



**CABIN AIR QUALITY III** 

#### **Toxicological assessment plan** *Data review, toxicological hazard identification and recommendations for risk assessment in CAQ III*

Karin Sørig Hougaard, Niels Hadrup, Ulla Vogel, Anne Thoustrup Saber, together with the research group

National Research Centre for the Working Environment, Copenhagen, Denmark

> Cabin Air Quality Research Workshop 17-18 January 2023

#### **Toxicological and hazard identification assessment plan**

Provide scientific data to identify chemical compounds during oilrelated fume events and their health effects

Hazardardous chemicals:

Chemical with the potential to induce harmful health effects in humans

- Collect contaminant measurement data from existing datasets
- Compare of existing measurement data with newly identified indicator compounds to identify indicator compounds for oil contamination
- Collect toxicological data for measured contaminants
- Identify gaps in toxicological data
- Recommendations for complete hazard identification and risk assessment in future settings







#### **Collect contaminant measurement data from existing datasets**

Based on peer reviewed papers in international journals on field measurements



## Cabin air quality on non-smoking commercial flights: A review of published data on airborne pollutants

Ruiqing Chen<sup>1</sup> | Lei Fang<sup>2</sup> | Junjie Liu<sup>1</sup> | Britta Herbig<sup>3</sup> | Victor Norrefeldt<sup>4</sup> | Florian Mayer<sup>4</sup> | Richard Fox<sup>5</sup> | Pawel Wargocki<sup>2</sup>

<sup>1</sup>Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China <sup>2</sup>International Centre for Indoor

#### Abstract

We reviewed 47 documents published 1967–2019 that reported measurements of volatile organic compounds (VOCs) on commercial aircraft. We compared the meas-

|       | : 26 March<br>1111/ina.12                       |                                                                                                                                                                | evised: 23 June                                                              | 2021 Accepted:  | Additional                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |  |  |  |  |  |
|-------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
|       | Fnvironmental Health retrieved                  |                                                                                                                                                                |                                                                              |                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |  |  |  |  |  |
| 1     |                                                 | Received: 1 December 2020   Revised: 26 January 2021   Accepted: 13 February 2021     DOI: 10.1111/ina.12812   DOI: 10.1111/ina.12812   DOI: 10.1111/ina.12812 |                                                                              |                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |  |  |  |  |  |
| Infl  | RES Building and Environment 153 (2019) 118–127 |                                                                                                                                                                |                                                                              |                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |  |  |  |  |  |  |
| con   |                                                 | ORIG                                                                                                                                                           | MARCH 28                                                                     |                 |                                                                                                                                                                                                                                                                                 | Contents lists available at ScienceDirect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E Ruilding and                           |  |  |  |  |  |  |
| Yihu  | sh                                              | In-fl                                                                                                                                                          | 5-5-1<br>                                                                    | sust            | tainability                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MDPI                                     |  |  |  |  |  |  |
| Xikaı | Susan                                           | are                                                                                                                                                            | ELSEV.                                                                       | Article         |                                                                                                                                                                                                                                                                                 | Environment International 158 (2022) 106999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                        |  |  |  |  |  |  |
|       |                                                 | Jean (                                                                                                                                                         |                                                                              | Therma<br>Comme |                                                                                                                                                                                                                                                                                 | Contents lists available at ScienceDirect<br>Environment Internation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al                                       |  |  |  |  |  |  |
|       | Abs<br>Back                                     | Tracy<br>Tyler                                                                                                                                                 | Tempo<br>field st                                                            | ru ru , ruo     | ELSEVIER                                                                                                                                                                                                                                                                        | journal homepage: www.elsevier.com/locate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |  |  |  |  |  |  |
|       | fume<br>facto<br>repo<br>be re<br>supp<br>level | <sup>1</sup> School o<br>Engineeri<br>Technolog<br><sup>2</sup> School o                                                                                       | Jun Gua<br>School of Energ<br>f Earth and Atmo<br>Georgia Institut<br>A, USA |                 | Associated i<br>Yihui Yin <sup>a,1</sup> , J<br>Xikang Cui <sup>c</sup> , C<br><sup>a</sup> Tianjin Key Laboratory<br><sup>b</sup> Department of Building<br><sup>c</sup> COMAC Beijing Aircraft<br><sup>d</sup> Environmental Control 2<br><sup>e</sup> Boeing Research & Tech | on of key volatile organic compounds in airc<br>inhalation health risks<br>funzhou He <sup>b,1</sup> , Lei Zhao <sup>a</sup> , Jingjing Pei <sup>a,*</sup> , Xudong Yang<br>Chao-Hsin Lin <sup>d</sup> , Daniel Wei <sup>e</sup> , Qingyan Chen <sup>f</sup><br>of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering. T<br>Science, Tsinghua University, Beijing 100084, China<br>it Technology Research Institute, Beijing 102211, China<br>Systems, Boeing Commercial Airplanes, Everett, WA 98203, USA<br>Imology – China, Beijing 100027, China<br>Ingineering, Purdue University, West Lafayette, IN, USA | <sup>b</sup> , Yuexia Sun <sup>a</sup> , |  |  |  |  |  |  |
|       |                                                 |                                                                                                                                                                | L                                                                            |                 | ARTICLE INF                                                                                                                                                                                                                                                                     | FO ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |  |  |  |  |  |  |

Cl

## **Status of database of measured contaminants:**

Version 1 finalised with

1) Substances from Chen et al.

