Operational Evaluation Board Report

Dassault Aviation F2000EX EASy

Revision 17 (Corr. 1)
09 April 2013

European Aviation Safety Agency
Postfach 10 12 53
D-50452 Köln
Germany
Contents

Contents... 2
Operational Evaluation Board OEB .. 3
Revision Record ... 4
Dassault Falcon 2000EX EASy, DX, LX, LXS and S OEB Composition .. 5
Acronyms .. 6
Executive Summary ... 8
Operational Evaluation Report – FCL & OPS Subgroup .. 9
 1. Purpose and Applicability .. 9
 2. Pilot License Endorsement .. 10
 3. Specific Operational Issues .. 10
 4. MDR and ODR .. 12
 5. Specifications for Pilot Training .. 13
 6. Specifications for Checking ... 14
 7. Specifications for Currency/Recent Experience .. 14
 8. Specifications for LIFUS .. 14
 9. Additional JOEB Findings and Recommendations ... 14
 10. Aircraft Regulatory Compliance Check-List ... 15
 11. Specifications for Devices and Simulators ... 15
 12. Application of JOEB Report ... 15
 14. Miscellaneous .. 16
 14.1 Cabin Crew .. 16
 14.2 Head up Display .. 16
 14.3 Enhanced Flight Vision System EFVS ... 17
 14.4 Steep Approach Landing Operations .. 19
 14.5 Electronic Flight Bag Options ... 21
 15. Transition Course - FAST Concept ... 22
 16. Appendices .. 23
Addendum A : Variant F2000EX EASy Step 3 ... 24
Addendum B: Variant F2000DX ... 27
Addendum C: Variant F2000LX ... 29
Addendum D: FAST Falcon 2000EX EASy – Falcon 900EX EASy .. 31
Addendum E: Autobrake System ... 33
Addendum F: EASy II ... 35
Addendum G: F2000LXS ... 41
Addendum H: F2000S ... 44
Attachment 1: London City Airport / Other Airports .. 46
Dassault Aviation F2000EX EASy, DX, LX, LXS, S

Operational Evaluation Board (OEB)

Thierry Bouchez
(OEB Chairman / DGAC)

Herbert Meyer
(EASA - Section Manager, Operational Suitability – Fixed Wing)

Frank Van de Broek
(EASA – OEB Coordinator, Operational Suitability – Fixed Wing)

Jean Baril
(EASA - Special Ops Evaluation Manager)

Dimitri Garbi
(EASA - Special Ops Evaluation Expert)
Revision Record

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Content</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Re-format</td>
<td>1 September 2004</td>
</tr>
<tr>
<td>02</td>
<td>Authorities and Manufacturer</td>
<td>2 September 2004</td>
</tr>
<tr>
<td>03</td>
<td>Re-format</td>
<td>3 September 2004</td>
</tr>
<tr>
<td>04</td>
<td>Chapter 3</td>
<td>10 September 2004</td>
</tr>
<tr>
<td>05</td>
<td>Re-format</td>
<td>3 November 2004</td>
</tr>
<tr>
<td>06</td>
<td>Report</td>
<td>26 January 2007</td>
</tr>
<tr>
<td>07</td>
<td>Paragraph 14.3</td>
<td>25 October 2007</td>
</tr>
<tr>
<td>08</td>
<td>Paragraph 8, Addendum B</td>
<td>8 February 2008</td>
</tr>
<tr>
<td>09</td>
<td>Paragraph 3.6 and 3.7</td>
<td>15 May 2008</td>
</tr>
<tr>
<td>10</td>
<td>Paragraph 10, 14.2 and 14.3</td>
<td>15 July 2008</td>
</tr>
<tr>
<td>11</td>
<td>All sections</td>
<td>29 April 2009</td>
</tr>
<tr>
<td>12</td>
<td>All sections</td>
<td>29 May 2009</td>
</tr>
<tr>
<td>13</td>
<td>Paragraph 3.5, 13 and 14.4, Attachment 1</td>
<td>12 March 2010</td>
</tr>
<tr>
<td>14</td>
<td>Paragraph 14.4, Addendum E</td>
<td>17 June 2010</td>
</tr>
<tr>
<td>15</td>
<td>Paragraph 3.2 and 5.2.3</td>
<td>6 October 2010</td>
</tr>
<tr>
<td>16 (Draft)</td>
<td>Paragraph 14.3.2 (Improved EFVS)</td>
<td>10 April 2012</td>
</tr>
<tr>
<td>16</td>
<td>Paragraph 14.4.6 added, re-formatting</td>
<td>29 June 2012</td>
</tr>
<tr>
<td>17</td>
<td>Paragraph 14.5 Electronic Flight Bag (EFB) Options, Addendum F (EASy II), G (F2000LXS) and H (F2000S)</td>
<td>11 March 2013</td>
</tr>
<tr>
<td>17</td>
<td>Correction of an editorial error on page 44: H.4 Prerequisites from F2000LXS to F2000S</td>
<td>09 April 2013</td>
</tr>
</tbody>
</table>

Corrigendum 1

Correction of an editorial error on page 44: H.4 Prerequisites from F2000LXS to F2000S | 09 April 2013
Dassault Falcon 2000EX EASy, DX, LX, LXS, S OEB Composition

