

Annexes and ECQB exams

Version 2, 05/01/2024

Information about the sources from which ECQB annexes are based is provided, for the purpose of supporting students in preparing for their ECQB-based exams. While most of these are available for viewing online from the publisher / copyright holder, a small number may not be familiar (as they have been made available or developed for the ECQB). For this reason, a set of ECQB sample annexes is provided for private study. Any other re-use, for example commercial reproduction, would require the permission of the copyright holder.

Disclaimer

This report on Annexes and ECQB exams is made available for information purposes only. While every care has been taken in preparing the content of the Document to avoid errors, the Agency makes no warranty as to the accuracy, completeness or currency of its content. The Agency shall not be liable for any kind of damages or other claims or demands incurred as a result of incorrect, insufficient or invalid data, or arising out of or in connection with the use, copying or display of the content, to the extent permitted by European and national laws. The information contained in the Document should not be construed as legal advice.

Main sources of annexes

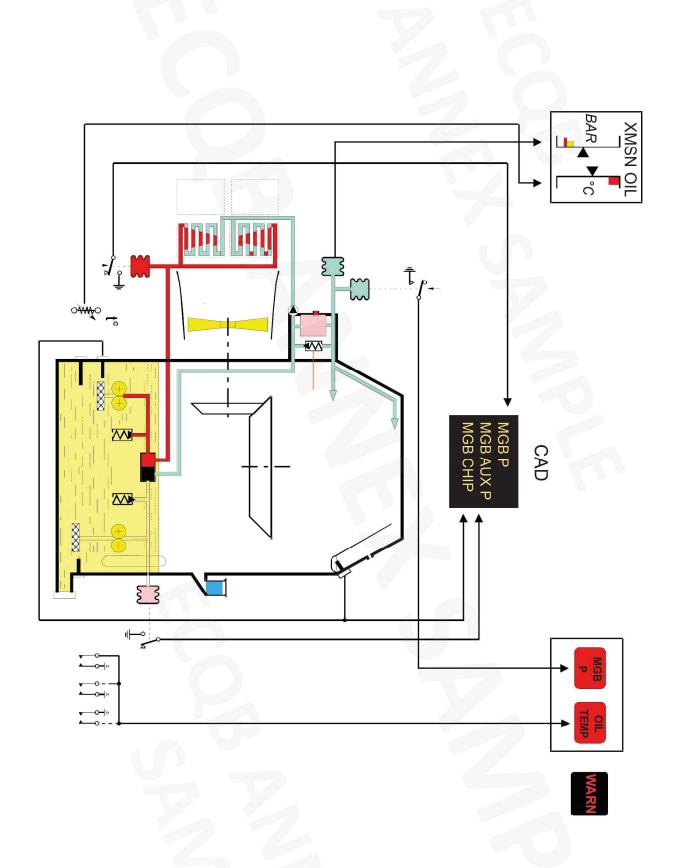
The majority of ECQB annexes are taken from the sources listed in the table below.

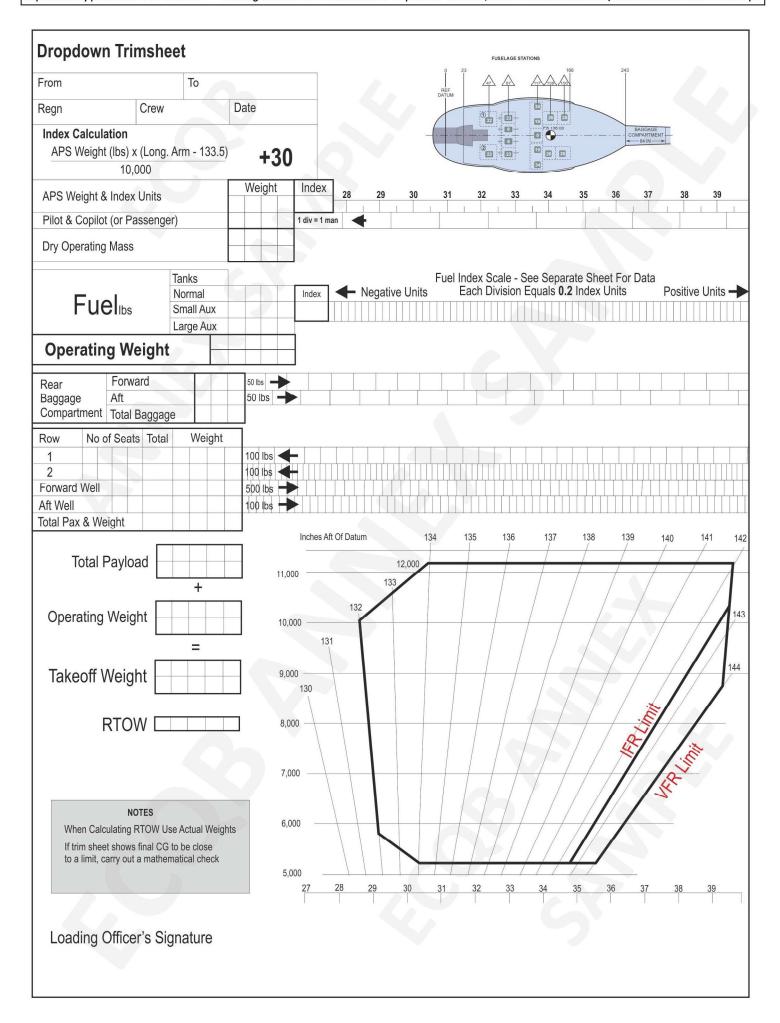
Source	Used in:
Bell, S.A. et al. 2016. <i>UK Air Almanac 2017</i> . HM Nautical Almanac Office, UK Hydrographic Office.	050 Meteorology 061 General Navigation
Reg. (EU) No 923/2012 SERA (as amended) Appendix 1, 4. Marshalling Signals.	010 Air Law & ATC
UK Civil Aviation Authority, 2006. CAP 696 CAA JAR-FCL Examinations Mass and Balance Manual (Aeroplanes). Third Edition, The Stationary Office.	031 Mass & Balance
UK Civil Aviation Authority, 2006. <i>CAP 697 CAA JAR-FCL Examinations Flight Planning Manual</i> . Second Edition, The Stationary Office.	032 Performance (A) 033 Flight Planning
UK CAA UK Civil Aviation Authority, 2006. <i>CAP</i> 698 CAA JAR-FCL Examinations Aeroplane Performance Manual. Third Edition, The Stationary Office.	032 Performance (A). 034 Performance (H): Figure 4.1 Wind Components for Take-Off and Landing
UK CAA UK Civil Aviation Authority, 2009. <i>CAP</i> 758 Helicopter Manual for JAR-FCL Examinations - Mass and Balance – Performance – Flight Planning and Monitoring. The Stationary Office.	031 Mass & Balance: helicopter-specific questions 033 Flight Planning: helicopter-specific questions 034 Performance (H)
Jeppesen 2017. <i>General Student Pilot Route Manual</i> . Jeppesen.	010 Air Law 033 Flight Planning 061 General Navigation 062 Radio Navigation 081 Principles of Flight (A) 090 Communications

Source	Used in:
Finnish Meteorological Institute https://en.ilmatieteenlaitos.fi/aviation — weather charts	050 Meteorology
UK Met Office http://www.metoffice.gov.uk/ http://www.metoffice.gov.uk/ http://www.metoffice.gov.uk/	050 Meteorology
MeteoSwiss http://www.meteoswiss.admin.ch/ http://www.meteoswiss.admin.ch/ http://www.meteoswiss.admin.ch/	050 Meteorology