Chen (All non-smoking flights) New Studies (Substances) New Studies (Particles) P Q N O Chen et al. Non-smoking flights Canister Sampling measurements (S5) Active sampling measurements (S6) Passive sampling measurements (S7) Chemical Abstract Concentration(µg/m<sup>3</sup>) Number of Concentration(µg/m<sup>3</sup>) Number of Concentration(µg/m<sup>3</sup>) Number of 2 Compounds System (CAS) no. Avg. Min. Max. studies flights Min. Max. studies flights Min. Max. studies flights Avg. Avg. 4 (-)-Camphene 1.0 NC NC 1 2 1,1,1-Trichloroethane 71-55-6 0.1 0.0 1.9 1 63 NC NC NC 1 4 0.0 0.0 5.0 3 73 1,1,2,2-Tetrachloroethane 79-34-5 NC NC NC 0.0 0.0 0.1 24 1 4 2 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 0.0 0.0 0.0 20 1 8 1,1,2-Trichloroethane 79-00-5 NC NC 0.3 NC NC 26 NC 1 4 3 9 1,1-Dichloroethane 75-34-3 NC NC NC 0.0 0.0 0.0 24 1 4 2 0 1.1-Dichloroethene 25101-06-8 0.0 0.0 0.0 2 24 1 1,1'-Dipropane-1,2-diol ether 110-98-5 1.5 124 69 0.0 1 2 1.2.4-Trichlorobenzene NC NC 120-82-1 NC. 1 0.0 0.0 0.7 2 24 4 13 1.2,4-Trimethylbenzene 95-63-6 0.4 0.0 5.1 <1.3 0.0 2.9 2 5 24 0.0 53 73 1 5 3 4 1,2-Dibromoethane 106-93-4 0.1 0.0 0.8 0.0 0.0 0.0 24 1 4 2 1,2-Dichlorobenzene 95-50-1 0.0 0.0 0.1 1 20 1,2-Dichlorobthane 107-06-2 0.4 <LOD 10 51 1 7 1,2-Dichloroethane 107-06-2 NC NC NC 1 4 1.1 NC NC 3 26 8 1,2-Dichloroethene(c) 540-59-0 NC NC NC 1 4 NC NC NC 9 1.2-Dichloroethene(t) 540-59-0 1 4 20 1,2-Dichloropropane 78-87-5 NC NC NC 1 4 0.0 0.0 0.0 2 24 NO 21 1,2'-Dipropane-1,2-diol ether 1.4 0.0 115 69 1 2 1.2-Propanediol 57-55-6 41 0.0 363 69 1 23 1,2-Dichlorotetrafluoroethane 76-14-2 0.0 0.0 0.0 1 2 108-67-8 0.5 24 24 1.3.5-Trimethylbenzene 0.5 0.0 42 1 0.4 0.0 2.0 1 4 0.1 0.0 2 25 1,3-Dichloropropene NC NC NC 10061-01-5/10061-02-6 1 Δ 26 1.3-Butadiene 106-99-0 0.6 0.0 213 1 63 0.0 0.0 0.0 2 24 107-88-0 4.6 70 69 27 1,3-Butanediol 0.0 1 28 1,4-Dioxane 123-91-1 NC NC NC 1 4 0.0 0.0 0.0 2 24 29 1-Butanol 71-36-3 2.2 0.1 32 69 3.0 NC NC 1 2 1 30 1-Hexanol,2-ethyl-103-09-3 7.8 4.8 12 14 1 1 1-Methoxy-2-propylacetate/propylene glycol mi 108-65-6 0.9 0.0 9.7 69 1 32 1-Propanol 71-23-8 71 0.0 1524 69 1 3 2,2,4,4,6,8,8-Heptamethyl nonane 09-04-4390 2.2 0.0 49 69 1 0.0 69 4 2,2,4,6,6-Pentamethyl heptane 13475-82-6 2.6 61 1 35 2,2,4-Trimethyl pentane 540-84-1 0.1 0.0 2.3 1 69 36 2.2.4-Trimethylpentane dioldiisobutyrate NO 1.1 0.0 69 2 152 7 2,3-Dimethylpentane 565-59-3 0.1 0.0 9.5 63 5.0 1 NC NC 1 2 38 2,5-Dimethylbenzaldehyde 5779-94-2 0.6 0.1 2.1 1 108 39 2.5-Diphenvlbenzoguinone 844-51-9 < 2.1 NR NR 1 1 10 2-Ethyl-1-hexanol/2-Ethylhexanol 104-76-7 4.7 0.1 30 2 120 1 2-Ethylhexanal 123-05-7 30 NC NC 2 12 2-Ethylhexyl salicylate 118-60-5 2.1 0.0 19 69 1 13 2-Hexanone 591-78-6 0.2 0.0 0.3 2 22 14 2-Methylhexane 591-76-4 10 NC NC 2 15 2-Hydroxybenzaldehyde 90-02-8 69 0.5 00 80 - 1 0.2 0.0 17 63 16 2-Methylhexane 591-76-4 1 17 2-Methylpentane 107-83-5 1.3 393 63 0.0 1 18 2-Phenoxyethanol 122-99-6 4.2 0.0 29 69 1 85 | lertiary putyipner 0.0 304 184 Tetrachloroethene/Tetrachloroethylene/Perchic 127-18-4 7.3 4 197 2.9 0.7 4.7 1 0.7 0.0 28 185 Tetradecane 629-59-4 2.5 0.0 13 1 69 4.5 NC 186 Tetrahydrofuran 109-99-9 NC 3 187 Toluene 108-88-3 15 0.0 209 402 25 14 74 3.4 0.0 30 4 2 188 trans-1,2-Dichloroethene 156-60-5 0.0 0.0 0.4 2 189 trans-1,3-Dichloropropene 10061-02-6 0.0 0.0 0.0 2 190 Tributyl phosphate 126-73-8 1.0 0.0 6.4 1 69 191 Trichloroethene 0.0 10 0.0 71 0.5 79-01-6 0.4 41 3 263 1 0.0 4.8 74 192 Tridecane 629-50-5 1.5 0.0 12 2 0.2 193 Trichlorofluoromethan 75-69-4 0.0 6.0 3 194 Triethyl phosphate 0.4 78-40-0 0.0 18 195 Trimethylpentylpheno < 2.1 NR NR 1 112-44-7 0.1 5.2 1 69 196 Undecanal 1.4

