(Safety Assessment Process Model and the associated paragraph).

The goal of this chapter is to look at the Safety Assessment in the scope of safety-critical

systems involving a machine learning component, in particular for the landing guidance use

case defined in Chapter 4. It concludes with a quantitative neural network Failure Mode and

Effect Analysis (FMEA), that shows how the theoretical results from Chapter 5 can lead to

quantitative estimations of failure rates of machine learning systems.

9.1 Safety Assessment process

The Safety Assessment process contains the following analyses at each design iteration:

• Functional Hazard Assessment (FHA) evaluates the hazard associated to each aircraft

and system and classifies them according to their severity.

• Preliminary Aircraft Safety Assessment (PASA) and Preliminary System Safety Assess-

ment (PSSA) establish a set of aircraft and system safety requirements and the as-

sociated preliminary analysis that the aircraft and system architecture will meet these

requirements. The PASA and PSSA are updated throughout the development process to

become the Aircraft Safety Assessment (ASA) and System Safety Assessments (SSA)

that supports the compliance demonstration of the final system.

• Common Cause Analysis (CCA). Safety analysis often relies on the assumption that

failures are independent. Dedicated analyses are thus necessary to guarantee that inde-

pendence is actually ensured. This is the purpose of the “common cause analysis” which

is typically divided into three complementary studies. [AC23.1309-1E] is defining these

analyses as per below:

– Zonal Safety Analysis (ZSA) has the objective to ensure that the equipment in-

stallations per structural zone of the aircraft are at an adequate safety standard,

with regard to design and installation standards, interference between systems, and

maintenance errors.

– Particular Risk Analysis (PRA). Particular risks are defined as those events or in-

fluences outside the systems concerned (e.g., fire, leaking fluids, bird strike, tire

77
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burst, HIRF exposure, lightning, uncontained failure of high energy rotating ma-

chines, etc.). Each risk should be the subject of a specific study to examine and

document the simultaneous or cascading effects, or influences, which may violate

independence.

– Common Mode Analysis (CMA). This analysis is performed to confirm the assumed

independence of the events that were considered in combination for a given failure

condition. The effects of specification, design, implementation, installation, mainte-

nance errors, manufacturing errors, environmental factors other than those already

considered in the particular risk analysis and failures of system components should

be taken into account.

With respect to the particular use case analyzed in this report (see Chapter 4):

• Section 9.2 below will provide the outline of a FHA.

• Some aspects of the CCA will be discussed in Section 9.4.

• No particular considerations related to the usage of machine learning have been identified

for the ZSA and PRA. These analyses will therefore not be developed further herein.

• The full report contained a quantitative FMEA for the neural network component in

Section 9.5, which has been redacted for confidentiality reasons.

9.2 Functional Hazard Assessment

A Functional Hazard Assessment is usually performed at the aircraft and system levels. The

intent of the aircraft level analysis is to identify possible multiple system failures that would

have a higher severity when analyzed in conjunction than when analyzed independently. In the

scope of this report, only the system level analysis will be presented for the use cases under

consideration, since it is not anticipated that the aircraft level analysis would bring additional

insights.

A prerequisite to proceed with the functional hazard assessment is to identify all the functions

of the level (aircraft or system) under assessment.

9.2.1 Reminders on the use case

Recall that, using a RGB camera mounted on the aircraft, the goal of the perception system

described in Chapter 4 is to output at a given frequency:

1. the four points defining a runway in sight, where “in sight/visible” means “with an area

larger than 1px2 on the screen”. For the purposes of this analysis, when a runway is

partially visible, it is considered visible and the corners are clipped to the screen.

2. a runway presence likelihood. A threshold can be fixed, and the condition “likelihood ≥

threshold” is interpreted as the presence (resp. absence) of runway in sight.

To do so, the system functions as follows:

1. (Sensing) At a given frequency, a RGB image is captured by the camera at a 5 megapixels

resolution.
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Figure 9.1: Example of system input and output: runway detected, with given confidence level.

