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Re-emergence of an “old” problem
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What is the Vortex Ring State?

Rotor wake in
high-speed
descent

Rotor wake in
level flight
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What is the Vortex Ring State?
4 )

Over a range of forward speeds and descent rates

* thrust and power fluctuations
» reversal of control derivatives (e.g. thrust vs. collective pitch)
*+ efc...
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Computational methodology

Using the appropriate computational
methodology is essential...

SophlA-C

VORTICITY TRANSPORT MODEL
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/“Free wake”

» Lagrangian approach quickly
accumulates integration error

m) Chaotic evolution of

\ vortex filaments

\%,P§‘¢ ’_ .

\\\\},

“Conventional” CFD

» Vorticity not conserved

m) Wakedynamics
\ mis-represented

(Vorticity Transport CFD

» Vorticity properly tracked
* Proper control of accuracy

m) Wake dynamics
k accurately represented
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Computational methodology

Using the appropriate computational
methodology is essential...

SophlA-C

VORTICITY TRANSPORT MODEL

Hex-rotor eVTOL in asymmetric
Vortex Ring State
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A physical hypothesis

(different to the ‘usual’ explanation)

.. wake instability is the
primary physical mechanism
that is responsible for the
onset of the VRS.

ROTOR

DISTURBANCES

Growth at rate cg4

o

Convection at speed (uy,wy)
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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SophlA-C simulations for an isolated, single rotor
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An analytic model for VRS onset

Original Perry Model (2003) /JW (kﬂx) (ﬁz + 7\4 )2

Enhanced model (2005) (/,tx — ud)2 + (/JZ — Wd)2 — Cczi

Disturbance propagation rates :

Forward speed / v,
0.0 0.5 1.0 1.5 Ug = (1 — k)ﬂx

0.0

Perry, Brown, Newman
model for VRS onset w - ?\4 .
d I

S
o

Rotor susceptible to
Vortex Ring Phenomena

Disturbance growth rate :
Cd — ﬁW \/ CT/2

( Thrust coefficient C ~ Disc Loading! )

Vertical speed / vy
o

-
[3)]

-2.0
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An analytic model for VRS onset

Forward speed / v,
0.0 0.5 1.0 1.5

Perry’s model
for VRS onset
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D6075 Flight tests
Brotherhood Flight tests
V=22 Flight tests
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This presentation:

« Vortex Ring State is a real threat to the helicopter community,
as borne out by accident statistics :

NTSB CAROL accident database :

79 results for “settling with power”
17 for “Vortex Ring State”

* Proper attention to the phenomenon is presently obscured by
confusion over terminology and lack of understanding of the
physics.

Is the eVTOL community going to make the same mistake?

How can regulators help?
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Trajectory 4 \\

* How the trajectory followed -
by the aircraft may influence

Structure of presentation G

its susceptibility to the VRS.

|

/ Manoeuvres

» How rigid-body manoeuvres
may conspire with certain
elements of the aircraft’s
configuration to influence
its susceptibility to the VRS.

R &

The Urban Environment

How does operation in the urban
environment influence
susceptibility to the VRS ?

* Gusts
\- Vertiport Design.
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Structure of presentation

(Aerodynamic Interactions

* How “second-order”
aerodynamic effects may play
an important role in promoting
VRS in aircraft with certain

\ configurational features.

Please go to Sophrodyne’s website:

https://[sophrodyne-aerospace.com/resources
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A model for VRS onset

Original Perry Model (2003) : HW ( kﬂx) + (7 + Xl.)Z

EW : “critical wake transport velocity”

k : “effectiveness of lateral wake transport”

Forward speed / v,

0.0 0.5 1.0 1.5

0.0

S
o

Vertical speed / vy,
o

Perry, Brown, Newman

odel for VRS onset = induced velocity in hover

as modelled using momentum theory

Rotor susceptible to

Vortex Ring Phenomena SO

vy, = (disc loading / 2p )/2
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Dependence on Disc Loading

RATE OF DESCENT (FPM)

(

-

Disc loading =

rotor area

J

1000

3660

4000

5000

5800

CH-53 E (55000 Ibs, S. L.)