1120-21-4

110-62-3

108-05-4

75-01-4

1330-20-7

2.9 0.0 87 5

1.3 0.0 5.9 1 108

1.8 0.0

52

197 Undecane

201 Xvlene

108 Valeraldebyde

199 Vinyl acetate

200 Vinyl Chloride

239

NC NC NC

Q

75

24

49

30

20

24

2

26

75

24

24

26

71

1 49

NC

4.7 4.0 5.0 1 2

0.4 0.0 2.0 3 71

0.0 0.0 0.0 2 24

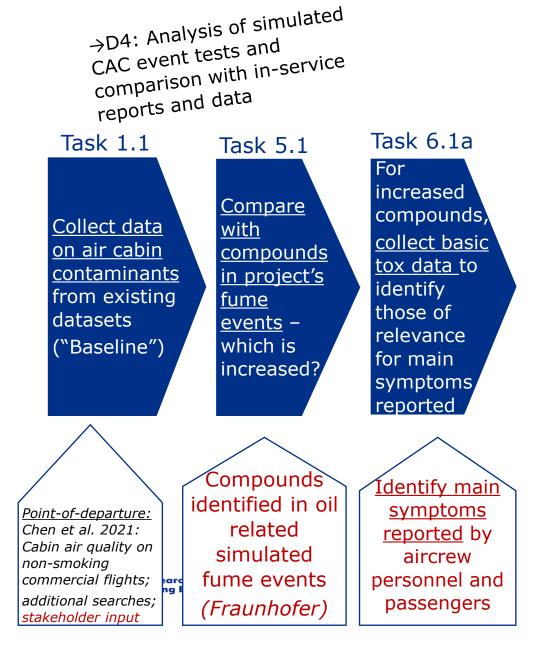
1

0.0 20



## **Status of database of measured contaminants:**

2) New studies from 2019 are included. All substances in Yin et al.2021 were already in Chen et al.


3) Cross check has been performed on data from reports of prior projects, including the EASA 2014 CAQ1 project

4) Data on additional VOCs and organophosphates reported in the CAQ1 project are now included.

Aware of other high quality measurement data from inflight conditions? Feel free to forward them to us.

| Chen (All non-smokin                   | g flights)         | New Studies (Subs                 | tances)      | Ne                                                                        | New Studies (Particles) |            |            |       |  |  |
|----------------------------------------|--------------------|-----------------------------------|--------------|---------------------------------------------------------------------------|-------------------------|------------|------------|-------|--|--|
| 1                                      |                    |                                   | Active san   | npling mea                                                                | surement                | s (S6)     |            | Pass  |  |  |
| 2                                      |                    | Chemical Abstract System          | Conce        | ntration(µ                                                                | ıg/m³)                  | Number of  |            |       |  |  |
| Compounds<br>3                         |                    | (CAS) no.                         | Avg.         | Min.                                                                      | Max.                    | studies    | flights    | A     |  |  |
| 4 Yin 2021: Cruising phase             |                    |                                   |              |                                                                           |                         |            |            |       |  |  |
| 5 Formaldehyde                         |                    | 50-00-0                           | 5,93         | <lod< td=""><td>20,03</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 20,03                   | 1 Yin 2021 | 56*        |       |  |  |
| 6 Acrolein & Acetone                   |                    | 107-02-8 and 67-64-1              | 20,68        | <lod< td=""><td>57,63</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 57,63                   | 1 Yin 2021 | 56*        |       |  |  |
| 7 Propionaldehyde                      |                    | 123-38-6                          | 4            | <lod< td=""><td>29,52</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 29,52                   | 1 Yin 2021 | 56*        |       |  |  |
| 8 2-Butanone                           |                    | 78-93-3                           | 8,3          | <lod< td=""><td>31,79</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 31,79                   | 1 Yin 2021 | 56*        |       |  |  |
| 9 Butyraldehyde                        |                    | 123-72-8                          | 3,78         | <lod< td=""><td>33,54</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 33,54                   | 1 Yin 2021 | 56*        |       |  |  |
| 10 Benzaldehyde                        |                    | 100-52-7                          | 2,37         | <lod< td=""><td>51,28</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 51,28                   | 1 Yin 2021 | 56*        |       |  |  |
| 11 Valeraldehyde                       |                    | 110-62-3                          | 1,48         | <lod< td=""><td>39,71</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 39,71                   | 1 Yin 2021 | 56*        |       |  |  |
| 12 m&o-Tolualdehyde                    |                    | 620-23-5 and 529-20-4             | 1,13         | <lod< td=""><td>8,35</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<>  | 8,35                    | 1 Yin 2021 | 56*        |       |  |  |
| 13 Hexaldehyde                         |                    | 66-25-1                           | 6,49         | <lod< td=""><td>47,75</td><td>1 Yin 2021</td><td>56*</td><td></td></lod<> | 47,75                   | 1 Yin 2021 | 56*        |       |  |  |
| 14                                     |                    |                                   |              |                                                                           |                         |            | * 28 short | t-hau |  |  |
| 15 Yin 2021 also has data on different | aircraft age and o | data with or without carbon filte | rs activated |                                                                           |                         |            |            |       |  |  |
| 16                                     |                    |                                   |              |                                                                           |                         |            |            |       |  |  |