2. (Pre-processing) The image is pre-processed to reduce its size to 512 × 512 pixels and

to normalize its values (say, so that it has the same channel-wise mean and variance

than images in the training set). The resulting space is denoted by X (with the right

probability distribution).

3. (Neural network) The output of the previous step is processed by a convolutional neural

network to output corner coordinates, as well as a confidence score. Given the operating

conditions provided initially1, there is a well-defined “ground truth” function, in the sense

that the four corners of the runway can always be perfectly identified at the pixel level

from images in X .

4. (Post-processing/filtering) As the output of the neural network might contain errors or

noise, the last step is to filter the predictions, eventually using information on the state

of the aircraft.

Another system (using for example a global positioning system and terrain elevation data) could

then use this output to compute the eventual runway corners in WGS84 coordinates and/or

control commands to perform a landing, etc.

9.2.2 Functional analysis

In the ConOps example, for the four identified use cases, the following functional decomposition

has been identified:

• F1: To land on a runway/vertiport.

– F1.1: To detect the runway/vertiport position.

This function is implemented through machine learning-based perception.

∗ F1.1.1: To sense the aircraft’s environment and provide the flight computer

with an image of the environment.

∗ F1.1.2: To pre-process the image.

∗ F1.1.3: To detect the runway/vertiport position in a given image (neural net-

work).

1In the scope of the ConOps, it is assumed in particular that there is at most one runway visible at all times

and that the visibility is clear.
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Hardware item Allocated function

Optical sensor F1.1.1, F2.1, F3.4

Processing unit — main processing F1.1.2, F1.1.4, F1.2, F2.2, F2.4

F3.1, F3.2, F3.3, F3.4, F3.5, F3.6

Processing unit — NN processing F1.1.3, F2.3

Autopilot / Pilot F4

Table 9.1: Functional allocation

∗ F1.1.4: To track the target position.

– F1.2: To compute the flight director order to the runway/vertiport.

This function computes the flight director order to reach the runway/vertiport from

the identified runway/vertiport position and aircraft parameters.

• F2: To monitor the system.

– F2.1: To monitor sensors.

– F2.2: To monitor internal databuses.

– F2.3: To monitor the neural network behavior.

This function is running independently from function F1.1.3 and monitors key char-

acteristics of the neural network to determine whether its inputs and outputs remain

in the defined boundaries and the neural network behavior is as intended.

– F2.4: To monitor the flight computer.

• F3: To interface with the aircraft systems.

– F3.1: to receive GPS data.

– F3.2: to receive digital terrain eleva-

tion data.

– F3.3: to receive phase of flight.

– F3.4: to receive electrical power.

– F3.5: to provide flight director data

to the autopilot.

– F3.6: to provide monitoring data to

the avionics.

• F4: To track the flight director.

This function is responsible for the aircraft tracking the flight director command. It sends

commands to the flight control system such that the flight director command is tracked

with a minimal error. It is either performed by the pilot itself (in use cases 1a, 2a) or by

an autopilot system (use cases 1b, 2b).

9.2.3 Preliminary architecture

As a starting point for the use cases, the preliminary architecture in Figure 9.2 is considered.

It is assumed that two identical processing units are running in an active-standby configuration.

Redundancy is deemed necessary on this basic configuration to ensure the availability of the

system function at all times during operation.
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Figure 9.2: Preliminary system architecture.

Failure conditions list Once a functional analysis has been performed, various methodologies

such as the one in [ARP4761, Appendix A] may be used to establish the list of failures conditions

and associated classifications. Still, existing certification requirements and associated guidance

material provide flexibility on the FHA process. The following key aspects were also discussed

with EASA when reviewing the use case FHAs:

• Assessment of failure conditions at aircraft level.

