

SORA workshop

and the second se

Automation

9 – 10 February 2023

Maria Algar Ruiz EASA – Drone program manager

Natale Di Rubbo EASA – Drone project manager

Alberto Cunial EASA – Drone junior professional

Sascha Oliver Schott EASA – Drone section manager

Joerg Dittrich LBA – Senior expert drone regulation JARUS – WG SRM lead

Andreea Perca FOCA – Head of section UAS Regulation JARUS – WG SORA 2.5 lead

Kristopher Klann LBA – Team leader UAS operations

Established 2002

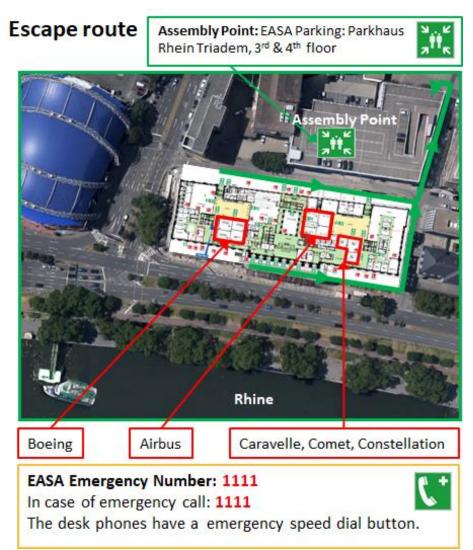
aviation experts & administrators

Headquarters in Cologne Office in Brussels

EASA member states = 27 + 4

EU

+ Switzerland, Norway Iceland, Liechtenstein



Evacuation instructions: conference rooms

1. when to Evacuate

- a) Following acoustic signal
- b) Following instructions by emergency team

2. Evacuation signal and route

Signal: Continuous siren and/or voice message over loudspeaker Routes: Nearest fire exit

3. Evacuation procedure

- a) Warn other people, help handicapped or injured persons
- b) Only use stairs and marked escape routes
- c) Do not use lifts
- d) Do not return to collect personal belongings
- e) Go directly to the assembly point
- f) Do not return to the building until instructed to do so



EMERGENCY

Find more information at your **EASA Emergency Procedure Card** on your visitor lanyard!

EASA Direktion house rules

→ Respect

- → For phone calls kindly use the phone booths or the lobby
- Do not disturb colleagues in the office spaces

→ Hospitality

- → EASA Bistro welcomes visitors but does not accept bank card payments
- You can pay cash or loan a canteen badge at the cash loading station
- → 5€ deposit (at the end of the day refund of deposit and remaining credit)

→ Health and Safety

- \rightarrow The whole building is a non-smoking zone
- → Smoking is allowed in front of the building to your right
- For evacuation purposes, re-arranging the seating configuration of the room is forbidden

SORA workshop - Agenda 9 February 2023

- 10:30 10:40: Welcome and introduction
- 10:40 11:30: Introduction to the UAS regulation and to the specific category
- 11:30 12:30 Specific category STS and PDRAs and LUC
- 12:30 13:30 Lunch break
- 13:30 15:00 Specific operation risk assessment (SORA)
- 15:00 15:30 Break
- 15:30 17:30 Specific operation risk assessment (SORA)

10 February 2023

- 09:00 10:30 Writing an operator's manual
- 10:30 11:00 Break
 - Q 13:00 Summary of changes in SORA 2.5

SORA workshop – 9 -10 February 2023

Purpose

- → Explain how to apply SORA 2.0
- → Identify known challenges related to SORA 2.0 and how these are solved with SORA 2.5
- → Provide an overview of SORA 2.5

Method

→ Use some examples and carry out a complete risk assessment

Rules of play

- → After each presentation we will have a question and answer session
- → Use sli.do #SORA2023 passcode: bvwlnb
- → We are unable to monitor chats of Webex or Youtube
- → Please refrain to ask questions related to open category (if needed we may organize a dedicated meeting)