| Chen (All non-smoking flights) N                                     |                   | Vew Stud       | ew Studies (Substances)        |                    |                                        | dies (Partic                     |                                         |                              |                                         |                                |              |
|----------------------------------------------------------------------|-------------------|----------------|--------------------------------|--------------------|----------------------------------------|----------------------------------|-----------------------------------------|------------------------------|-----------------------------------------|--------------------------------|--------------|
| A                                                                    |                   | В              | С                              | D                  | E                                      | F                                | G                                       | Н                            |                                         |                                |              |
| 1 Substance measured                                                 |                   |                | ber                            | Concentration(pa   | rticle counts/cm <sup>3</sup> ) Number |                                  |                                         | Flight phase                 |                                         |                                |              |
| 2                                                                    |                   |                | Avg.                           | Min.               | Max.                                   | studies                          | flights                                 |                              |                                         |                                |              |
| 3 Michaelis 2021: Different flight phases (Ultrafine                 | e particles)      |                |                                |                    |                                        |                                  |                                         |                              |                                         |                                |              |
| 4 Ultrafine particles                                                |                   | n/a            |                                |                    | 35                                     | 96700 1 Michael                  | 1                                       | Peak occurred with associat  |                                         |                                |              |
| 5 Ultrafine particles                                                |                   | n/a            |                                |                    | 76                                     | 31300 <mark>1 Michael</mark>     | i 1                                     | Peak immediately after eng   |                                         |                                |              |
| 6 Ultrafine particles                                                |                   | n/a            |                                |                    | 147                                    | 81800 <mark>1 Michael</mark>     |                                         | Peak occurred with associat  |                                         |                                |              |
| 7 Ultrafine particles                                                |                   | n/a            |                                |                    | 893                                    | 97800 <mark>1 Michael</mark>     | 1                                       | l Peak immediately after eng |                                         |                                |              |
| 8 Also has information on particles in aricraft of di<br>9           | fferent age       |                |                                |                    |                                        |                                  |                                         |                              |                                         |                                |              |
| 10                                                                   |                   | _              |                                |                    |                                        |                                  |                                         |                              |                                         |                                |              |
| 11 Yu 2021: (Particle matter)                                        |                   |                |                                |                    |                                        |                                  |                                         |                              |                                         |                                |              |
| 12 PM1                                                               |                   |                | 0,47                           |                    | 0 9,31 μg/m3                           | 1 Yu et al 3                     |                                         | Throughout all of the flight |                                         |                                |              |
| 13 PM2.5                                                             |                   |                | 0,91                           |                    | 0 12,37 μg/m3                          | 1 Yu et al 3                     |                                         | Throughout all of the flight |                                         |                                |              |
| 14 PM10                                                              |                   |                | 1,14                           |                    | 0 15,36 μg/m3                          | 1 Yu et al :                     |                                         | Throughout all of the flight |                                         |                                |              |
| 15 CO2                                                               |                   | 124-38-9       | 1440 ppm                       |                    | 1069 2135 µg/m3                        | 1 Yu et al                       |                                         | Only monitored in the seco   |                                         |                                |              |
| 16 CO                                                                |                   | 630-08-0       | 0.07 ppm                       |                    | 0 0,26 μg/m3                           | 1 Yu et al :                     | . 2                                     | 2 Only monitored in the seco |                                         |                                |              |
| 17   18 Guan 2019: (Ultrafine particles)                             |                   |                |                                |                    |                                        |                                  |                                         |                              |                                         |                                |              |
| 19 Ultrafine particles                                               |                   |                | 77                             | almost same as a   | averag almost same                     |                                  |                                         | Cruising                     |                                         |                                |              |
| 20 CO2                                                               | 124-38-9          |                | 2 annost same as a<br>739 ppmv | 3374 ppmv          | 1 Guan 20                              |                                  | Cruising                                |                              |                                         |                                |              |
| 21 Dominant peak (size) was 72-100 nm                                |                   |                |                                |                    | 3374 00110                             | 1 Guail 20                       | . 14                                    | Cruisine                     | Manual la                               | Manual la                      | -            |
| 22 Some peak values were seen with turbulence of                     | air stream or w   | hile passing t | hrough cloud                   |                    |                                        |                                  |                                         |                              | Mean in                                 | Mean in                        |              |
| 23 There are also ultrafine particle counts during ta                |                   |                |                                | ter landing)       |                                        |                                  |                                         |                              | main                                    | B787                           | Alrea        |
| 24                                                                   |                   |                | 01                             |                    | -                                      |                                  |                                         |                              | study                                   | study                          | in Ch        |
| 5 Rivera-Rios 2019: (Particle matter)                                |                   |                |                                |                    |                                        | ates in EASA 20                  | 14                                      | CAS no                       |                                         |                                |              |
| 26 PM1                                                               |                   |                | ~0                             | almost same as a   | Triisobytyl ph                         |                                  |                                         | 126-71-6                     | 0,102                                   |                                |              |
| 27 PM 0.3 to 2.5                                                     |                   |                | ~500                           | almost same as a   | Tributyl phose                         | ohate                            |                                         | 126-73-8                     | 0,43                                    | 0,237                          | 7 Yes        |
| 28 PM15                                                              |                   |                |                                | 3 almost same as a | Tris(chloroeth                         | yl)phosphate                     |                                         | 115-96-8                     | 0,016                                   | 0,007                          | 7 no         |
| 29 Has also other phases of flying including at termi                | inal, bording tax | kiing, climbin |                                |                    |                                        | propyl)phospha                   | te                                      | 13674-84-5                   | 0,506                                   | 0,502                          | 2 no         |
|                                                                      |                   |                |                                | Aean in            |                                        | proisopropyl)ph                  | osphate                                 | 13674-87-8                   | 0,008                                   | 0,005                          | 5 no         |
|                                                                      |                   |                |                                |                    | Triphenyl pho                          |                                  |                                         | 115-86-6                     | 0,009                                   |                                | 6 no         |
|                                                                      |                   |                | 787                            | Tris(butoxyet)     |                                        |                                  | 78-51-3                                 | 0,076                        | 1.1                                     |                                |              |
| substances in EASA 2014 that are not in                              | 5                 | tudy s         | tudy                           |                    | ylhexyl phosph                         | ate                              | 1241-94-7                               | 0,015                        | 1.1                                     |                                |              |
|                                                                      | CAS numb          | ber (          | μg/m3) (μ                      | μg/m3)             | Tris(ethylhexy                         |                                  | ate                                     | 78-42-2                      |                                         | <lod< td=""><td>no</td></lod<> | no           |
| thalene 16.8 1.4 0.0 49.1 0.4 2.6 91-20-3                            |                   |                | 1,4                            | 0,8                | Tri-m-cresyl p                         |                                  |                                         | 563-04-2                     | 0,004                                   |                                |              |
| thalene 16.8 1.4 0.0 49.1 0.4 2.6                                    |                   |                |                                |                    | in the creating                        |                                  |                                         |                              | 1 C C C C C C C C C C C C C C C C C C C | 1.1                            |              |
| thalene 16.8 1.4 0.0 49.1 0.4 2.6<br>Kylene 36.6 0.9 0.0 4.5 0.6 2.4 | 179601-2          | 3-1            | 1,6                            | 0,9                | Tri-mmp-cresy                          | l phosphate T-m                  | mp-CP                                   | no cas                       | 0.006                                   | 0.01                           | 1 no         |
|                                                                      | 179601-2          | 3-1            | 1,6                            | 0,9                | -                                      | l phosphate T-m<br>phosphate T-m | 1 C C C C C C C C C C C C C C C C C C C | no cas                       | 0,006                                   |                                | 1 no<br>6 no |