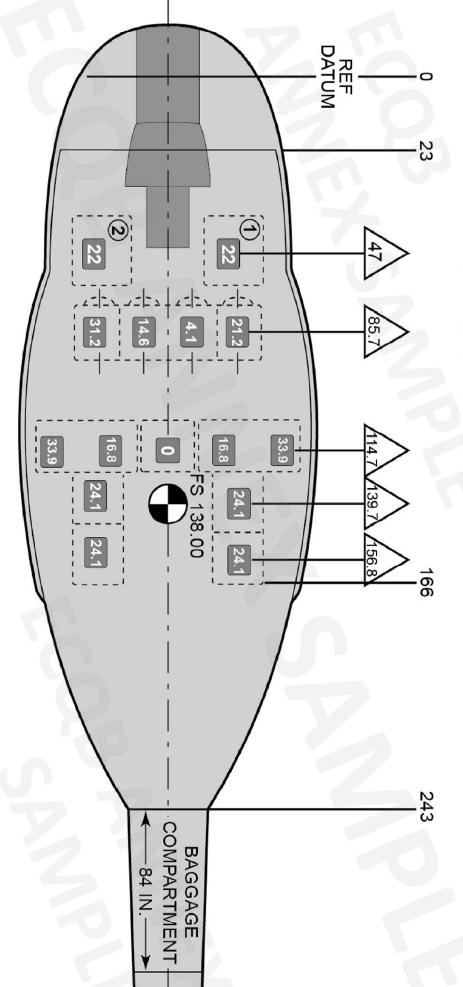
ECQB sample annexes

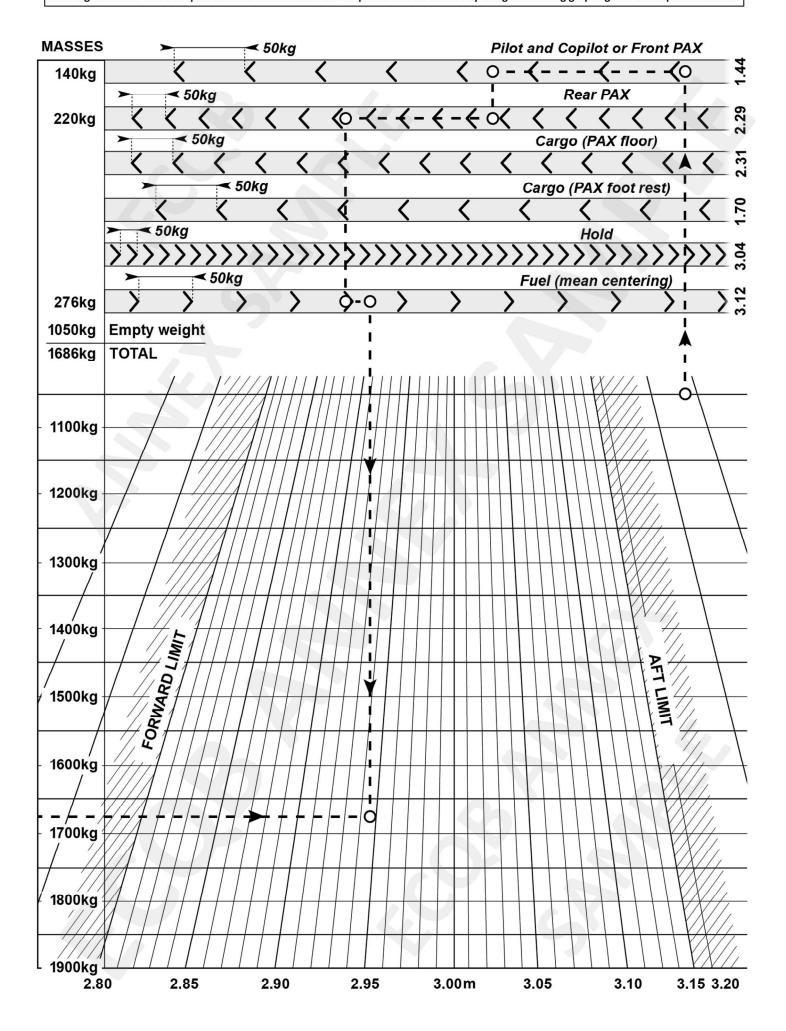
In addition to the sources listed above, additional material is used to provide ECQB annexes. In most cases these have been developed specifically for the ECQB, though in a small number of cases the material is made available for use in the ECQB. The ECQB sample annexes provided are very similar to those that will be faced in the actual exam, with some minor differences to ensure the integrity of the exam system. For each annex, an indication of the syllabus paragraphs¹ where that type of annex is used is given. Note that the samples are made available for the purpose of private study.

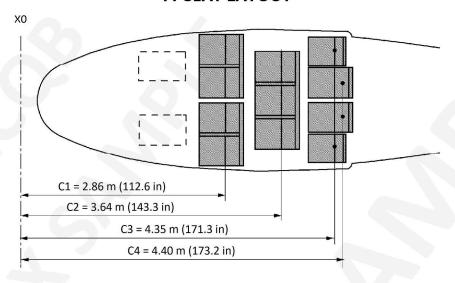

- Subject 021 Aircraft General Knowledge: 1 sample
- Subject 031 Mass & Balance: 9 samples
- Subject 032 Performance (aeroplane): 7 samples (+1 added 2024)
- Subject 033 Flight Planning: 18 samples
- Subject 034 Performance (helicopter): 2 samples (+1 added 2024)
- Subject 061 General Navigation: 1 sample
- Subject 081 Principles of Flight (A): 2 samples (added 2024)
- Subject 090 Communications: 1 sample (added 2024)


To contact the ECQB Team at EASA: ECQB@easa.europa.eu

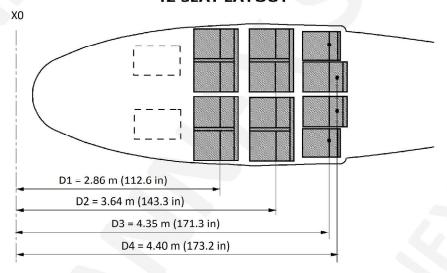
Cologne, 05/01/2024

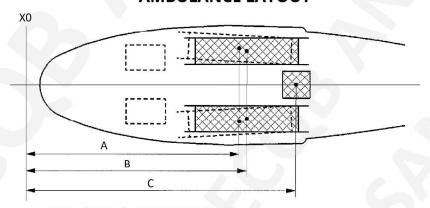

¹ Referring to the syllabus of AMC1 FCL.310; FCL.515(b); FCL.615(b) Theoretical knowledge examinations, as per amendment 10 of AMC/GM to Part-FCL. https://www.easa.europa.eu/document-library/acceptable-means-of-compliance-and-guidance-materials/group/part-fcl---flight-crew-licensing#group-table





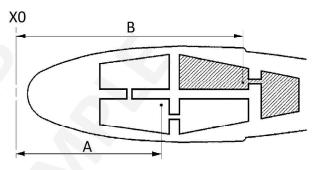
FUSELAGE STATIONS




11-SEAT LAYOUT

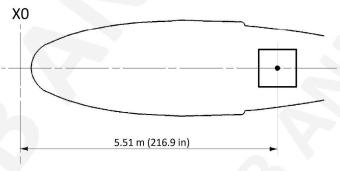
12-SEAT LAYOUT

AMBULANCE LAYOUT



A = 3.50 m (137.8 in) - LOWER STRETCHER(S).

B = 3.60 m (141.7 in) - UPPER STRETCHER(S).


C = 4.38 m (172.4 in) MEDICAL ATTENDANT'S SEAT.

Standard fuel tanks (2 groups)

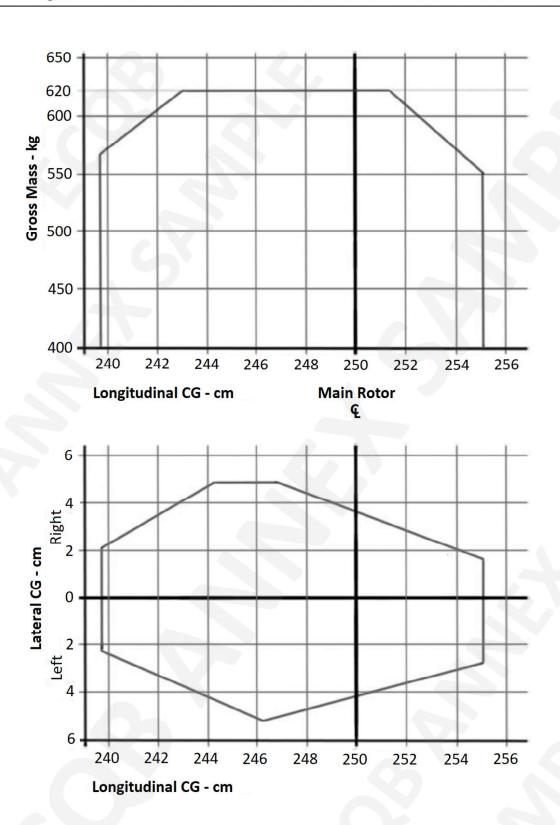
	METRIC	SYSTEM	
QUAN	ITITY	MOMEN'	T (m.kg)
kg	1	GROUP 1 (A)	GROUP 2 (B)
50	63	170	200
75	95	250	310
100	127	328	424
125	158	405	540
150	190	481	658
175	222	558	771
200	253	635	885
225	285	710	1000
250	316	785	1115
275	348	860	1230
300	380	935	1345
325	411	1009	1466
350	443	1085	1590
375	475	1164	1721
400	506	1245	1855
425	538	1330	1990
450	570	1425	2110
453	573	1465	2125
462	585	1517	2180