passcode: bvwlnb

Introduction to the UAS regulation and to the specific category

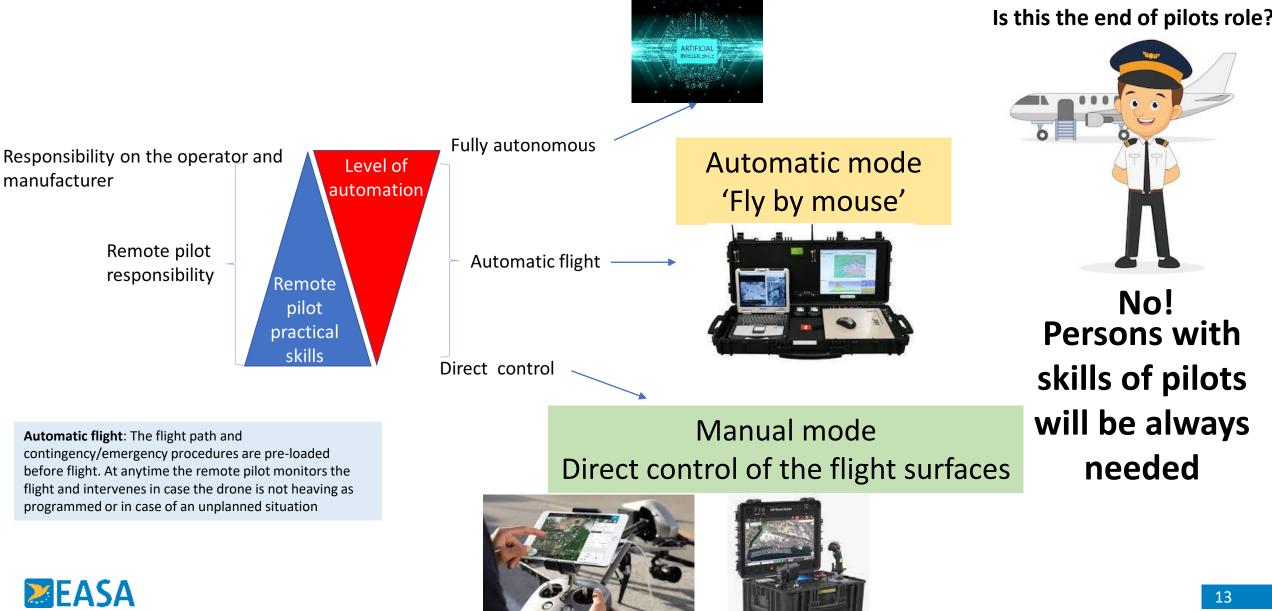
Who developed SORA?

→ Joerg



Where SORA is used in the world?

→ Joerg



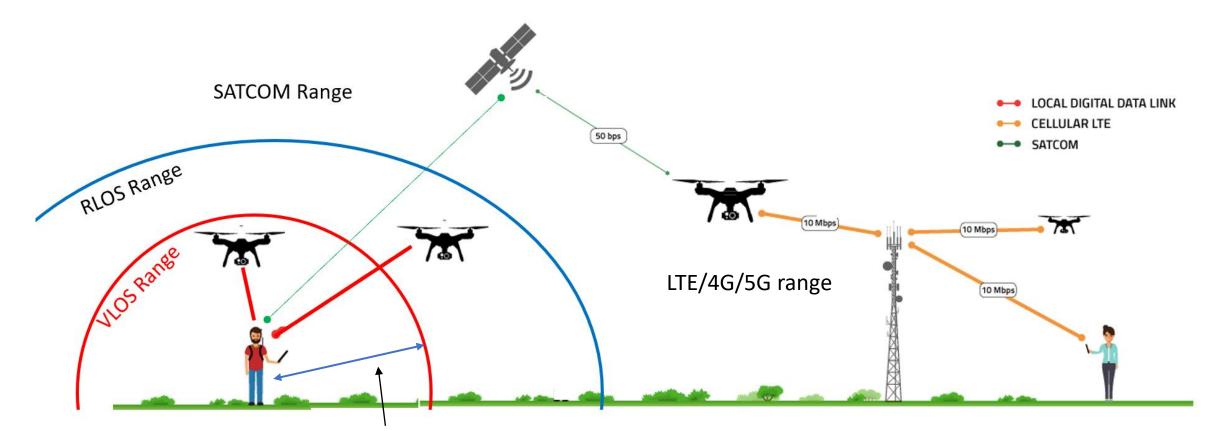
What is a drone?