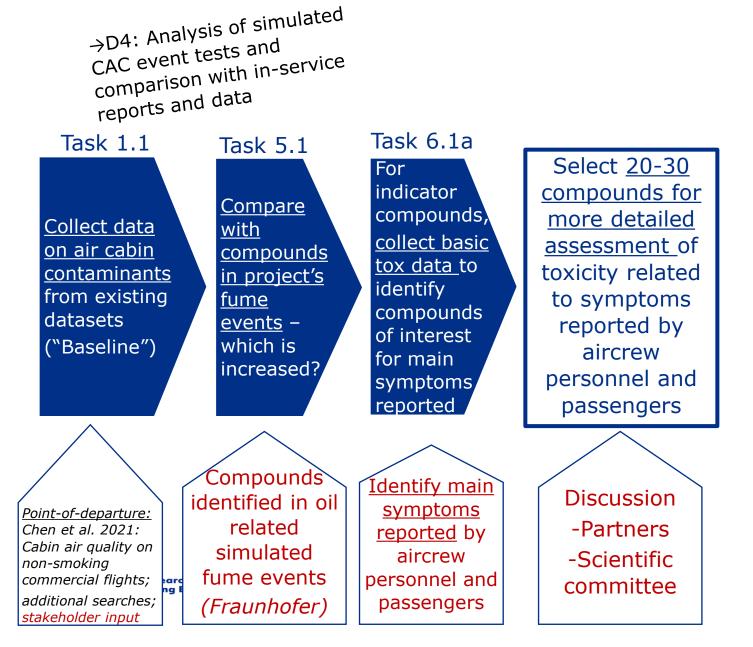
Symptoms reported by aircrew personnel and passengers experiencing contaminated air in aircrafts