Optional fuel tank

	METRIC S	YSTEM
QUA	NTITY	MOMENT
kg	Ü	(m.kg)
50	63	275
75	95	413
100	127	551
125	158	689
142	180	782

Used e.g. in 031 05 02 02 03 Load sheet/balance schedule and CG envelope for light aeroplanes and for helicopters - Check CG position at ZFM and TOM to be within the CG envelope including last-minute changes, if applicable

Item	Mass (lb)	Longitudinal Arm (in)	Longitudinal Moment (lb.in)
Basic Empty Mass		100.1	
Pilot - Left-hand		83.2	
Passenger - Right-hand		83.2	
Passenger - Centre		80.0	
Zero Fuel Mass			
Fuel Mass		108.5	
Take-Off Mass			

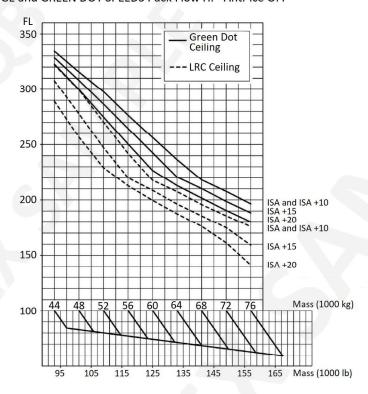

Remarks

Engine oil, main gearbox, and hydraulic fluid: 18 lb

Maximum Take-Off Mass: 1680 lb

MASS AND BALANCE COMPUTATION FORM MEP

REGISTRATION NUMBER	FLIGHT NUMBER		DATE
ITEM	Mass (kg)	Arm (m)	Moment (kg.m)
Basic Empty Mass	2890	2.53	
Pilot and Co-Pilot		2.04	
Passengers seats 1 & 2		3.20	
Passengers seats 3 & 4		3.65	
Passengers seats 5 & 6		4.00	
Forward Baggage Zone		1.20	
Aft Baggage Zone		4.60	
Zero Fuel Mass (4030 kg Max)			
Fuel loading (980 kg Max)		2.45	
Engine oil loading (25 kg Max)		0.20	
Ramp Mass (4398 kg Max)			
Fuel for start, taxi and run-up		2.45	
Engine oil for start, taxi and run-up	negligible	0.20	negligible
Take-off Mass (4380 kg Max)			
Estimated fuel burn-off		2.45	
Estimated engine oil consumption		0.20	
Landing Mass (4160 kg Max)			



DRY OPER		ASS					
MASS		CG (% MAC	<u> </u>				
(1000 KG)							
I = [(CG - 20)	x M x 0.02	5] + 100					
	X 101 X 0.02	J . 100					
DRY							
OPERATING							
INDEX							
BASIC IND	EX COR	RECTION					
DRY OPERATING		ZONES					
MASS							
DEVIATION	E	F	G				
+ 100 KG	-0.89	-0.52	+0.91				
- 100 KG	+0.89	+0.52	-0.91				
INDEX							
CORRECTION							

	ON	E ENGINE I	NOPFRAT	IVE		Cell le	egend			
		(IMUM CRU				Cruise altitude Anti-Ice OFF				
	Air Cond: ON One engine: MCT									
4		Air Co		altitude ce ON						
L/G UP			<i>)</i>							
Mass (lb)	IAS	ISA - 5	ISA	ISA + 5	ISA + 10	ISA + 15	ISA + 20			
44 000	185	21 000	20 300	19 200	18 300	16 500	15 200			
44 000	185	19 000	17 700	16 000	13 500	12 000	-			
42 000	181	22 300	21 500	20 500	19 500	17 800	16 500			
42 000	101	20 000	19 000	17 500	15 500	13 500	-			
40,000	177	23 500	22 800	22 000	21 000	19 300	17500			
40 000	1//	21 500	20 500	19 500	17 700	15 300	14 000			
38,000	20,000 172	24 700	24 200	23 500	22 500	21 000	19 000			
38 000	172	23 000	22 300	21 300	20 000	17 200	15 700			
26,000	168	26 000	25 500	25 000	24 300	22 700	20 500			
36 000	100	24 500	24 000	23 000	22 000	19 300	17 500			
34 000	163	27 300	27 000	26 800	26 000	24 800	23 300			
34 000	103	26 000	25 300	24 700	24 000	21 700	19 300			
32 000	158	28 800	28 500	28 200	28 000	26 500	25 500			
32 000	130	27 000	26 700	26 300	25 700	24 500	22 000			
30 000	153	30 200	30 200	30 000	30 000	28 000	27 000			
30 000	133	28 000	28 000	28 000	27 800	26 500	25 000			
28 000	148	31 500	31 500	31 500	31 500	29 800	28 800			
20 000	140	30 000	30 000	30 000	29 700	28 000	26 500			
26 000	143	33 500	33 500	33 500	33 500	31 500	30 500			
20 000	143	31 500	31 500	31 500	31 500	29 700	28 000			
24 000	137	35 200	35 200	35 200	35 200	33 500	32 500			
24 000	137	33 500	33 500	33 500	33 500	31 500	29 500			

ONE ENGINE OUT

NET CEILING at LONG RANGE and GREEN DOT SPEEDS Pack Flow Hi - Anti-ice OFF

CORRECTIONS		ISA	ISA + 10	ISA + 15	ISA + 20
LONG	ENGINE ANTI- ICE ON	-1300 ft	-1300 ft	-1200 ft	-1200 ft
RANGE	TOTAL ANTI- ICE ON	-2900 ft	-2800 ft	-2700 ft	-4300 ft
CREEN DOT	ENGINE ANTI- ICE ON	-800 ft	-800 ft	-900 ft	-900 ft
GREEN DOT	TOTAL ANTI- ICE ON	-1900 ft	-1900 ft	-2200 ft	-2400 ft

Used e.g. in 032 05 02 01 Drift-down and stabilising altitude (performance data)