<table>
<thead>
<tr>
<th>Name</th>
<th>Capacity</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alain AUGIAS 1)</td>
<td>DGAC</td>
<td>Team Member</td>
</tr>
<tr>
<td>Jean BARIL 1)4)</td>
<td>EASA</td>
<td>Special OPS Evaluation Manager</td>
</tr>
<tr>
<td>Frédéric BARBIERI 1)</td>
<td>DGAC</td>
<td>Team Member</td>
</tr>
<tr>
<td>Xavier BARRAL 1)</td>
<td>DGAC</td>
<td>Team Member</td>
</tr>
<tr>
<td>Andrea BOIARDI 5)</td>
<td>EASA</td>
<td>Special OPS Evaluation Expert</td>
</tr>
<tr>
<td>Thierry BOUCHEZ 1)2)3)5)</td>
<td>DGAC</td>
<td>OEB Chairman</td>
</tr>
<tr>
<td>Ian BURNS 1)</td>
<td>CAA UK</td>
<td>Team Member</td>
</tr>
<tr>
<td>Dimitri GARBI 4)</td>
<td>EASA</td>
<td>Special OPS Evaluation Expert</td>
</tr>
<tr>
<td>Poul JENSEN 1)</td>
<td>EASA</td>
<td>Team Member</td>
</tr>
<tr>
<td>Heinz MAHRER 1)</td>
<td>EASA</td>
<td>Team Member</td>
</tr>
<tr>
<td>Herbert MEYER 2)3)5)</td>
<td>EASA</td>
<td>OEB Section Manager</td>
</tr>
<tr>
<td>Poul RASMUSSEN 1)2)</td>
<td>EASA</td>
<td>OEB Section Manager</td>
</tr>
<tr>
<td>Graham STURROCK 1)4)</td>
<td>EASA</td>
<td>Team Member, Consultant</td>
</tr>
<tr>
<td>Frank VAN DE BROEK 2)3)5)</td>
<td>EASA</td>
<td>OEB Coordinator</td>
</tr>
</tbody>
</table>

1) Initial JOEB Evaluation
2) Noise Abatement Departure Procedure (NADP)
3) Steep Approach Landing Procedure
4) Electronic Flight Bag Evaluation
5) EASy II, F2000LXS, F2000S

Note on references and reference texts:
Where references are made to requirements and where extracts of reference texts are provided, these are at the amendment state at the date of publication of the report. Readers should take note that it is impractical to update these references to take account of subsequent amendments to the source documents.
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Advisory Circular</td>
</tr>
<tr>
<td>AFM</td>
<td>Airplane Flight Manual</td>
</tr>
<tr>
<td>AFCS</td>
<td>Automatic Flight Control System</td>
</tr>
<tr>
<td>AGM</td>
<td>Advanced Graphic Modules</td>
</tr>
<tr>
<td>AP</td>
<td>Autopilot</td>
</tr>
<tr>
<td>AT</td>
<td>Auto throttle</td>
</tr>
<tr>
<td>ATN B1</td>
<td>Aeronautical Telecommunication Network Baseline 1</td>
</tr>
<tr>
<td>CCD</td>
<td>Cursor Control Device</td>
</tr>
<tr>
<td>CCW</td>
<td>Counter Clock Wise</td>
</tr>
<tr>
<td>CODDE 1</td>
<td>Crew Operational Documentation for Dassault Aviation EASy-Airplane description DGT94085</td>
</tr>
<tr>
<td>CODDE 2</td>
<td>Crew Operational Documentation for Dassault Aviation EASy-Operation Manual DGT88899</td>
</tr>
<tr>
<td>CODDE 3</td>
<td>Crew Operational Documentation for Dassault Aviation EASy-QRH 1 DGT94712 and QRH 2 DGT94713</td>
</tr>
<tr>
<td>CMC</td>
<td>Centralised Maintenance Computer</td>
</tr>
<tr>
<td>CPD</td>
<td>Common Procedures Document for conducting Operational Evaluation Boards, dated 10 June 2004</td>
</tr>
<tr>
<td>CPDLC</td>
<td>Controller-Pilot Data Link Communications</td>
</tr>
<tr>
<td>DC</td>
<td>Display Controller</td>
</tr>
<tr>
<td>EASA</td>
<td>European Aviation Safety Agency</td>
</tr>
<tr>
<td>EASy</td>
<td>Enhanced Avionics System</td>
</tr>
<tr>
<td>ECL</td>
<td>Electronic Check List</td>
</tr>
<tr>
<td>EDM</td>
<td>Emergency Descent Maneuver</td>
</tr>
<tr>
<td>EFIS</td>
<td>Electronic Flight Instrument System</td>
</tr>
<tr>
<td>EGPWS</td>
<td>Enhanced Ground Proximity Warning System</td>
</tr>
<tr>
<td>EICAS</td>
<td>Engine Indicating and Crew Alerting System</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro-Magnetic Interference</td>
</tr>
<tr>
<td>EVS</td>
<td>Enhanced Vision System</td>
</tr>
<tr>
<td>EFVS</td>
<td>Enhanced Flight Vision System</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FANS</td>
<td>Future Air Navigation System</td>
</tr>
<tr>
<td>FAST</td>
<td>Falcon Aircraft Shortened Training</td>
</tr>
<tr>
<td>FGS</td>
<td>Flight Guidance System</td>
</tr>
</tbody>
</table>
FMS.................... Flight Management System
FSB.................... Flight Standardization Board
FTD.................... Flight Training Device
GPWS.................... Ground Proximity Warning System
HMI..................... Human-Machine Interface
HUD.................... Head Up Guidance Display
I-NAV................... Integrated Navigation Display
IRS Inertial Reference System
JAA...................... Joint Aviation Authority
JAR-FCL Flight Crew Licensing rules
JAR-OPS1 Operations rules
Lab session........... Ground training with possible use of STD
LSC..................... Low Speed Cue
MAU..................... Modular Avionics Units
MCDU................... Multi-Function Control Display Units
MDU..................... Multi-functions Display Units
MKB..................... Multi-functions Keyboard
ND Navigation Display
NADP................... Noise Abatement Departure Procedure
NATS................... North Atlantic Track System
ORI Operational Review Item
PDU..................... Primary Display Unit
PF Pilot Flying
PFD Primary Flight Display
PIC Pilot In Command
PNF Pilot Non Flying
RFMU Radio Frequency Management Unit
SFD Secondary Flight Display
SIC Second In Command
TASE Training Area of Special Emphasis
TCAS Traffic Alert and Collision Avoidance System
TRTO Type Rating Training Organization
VGS Visual Guidance System
VNAV Vertical Navigation
WOW Weight on Wheels
Executive Summary