Command Units and level of automation

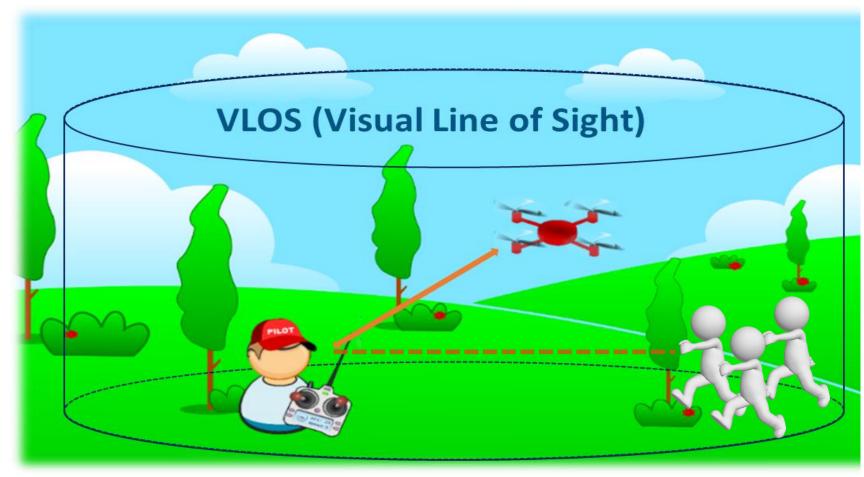
Which UAS operations are we addressing?

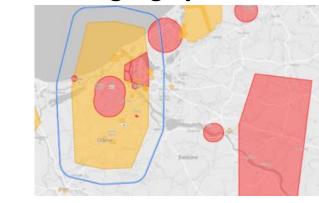
Aerial work

Even if SORA may be potentially used, the UAS regulation provides other simplifications for leisure flights


Leisure flights, including with model aircraft

International IFR flights


Definitions


It depends on the size of the drone and characteristics of the area

Definitions

UAS geographical zone

Flight authorisation

UAS operation vs UAS flight

SORA

ASSESSMENT

Operational authorisation

A **UAS operation** is made of **one or multiple flights** conducted under the same conditions defined by **one operational authorisation**.

Operation centric, risk-based, performance based regulation

- → No distinction among professional or leisure operations
- → Requirements are not prescriptive: they identify the minimum performance to make the operation safe, not how to reach it (performance based)

UAS categories

Open Regulation 2019/947 – Art. 4	Specific Regulation 2019/947 – Art. 5	Certified Regulation 2019/947 – Art. 6
No authorisation required before starting the operation		
PRESCRIPTIVE APPROACH	SORA	
Regulation (FU) 2019/945 (technical r	equirements and third country operations	

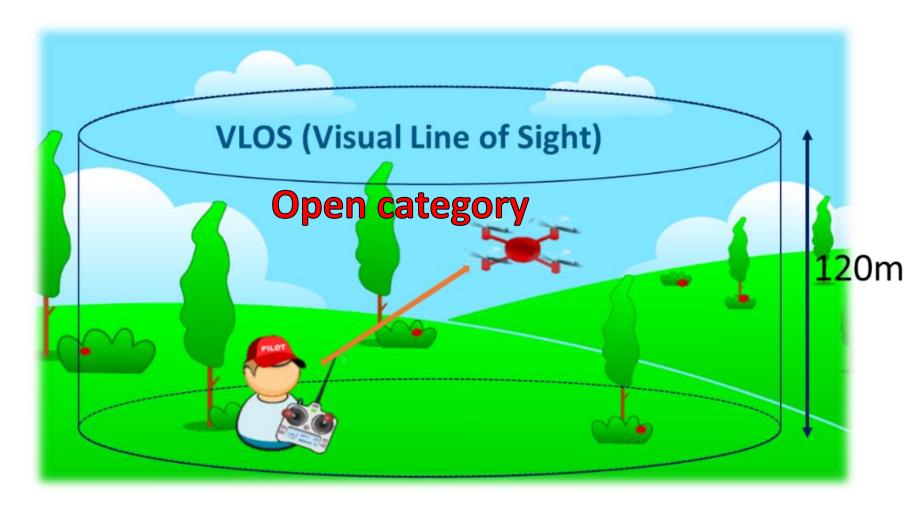
<u>Regulation (EU) 2019/945</u> (technical requirements and third country operations)