Altitude	at					Mass	at engi	ne failu	re (x 10	00 lb)				
engine failure (ft)		44	42	40	38	36	34	32	30	28	26	24	22	20
	Time (min)		V				38	36	34	33	31	29	27	27
	Distance (NM)						179	169	159	150	140	130	119	116
47000	Fuel used (lb)		1		10		820	740	670	600	530	470	400	380
	Final ALT (ft)						27380	28980	30600	322240	33960	35720	37440	39180
	Time (min)				41	39	37	35	33	31	29	27	25	24
45000	Distance (NM)				193	182	171	161	150	142	131	120	107	103
45000	Fuel used (lb)				990	890	810	720	650	580	510	450	380	350
	Final ALT (ft)				24300	25800	27360	28960	30580	32240	33940	35700	37420	39140
	Time (min)		44	42	40	37	35	33	31	29	27	25	22	20
43000	Distance (NM)		206	196	185	174	163	152	142	132	121	108	94	86
43000	Fuel used (lb)	-	1160	1060	970	880	790	700	630	560	490	420	340	300
	Final ALT (ft)		21360	22800	24280	25800	27340	28940	30560	32200	33920	35680	37400	39100
	Time (min)	43	42	40	38	36	34	32	29	27	25	22	18	15
41000	Distance (NM)	204	198	187	177	166	154	143	132	121	109	94	76	61
41000	Fuel used (lb)	1220	1140	1040	950	850	760	680	600	530	450	380	290	220
	Final ALT (ft)	20000	21340	22780	24260	25780	27320	28920	30540	32180	33900	35640	37360	39000
	Time (min)	42	41	39	37	34	32	30	27	25	22	18	12	3
39000	Distance (NM)	196	190	179	168	156	145	133	120	109	94	77	50	11
39000	Fuel used (lb)	1190	1120	1020	920	830	740	650	560	490	410	320	200	40
	Final ALT (ft)	19980	21340	22760	24240	25760	27300	28900	30520	32140	33840	35580	37280	38800
1	Time (min)	41	40	37	35	33	30	27	24	22	18	12	10	22
37000	Distance (NM)	188	181	170	159	146	134	121	107	93	75	50	41	89
37000	Fuel used (lb)	1170	1090	990	890	790	700	610	520	430	340	210	170	360
	Final ALT (ft)	19960	21300	22740	24220	25720	27280	28860	30480	32100	33780	35480	37120	38760
	Time (min)	39	38	35	33	30	28	24	21	17	11	14	25	27
35000	Distance (NM)	178	172	160	148	135	122	107	91	72	45	58	102	107
33000	Fuel used (lb)	1130	1060	960	850	750	650	560	450	350	210	260	450	450
	Final ALT (ft)	19940	21280	22720	24180	25700	27240	28820	30420	32020	33680	35300	37120	38760
	Time (min)	37	36	33	31	28	24	21	16	9	17	27	30	30
33000	Distance (NM)	169	162	149	136	122	107	90	68	40	71	108	120	117
33000	Fuel used (lb)	1100	1020	910	810	700	590	480	350	200	350	510	540	510
	Final ALT (ft)	19920	21260	22680	24160	25660	27180	28760	30340	31900	33480	35300	37120	38760
	Time (min)	35	34	31	28	24	20	15	8	19	28	31	33	32
31000	Distance (NM)	158	150	137	123	107	88	66	32	79	113	125	130	124
31000	Fuel used (lb)	1050	970	860	750	630	500	360	180	420	580	620	610	560
	Final ALT (ft)	19900	21220	22640	24100	25600	27120	28660	30180	31720	33480	35300	37120	38760

Used e.g. in 032 05 03 CS-25/OPS PERFORMANCE CLASS A - Landing (performance data)

BRAKE COOLING TIME TABLE

Determination of the brake cooling time:

EXAMPLE:

55	152	153	154	155	155	====> TIME (min) WITHOUT BRAKE COOLING FAN
	46	46	46	46	47	====> TIME (min) WITH BRAKE COOLING FAN

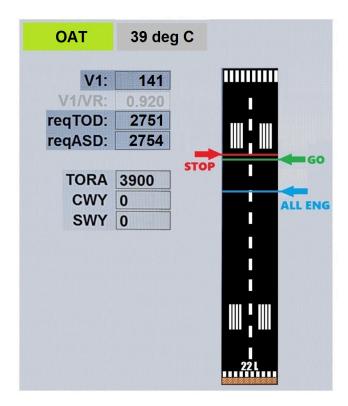
If the Energy and the OAT are not given in the table, use the values given in the next column right/row below. For Example, with Energy = $55\,\text{MJ}$, and OAT = $15\,^{\circ}\text{C}$, entering the next adjacent column/row (Energy = $55\,\text{MJ}$, OAT = $20\,^{\circ}\text{C}$) gives the following results:

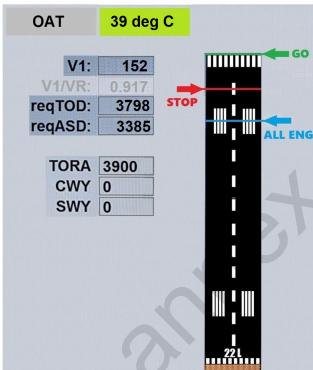
Without brake cooling fan: 158 min

With brake cooling fan: 47 min

Enter the following table with the energy and the OAT to determine the ground brake cooling time.

			GR	OUND E	BRAKE C	OOLIN	G TIME	(min)				
ENERGY						OAT	(°C)					
(MJ)	-50	-40	-30	-20	-10	0	10	20	30	40	50	55
0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	4	9	14	19	23	27	31	35	37
	0	0	0	1	3	4	6	7	8	9	10	11
15	31	35	38	42	45	48	51	54	57	60	62	64
	9	10	11	12	13	14	15	16	17	18	19	19
20	59	62	65	67	70	72	74	77	79	81	83	84
	18	19	19	20	21	22	22	23	24	24	25	25
25	81	83	85	87	89	91	92	94	96	98	99	100
	24	25	25	26	27	27	28	28	29	29	30	30
30	98	99	101	103	104	106	107	109	110	112	113	114
	29	30	30	31	31	32	32	33	33	34	34	34
35	112	113	115	116	117	119	120	121	123	124	125	126
	34	34	34	35	35	36	36	36	37	37	38	38
40	124	125	126	127	129	130	131	132	133	134	135	136
	37	37	38	38	39	39	39	40	40	40	41	41
45	134	135	136	137	139	140	141	142	143	144	145	145
	40	41	41	41	42	42	42	42	43	43	43	44
50	144	145	146	146	147	148	149	150	151	152	153	153
	43	43	44	44	44	45	45	45	45	46	46	46
55	152	153	154	155	155	156	157	158	159	160	160	161
	46	46	46	46	47	47	47	47	48	48	48	48
60	160	160	161	162	163	164	164	165	166	167	167	168
	48	48	48	49	49	49	49	50	50	50	50	50
65	167	167	168	169	170	170	171	172	172	173	174	174
	50	50	50	51	51	51	51	52	52	52	52	52


Used e.g. in 032 04 01 13 Take-off performance using different take-off flap settings


Flap/Slat position setting	1	2	3
Field limit TOM (kg)	58700	60250	60050
Climb limit TOM (kg)	62000	61300	60250
Obstacle limit TOM (kg)	62500	62150	61800

Flap/Slat position setting	1	2
Field limit TOM (kg)	17750	18300
Climb limit TOM (kg)	16500	16200
Obstacle limit TOM (kg)	17750	17400
Structural limit TOM (kg)	18300	18300

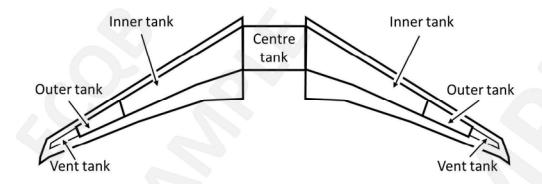
Used e.g. in 032 05 03 01 CS-25/OPS PERFORMANCE CLASS A - Landing (performance data)

	Flap 25	Flap 40
Approach climb limit mass (kg)	17200	17200
Landing climb limit mass (kg)	19350	19350
Field length limit mass (kg)	16400	17500
Structural limit landing mass (kg)	18400	18400

OAT: TOGA thrust

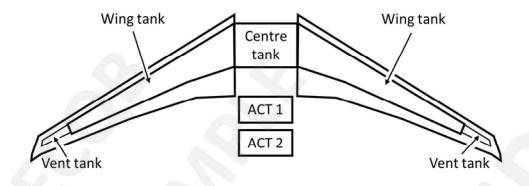
39 deg. C: assumed / FLEX temperature thrust