N

60

VERE
TURBULENCE
20

LIGHT TURBULENCE

° DESCE

ANGLE

10 20

30

HORIZONTAL SPEED (KNOTS)

RATE OF DESCENT (FPM)

722

1075 +

SOPHRODYNE"
SEUCSIIEGE,

TH-57 B/C (3000 Ibs, SEA LEVEL)

— LIGHT TURBULENCE

SEVERE
TURBULENCE

3260

10 14 16
HORIZONTAL SPEED (KNOTS)

© Sophrodyne Ltd 2022



SOPHRODYNE"®
EroSpPace

Dependence on Disc Loading

Disc loading

“helicopters”

Log ( Weight )

Geometrically-similar helicopters

Disc loading ~ (Weight)'/3

Weight
Disc loading = S
rotor area
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Dependence on D

Disc loading
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isc Loading
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3.
“helicopters”
-,
Log ( Weight )
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i_i ﬁ Geometrically-similar helicopters

Disc loading ~ (Weight)'/3

rotor area

Disc loading =
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VRS regime for Conventional
Helicopters
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VRS regime for eVTOL Aircraft
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Structure of presentation

SOPHRODYNE"®
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/

.

Trajectory

» How the trajectory followed
by the aircraft may influence
its susceptibility to the VRS.
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Aircraft trajectory and the VRS regime

0.0
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Vertical speed / vy,
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I
VRS X
REGIME

‘escape’
trajectory
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Aircraft trajectory and the VRS regime

/'

On non-dimensional axes :

A

The VRS boundary remains fixed

The same trajectory scales with disc
loading by shrinking or expanding

SOPHRODYNE"®
BEICSIIEGE

around the origin.
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Aircraft trajectory and the VRS regime

(a) “shallow descent”
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Aircraft trajectory and the VRS regime

(b) “aggressive descent”
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Aircraft trajectory and the VRS regime

(c) “steep descent”
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Aircraft trajectory and the VRS regime

Trajectory

* How the trajectory followed _——
by the aircraft may influence ‘

Conclusions :

its susceptibility to the VRS.

« eVTOL disc loadings are generally not high enough
to exploit a favourable shift in the VRS boundary.

» Trajectories that tend to be “safe” for helicopters
tend to be less so for eVTOL.

» Some ideas for eVTOL operation in urban areas
and for noise abatement may need to be re-visited
in the light of the danger posed by VRS.
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Structure of presentation

SOPHRODYNE"®
Erospace

/ Manoeuvres

* How rigid-body manoeuvres
may conspire with certain
elements of the aircraft’s
configuration to influence
its susceptibility to the VRS.
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Aircraft manoeuvres and the VRS regime

4 )

Some eVTOL aircraft have
configurational features which
are known (largely from tiltrotor
experience) to be problematic
with respect to VRS:

Two examples :

« Side-by side rotors
(during lateral manoeuvres)

» Vectored rotor thrust
(during conversion)

. J
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Aircraft manoeuvres and the VRS regime

SOPHRODYNE"®
Erospace

1. Use of differential thrust to
instigate a turn.

wake structure
(safe descent)

symmetric
vortex ring condition

WORST CASE

asymmetric
vortex ring condition

J

Vertical speed / vy,

Bank angle / $max
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Aircraft manoeuvres and the VRS regime

f'f . \\ Forward speed / v,
2. Use of thrust vectoring to 0022 0s 10 15 20 28 a0

decelerate the aircraft. "
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Aircraft manoeuvres and the VRS regime

. Manoeuvres
Conclusions:

* How rigid-body manoeuvres -
may conspire with certain

elements of the aircraft’s
configuration to influence \/

its susceptibility to the VRS.

:

« Some elements of eVTOL configurational design
may increase the chances of entering VRS during
descent and landing as a result of manoeuvring at
low forward speed.