This assessment is expected to cover in particular handling qualities, performances, im-

pact on structures and human factor. For the latter, particular attention shall be paid

when failure condition severity is justified by assumptions made on human factor aspects

(flight crew alert, AFM procedures, flight deck controls, . . . ) and/or the need for a

particular training such as CTASE (Candidate for Training Area of Special Emphasis).

A process should be implemented to ensure that these assumptions are properly traced

and checked during aircraft development. In view of the novelty of the machine learning

application, this interface between the Safety Assessment process and human factor is

likely to be subject to scrutiny by certification authorities.

• Validation of failure condition classification (e.g. is there an organized way to validate

the classification?).

Beyond this area of interest, no further aspects compared to the Safety Assessment of con-

ventional designs were identified for this step of the Safety Assessment process.

Table 9.3 lists some of the failure conditions that will be considered in the remainder of the

report, with a proposed severity.

Additional assumption for this report In practice, the FHA would be analyzed in detail during

the Preliminary System Safety Assessment (PSSA) to derive precise criteria defining the max-

imum errors and durations after which a function output is considered lost or misleading. This

step is crucial for the design and safety teams, so that they can properly develop monitoring

and filtering functions, and precisely characterize failure modes.

In the use case under consideration, to proceed with the Safety Assessment, it would not

only be necessary to be able to establish the reliability of the detection algorithm on a given

image but also the overall performance of the runway position detection on multiple frames for

the approach duration. From the perspective of the safety analysis, what matters is not only

the reliability of the machine learning model detection on a given image but also the overall

reliability of the system achieved during the approach sequences.
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ID Severity (FW) Use Case 1a/b Severity (RW and VTOL) Use Case 2a/b

FC1.1-1 MIN MIN

FC1.1-2 MAJ MAJ

FC1.1-3 MIN MIN

FC1.1-4 HAZ HAZ

FC1.1-5 HAZ HAZ

FC1.1-6 HAZ HAZ

FC2.1 HAZ HAZ

FC2.2 HAZ HAZ

FC2.3 CAT CAT

• MIN = Minor Failure condition as defined

in applicable guidance.

• MAJ = Major Failure condition as defined

in applicable guidance.

• HAZ = Hazardous Failure condition as de-

fined in applicable guidance.

• CAT = Catastrophic Failure condition as

defined in applicable guidance.

For example, an applicable guidance for

VTOL is [SC-VTOL-01].2510.

Table 9.3: Failure conditions with their severities. Rows in white are related to use case

1a, 2a (advisory guidance provided to the pilot), rows in gray are related to use case 1b, 2b

(Autonomous landing). Details from the full report have been removed.
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To do that, one may have to determine upper level characteristics such as:

• the maximum duration for which a missed detection is acceptable;

• the maximum duration for which the guidance function can be lost;

• the maximum acceptable trajectory deviation.

This refinement of the FHA is typically done based on the ConOps, engineering judgment and

possibly applicable Minimum Operational Performance Standard (MOPS) or Minimum Aviation

System Performance Standard (MASPS). This step is not detailed in the report and is left for

future work. The following discussions on improvements to the system architecture to be able

to reach the safety objectives are therefore only qualitative.

9.2.4 Safety objectives definition

Safety objectives are allocated to each of the Failure Conditions (FC) identified in the FHA

based on applicable certification guidances.

For example for Use Cases 2a and 2b, for the type of vehicle considered in the ConOps,

allocation is done according to the first row of the table in Figure 9.3. The safety objective for

Hazardous (respectively Catastrophic) failure conditions would be 10−7 per flight hour (resp.

10−9 per flight hour).

Figure 9.3: Safety objective allocation table, [SC-VTOL-01] – AMC VTOL.2510. Quantitative

safety objectives are expressed as probabilities per flight hour.

Additionally, beyond the above quantitative objectives, CAT failure conditions are also subject

to qualitative requirements from [SC-VTOL-01].2510 or [AC23.1309-1E].1309 that requires

that “each catastrophic failure condition is extremely improbable and does not result from a

single failure”.