An initial Operational Evaluation was performed by a team composed of JAA members. Subsequently EASA performed an operational evaluation of the Noise Abatement Departure Procedure (NADP). In a third evaluation, F2000EX EASy, DX, LX steep approach procedures were evaluated. In 2012, a Special Ops evaluation of optional Class 1 (iPad) and Class 2 (CMC) Electronic Flight Bags was performed. In addition, addendums F (EASy II), G (F2000LXS) and H (F2000S) were added to the original OEB report.

These evaluations were performed in compliance with the applicable Terms of Reference, corresponding complementary procedures, the JOEB/OEB Handbook and the CPD.

Throughout this document, the designation "F2000EX EASy" includes Falcon 2000EX EASy, Falcon 2000EX EASy Step 3, Falcon 2000DX and Falcon 2000LX.

In the frame of FAST, the designation "F900EX EASy" includes Falcon 900EX EASy, Falcon 900DX and Falcon 900LX variants.

This report specifies the EASA recommendation of minimum requirements for the initial type rating training course, checking and currency on the Dassault Falcon 2000EX EASy, as specified in JAR-FCL 1 and EU-OPS.

This report also contains the findings of the operational suitability of the Dassault Falcon 2000EX EASy with regards to EU-OPS.

The OEB recommends the approval of the Dassault Aviation proposed training course for initial type rating on the Dassault Falcon 2000EX EASy as well as the difference courses in the respective addendums.

The OEB recommends the licence endorsement “Falcon 2000EX EASy”.

Captain Herbert Meyer
Section Manager, Operational Suitability - Fixed Wing - Experts Department, EASA Certification Directorate
Operational Evaluation Report / FCL & OPS Subgroup

1. Purpose and Applicability

This report:

- Defines the Type Rating assigned to the Falcon 2000EX EASy,
- Defines FAST from Falcon 2000EX EASy to Falcon 900EX EASy.
- Makes recommendations for initial Training,
- Makes recommendations for checking,
- Makes recommendations for currency,
- Determines findings on the operational acceptability.

1.1 Overview

The Falcon 2000EX EASy is a new type of aircraft due to the completely new (EASy) human-machine interface (HMI). However the airframe and some other features are those of the Falcon 2000EX.

At the time of initial evaluation cross-qualification or pilot training commonality between F2000EX EASy and other existing Falcon types was not evaluated. However some cross-qualifications became available at a later stage and have been addressed in the respective addendums.

The Falcon 2000DX is a Falcon 2000EX EASy modified to reduce fuel tank capacity. Falcon 2000DX has been certified by EASA on 19-Sep-2007, and by FAA on 03-Oct-2007. Training requirements for the Falcon 2000DX are detailed in Addendum B.

The Falcon 2000LX is a Falcon 2000EX EASy fitted with Winglets installed per Dassault Aviation Modification M2846. Its main difference compared to the Falcon 2000EX EASy is cruise performance. Falcon 2000LX has been certified by EASA on 23-Apr-2009. Training requirements for the Falcon 2000LX are detailed in Addendum C.

Falcon 2000DX, Falcon 2000LX and F2000EX EASy are three variants within the same type.

The JOEB team had six dedicated pilots:

- Two pilots were flying on the aircraft
- Five pilots were sent to Teterboro to follow the first Pilot Type Rating Training Course with the task to assess the pilot training course on behalf of the JAA.

The involvement of the pilot from the certification team was very helpful especially for the assessment of the handling characteristics for the FFS and other interface issues between operations and certification. Operator pilots, included in the JOEB team, brought a new point of view of the training level needed for the EASy concept.

1.2 General Information on the flights

Several flights were conducted to prepare the JAR-STD 1A Level D qualification of the FFS in Teterboro with specific use of abnormal and emergency check-lists either ECL or CODDE 3 in accordance with the AFM.