Michaelis et al. 2017, Public Health Panorama

| SHORT-TERM MEDICAL FINDINGS & DIAGNOSES                                                              | No. | LONG-TERM MEDICAL FINDINGS & DIAGNOSES                             | No |
|------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------|----|
| Hydrocarbon fume inhalation/chemical injury on<br>aircraft                                           | 1   | RADS (Reactive Airways Dysfunction Syndrome) / occupational asthma | 6  |
| Adverse effect on the vocal chords and bronchial<br>tubes                                            | 1   | PTSD (Post Traumatic Stress Disorder)                              | 3  |
| Tricresyl phosphate (TCP) in blood                                                                   | 1   | Neurotoxic injury                                                  | 1  |
| Raised levels of VOCs, nickel, cell degradation                                                      | 1   | Toxic encephalopathy                                               | 1  |
| Double hernia due vomiting                                                                           | 1   | Neuropathy on vocal chords/limbs                                   | 3  |
| Poisoning by non-medical agent                                                                       | 5   | MCS (Multiple Chemical Sensitivity)                                | 1  |
| SPO2 70% / 80% (peripheral capillary oxygen<br>saturation)                                           | 2   | CFS (Chronic Fatigue Syndrome)                                     | 1  |
| Abnormal blood results: CK; CK-MB; LDH; GOT<br>AST]; GPT (ALT)                                       | 2   | Anxiety/depression                                                 | 1  |
| Traumatic muscle damage and ischemia due<br>excessive athletic sports or contamination               | 2   | Cognitive dysfunction                                              | 4  |
| Toxic effect of gas, fumes or smoke                                                                  | 2   | Dementia                                                           | 1  |
| Possible inhibition of the enzyme AChe or other<br>neurospecific esterase caused by organophosphates | 2   | ADHD (Attention Deficit Hyperactivity Disorder )                   | 1  |
| Тохісору                                                                                             | 2   | Seizure disorder                                                   | 1  |
| carboxyhemoglobin at or above the high normal<br>range - exposure to burned organic chemicals        | 4   | Depression                                                         | 1  |
| TOCP (Triortho cresyl phosphate) adduct on Bche                                                      | 1   | Aerotoxic syndrome                                                 | 1  |
| nhalation injury                                                                                     | 1   | Chemical injury at work                                            | 1  |
| Organophosphate (OP) type poisoning/internal<br>bleeding                                             | 1   | Neurological chemical injury                                       | 1  |
|                                                                                                      |     | CNS injury                                                         | 1  |
|                                                                                                      |     | G4 GBM (deceased) - (Glioblastoma brain tumour)                    | 1  |
|                                                                                                      |     | Wallerian degeneration                                             | 1  |
|                                                                                                      |     | Vocal polyps                                                       | 1  |
|                                                                                                      |     | Heart attack + phosphate exposure (deceased)                       | 1  |
|                                                                                                      |     | Frontal lobe damage                                                | 1  |
|                                                                                                      |     | Optic nerve damage                                                 | 1  |
|                                                                                                      |     | Migraines                                                          | 1  |

# CABIN AIR QUALITY III

### Neurological symptoms marked in yellow


**Symptoms** reported by aircrew personnel and passengers experiencing contaminated air in aircrafts

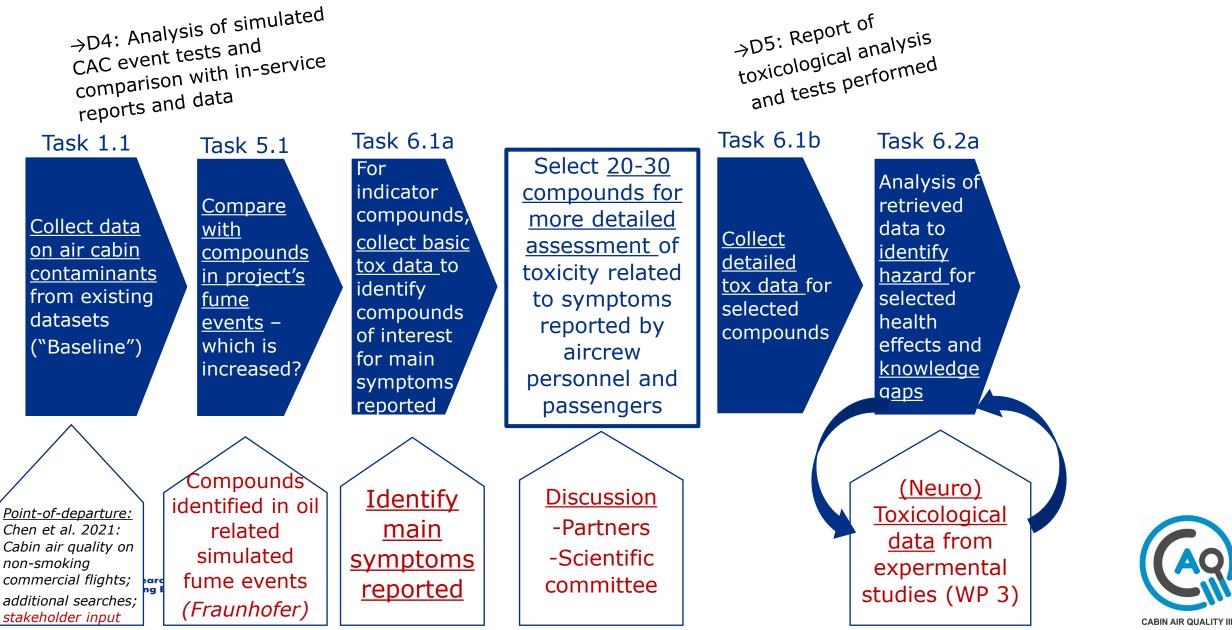
Review. Hageman et al. 2022, Advances in Neurotoxicology