This qualitative requirement ensures that at least two independent failures must occur before a

catastrophic failure condition can develop. In practice, in the early stages of the system design,

independence requirements will be generated through the PSSA to ensure that the system is

designed according to this requirement. In the verification stage, a dedicated set of analyses

(Common Cause Analyses, including a Common Mode Analysis) will be used to ensure that

this qualitative requirement is achieved.

9.2.5 Architectural means to meet safety objectives

1. The Hazardous (HAZ) and Catastrophic (CAT) safety objectives identified in the above

FHA are mostly associated with misoperation of the system function (i.e. the integrity
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of the system function). These are for example FC1.3, 1.4, 2.2, 2.3. However, in some

cases such as the autonomous landing use case, the loss of function is also critical (i.e.

the availability of the system function; FC2.1).

Integrity and availability are two different aspects that may drive different architectural

constraints:

• A Control/Monitor architecture is often used to guaranteeing the integrity of a

function;

• The availability of a function is more likely to be achieved by having redundant

independent instances of the system function running.

2. Function 1.1.3 — Detecting runway/vertiport in a given image (through a machine learn-

ing model) — is a direct contributor to some failure conditions classified as MAJ, HAZ,

and CAT. This brings one of the first challenges in the introduction of machine learning

as for severity higher than MAJ, quantitative demonstration is necessary.

Indeed, for traditional airborne software functions, reliability of a given piece of software is

not quantified per se: it is considered that since known Development Assurance method-

ologies such as [ED-12C/DO-178C] are used throughout, the risk of having an error

resulting in a failure is minimized to an adequate level of confidence. The contribution of

software components taken into account in the quantitative safety analysis is then usually

limited to the reliability of the software function input parameters and to the reliability of

the platform executing the software code. Assuming a reliability between 10−3 to 10−5

per hour is a classical hypothesis for platforms commonly used in the aerospace industry.

This typically drives the need for duplex or even triplex implementations to meet safety

objectives associated with HAZ or CAT failure conditions.

However, beyond this first aspect, machine learning applications have a certain probability

of misoperation due to their intrinsic nature. To reflect this particular aspect, based on

considerations developed in Chapter 8, this report has been exploring the possibility to

additionally derive failure rates for the machine learning model itself by performing a

Failure Mode and Effect Analysis (FMEA) (see consideration developed in Section 9.5

below). The output of this FMEA is then fed into the quantitative analysis (e.g. Fault

Tree Analysis) to demonstrate that each FC meets its quantitative objective.

Based on Chapter 8 and Section 9.5 below, improving the performance of the machine

learning model to reduce the probability of a faulty output is a task that requires a level

of effort that grows with the desired level of performance.

To meet quantitative objectives associated to critical failure conditions such as Hazardous

(10−7 per flight hour) or Catastrophic (10−9 per flight hour) with practical test set size and

training time, it seems necessary to rely on system architecture mitigations, in particular by:

1. Having a control/monitor architecture which would improve system integrity. Consider-

ations on runtime monitoring functions and associated assumptions have been provided

in Section 6.6. This kind of architectural mitigation is typically expected to improve the

system integrity at the detriment of its availability.

2. Relying on post-processing through a tracking of the runway position (F1.1.4) over sev-

eral images. A post-processing tracking layer would be expected to improve the perfor-

mance, availability, continuity, and integrity of the detection and guidance functions.

3. Having different instances of independent machine learning models running in parallel to

both improve integrity and possibly availability (see Sections 6.3.3 and 9.4). For example,

the probability that two systems, each with independent failure probability 10−5, fail at

the same time is only 10−10.
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4. Having the aircraft make short maneuvers during the approach to change runway/vertiport

perception. This is not a system architecture change but rather a change in the opera-

tional concept. The maneuver would contribute to limit the risk of having the network

making erroneous predictions, by forcing a different perception and thus a different image

to be analyzed.

Provided that reliable performance monitoring and tracking algorithms can be implemented,

this would allow breaking down the 10−9 per flight hour budget between several subfunctions

(identification, monitoring, tracking).