<u>Regulation (EU) 2019/947 (registration and operational requirements)</u>

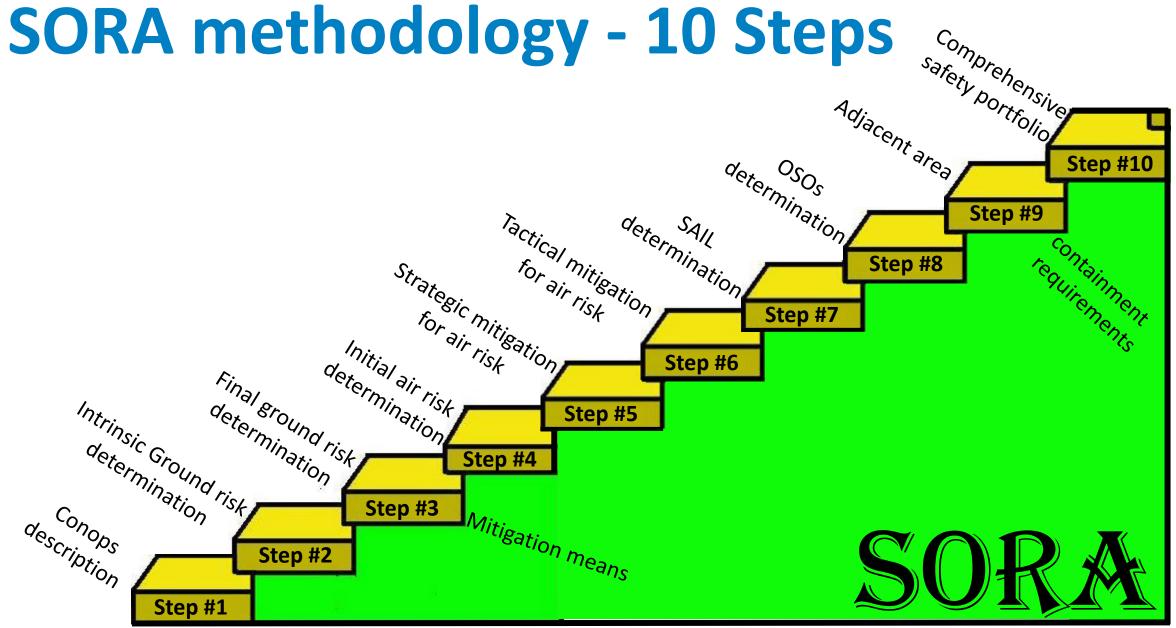
 \ge

Drone regulation

- → Applicable to EASA states: EU + Switzerland, Iceland, Lichtenstein and Norway
- → Operator registration valid in all EASA states
- → Operational authorisation issued by the state of registration is valid in all other states (cross border procedures applies)
- → Remote pilots may train and get a certificate in any EASA states
- → Only for civil drones but possibility to opt in for state and military drones


Characteristics of the specific category

A drone may crash when flying in an area with an acceptable (low) risk to injury a person or jeopardise a manned aircraft



When the specific category starts?

When one or more of the limitations of the open category are exceeded

Is SORA complex and difficult

to understand?

How to address a so large variety of potential operations?