The FFS was qualified according to JAR-STD 1A Level D.

One flight was devoted to MMEL dispatch and performances comparison.
1.3 Pilot Initial Type Rating Training Course

The JOEB performed the T5 test, according to JAA specific regulation and guidance. From 10 May to 21 May 2004, the JOEB received the Falcon 2000EX EASy initial pilot ground school course, provided by Flight Safety International (FSI) at FSI Teterboro, Moonachie, New Jersey. Several FSI instructors gave both the computer based classroom instruction and the supplemental “Lab” sessions. These sessions are designed to reinforce classroom learning, as well as to introduce crews to SOPs and to the practical operation of the aircraft. Ultimately these Lab sessions will be run in a “Phoenix” Flight Training Device (FTD), but, as the Phoenix was not yet ready, the sessions were run in the Flight Simulator (FS) instead.

During this Ground School period, deficiencies and discrepancies were identified in both the course material and the FFS. To allow Dassault Aviation and FSI time to correct these problems, the JOEB Team agreed to return in June to complete the Lab sessions, and to commence the FFS phase of the course.

From 3 June to 11 June 2004, the JOEB received the remaining Lab sessions and manoeuvres and procedures training, using a Falcon 2000EX EASy full flight simulator, qualified to JAR STD 1A Level D by the French DGAC. Changes to the syllabus were recommended so as to emphasise the teaching of the electrical system, avionics system, and associated failures.

Problems were identified with the simulator, and also with the documentation provided by Dassault Aviation.

Both FSI and Dassault Aviation worked hard to resolve these problems, and whilst not all of these problems had been resolved by 11 June 2004, the JOEB team accepted assurances from both Dassault Aviation and FSI that these would be resolved in time for a Quality Assurance (QA) check on 24 June 2004. This QA check was duly completed to a satisfactory standard by JOEB team members.

2. Pilot License Endorsement

With reference to JAR-FCL 1.220 and the JOEB Evaluation Process, a new Pilot Type Rating is assigned to the Falcon 2000EX EASy and the designated pilot Licence Endorsement is:

Falcon 2000EX EASy

3. Specific operational issues

3.1 Limitations

For all the limitations, refer to Airplane Flight Manual and/or CODDE2 manual.

3.2 Avionics

The use of EPIC (from Honeywell) and the EASy system developed by Dassault Aviation needs to have a strict adherence of the code of colours. The colour code is detailed in CODDE 1.

3.3 Aural warnings

There are:

- Fault aural warning
• EGPWS messages
• TCAS messages

Refer to CODDE 2 or /and 3.

3.4 Aircraft approach and circling category
As per Appendix 2 to JAR-OPS 1.430(c), the Falcon 2000EX EASy is in Category C.

3.5 Approach profiles
The F2000 EX EASy is certified for a maximum steep approach angle of 6.65° (6.0° for F2000LX variant). Refer to paragraph 14.4 of this Report.

3.6 Abnormal and Emergency procedures
The Electronic Check-List (ECL) is the primary reference for the crew. The AFM, CODDE 3 and ECL should be updated simultaneously (to the extent practicable), to ensure that there are no discrepancies between them. However, any discrepancy that may exist due to the nature of the paper versus the electronic, should be brought to the knowledge of the Operator.

3.7 Customization of Normal Checklists
The customization process for Normal Checklists within the ECL was evaluated by the JOEB, and was found acceptable, provided Operators comply with the guidance provided by Dassault’ “General Rules - Guidance for Customizing Normal Procedures” document reference DGAC-07-DOT-097 dated 01 April 2008 at Issue 02 and as amended. This document is available at Dassault Aviation upon request.
4. **MDR and ODR**

4.1 **Acceptable Master Difference Requirements (MDR)**

MDR for training levels are as follows:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F2000EX EASy</td>
<td>N/A</td>
<td>A/A/A</td>
<td>A/A/A</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td></td>
</tr>
<tr>
<td>F2000DX</td>
<td>A/A/A</td>
<td>N/A</td>
<td>A/A/A</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td></td>
</tr>
<tr>
<td>F2000LX</td>
<td>A/A/A</td>
<td>A/A/A</td>
<td>N/A</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td></td>
</tr>
<tr>
<td>F2000EX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>N/A</td>
<td>A/A/A</td>
<td>A/A/A</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td></td>
</tr>
<tr>
<td>F2000DX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>A/A/A</td>
<td>N/A</td>
<td>A/A/A</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td></td>
</tr>
<tr>
<td>F2000LX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>A/A/A</td>
<td>A/A/A</td>
<td>N/A</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td></td>
</tr>
<tr>
<td>F2000LXS</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td>N/A</td>
<td>A/A/A</td>
<td></td>
</tr>
<tr>
<td>F2000S</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td>B/A/A</td>
<td>A/A/A</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

* Base aircraft is the F2000LX EASy II + MTOW increase + New FADEC software (if installed).

Note: The difference between F2000EX EASY Step 2 and Step 3 is not detailed in above MDR table, but is still tracked in Addendum A.