During the design phase, through the Preliminary System Safety Assessment (PSSA):

• Independence requirements would be generated to ensure independence between these

various subfunctions;

• Each subfunction would receive a safety requirement defining its contribution to the

overall safety objectives. This contribution is expected to be on the order of 10−2 to 10−5

per flight hour, in which case it would be easier to achieve the safety objectives. Obviously,

investigating further how these broken-down safety requirements can be achieved is one

of the key aspects for future work.

9.3 DAL Assignment

The Development Assurance Level (DAL) assignment process is a top-down process described

in [ED-79A/ARP4754A]. The Safety Assessment process assigns a DAL to the various com-

ponents of the system.

For the application considered in this use case, the usual aircraft and system processes defined

in [ED-79A/ARP4754A], in particular paragraph 5.2.3.2.2, were deemed relevant to allocate

a Development Assurance Level.

Item Development Assurance Level (IDAL), allocation at item level, can be the reference point

for the level of rigor of the Learning Assurance process.

Per the FHA above, for some of the use cases under consideration, Catastrophic failure con-

ditions have been identified. Based on [ED-79A/ARP4754A, Table 3, note 1]:

“When a FFS has a single Member and the mitigation strategy for systematic

errors is to be FDAL A alone, then the applicant may be required to substan-

tiate that the development process for that Member has sufficient independent

validation/verification activities, techniques and completion criteria to ensure that

potential development error(s) having a catastrophic effect have been removed or

mitigated.”

Certification agencies such as EASA have been exposed to occurrences of common mode errors

on critical in-service systems. Even software or complex electronic hardware design developed

to the highest level of design assurance (DAL A) by highly experienced teams could contain

development errors that could cause simultaneous failures in redundant items.

Depending on the system under consideration, relying solely on the Development Assurance

may not be deemed adequate and could justify the need for architectural mitigation. Likewise

for machine learning Development Assurance, until proper field experience is gained, it is ex-

pected that for most critical applications, architectural mitigations are considered as part of

the mitigation strategy for systematic errors.
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The demonstration that the proposed architectural mitigations are sufficient is typically done

by performing a Common Mode Analysis (CMA) early in the development phase. Early coor-

dination with the certification agency on the conclusion of the CMA is advised.

9.4 Common Mode Analysis

The Common Mode Analysis should be initiated as soon as possible during the design phase

to gain confidence that the identified independence requirements will actually be met by the

architecture under consideration.

For instance, in the example given in Section 9.2.5, at least the following aspects should be

considered:

• Independence between processing and runtime monitoring.

Independence between control and monitoring functions is a classical aerospace design

practice. Designing monitoring functions for a classical software application is a well-

documented question. In the case of machine learning applications, the capability to

probe the model behavior independently of its processing is one aspect that will need

further evaluation. Performing a check of the statistical characteristics of the image

used by the model to ensure that its characteristics match those of the design datasets

is a first step. More advanced monitoring techniques could also be considered, such as

the distribution discriminator introduced in Section 6.2.8.

• Independence between the processing and the tracking algorithms.

• Independence between the various instances of the machine learning model.

If credit is taken from using independent neural networks, the first step could be to

introduce during the design phase some dissimilarities in the key characteristics of the

neural networks. This could be done by having:

– Different architectures (number of layers, different loss function, etc.);

– Independent/distinct datasets: coming from different sources, designed by different

teams;

– Different training software/hardware;

– etc.

In a second step, once independent models have been designed, dissimilarity between the

outputs shall be verified through a statistical test to demonstrate the independence of

their errors. See also Section 6.3.3 (multiple version dissimilarity).

9.5 Neural network Failure Mode and Effect Analysis (FMEA)

The original report contained a detailed quantitative FMEA for the neural network component

of the use case, demonstrating how the theoretical results surveyed in Chapter 6 allow to obtain

a reasonable failure probability per frame (given adequate error metrics and failure definitions).