| Table 4B Most often reported sy<br>Symptoms | ympto<br>1ª | oms.<br>2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Observations that can be made in animal studies |
|---------------------------------------------|-------------|-----------|---|---|---|---|---|---|---|----|----|-------------------------------------------------|
| Irritation of eyes, nose, throat            | х           | х         | х | х | х | х | x | х |   |    | х  |                                                 |
| Salivation                                  | х           |           |   | х |   |   |   |   |   |    |    | Cage-side observation                           |
| Nausea, vomiting                            | х           | х         | х | х | х |   | х | х | х | х  |    | 7                                               |
| Flu-like symptoms                           |             |           | x |   |   |   |   |   |   |    |    |                                                 |
| Headache                                    | x           | x         | х | х | х | х | х | х | х | х  | х  | Animal weight loss                              |
| Fatigue                                     | x           | х         | х |   | х | х |   | х | х | х  | х  |                                                 |
| Lethargy                                    |             |           |   |   |   |   | х |   |   |    |    |                                                 |
| Disorientation                              | x           | x         |   |   |   |   |   |   |   |    |    | -                                               |
| Dizziness                                   | x           | x         | х | х | х | х | х | х |   | х  |    |                                                 |
| Cognitive impairment                        |             |           | х |   | х | х | х | х |   | х  | х  |                                                 |
| Memory impairment                           | x           | x         | х | х |   |   |   |   | x | х  |    | Changes in                                      |
| Confusion                                   |             | x         |   |   | х |   |   |   |   | х  |    | behavior                                        |
| Balance/coordination loss                   | x           | x         | х | x | х |   | х |   | x |    | х  |                                                 |
| Tremor                                      | х           |           |   |   |   |   |   |   |   |    |    |                                                 |
| Irritability                                |             | х         |   |   |   |   |   |   |   |    |    |                                                 |
| Blurred vision                              | x           | x         |   | х | x |   |   |   |   | х  |    |                                                 |
| Breathing difficulties                      | х           | x         | х | х |   | x | х | х | х | х  | х  | Cage-side observation                           |
| Chemical hypersensitivity                   |             | x         |   | х |   |   | х |   |   |    |    | 5                                               |
| Chest pain                                  | х           |           |   |   |   |   |   |   |   |    |    |                                                 |
| Palpitations                                | х           |           |   | х |   |   |   |   | х |    | х  |                                                 |
| GI-complaints, cramps                       |             |           | х | х |   | х | х | х |   |    | х  |                                                 |
| Diarrhea                                    | х           |           |   | х | х |   | х |   |   |    |    | Cage-side observation                           |
| Loss of sensation, tingling                 |             | х         | х |   | х |   | х |   | х |    |    | Ŭ (                                             |
| <sup>a</sup> Study number see Table 3 A     |             |           |   |   |   |   |   |   |   |    |    |                                                 |

CABIN AIR QUALITY III

<sup>a</sup>Study number see Table 3 A.






## For indicator compounds: collect basic toxicological data to identify compounds of interest for health effects

#### Is it probable that a substance might be relevant for observed symptoms?

- 1. Measured level and duration of during simulated CAC event
  - Difference from "old" measurements during inflight conditions
- 2. Level of knowledge on adverse health effects (especially neurotoxicity, covering many symptoms reported (based on extracts from the GESTIS information System)
  Potency of toxicity (based on Occupational Exposure Limits)