ALL ENG: TOD all engines

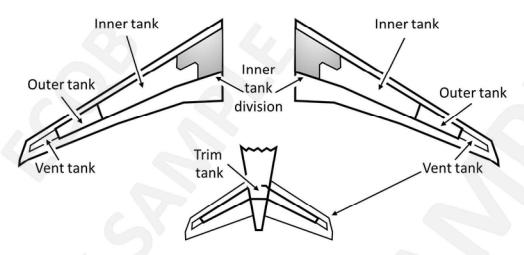

GO: TOD engine out

STOP: ASD

LONG RANGE CRUISE


	Max. cruis				ISA +	- 20°		(%)	Ma	
	Normal ai		_		CG = 3	3.0 %	kg/hr		IAS	
		icing OF					NM/1		TAS	
Weight	FL29	90	FL	310	FL3	30	FL3	50	FL3	70
	84.3	.703	85.6	.735	86.7	.753	87.4	.764	88.9	.780
64000 kg	1295	269	1304	270	1286	266	1264	258	1268	252
	167.6	433	172.4	449	177.8	457	182.0	460	184.4	467
	84.9	.713	86.3	.743	87.2	.758	88.0	.769	89.5	.782
66000 kg	1339	274	1344	274	1320	267	1303	260	1304	253
	164.4	440	169.2	454	174.2	460	177.7	463	179.7	468
- 1	85.5	.723	86.8	.749	87.6	.760	88.5	.775	89.7	.768
68000 kg	1383	278	1379	276	1351	268	1343	262	1303	248
	161.4	446	166.2	458	170.8	461	173.6	466	176.8	460
	86.2	.733	87.2	.753	88.0	.764	89.0	.780		
70000 kg	1427	282	1410	278	1387	270	1384	264		
	158.6	452	163.4	460	167.2	463	169.6	469		
	86.7	.742	87.7	.757	88.5	.769	89.6	.781		
72000 kg	1469	285	1444	279	1425	272	1420	264		
	155.8	457	160.4	463	163.7	466	165.7	479		
	87.3	.748	88.1	.760	88.9	.773	90.0	.780		
74000 kg	1505	288	1476	280	1464	273	1445	264		
	153.3	461	157.6	465	160.3	469	162.6	469		
	87.7	.752	88.4	.762	89.4	.779				
76000 kg	1538	290	1509	281	1507	276				
	150.8	463	154.7	466	156.8	472				
	88.1	.755	88.9	.766	89.9	.780				
78000 kg	1570	291	1547	283	1540	276				
	148.4	466	151.6	469	153.8	473				
	88.5	.759	89.3	.770	89.9	.764				
80000 kg	1604	293	1585	285	1526	270				
	145.9	468	148.7	471	151.9	463				
	88.8	.761	89.6	.773						
82000 kg	1636	294	1619	286						
	143.5	469	146.0	472					(a)	
	89.2	.764	89.7	.761	1				X/	~
84000 kg	1671	295	1613	281						
- HOUSING	141.0	471	144.6	466						
	89.6	.768	89.8	.735				1		
86000 kg	1710	296	1599	2 7 0						
COOCO RE	138.5	473	140.7	449						
	89.7	.762	170.7	443						
88000 kg	1716	294	1							
JOUGU Kg	137.0	470								
	89.7	.750	-		+					7
90000 kg	1711	289								
SOUDO Kg	135.2	462								
					-					
000001	89.8	.724								
92000 kg	1702	278								
A 7	131.2	446								
	Condition	_	[_	ti-ice ON]		ti-ice ON	
Δ Fue	el = - 0.5 %	, i		Δ Fuel :	= + 3 %			Δ Fuel =	+ 4.5 %	

Interpolation may be used


	Usable fuel										
		Outer tanks	Inner tanks	Centre tank	Total						
Valuma	(litres)	870 x 2	6916 x 2	8233	23805						
Volume	(US gallons)	230 x 2	1827 x 2	2175	6289						
Maight*	(kg)	683 x 2	5429 x 2	6463	18687						
Weight*	(lb)	1507 x 2	11969 x 2	14248	41200						

^{*}Fuel density: 0.785 kg/l or 6.551 lb/US gallon

	Usable fuel											
		Wing	Centre	ACT	Total with:							
		tanks	tank	ACI	No ACT	1 ACT	2 ACTs					
Valuma	(litres)	2 x 7910	8160	2981	23980	26961	29942					
Volume	(US gallons)	2 x 2090	2156	787	6336	7123	7910					
Weight*	(kg)	2 x 6209	6406	2340	18824	21164	23504					
	(lb)	2 x 13692	14124	5156	41508	46664	51820					

^{*}Fuel density: 0.785 kg/l or 6.551 lb/US gallon

	Usable fuel										
1.		Outer tanks	Inner tanks	Trim tank	Total						
Values	(litres)	3660 x 2	42050 x 2	6220	97640						
Volume	(US gallons)	967 x 2	11108 x 2	1643	25793						
Maight*	(kg)	2873 x 2	33009 x 2	4883	76647						
Weight*	(lb)	6335 x 2	72769 x 2	10763	168 971						

^{*}Fuel density: 0.785 kg/l or 6.551 lb/US gallon

Used e.g. in 033 06 01 02 In-flight fuel management

Legends: TM: Time to waypoint

ETO: Estimated time overhead (HHMM)
ATO: Actual time overhead (MM)
MF REQD: Minimum fuel required (KG)
AREM: Actual fuel remaining (KG)

ТО	TM	ETO/ATO	TEMP LVL	MTK	DST	W/V	MSA	MF REQD	AREM	FL
TOC	000	0624 / 20	-60 360	265	005	33015	027	6269	6380:	:
ROBEG	003	0627 / 24	-60 360	265	018	34014	027	6169	6345:	:
BADMU	001	0628 /	-60 360	265	011	34014	027	6107	:	:
MOBSA	003	0631 /	-60 360	265	019	34013	027	5999	:	:
OSN 114.3	001	0632 /	-60 360	264	006	34012	021	5966	:	:
AMSAN FIR BDRY	006	0638 /	-60 360	264	043	32011	027	5722	:	:
ETEBO FIR BDRY	001	0639 /	-60 360	264	009	32011	021	5673	:	:
RKN 116.8	001	0640 / 36	-60 360	264	004	32011	020	5650	5735:	:
TENLI	002	0642 /	-60 360	288	020	31012	020	5536		:
FLEVO	004	0646 /	-60 360	288	025	29013	017	5393	:	Ż

IN-FLIGHT PERFORMANCE

Fuel penalty factors: these are conservative values, for the flight crew to use as guidance in their decision-making.

Note: The fuel predictions provided by the FMS would no longer be reliable. The flight crew must still monitor and calculate the actual fuel consumption.

Methodology

- Establish which system is faulty and select the appropriate line in the table below.
- In case of multiple failures, add up all the relevant fuel penalty factors to find the total fuel penalty factor.
- Apply the fuel penalty factor either to the calculated trip fuel as indicated in the FMS, or to correct the fuel flow.

System	Fault	Fuel penalty factor
	Flaps extended	85 %
Flaps & slats	Slats extended	65 %
	Flaps & slats extended	100 %
Landing soon	Landing gear not retracted ⁽¹⁾	180 %
Landing gear	Landing gear doors extended ⁽²⁾	20%
	1 spoiler per wing ⁽³⁾	10 %
Flight controls	2 spoilers per wing ⁽³⁾	15 %
	3 spoilers per wing ⁽³⁾	55 %

- (1) The value of the fuel penalty factor is the most conservative, with a fully extended landing gear. It includes the effect of the landing gear doors extended.
- (2) The landing gear is confirmed to be retracted on the systems display but indications show that the gear is in transit, with the landing gear doors in an unconfirmed position.
- (3) Dependent on the reason, the spoilers may be floating and gradually extend during the flight. The fuel penalty may not be fully representative with the spoilers fully extended.

Used e.g. in 033 03 02 05 calculation of total fuel and completion of the fuel section of the navigation plan (fuel plan)

									4	ω	2	1	Line	
									D	С	В	А	From	
									Е	D	C	В	То	
	1								70	70	70	70	72	
									1	1	1	1	ိင	
									270/15	300/15	300/15	290/15	W/W	
									265	265	310	295	Tk °T	Na
									265	269	309	295	Hdg °T	Navigation and Fuel Plan
									4°E	4°E	4°E	4°E	Var	n and F
								4	261	265	305	291	M° gbH	uel Plar
							Trip		138	138	138	138	TAS	_
							Trip totals		125	124	123	123	SS	
							233		54	86	60	33	Dist	
	Total fuel reqd	Extra fuel	Final reserve fuel	Alternate fuel	Contingency fuel	Taxi fuel			00:26	00:42	00:29	00:16	Time	
	reqd		erve fuel	fuel	ncy fuel				380	380	380	380	kg/h	
		0	V	140).	15					184	102	kg kg	