The general strategy, which can be extended to other use cases, is the following:

1. Describe precisely the desired inputs and outputs of the system and the pre-/post-

processing steps.

2. Identify the right metrics to evaluate the model performance and how these allow to

reach the required system performance (see Section 8.1).
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3. Understand and quantify generalization guarantees (see Chapter 5), either through the

model complexity approach or through the validation/evaluation approach. This leads to

guarantees for almost all datasets on average over all inputs.

4. Identify how guarantees on average translate to performance guarantees on each input

(with respect to the chosen metrics), up to a controlled failure probability.

5. Analyze the post-processing system to show how it modifies the latter guarantees/failure

probabilities. Usually, the post-processing allows to improve performance (with respect

to the chosen metrics) and/or reduce the model failures.

6. Understand what performance guarantees (up to the chosen failure probability) follow

from the sizes of the chosen datasets, the models, and their in-sample errors (with respect

to the chosen metrics).

7. Study the elevated values of the error metrics for the model on the training/validation

(eventually testing) datasets, and develop adequate external mitigations such as those

discussed in Sections 9.2.5 and 9.4 (monitoring, tracking, etc.). This will allow to pre-

vent errors from exponentially accumulating over time. For example, one could try to

characterize properties of inputs triggering erroneous outputs.

For the use case described in this report, following the quantitative analysis above yields results

that show the feasibility of guaranteeing safety for neural networks at the appropriate levels of

criticality.

The remainder of this section has been redacted for confidentiality reasons.
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Chapter 10

Use case: Learning Assurance

For this chapter, the full report included more concrete guidance on following the Learning

Assurance concepts from Chapter 6 in the context of the specific use case from Chapter 4 and

the Safety Assessment from Chapter 9. It described details for a selection of activities required

to build safety-critical machine learning systems.
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Chapter 11

Conclusion & future work

This project constituted a first major step in the definition of the “Learning Assurance” process,

which is a key building-block of the “AI trustworthiness framework” introduced in the EASA AI

Roadmap 1.0 [EAS20]. Consequently, this is an enabler towards the certification and approval

of machine learning applications in safety-critical applications.

EASA greatly appreciated technical inputs and investigations from the Daedalean team which

allowed opening promising directions for several key elements of the “Learning Assurance”

concept.

To summarize the findings made by the EASA and Daedalean teams, the following revisits

the challenges from the EASA AI Roadmap that are listed in Chapter 2 (Introduction) and

describes how they were covered in this report:

Traditional Development Assurance frameworks are not adapted to machine learning

The concepts of Learning Assurance are formulated in Chapter 6 to provide extensions to

traditional Development Assurance. In this respect, the definition of the W-shaped Learning

Assurance life-cycle (see Figure 6.1) provides an outline of the essential steps for Learning

Assurance and their connection with traditional Development Assurance processes.

Difficulties in keeping a comprehensive description of the intended function This report

argued that higher-level system and software requirements are derived with traditional means

to capture the intended functionality of the system. Then, the concepts outlined in this report

advocate a shift from Development Assurance to Learning Assurance. For this purpose, the

report put a dedicated focus on the data lifecycle management, introducing a set of guidelines

on data quality management and in particular the use of a distribution discriminator to ensure

an evaluation of the completeness of the datasets. Fulfilling the dataset requirements from

Section 6.2 is a key element to ensure that the higher-level requirements are satisfied for the

intended functionality.

Lack of predictability and explainability of the ML application behavior The concept of

“generalizability” was introduced in Section 5.3 as a means of obtaining theoretical guarantees

on the expected behavior of machine learning-based systems during operation. Together with

“data management”, introduced in Section 6.2, this allows to obtain such guarantees from

the performance of a model during the design phase. The topic of “explainability” was left for

future work.