Ensure safety: traditional approach

When a pilot is on board his/her safety needs to be ensured

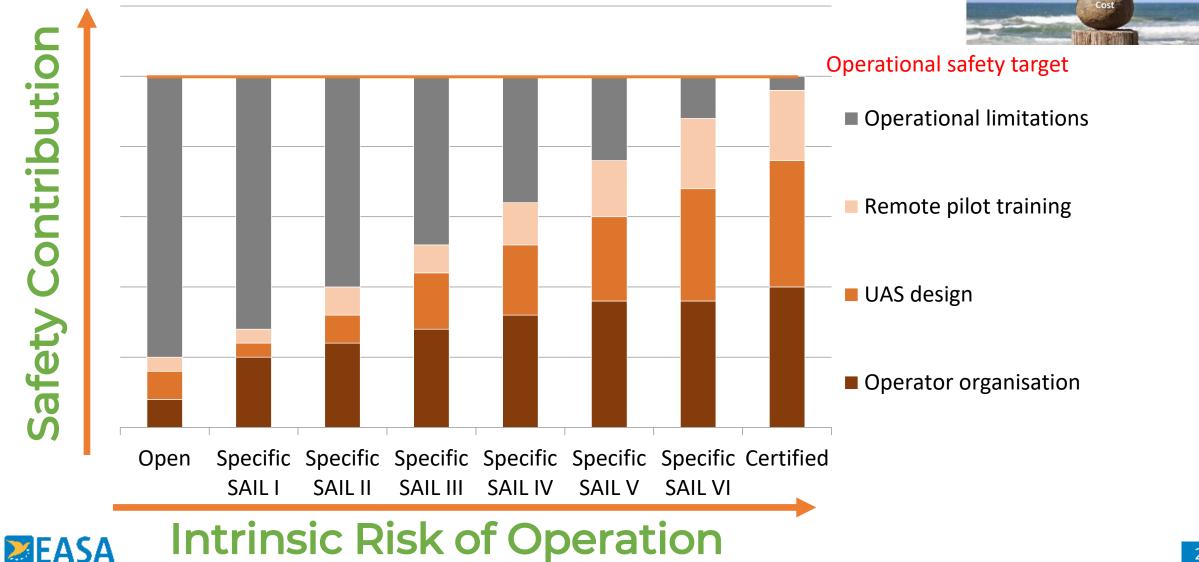
This approach is easy to understand

EASA

*Size of stones does not represent the ratio of costs

Is it appropriate for drones?

Ensure safety: a new approach



EASA

*Size of stones does not represent the ratio of costs

Ensuring safe operations

Please note: the chart is only illustrative of the simplified concept, the length of the bars does not represent the actual contribution

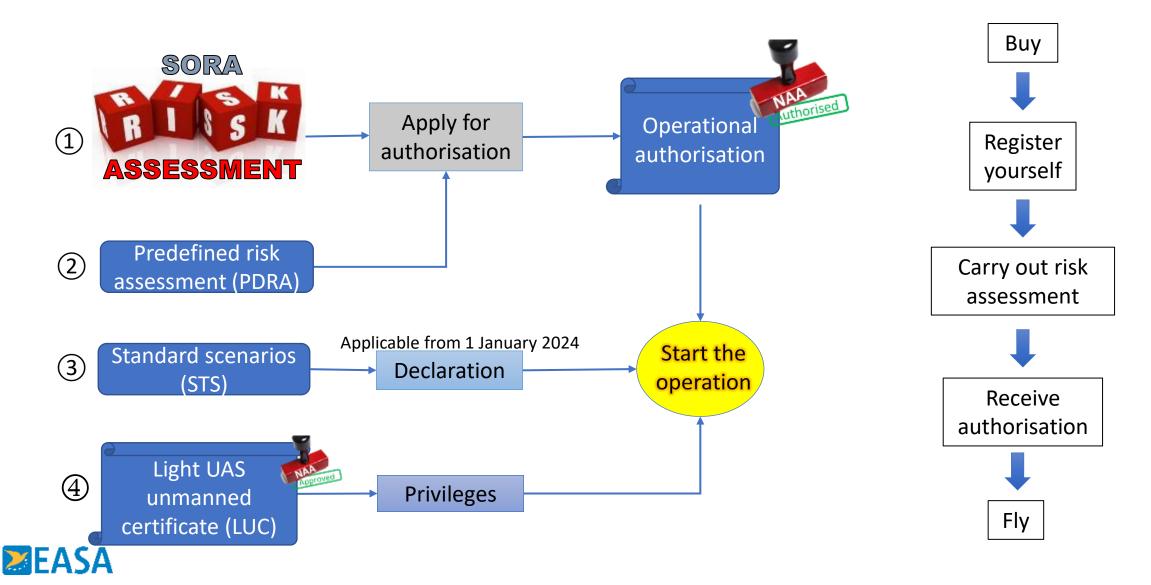
sli.dc

Is SORA complex and difficult to understand?

Traditional approach

Always possible: Easy to understand but it may be expensive

Risk based approach



More the applicant wants to reduce the cost (identifying mitigations/limitations), higher the complexity

Specific category

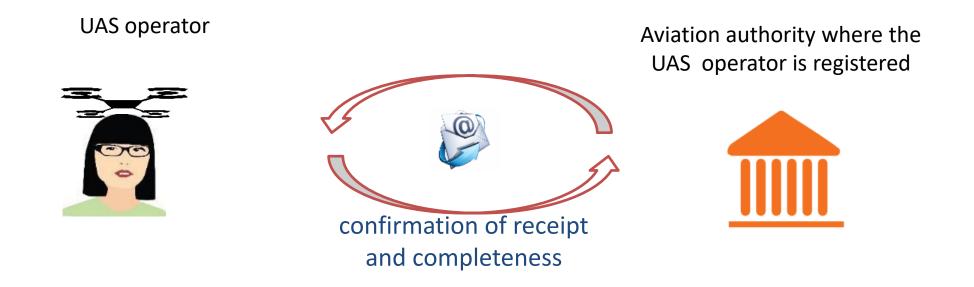

Requirements based on the risk assessment performed by the UAS operator

Registration as UAS operator

Member State of residence or main place of business A UAS operator always needs to be registered when operating in the specific category