Used e.g. in 033 01 01 05 Completion of navigation plan

Aircraft

Aircraft type

Route: from

to

Date 15/9

Take-off time UTC
08:23

Landing time UTC

П

		1				
Е	D	С	TOC	В	A	From
F	Е	D	С	TOC	В	То
9800	9800	10100	11400	14800	14800	Safety Altitude
Descent	8500	8500	8500	Climb	Climb	FL/Alt
120	125	125	125	90	<mark>85</mark>	TAS
280°	262°	267°	325°	325°	018°	Track (T)
330°/25 289°	330°/25 273°	350°/20 276°	350°/20 329°	340°/20 328°	320°/15	Wind
289°	273°	276°	329°	328°	009°	Hdg (T)
1°E	1°E	1°E	2°E	2°E	2°E	Var
288°	272°	275°	327°	326°	007°	(M)
102	113	121	107	71	76	₹ GS
46.5	25	54	15	5.5	9	Distance NM
		2				Time minutes
						ETA
1		1				АТА

Used e.g. in 033 01 01 05 Completion of navigation plan

4 WP		3 WP	2 WP	1 DI	FR	Ele
DEST	WPT C	WPT B	WPT A	DEP \	FROM	From: DEP Elevation: Sea Level
ALTN	DEST	WPT C	WPT B	WPT A	70	P Level
	X	2500	2500	Shar	ALTITUDE	To: DEST Elevation: Sea Level
354°	196°	333°	247°	247°	Course (True)	EST Sea Level
100 kt	125 kt	120 kt	120 kt	120 kt	TAS	Alterna E
335°	335° 28 kt	355° 18 kt	310° 26 kt	310° 26 kt	Wind Direction and Speed	Alternate Aerodrome: ALTN Elevation: 185 ft
350°	204°	336°	258°	258°	HDG (True)	ALTN
1°W	1°W	1°W	1°W	1°W	VAR	
351°	205°	337°	259°	259°	HDG (Magn.)	
79 kt	145 kt	103 kt	106 kt	106 kt	Estim. GS Actual GS	Call sign:
40 NM	20 NM	45 NM	30 NM	20 NM	Sector Distance	Ä
		0:26	0:17 0:28	0:11	Sector Time Accumulated Time	

Used e.g. in 033 06 02 01 03 Calculate the revised destination/alternate aerodrome landing mass from given latest data

	W-1010-1-1010				3794 3 20 F 3 2 7 9 9 0 5 10 0 6 2 9 0 6 10 6 10 6 10 6 10 6 10 6 10 6 10	•	5 5 5 WHE CO-01 - MICHELL 1 90 00 00 00 00 00 00 00 00 00 00 00 00				3-13- Mari 14-17-18-18-18-19-19-19-19-19-19-19-19-19-19-19-19-19-	
AB1193P A/		C		'AMS					SY		CI 30	
ABC1193 PH	BXC			1927	CONTRACTOR OF THE) DI		523	
11APR19			CTOT:		STA 2	2050			R DI		517	
									3 W/		T006	
MAXIMUM	ZFW	61688			66360		73708		IS		M01	
ESTIMATED		55100			57848		61194	F-F	FA	CTOR	+4.5	
ACTUAL	ZFW	55100	9	LAW .	••••	TOW	622/1					
TRIP	3316	0120										
CONT 5MINS												
ALTN		0003										
FINAL		0030				* * * *						
PLN TOF		0226										
ALTN DIFF												
PLN TOF			(CORRE	ECTED)		CONT	SUMMA	RY				
EXTRA						CONT	90 -2			CONT 9	9 3	
TOF	6094	7171				ENRT	ALTN		-			
TAXI	370					CONT	CORR		3	38 /M	IIN	
BLOCK	6464	7541				MEAN			-	-6		
LIA VIDNIII					EMO							EEOD
WAYPNT AWY	RTE- MORA		DIS	M GS	ETO /		FL	TP	TMP	WIN	D	EFOB AFOB
AW 1	MOKA		OID		/ تلتا		ть					Arob
EHAM36L		035			/		CLB			096/	002	6.1
SPY2V	21		0038		0008/							6.7
ANDIK		052			/	·	CLB		-27	131/	013	5.2
UN873	20		0004		0001/	0009						
KEKIX		052			/	· · · · ·	CLB		-28	138/	014	5.1
UN873	20		0032		0004/							
GRONY		052					CLB		-47	166/	010	4.8
UN873	20		0024		0003/							
BEDUM	0.0	345	0000		/		CLB		-57	186/	7007	4.6
UP603	20		0026		0004/		200	27	FO	000	/007	1 1
T-O-C UP603	20		0044		0005/	(0025	390	3/	-58	229/	7007	4.4 5.0
MOKUM	20	345	0044	787	/			37	-57	237	/000	4.2
UP603	20	343	0004	455	0001/			51	57	231	7009	4 • 2
LIMBI	20	345	0001	787	• • • • /			37	-57	238	/009	4.2
UP603	20	0.10	0028	453	0004/				_			
GREFI		342		787	/			37	-57	243	/011	4.0
P603	20		0049	453	0006/							
GARKA		354		786	/	·		37	-58	240	/013	3.8
P603	20		0010	453	0002/	0038						
BUSOM		003		786	• • • • /			37	-58	239	/013	3.7
P603	20		0026	455	0003/							4.6
NAMIK		004		786	• • • • /			37	-58	238	/013	3.6
P603	20		0037	457	0005/						(0)	
KARLI		002		786	• • • • /			38	- 58	234	/015	3.4
UP603	20	0.00	0038	457	0005/			2.0	F.0	001	/015	2 0
RIRUT	2.4	002	0020	786	0004			38	-59	231	1011	3.2
UP603	34		0030	459	0004/		DCC	20	E O	221	/010	2 1
T-O-D UP603	34		0045	786	0006/	′····	DSC	38	-59	231/	019	3.1 4.2
ZOL	94	352	0045		••••		DSC		-50	248/	1026	3.1
ZOL2P	46	0087			0019/		DOC		50	240/	020	○• ⊥
ENBR35	10	0001			• • • • /					221	/006	2.7
					,							

AFOB: Actual Fuel on Board

BLOCK: Block Fuel

EFOB: Estimated Fuel On Board

EXTRA: Extra Fuel
LAW: Landing Weight

TAXI: Taxi Fuel

TOF: Take-Off Fuel
TOW: Take-Off Weight

ZFW: Zero Fuel Weight

Short Trip Fuel and Time

Ground to Air Miles Conversion

	Air I	Distance (I	NM)		Ground	Air Distance (NM)				
	Headwir	nd Compo	nent (kt)		Distance	Tailwind Component (kt)				
100	80	60	40	20	(NM)	20	40	60	80	100
92	79	69	61	55	50	46	42	39	37	34
158	142	128	117	108	100	93	87	82	77	73
224	204	187	173	161	150	141	133	125	119	113
288	265	245	228	213	200	188	178	169	161	153
351	325	302	283	265	250	236	224	213	203	194
415	385	360	337	318	300	284	270	257	246	235
478	445	417	392	370	350	332	316	302	288	276
541	506	474	447	422	400	380	362	346	331	317
606	567	532	502	474	450	428	408	390	373	358
672	629	591	557	527	500	476	453	433	415	398

Trip Fuel and Time Required

Air Dista	ance		Lan	ding Mass (1000	kg)		Time
(NM)		30	40	50	60	70	(HH:MM)
50	Fuel (1000 kg) ALT (ft)	0.5 13000	0.5 11000	0.6 11000	0.6 9000	0.7 9000	00:14
100	Fuel (1000 kg) ALT (ft)	0.7 21000	0.8 19000	0.9 19000	1.0 17000	1.1. 17000	00:22
150	Fuel (1000 kg) ALT (ft)	0.9 29000	1.1 25000	1.2 25000	1.3 23000	1.4 23000	00:30
200	Fuel (1000 kg) ALT (ft)	1.1 41000	1.3 35000	1.5 29000	1.6 27000	1.8 25000	00:37
250	Fuel (1000 kg) ALT (ft)	1.3 41000	1.5 41000	1.7 37000	1.9 31000	2.1 29000	00:44
300	Fuel (1000 kg) ALT (ft)	1.4 41000	1.7 41000	1.9 39000	2.1 35000	2.4 31000	00:50
350	Fuel (1000 kg) ALT (ft)	1.6 41000	1.9 41000	2.1 39000	2.4 35000	2.7 33000	00:57
400	Fuel (1000 kg) ALT (ft)	1.8 41000	2.1 41000	2.4 39000	2.7 35000	3.0 33000	01:04
450	Fuel (1000 kg) ALT (ft)	1.9 41000	2.2 41000	2.6 39000	2.9 35000	3.3 33000	01:11
500	Fuel (1000 kg) ALT (ft)	2.1 41000	2.4 41000	2.8 39000	3.2 35000	3.6 33000	01:19

Based on 280/0.78 climb, Long Range Cruise, and 0.78/280/250 descent.