» Designers would do well to verify that their aircraft
do not contain hidden failure modes in this respect.
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Structure of presentation

s 3\

The Urban Environment rofb)%
How does operation in the urban SO
environment influence
susceptibility to the VRS ?
* Gusts
\. Vertiport Design. K /5‘9J N 4 /
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A VRS-based gust margin

-

Forward speed / v,,
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0.0

VRS
REGIME

Vertical speed / vy,
LN
(=]

Using the Enhanced VRS model :

Maximum safe horizontal gust :

Maximum safe vertical gust :

T = M —\J iy — (B2 + A

~

-

q: = (ﬁz + 5‘:) - \/ﬂ%v - (k,a:c)Q

SOPHRODYNE"®
EroSpPace

Vertical speed / vy,

0.0

&
@

-
o

-
(2]

-2.0

0.5

VRS
REGIME

Forward speed / v,
1.5 2.0 25 3.0

Bell 2068

Robinson R-22

\

J

vert. gust margin
g/ (Wp, )"

horiz. gust margin
ay / (Wp,,)"

Altitude | H

=
(=]

e
o

e
=)

=
o

e
o

1.0

0.5

eVTOL 2 eVTOL 3 206B R-22 eVTOL 1
T —————
206B R-22 eVTOL 1 2 3
D
&
0.00 0.25 0.50 0.75 1.00
Distance /L

© Sophrodyne Ltd 2022



SOPHRODYNE"
CEUOSIIEGE,

Vertiport design
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Vertiport design .with reference to EASA PTS-VPT-DSN

Vees

balked landing

> heights are referenced
landing distance to vertiport elevation
required

Figure D-28. Landing path

Figure D-21. Reference volume Type 1 dimensions (with the SAs)
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Rate of descent / v,
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Forward speed / v,

Commanded descent trajectory

| i
angle of final ﬁ commanded
descent a

descent trajectory

i . shallowest allowable
— i descent trajectory

=

© Sophrodyne Ltd 2022



SOPHRODYNE"®
EroSpPace

Forward speed / v,
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o
3

Steepest descent rate
for no VRS

Rate of descent / v,
o

-
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REGIME

| /
o ﬁ commanded
descent trajectory

S . shallowest allowable
— i descent trajectory
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Forward speed / v,

0.0 0.5
o
= d e —
> o - —
: Sy
3 Commanded descent trajectory
g
2 4
] —
x w
=] VRS REGIME
commanded
descent trajectory

shallowest allowable
descent trajectory
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Forward speed / v,
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3 Commanded descent trajectory
8 ‘ VRS margin
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commanded
descent trajectory

shallowest allowable
descent trajectory
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Forward speed/ v,
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E Same trajectory, higher disc loading
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commanded
descent trajectory
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Vertiport design

..with reference to EASA PTS-VPT-DSN

Outwash effects :

Deflection Zone >

Upwash Sheet

J

We know that the strength of the wall jet is
proportional to disc loading ( ~ v, )
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Vertiport design ..with reference to EASA PTS-VPT-DSN

\

Outwash effects :

We've learned some lessons from
our studies of helicopter brownout :

« outwash pattern is complex and
configuration dependent

+ some simple scaling laws apply

© Sophrodyne Ltd 2022
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Vertiport design .with reference to EASA PTS-VPT-DSN

Outwash effects :

P
P4
i

| We know that the strength of the wall jet is
proportional to disk loading ( ~ v, )

— this gives a limit to the maximum tolerable
disc loading in an urban setting.

Brownout studies suggest that the cumulative
damage caused by the outwash scales
with v,,T ( T : time taken to descend )

— This gives a (lower) limit to the tolerable
rate of descent into the vertiport

© Sophrodyne Ltd 2022



Maximum tolerable

outwash damage, vi,T
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Urban environments and the VRS regime

The Urban Environment .
Conclusions: N Do

How does operation in the urban \[/,\/"—b\
environment influence

susceptibility to the VRS ? Q-QJ /@'

+ Gusts Q

» Vertiport Design. /1¢9/\Q.

« eVTOL disc loadings may improve gust ride quality
but reduce gust margins with respect to VRS.

» Trajectories need to be designed with local
atmospheric conditions and appropriate margins
against gust-induced entry into VRS in mind.

« Aircraft designers may find themselves pushed into
a very tight corner by vertiport design standards that
don’t take eVTOL aerodynamics into account.
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Summary

* There is evidence to suggest that VRS for eVTOL
aircraft will be as serious a problem as it is for
helicopters.

 The eVTOL community (designers and regulators)
can learn from helicopter experience, but additional
work is needed to address specific issues with the
new technology.

« As eVTOL comes out of its “honeymoon” phase,
and flight testing and certification become more
pressing issues, we'll need to focus more on
detailed, accurate, aerodynamic analysis.
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