A UAS operator cannot register twice. If already registered for previous operation, that is enough

Registration of drones <u>only</u> when a certificate of airworthiness is mandated



SORA workshop Specific category – STS and PDRAs and LUC

Specific category – Standard scenario (STS)

2 EU STS published and becoming applicable from 1 January 2024

In some states national STS are available

Predefined risk assessment (PDRA)

Scenarios assessed by EASA applying SORA

Published as AMC x to SORA

		PDRA characteris	ation and conditions	
Торіс	Method of proof	Condition	Integrity ¹	Proof ¹
1. Operatio	onal characterisatio	n (scope and limitations)		
Level of human intervention		1.1 No autonomous operations: the remote pilot should have the ability to maintain control of the UA, except in case of a loss of the command and control (C2) link.	<i>Please include a reference to the relevant chapter/section of the OM.</i>	'l declare compliance.'
	Self-declaration	1.2 The remote pilot should operate only one UA at a time.	<i>Please include a reference to the relevant chapter/section of the OM.</i>	'I declare compliance.'
		1.3 The remote pilot should not operate the UA from a moving vehicle.	Please include a reference to the relevant chapter/section of the OM.	'l declare compliance.'
		1.4 The remote pilot should not hand the control of the UA over to another command unit.	<i>Please include a reference to the relevant chapter/section of the OM.</i>	'l declare compliance.'
UA range limit		 Launch/recovery: at VLOS distance from the remote pilot, if not operating from a safe prepared area. Note: 'safe prepared area' means a controlled ground area that is suitable for the safe launch/recovery of the UA. 	<i>Please include a reference to the relevant chapter/section of the OM.</i>	'I declare compliance.'
	Self-declaration	1.6 In flight:		
		1.6.1 <u>If no AOs are employed</u> : the UA is not operated further than 1 km (or other distance defined by the competent authority) from the remote pilot. Note: The remote pilot's workload should allow them to continuously visually scan the	Please include a reference to the relevant chapter of the OM, otherwise indicate 'ŋ/a'.	'l declare compliance.' or 'ຼົາ/a'
		airspace.		
		1.6.2 If AOs are employed: the range is not limited as long as the UA is not operated further than 1 km (unless a different distance is defined by the	Please include a reference to the relevant chapter of the OM, otherwise indicate 'n/a'.	ʻl declare compliance.' or ʻָחֵ/a'

List of published PDRAs

LAJA

PDRA Ref	UAS Characteristics	Main Ops characteristics	Typical ops
PDRA-S01 AMC4 Article 11 Same scenario of STS-01	MTOM=25 kg Max dimension 3m	 ✓ VLOS; ✓ Controlled ground area also over populated area; ✓ Controlled or uncontrolled airspace less than 150m AGL; 	Agricultural works, short range cargo ops
PDRA-S02 AMC5 Article 11 Same scenario of STS-02	MTOM=25 kg Max dim 3m	 ✓ BVLOS up to 1km or 2km with AO; ✓ Controlled ground area over sparsely populated area; ✓ Controlled or uncontrolled airspace less than 150m AGL; 	Surveillance, agricultural works, short range cargo ops
PDRA-G01 AMC2 Article 11	Max dim 3m	 ✓ BVLOS with Aerial Obs; ✓ over sparsely populated area; ✓ Uncontrolled airspace less than 150m AGL;. 	Surveillance, long range cargo ops
PDRA-G02 AMC3 Article 11	Max dim 3m	 ✓ BVLOS; ✓ over sparsely populated area; ✓ Segregated airspace (Height of segregated airspace). 	All range of ops
PDRA-G03 AMC6 Article 11	Max dim 3m	 ✓ BVLOS; ✓ over sparsely populated area; ✓ Max height of 30m or within 15m from obstacles 	Linear inspections, agricultural works
FASA			35