Note: Special training credits apply for crew qualified and current on other EASy II Falcon - refer to Addendum F.
4.2 Acceptable Operator Difference Requirements (ODR)

Reserved. Due to the fact the Falcon 2000EX EASy is a new type of Aircraft, no ODR tables have been published yet.

For F2000EX EASy Step 3, refer to Addendum A of this report.
For F2000DX, refer to Addendum B of this report.
For F2000LX, refer to Addendum C of this report.
For Autobrake system, refer to Addendum E of this report.
For EASy II, refer to Addendum F of this report.
For F2000LXS, refer to Addendum G of this report.
For F2000S, refer to Addendum H of this report.

5. Specifications for Pilot Training

5.1 Full Initial Pilot Type Rating training course

Refer to Appendix 3.

5.2 Training areas of special emphasis

5.2.1 The pilot type rating training course, as proposed by Dassault Aviation, was found suitable for pilots with previous experience in operating EFIS/FMS and multi-engine aircraft. For pilots not having experience in operating EFIS/FMS and multi-engine experience, additional requirements may be appropriate as determined by JAA NAAs.

5.2.2 The JOEB has identified several aircraft systems and / or procedures that should receive special emphasis in a Falcon 2000EX EASy pilot type rating training course:

- Interpretation and use of the Crew Alerting System (CAS)
- Use of the Electronic Check List (ECL) and the QRHs
- Electrical Systems and associated failures
- Avionics system and associated failures (MAU)

These areas have now been addressed and will continue to receive the necessary special emphasis during the pilot training course.

5.2.3 In addition, the following characteristics of the Falcon 2000EX EASy should be emphasised during the pilot training program:

- The proper use and interpretation of the Flight Path Symbol (FPS) and Acceleration Chevron (AC). The FPS provides an aircraft trajectory indication, and is considered as a primary flight parameter. The basic Flight Director (FD) mode is considered as a PATH mode, instead of the more usual pitch mode as found on other aircraft. The AC indicates both the acceleration along the aircraft flight path, and the potential flight path angle.

- The proper use and interpretation of the Low Speed Cue (LSC), including the logic of anticipation computation of aircraft speed when decelerating rapidly the aircraft speed (when configuring the aircraft for landing for example).
5.2.4 The Dassault Aviation proposed pilot initial type rating training course (type rating) is in compliance with the AMC 1.261 (c)(2) of JAR-FCL 1 (A) Subpart F. Refer to Syllabus in Appendix 3 of this Report. The course is divided in the following phases:

- Theoretical Ground phase, including Lab sessions.
- Simulator phase,
- Skill test,
- Aircraft training.

Note: the pilot type rating training course is recommended for approval provided that operator specific documentation is used throughout the course.

5.2.5 Recurrent training

Recurrent pilot training should be performed as specified in JAR-FCL 1 and JAR-OPS 1.

6. Specifications for checking

6.1 Skill test

As required by Appendix 1 and 2 to JAR FCL 1.240 and 1.295, Amendment 3.

6.2 Recurrent Checking

Proficiency Checks must be conducted in compliance with JAR-FCL 1.245 and JAR-OPS 1.965.

6.3 Line checks

As specified in Appendix 1 to JAR-OPS 1.965.

7. Specifications for Currency/Recent Experience

JAR-OPS 1 applicants must meet the requirements of JAR-OPS 1.970 "Recent Experience", or JAR-FCL 1.026 "Recent Experience for pilots not operating in accordance with JAR-OPS 1".

8. Specifications for LIFUS

In the case of an initial pilot type rating on the Falcon 2000EX EASy, a minimum of 10 legs plus a line check is recommended for LIFUS.

For pilots already qualified and current on Falcon 900EX EASy and / or Falcon 7X, due to similar EASy avionic suits on Falcon 2000EX EASy, the JOEB has determined that the Falcon 2000EX EASy LIFUS could be reduced to 5 legs plus a line check.

9. Additional JOEB Findings and Recommendations

The operators are strongly recommended to use CODDE 1, 2, 3 provided by Dassault Aviation.

JOEB recommends the inclusion into the CODDE 1 a specific chapter presenting the EASy architecture with MAU presentation.
10. Aircraft Regulatory Compliance Check-List
Falcon 2000EX EASy has been shown compliant with JAR-OPS 1 Subparts K&L - see Appendix 4 for this Aircraft Regulatory Compliance Check List.

Falcon 2000EX EASy, including variants with EASy II and F2000LXS and F2000S, have also been shown compliant with Commission Regulation (EC) 859/2008 Subparts K&L -(EU-OPS1) - which applies in the EU States starting September 20th, 2008 - see Appendix 4bis for this Aircraft Regulatory Compliance Check List.

Note: A cross reference table between (EC)859/2008 (EU-OPS) and (EC)965/2012 (Part-CAT) is available on the EASA web site.

Note: Aircraft Regulatory Compliance Check List to JAR-OPS 1 Subparts K&L (Appendix 4) is kept in this JOEB Report for JAA States not belonging to the EU.

11. Specifications for Devices and Simulators
The Falcon 2000EX EASy full flight simulator, located in Teterboro, New Jersey, USA, has been assessed according to JAR STD 1A and qualified to Level D.

All other training devices should be assessed on an individual basis.

12. Application of JOEB Report
This JOEB report applies to AOC holders, however in the case of private operation, JOEB recommends to follow the findings in this report.