Flight Planning Data

Aircraft Fuel Capacities Useable

	US gal	Litres	lb	kg
Basic Aircraft	276	1052	1850	840

Standard TAS and Fuel Flows

		Speed (TAS)	Fuel Flow
Cruise All Masses - 2 engines ope	rating	140 kt	600 lb/h
Holding All Masses - 2 engines op	erating	100 kt	480 lb/h
Cruise & Holding All Masses - OEI	ISA	100 kt	420 lb/h
4/2	ISA+20	100 kt	440 lb/h

Standard Fuel Allowances

	lb
Instrument Approach Fuel	50
Start/Wheel-Taxi Fuel	40
Rotors Running Turnaround	80

Mid-Zone Fuel Masses

Unless otherwise advised by a responsible company officer, the Mid-Zone Weight vs Fuel Flow table (Figure 2.1.1) must be used to derive fuel flows for all sectors flown with 2 engines operating.

To determine the Mid-Zone Mass, calculate fuel burn to the mid-zone (half-way) position of the entire flight at the standard rate and subtract this mass from the aircraft's Take-Off Mass. The Mid-Zone Mass derived will be used for all sectors. Enter the table at the appropriate Density Altitude for each sector and read the fuel flow for the sector from the corresponding mass column.

Mid-Zone Masses are not required for OEI operations. Use standard fuel flows when calculating fuel requirements for sectors flown in the OEI configuration.

These figures are for planning purposes only. The Pilot-in-Command must carefully monitor actual fuel flows to ensure that all statutory requirements are met.

Used e.g. in 033 03 03 02 Specific fuel-calculation procedures - Isolated aerodrome or heliport procedure

DESTINATION VIA DISDI

DESTINATION ALTERNATE VIA DISDIT

DESTINATION VIA PISPU	AIA NOL	PISPU		DESTINATION ALTERNATE VIA PISPU	LTERNATE	VIA PISPL	,_
FUEL	ARPT	FUEL	TIME	FUEL	ARPT	FUEL	TIME
TRIP	GVAC	15768	0533	TRIP	GCTS	22073	0747
CONT 3 %	GCTS	473	0010	CONT 3 %	GQNO	662	0014
ALTN		0	0000	ALTN		0	0000
FINRES				FINRES			
ADDFU PDP				ADDFU PDP			
MIN T/O FUEL							
TAXI		240	0020	TAXI	3	240	240 0020
MIN BLOCK FUEL				MIN BLOCK FUEL	(P)		
BLOCK FUEL				BLOCK FUEL			
EXTRA				EXTRA			
TOTAL FUEL				TOTAL FUEL			

Used e.g. in 033 04 02 02 06 Update of navigation plan using the latest meteorological information

Legends: APT: TRK: Airport Track Distance

DST: FL:

WC: Wind Component HHMM Flight Level

TIME:

FUEL:

EFRO/21	EFOU/12	ESNU/14	APT
42	106	195	ŢŖ
126	109	144	DST
BESLA M607 NEMGU DCT	DCT SLU T320 OTVEM	VERAG T31 KETEL 160	VIA
150	150	160	꾸
P002	P005	P003	WC
0029	0021	0026	TIME
1534	1108	1404	FUEL

Legends: Fuel quantities: KG

Weight change increment: 1000 KG
Flight level increment: 1000 FT
Change nominator M: Negative
Change nominator P: Positive

PLANNED FUEL

FUEL	ARPT	FUEL	TIME		FUEL	TIME
TRIP	HEGN	15863	0531			
CONT 3%	HECA	476	0010			
ALTN	HELX	1605	0033			
FINRES		1300	0030			
MIN T/O FUEL		19244	0644			
TAXI	EGBB	189	0014			•••••
MIN BLOCK FUEL	EGBB	1943	2.			
ADDFU		0	0000			
BLOCK FUEL		19433	0658			
EXTRA				POSS EXTRA 3226C		
TOTAL FUEL	EGBB					
TANKEDING DECOM	MENDED:	GAIN	22 LISD	/T		,

TANKERING RECOMMENDED: GAIN 23 USD/T

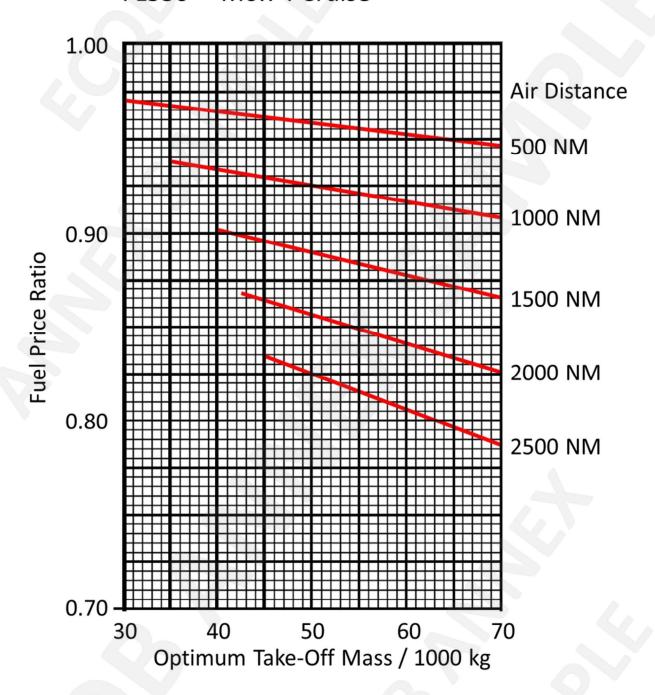
OPERATIONAL IMPACTS

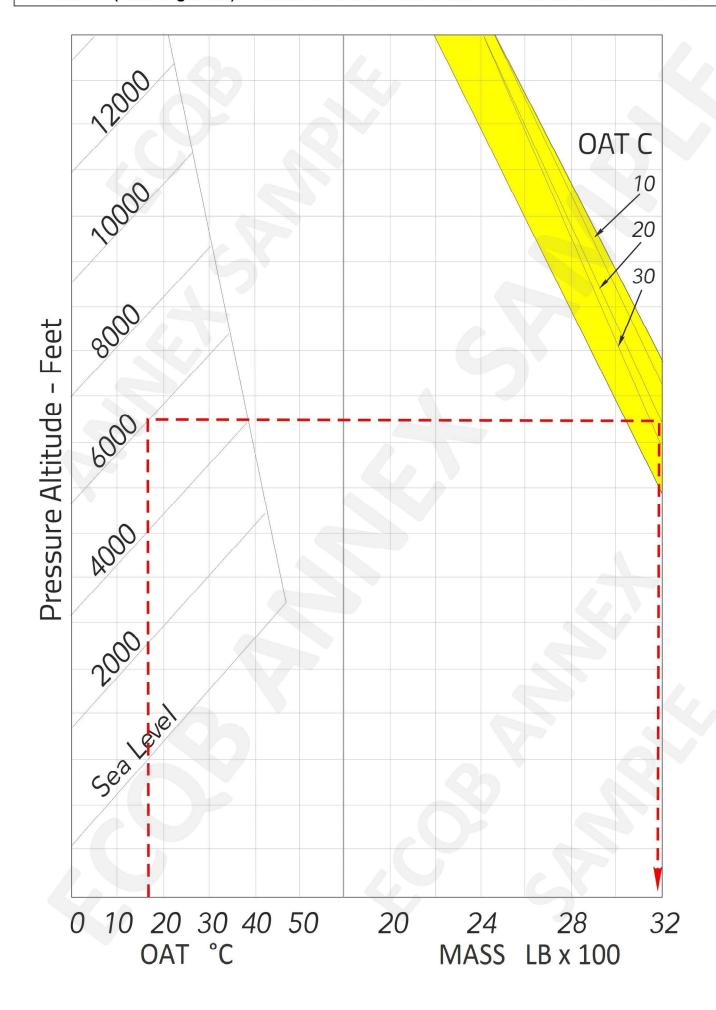
WEIGHT CHANGE	DN 1.0	TRIP	M 0116 KGS TIME P 0000
WEIGHT CHANGE	UP 1.0	TRIP	P 0123 KGS TIME M 0000
FL CHANGE	DN FL1	TRIP	P 0204 KGS TIME M 0002
FL CHANGE	UP FL1		NOT AVAILABLE
SPD CHANGE	M.80	TRIP	P 0606 KGS TIME M 0005