Legenda: AO = Aerial observer ; AGL: above ground level

List of PDRAs under development

<u>JARUS</u> Ref	UAS Charact.	Main Ops characteristics	Typical ops	Status
PDRA-05	Max dim 3m	 ✓ BVLOS; ✓ over sparsely populated area; ✓ in airspace where at least 50% of manned a/c can be detected; ✓ Up to 120m AGL; 	All range of ops	Published by JARUS
PDRA-06	Max dim 8m	 ✓ VLOS; ✓ Over controlled ground area; ✓ in airspace where at least 50% of manned a/c can be detected; ✓ Up to 120m AGL; 	Testing of prototype UAS	Under preparation
PDRA-07	Max dim 3m	 ✓ VLOS/BVLOS; ✓ Over controlled ground area; ✓ Airport environment; ✓ Up to 50m AGL 	Airport/runway inspections, calibration, surveillance	Under preparation

List of PDRAs under development

<u>JARUS</u> Ref	UAS Charact.	Main Ops characteristics	Typical ops	Status
PDRA-08	Max dim 1m	 ✓ VLOS with aerial observers; ✓ Over controlled ground area; ✓ Segregated airspace; ✓ Up to 120m AGL 	Drone light shows	Under preparation
PDRA-10	Max dim 3m	 ✓ VLOS with arial observers; ✓ Over sparsely populated area; ✓ Uncontrolled airspace ✓ Up to 200m AGL; 	Surveillance	Under preparation
PDRA-0x	Max dim 3m	 ✓ VLOS; ✓ Over sparsely populated area; ✓ Segregated airspace; ✓ Up to 40m AGL 	Agricultural work	Under preparation

Application process in case of PDRA

EASA plans to develop example of operation manual for each PDRA

Generic vs precise authorisations

→ Generic: defined qualitatively (e.g. in a sparsely populated area, max 120m, in Arc b)

→ Precise: defined by geographical coordinates

Precise authorisations if:

M1 mitigations are used

Residual ARC is 'c' or 'd'

Strategic mitigations are applied to lower the initial ARC (SORA Step #5), except when operating in a U-space airspace

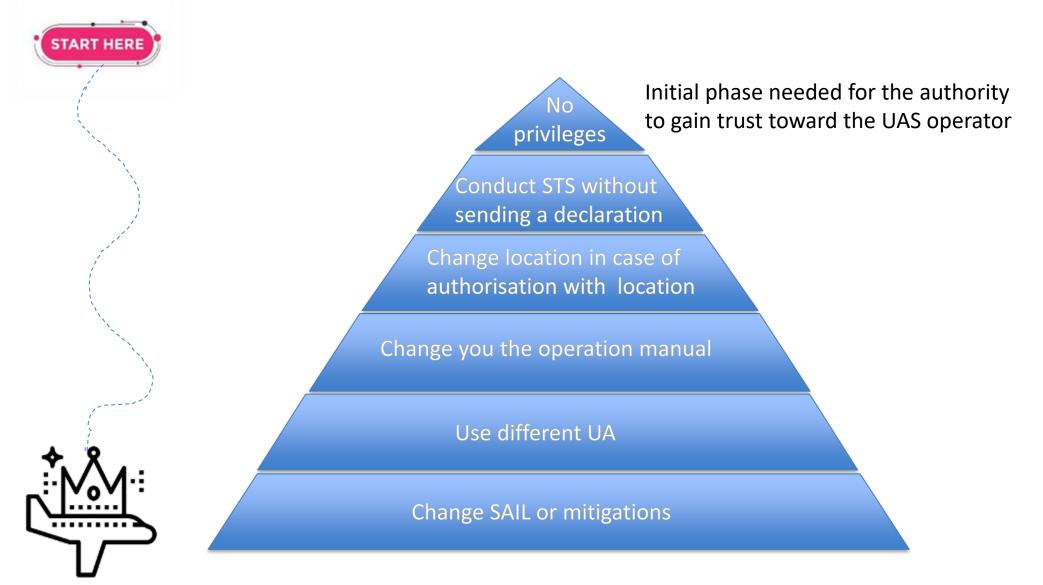
The LUC Light UAS unmanned certificate

Reg 2019/947 – Part C

LUC – Light UAS operator unmanned certificate

Applicable to all drones, independently of their weight Voluntary for operations in SAIL I-II-III

Mandatory for operations in SAIL IV-V-VI


It requires a robust organisation (technically and financially) implementing some SMS requirement

It's a matter of TRUST of the authority toward the UAS operator
→ It requires previous experience of SORA and risk mitigation
→ It requires to demonstrate « how the operator thinks »

A LUC with privileges should be assigned to UAS operators only after a period in which the competent authority monitors the UAS operator through operational authorisation(s)

Privileges associated to LUC

Your safety is our mission.

An Agency of the European Union