13. Operational procedure for close-in Noise Abatement Departure Procedure (NADP)
13.1 EASA OEB Recommendation
Dassault Aviation has requested the EASA OEB to evaluate a thrust reduction procedure at 400 feet AAL during a close-in noise abatement departure procedure (NADP).

Further to the examination made by the EASA OEB of the substantiations provided by Dassault Aviation and the simulator trials supervised by the EASA OEB Chairman (see paragraph 13.2 below), the EASA OEB has determined that a thrust reduction at 400 feet AAL during a Noise Abatement Departure Procedure is safe and acceptable.

This thrust reduction height (400 feet AAL) can be used by Operators to meet OPS 1.235 of Annex III to the European Council Regulation (EEC) No. 3922/91 as amended by (EC) 859/2008 (“EU-OPS 1”) (see applicability in paragraph 13.4).

Prior to operating the Falcon 2000EX EASy on a close-in NADP with a thrust reduction at 400 feet AAL, the EASA OEB recommends the areas of training emphasizes outlined in paragraph 13.3 below.

13.2 Supporting substantiation provided by Dassault Aviation
This proposal has been substantiated by Dassault Aviation through:

- an analysis document (ref. DGT114673),
- an operational procedure for close-in NADP (CODDE2), and
an evaluation of the thrust reduction procedure, based on the CODDE2 close-in NADP, using a Falcon 2000EX EASy full flight simulator. Due to the fact that similar NADP evaluation on others Falcon has already been conducted by EASA OEB pilots at the commands, this Falcon 2000EX EASy evaluation on the full flight simulator was flown by a crew of Dassault Aviation pilots, observed by the EASA OEB Chairman. The simulator was operated by Dassault Aviation test engineer. A total of 7 take-offs with thrust reduction at 400 feet AAL have been performed by this crew. Abnormal situations, including engine failure, landing gear retraction malfunctions, and windshear conditions, were introduced to assess a crew's ability to discontinue the noise abatement procedure and adopt the procedure appropriate to the abnormal condition.

No flight testing in the aeroplane was deemed necessary by the EASA OEB.

13.3 Training Areas of Special Emphasis

Prior to operating the Falcon 2000EX EASy on a close-in NADP with a thrust reduction at 400 feet AAL, the EASA OEB recommends the following training areas of special emphasis:

- Crew must be trained using the procedure provided by Dassault Aviation in their CODDE2 (close-in NADP),
- Crew should be made aware that the CODDE2 close-in NADP - and only this one - supersedes normal Falcon 2000EX EASy's Standards Operating Procedures (SOPs). Crew training should emphasize on the task sharing described in CODDE2, in particular for the thrust reduction at 400 feet AAL which is to be performed by the PNF under the authority of the PF,
- Crew training should emphasize the two key parameters during the departure briefing: N1 to be set at 400 feet AAL, and PATH angle to be set. These two parameters (reduced N1 and PATH angle) are computed by Dassault Aviation and can be found in the CODDE2,
- The initial NADP training should comprise, as a minimum, three normal take-offs, and two abnormal take-offs (e.g. engine failure / medium windshear at thrust reduction),
- The recurrent NADP training should be annually, and should include, as a minimum, one normal take-off and one abnormal take-off,

If both pilots are intended to act as PF, all take-offs should be conducted with PF position in right seat, then PF position in left seat.

13.4 Applicability to specific airports

See Attachment 1: London City Airport and Other Airports.

14 Miscellaneous

14.1 Cabin Crew

There is no requirement for cabin crew to be carried, but the JOEB recommends that if any are carried, they are to be fully trained in accordance with JAR–OPS 1 Subpart O.

14.2 Head up Display

A HUD is proposed as an option on Falcon 2000EX EASy. It is installed per Dassault Aviation modification M2557 or M2752. This HUD is certified for manual Cat II and Cat III operations, and
for monitoring automatic Cat II operations. For other limitations, procedures, call-outs, refer to appropriate CODDE2 Section.

The JOEB has evaluated this HUD, and found it satisfactory for its intended functions.

The JOEB evaluation of the HUD has been conducted at the same period as the evaluation conducted by the FAA FSB, and the certification exercise conducted by the EASA and FAA Certification team. This period was dedicated to HUD III certification.

Two JOEB pilots were involved in this HUD evaluation, which consisted in simulator tests, and flight tests on the actual aircraft.

The simulator tests were performed in May 2007, with Falcon 2000EX EASy full flight simulator operated by FlightSafety International in Dallas Forth Worth, TX, USA.

The flight tests were performed in November 2007, on test aircraft Falcon 2000EX EASy s/n 6, from Istres Dassault Aviation flight test center, France. The JOEB has flown the airplane in HUD III configuration during 8 approaches the first day, and 6 approaches the second day. Several airports and runways were used. Total flight hours were 5h45. Wind conditions varied from calm to 20 kt headwind.

The JOEB has determined that a dedicated HUD III pilot training (named as HGS Certification Training) was required. Appendix 7 of this JOEB Report provides an acceptable HGS Certification Training course, with a minimum of 4 hours of ground school instruction, followed by a minimum of 2 hours of simulator training (excluding 0.5 hour briefing). Pilots with no HGS experience will first go through an 1 hour simulator training session for HGS familiarization purposes. If HGS Familiarization Training is separated from HGS Certification Training, the familiarization course comprises 2.5 hours of ground school instruction, followed by a minimum of 1.5 hours of simulator training (excluding 0.5 hour briefing).