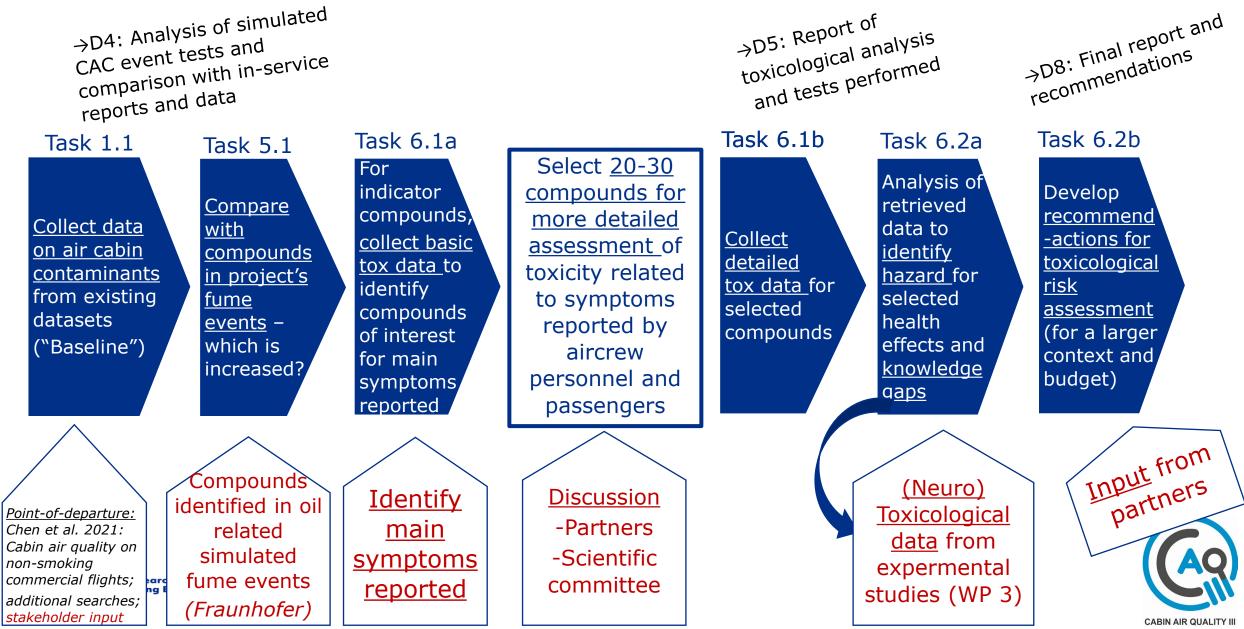




## For selected compounds: collect and analyse toxicological data to identify hazards related to reported symptoms

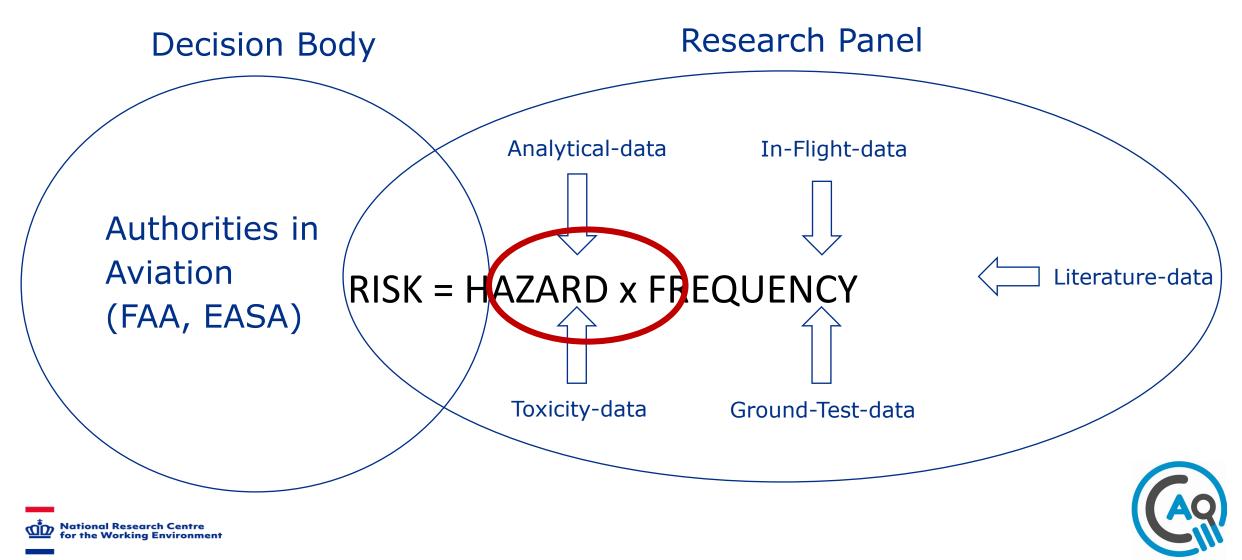
#### Additional information retreived

- EU and World Health Organisation reports and databases
- Registry of Toxic Effects of Chemical Substances (RTECS)
- PubMed database if no high quality reports are identified
- Additional review reports via consortium partners and research projects
- In silico Quantitative Structure Activity Relationship (QSAR) screening for respiratory sesitisation in humans




#### Hazard identification and gap analyis of selected chemicals:

 Probable that the selected contaminants can induce relevant health effects?


Gap in knowledge relative to the study of relevant effects





#### Why CAQIII?

#### Data Generation and analysis







#### Research team at the National Research Centre for the Working Environment, Copenhagen, Denmark CABIN AIR QUALITY III



Karin Sørig Hougaard Senior researcher, affil. Prof Lead WP 1 Niels Hadrup Senior researcher Co-lead WP 1 Anne Thoustrup Saber Senior researcher Project member WP 1 Ulla Vogel Professor Project member WP 1

### **Thank you for your attention!**



National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

### HELMHOLTZ GMC MUNICI)





National Research Centre for the Working Environment





IEBHERR

**InstPharmToxBw** 



Honeywell



CONSULTING AND ENGINEERING

SF



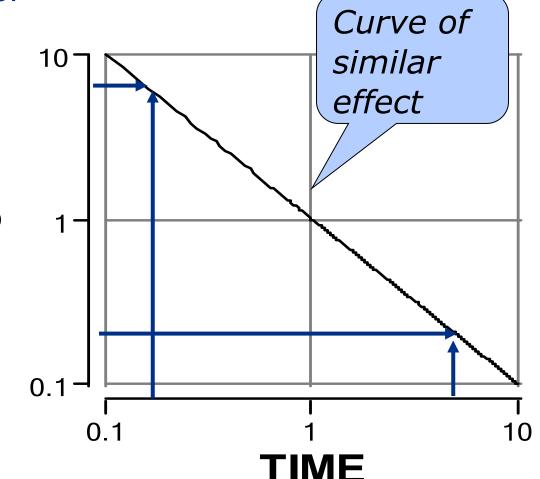
FFIKA, Focused Research Effort on Chemicals in the Working Environment Denmark





### **Basis: Haber's rule**

Haber 1924:


Constant relation between concentration of war gases and time to death of test animals:

Effect of short exposure to high concentration

= Effect of long exposure to low concentration



for the Working Environment





## Task 6.2b: Development of recommendations for future toxicological risk assessment

- Problem formulation:
  - Setting
  - Methodology relative to exposure to multiple chemicals
- Exposure assessment
- Hazard assessment and characterisation
  - Additional knowledge (studies) needed?
- Risk characterisation