Lack of guarantee of robustness and of no “unintended function” The report identified

two types of robustness to investigate: algorithm robustness and model robustness (see Sec-

tion 6.4.1). The former measures how robust the learning algorithm is to changes in the

underlying training dataset. The latter quantifies a trained model’s robustness to input pertur-
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bations (e.g. viewpoint changes, adversarial attacks). Section 6.6.2 provided more examples

of perturbations and “randomness” that the system can encounter during operation. Both

types of robustness are discussed in Section 6.4, which also covered aspects of “unintended

functions”. More specific examples are included in Chapter 10.

Lack of standardized methods for evaluating the operational performance of the ML/DL

applications This aspect is addressed in several sections throughout the report. Section 5.2

introduced the general ideas of in- and out-of-sample errors which were used to describe the

generalization gap. Chapter 8 discussed the choice of metrics and how to measure model

performances during both design and operational phases in detail.

Issue of bias and variance in ML applications Bias and variance must be addressed on two

levels. First, bias and variance inherent to the datasets need to be captured and eliminated.

This was discussed as part of the data quality characteristics in Section 6.2.2, specifically the

requirements on the completeness and distribution of the datasets. See Section 6.2.8 for

details on the latter. Second, model bias and variance need to be analyzed and the associated

risks be taken into account. This was covered in Section 5.3.2. Examples for both are included

in Chapter 10.

Complexity of architectures and algorithms This work considered convolutional neural net-

work architectures as described in Section 4.2. Convolutional neural networks (CNNs) were

chosen for two reasons: 1) they are complex architectures that allow for in-depth analyses of

many common aspects and difficulties associated with modern machine learning systems; 2)

they are ubiquitously used in computer vision applications and beyond. A generic discussion of

learning algorithms was included in Chapter 5 with more concrete examples in Chapter 10.

Adaptive learning processes Following from the definition of adaptive learning in Section 2.6,

Section 4.2 described a system architecture which is non-adaptive (i.e. does not learn) during

operation. This architecture was used for subsequent analyses which therefore assume that

the model behavior is frozen and baselined (i.e. does not change anymore) once the design

phase has been completed.

While most of the concepts outlined in this report apply to machine learning more generally, it

is important to note that the details of any such analyses are highly dependent on the specific

applications, techniques, and methodologies used.

As can be seen above, many of the major challenges and risks associated with machine learn-

ing systems in safety-critical applications were discussed. They were addressed with certain

assumptions and based on a specific use case. The next step for EASA will be to generalize,

abstract, and complement these promising guidelines, in order to outline a first set of applicable

guidance for safety-critical machine learning applications.

In addition, a set of future work streams have been left aside in this report and are highlighted

in the following section.

Future work

To further prepare machine learning systems for future certification, additional aspects need

to be addressed.

This report focused merely on the training phase and did not push the barriers of the imple-

mentation and inference phase verifications. In particular, risks associated with various types

of training frameworks (e.g. cloud computing) and of inference platforms, especially hardware

accelerators specific to the highly parallel execution of deep neural networks (GPUs, FPGAs,
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etc.) were not investigated further.

Furthermore, the different types of changes that can be made to a model after certification and

deployment were not discussed in detail in this report and need to be analyzed more elaborately.

The proportionality of the framework has not been investigated as part of this report as it will

require the complete set of guidance elements to be defined before assessing adequate criteria

and levels of proportionality towards the definition of a risk-based assurance framework.

The idea of adaptive learning was not covered in this report. Despite the popularity of the

term in the industry, it was considered that it would add significant complexity and that it is

not absolutely necessary for a general first use of machine learning systems in aviation. In case

there is future interest to make use of adaptive learning, this topic needs specific attention, as

well.

Finally, this work only focused on non-recurrent convolutional neural networks, which are suit-

able for a wide range of computer vision applications. At the same time, the machine learning

community produces novel neural network architectures at an outstanding pace. It is almost

certain that new architectures which can improve the performance of systems described in

this document will appear. For this reason, the report was intentionally kept at a level that is

generic enough to hopefully apply to future developments in the machine learning community,

too. Yet, any new architecture and similarly any new application deserve careful analysis to

mitigate the risks associated with their specific design choices and intended functionality.