The check-ride further to the HGS Certification Training should last at least 1 hour, and should be conducted in accordance with Appendix 1 to JAR-OPS 1.450(g).

Note: due to similar installation and use of the HGS on Falcon 900EX EASy, a pilot who is qualified accordingly with the HGS Certification Training course (resp. HGS Familiarization Training course) on Falcon 900EX EASy becomes qualified de-facto for the HGS Certification Training (resp. HGS Familiarization Training) on Falcon 2000EX EASy.

The documentation to be used during training and day-to-day operations is CODDE1, CODDE2, CODDE3 provided by Dassault Aviation.

In the frame of Revision 11 of this report, HUD manual Cat II and Cat III operations have not yet been demonstrated on F2000LX

14.3 Enhanced Flight Vision System EFVS

14.3.1 EFVS modification M2308 or M2759

The JOEB has evaluated the EFVS, and found it satisfactory for its intended functions.

The JOEB evaluation of the EFVS has been made concurrently with the FAA FSB. This integrated team performed a series of flights on the aircraft in July 2006 from St Johns, Canada, and then performed the evaluation of the EFVS pilot ground training course in August 2007 in Dallas Forth Worth, TX, US, at FlightSafety International facilities.

Due to the unique nature of EFVS flight testing, the JOEB flights on the EFVS in July 2006 were performed during the same period as the first Certification flight test campaign with EASA and
FAA. This flight test campaign was thus encompassing both Operational and Certification specialists of EASA/JAA and FAA.

The JOEB has flown four flights, for a total of 11.7 flight hours. EFVS was also evaluated during taxi and ground manoeuvres. First flight was a visual approach at night, VMC conditions, wind 15G30KT. Second flight was daytime, clouds base at 300/400ft, visibility greater than 10 statute miles, wind 15KT, approach lights available. Third flight was patchy fog and the approach lights was available. Fourth flight was 3 ILS (2 landings and 1 go-around) at night, overcast at 400ft AGL, visibility greater than 10 km, no precipitation.

The EFVS is certified for use during all phases of flight and ground operations. The enhanced vision provided by the EFVS may not be used as a basis for descent and operation below instrument approach minimums (e.g. minimum descent altitude, decision altitude/height), i.e. no use of paragraph (h) Appendix 1 (New) to EU-OPS1.430. Refer to appropriate CODDE2 Section for limitations, procedures, and call-outs.

14.3.2 Improved EFVS modification M-OPT0006

The improved EFVS modification M-OPT0006 is an upgrade to the previously evaluated EFVS modification M2308 or M2759 which is addressed in para 14.3.1 above.

The EASA OEB has evaluated this improved EFVS, and found it satisfactory for its intended functions.

The improved EFVS is certified for use during all phases of flight and ground operations. The enhanced vision provided by the improved EFVS may not be used as a basis for descent and operation below instrument approach minimums (e.g. minimum descent altitude, decision altitude/height), i.e. no use of paragraph (h) Appendix 1 (New) to EU-OPS1.430. Refer to appropriate CODDE2 Section for limitations, procedures, and call-outs.

An operational suitability evaluation was performed in February 2012 on a Falcon 2000EX EASy equipped with improved EFVS. 3 flight hours including 5 approaches over 4 different airports have been flown, including one Category II approach. The EFVS image did not distract, was of good contrast and supported situational awareness. The operational evaluation was performed in coordination with the relevant EASA certification activities and experience was shared from this certification process.

14.3.3 EFVS/Improved EFVS Training

The OEB recommends the (improved) EFVS pilot training specifications in Appendix 5. Each pilot in command of an aircraft equipped with this (improved) EFVS should receive a minimum of 4 hours of ground school instruction followed by a minimum of 2 hours of simulator training in the left hand seat of a Level C simulator with a daylight visual display, or a Level D simulator.

In Addition, the OEB recommends the following training area of special emphasis:

- First Officer (right seat pilot / PNF) has to be trained with a Captain (left seat pilot / PF) during the (improved) EFVS pilot training course;
- Concerning human factors, to avoid tunnel effect or any other effects affecting the Captain’s perception, the task of the First Officer is very important in the final approach phase (when the real scene appears through the enhanced vision). The call-outs from both pilots, during this phase of flight, are paramount;
- The (improved) EVS shall never be used to deviate from CODDE2 standard escape procedures, when EGPWS, TCAS, or Windshear warnings are triggered.
Pilots should be advised that the visual contrasts in the FFS are better than those in the aircraft;

The (improved) EFVS and the HGS should be used during normal flight as often as possible; and

The documentation to be used during training and day-to-day operations is CODDE1, CODDE2, CODDE3 provided by Dassault Aviation.

Note 1: Due to similar installation and use of the (improved) EFVS on Falcon 900EX EASy, if a pilot is type rated on both the Falcon 900EX EASy and Falcon 2000EX EASy, successful completion of the Falcon 2000EX EASy EFVS Pilot Training Course makes him/her qualified for using the (improved) EFVS on both types of airplanes, provided he/she is made aware, through self-instruction, of the exclusivity EFVS or HGS CatII/III, when applicable.