Used e.g. in 033 06 01 02 Flight monitoring - In-flight fuel management

FLIGHT PLAN	TIME	FUEL		
TANI	00.12	150 KG	M7FW (2200	DZEW 52200
TAXI	00.13	150 KG	MZFW 63300	PZFW 52209
TRIP	02.14	5293 KG	MTOW 72500	PTOW 57947
CONT MIN	00.05	195 KG	MLWT 65900	PLWT 54234
EGAA/25	00.24	950 KG	FL170 TTK001 GD	117 MSA 3.4 W/C P004
FINAL RESV	00.30	1181 KG		
FPL FUEL	03.26	7769 KG		
EXTRA	00.17	598 KG		
ADD HOLD	00.00	0 KG		
TARGET	03.43	8367 KG		
BLOCK FUEL		8965 KG		
2000 FT ABOVE	TRIP	MS 16 /	TIME 02.21	
2000 FT BELOW	TRIP	PS 100 /	TIME 02.21	
WEIGHT CHANC	GE PER 1	1000 KG	94 KG TO TOTAL I	FUEL
FUEL CARRIAGI	E COST:	49 US DO	LLARS PER 1000 KG	

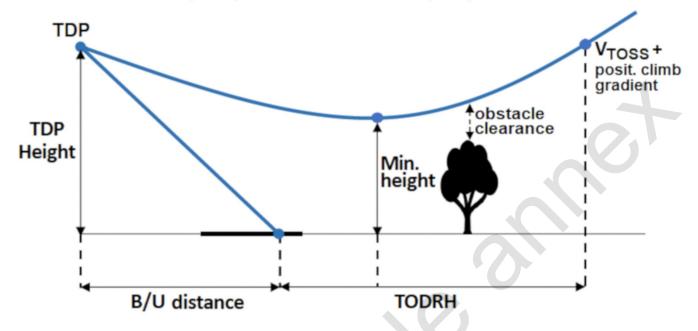
Used e.g. in 033 06 01 02 Flight monitoring - In-flight fuel management


Legends: TM: Time to waypoint


ETO: Estimated time overhead (HHMM or MM) ATO: Actual time overhead (MM or HHMM)

DST: Distance to waypoint (NM)
MF REQD: Minimum fuel required (KG)
AREM: Actual fuel remaining (KG)

ТО	TM	ETO/ATO	TEMP LVL	MTK	DST	W/V	MSA	MF REQD	AREM
TAXI RWY06	Airborn	ne 1243						8111	
PR631	003	1246/	-02 080	058	011	23019	033	7747	
PR632	003	49/	-14 154	323	016	27032	034	7453	
PR621	001	50 /	-18 179	241	006	28037	034	7357	
ESINU	004	54 /	-30 237	241	019	28042	034	7102	
BALTU	002	56 /	-39 272	235	016	28047	039	6921	
DOPOV	002	58 /	-44 286	263	008	28048	056	6840	
DONAD	001	59 /	-47 294	266	005	28049	056	6792	
SOGPA	002	1301/	-51 313	294	012	28048	056	6676	
VARIK FIR BDRY	002	03/	-57 338	294	015	27049	045	6548	
PEROX	001	04/	-61 350	291	008	27052	045	6484	۷,
TOC	001	1305/1302	-63 360	293	008	27056	045	6421	
SODRO	003	08/	-65 360	293	008	26056	045	6370	
ROBEL	008	16/	-65 360	293	059	25055	044	6005	
KEMAD FIR BDRY	004	20/	-64 360	293	032	24054	044	5813	
RAVLO FIR BDRY	039	59 /	-63 360	294	264	22073	041	4254	1.
BODSO	006	1405/	-61 360	282	039	21071	010	4025	


FL330 M0.74 Cruise

PC1 take-off procedure

(helipad + elevated helipad)

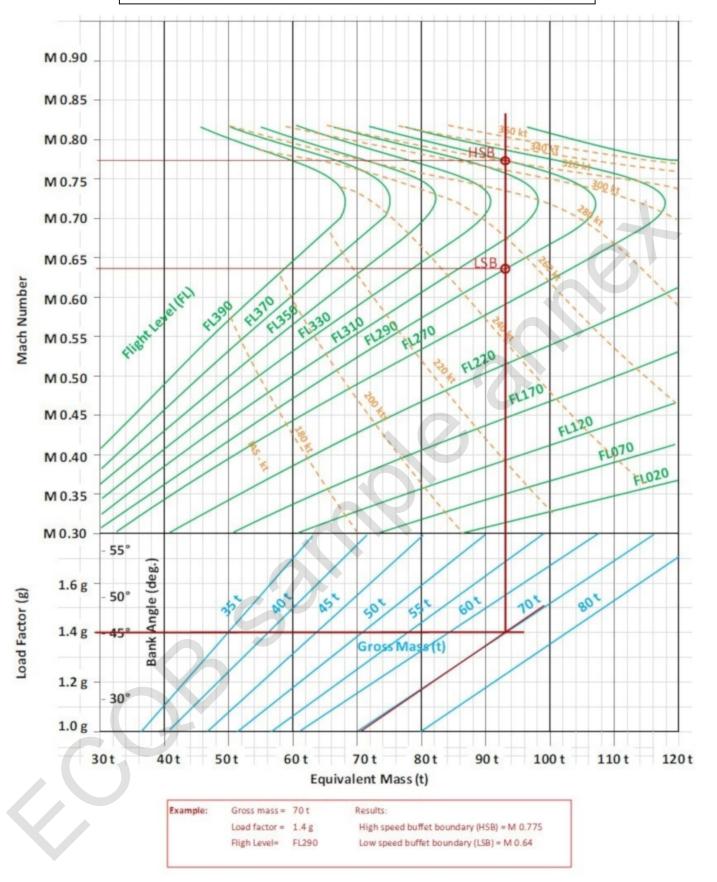
	B/U distance	Minimum height	Height at V _{TOSS}	TODRH
120 ft	45 m	25 ft	50 ft	165 m
130 ft	49 m	35 ft	60 ft	160 m
140 ft	54 m	45 ft	70 ft	155 m
150 ft	58 m	55 ft	80 ft	150 m
160 ft	64 m	65 ft	90 ft	145 m
170 ft	69 m	75 ft	100 ft	140 m
180 ft	74 m	85 ft	110 ft	135 m
190 ft	79 m	95 ft	120 ft	130 m

Note: if barometric altimeter is used for TDP identification add 50 ft to the TDP height of this table

Used e.g. in 061 01 05 05 01 Flight log - Enter revised navigational en-route data, for the legs concerned, into the flight plan

	Landing On block				G	FPL PLAN: A WP1 B G	PL PLAN: A
07:51	Take-off	17/10	G	Α			
07:40	Off block	Date	То	From	ype Registration	Aircraft type	Flight number

From	То	FL/Alt	TAS [kt]	Track (M)	(M) BpH	GS [kt]	Distance [NM]	Time [minutes]	ETO	АТО	Plan Fuel	Min Fuel	Fuel check	Notes
A	TOC	Climb	145	47	58	121	48	24	08:15	08:12	460	422	474	
TOC	В	FL90	190	47	55	167	65	23	08:38	08:34	414	376	472	3
В	С	FL90	190	47	55	167	43	15	08:53	08:48	383	345	437	
С	D	FL90	190	47	55	167	26	9	09:02		365	327		No. Y
D	Е	FL90	190	47	55	167	19	7	09:09		351	313		
Е	П	FL90	190	48	56	166	16	6	09:15		340	302		
П	G	FL90	190	48	56	166	13	ъ	09:20		330	292		


Situation 1

Situation 2

Used e.g. in 081 03 02 02 Shock stall - Buffet onset (example graph)

Used e.g. in 090 03 01 02 Aerodrome weather - Weather broadcast