An agency of the
European Union

References

[AC23.1309-1E] FAA. Advisory Circular AC23.1309-1E : System Safety Analysis and

Assessment for Part 23 Airplanes. Standard. Nov. 2011.

[Aki+19] Michael E. Akintunde, Andreea Kevorchian, Alessio Lomuscio, and

Edoardo Pirovano. “Verification of RNN-Based Neural Agent-Environment

Systems”. In: The Thirty-Third AAAI Conference on Artificial Intelli-

gence. 2019, pp. 6006–6013.

[Aro+18] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. “Stronger

generalization bounds for deep nets via a compression approach”. In:

35th International Conference on Machine Learning (ICML). Ed. by

Andreas Krause and Jennifer Dy. International Machine Learning So-

ciety (IMLS), 2018, pp. 390–418.

[ARP4761] ARP-4761, Guidelines and Methods for Conducting the Safety Assess-

ment Process on Civil Airborne Systems and Equipment. Standard.

ARP, Dec. 1996.

[Bar+19] Peter L. Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehra-

bian. “Nearly-tight VC-dimension and Pseudodimension Bounds for

Piecewise Linear Neural Networks”. In: Journal of Machine Learning

Research 20.63 (2019), pp. 1–17.

[BFT17] Peter L. Bartlett, Dylan J. Foster, and Matus J. Telgarsky. “Spectrally-

normalized margin bounds for neural networks”. In: Advances in Neural

Information Processing Systems. 2017, pp. 6240–6249.

[BM03] Peter L. Bartlett and Shahar Mendelson. “Rademacher and Gaussian

Complexities: Risk Bounds and Structural Results”. In: Journal of Ma-

chine Learnnig Research 3 (2003), pp. 463–482.

[CC77] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice

model for static analysis of programs by construction or approxima-

tion of fixpoints”. In: Conference Record of the Fourth Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages. 1977, pp. 238–252.

[CH67] Thomas Cover and Peter Hart. “Nearest neighbor pattern classifi-

cation”. In: IEEE transactions on information theory 13.1 (1967),

pp. 21–27.

[Che+17] Yi-Hsin Chen et al. “No More Discrimination: Cross City Adaptation

of Road Scene Segmenters”. In: 2017 IEEE International Conference

on Computer Vision (ICCV). Venice, Italy, 2017.

92



An agency of the
European Union

Daedalean – EASA CoDANN IPC Extract 93

[Che+18] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. “Model Compression and

Acceleration for Deep Neural Networks: The Principles, Progress, and

Challenges”. In: IEEE Signal Processing Magazine 35.1 (Jan. 2018),

pp. 126–136.

[CIFAR10] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. CIFAR-10 (Cana-

dian Institute for Advanced Research). 2009.

[CLP13] Gabriela Csurka, Diane Larlus, and Florent Perronnin. “What is a good

evaluation measure for semantic segmentation?” In: Proceedings of

the British Machine Vision Conference. BMVA Press, 2013.

[Cor+16] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban

Scene Understanding”. In: The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). Las Vegas, Nevada, USA, 2016.

[CS-23] EASA. Certification Specification for Normal, Utility, Aerobatic, and

Commuter Category Aeroplanes. Standard. Amendment 5. Mar. 2017.

[CS-25] EASA. Certification Specifications for Large Aeroplanes. Standard.

Amendment 24. Jan. 2020.

[CS-27] EASA. Certification Specifications and Acceptable Means of Compli-

ance for Small Rotorcraft. Standard. Amendment 6. Dec. 2019.

[CS-29] EASA. Certification Specifications for Large Rotorcraft. Standard.

Amendment 7. July 2019.

[DD09] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic?

Does it matter?” In: Structural Safety 31.2 (2009), pp. 105–112.

[DDS19] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. “Compo-
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