Note 2: The F900EX EASy simulator can be used to train (improved) EFVS on F2000EX EASy, even for those pilots who are not type rated on F900EX EASy.

Note 3: For pilots who have already been trained on previous EFVS on either F2000EX EASy or F900EX EASy, a familiarization course (Training Level B) is needed to make them qualified for using the improved EFVS on both type of airplanes. Appendix 5, providing EFVS Pilot Training Specifications, includes specifications for this familiarization course.

14.4 Steep Approaches Landing Operations

14.4.1 Background

An EASA Operational Evaluation Board (OEB) was convened in December 2009 to evaluate operational suitability and to determine training, checking, and currency requirements for conducting steep approach landing operations in the Falcon 2000EX EASy aircraft.

Appendix 1 to EU-OPS1.515(a)(3) defines steep approach landing operations as approaches with a glide slope of 4.5 degrees or more.

EASA OEB Chairman completed flight evaluation at FlightSafety Le Bourget training center, using a Falcon 2000EX EASy Level D full flight simulator. No flight testing in the aeroplane was deemed necessary by the EASA OEB.

Airworthiness type design activities on Falcon 2000EX EASy were originally completed back in November 2005 for glide path up to 6.65 degrees, and September 2006 for glide path up to 5.5 degrees (Falcon 2000LX: originally completed in January 2010 for glide path up to 5.5 degrees and up to 6.0 degrees). Means of Compliance included flight tests on the actual airplane. Differences between up to 6.0 / up to 6.65 degrees flight path and up to 5.5 degrees flight path are the airplane configuration during approach: Airbrake 1 / Vref + 10 kt, and Airbrake 1 / Vref + 5 kt respectively.

From an operational suitability point of view, approaches with glide path up to 5.5 degrees and glide path up to 6.0 / 6.65 degrees present the same procedural aspects and the same aircraft configuration, except the Vref approach speed (see above). The evaluation conducted by the EASA OEB on the Falcon 2000EX EASy full flight simulator with 5.5 degrees glide path (Vref + 5 kt) is also applicable up to 6.0 / 6.65 degrees glide path (Vref + 10 kt) – aircraft handling qualities remain the same and comply with steep approach airworthiness type design requirements.

The EASA OEB evaluation included several steep approach landing operations on the full flight simulator, using 5.5 degree approach angles of London City airport (EGLC).
Steep approach landing operations were conducted during VMC and IMC conditions. As per AFM and CODDE2 procedures, all engines operative steep approach landing operations were flown, terminating with a landing. Icing and non-icing situations were introduced, as well as cross-wind and turbulence.

14.4.2 Operational Suitability Assessment

The EASA OEB has determined that the conduct of steep approach landing operations requires no higher piloting skill level than of normal (3 degree) approaches. However, since steep approach landing operations are often tailored to demanding airports - located in mountainous areas, short runways - the EASA OEB requires flight training, including briefing (no formal academic training, i.e. no classroom training), for competency in conducting steep approach landing operations.

The EASA OEB found that Falcon 2000EX EASy was operationally suitable for steep approach landing operations (up to 6.0 / 6.65 degrees flight path and up to 5.5 degrees flight path) with aircrew trained in accordance with the requirements set in this paragraph, and using associated CODDE2 procedure provided by Dassault Aviation.

When HUD is installed, the EASA OEB only recommends its use for VMC steep approach with Visual Glide Slope Indicator, but in any case without flight director displayed in the HUD – refer to CODDE2 Limitations Section applicable to Steep Approaches.

14.4.3 Prerequisites for Steep Approach training

Unless Falcon 2000EX EASy Steep Approach training is integrated with, or occurs sequentially preceding an initial qualification pilot proficiency check, a prerequisite to Steep Approach training in the Falcon 2000EX EASy is prior training, qualification, and currency in the Falcon 2000EX EASy aircraft.

Any PIC/SIC who has been properly qualified in the Falcon 2000EX EASy may conduct steep approach landing operations provided the training, checking, and currency requirements of this paragraph have been satisfactorily accomplished.

14.4.4 Steep Approach Training Requirements

Note: if steep approach training is taken for London City operations (aircraft equipped with autobrake system M3137), the minimum requirement for pilot training syllabus outlined in paragraph E4 of Addendum E of this Report should be added.

14.4.5 Flight Training

Flight training, on the simulator, or on the aircraft with a Type Rating Instructor (TRI), must consist of training in the following areas and is appropriate to any aircrew position:

1. **Briefing prior the simulator session, or during flight preparation** to include: AFM/CODDE2 Limitations, Abnormal Procedures, Emergency Procedures, Normal Procedures, and Performance with special emphasize on increased landing distance.

2. **Stages of the Steep Approach** to include: Stabilized approach concept as a key success for steep approach landing, appropriate slats/flaps configuration, approach speed, and flare initiation.

14.4.6 Training Credit

Training credit (Initial and Recurrent) can be given for Steep Approaches training performed on Falcon 900EX EASy Series.
14.4.7 Steep Approach Checking Requirements
There is no requirement for knowledge checking or flight proficiency testing for Falcon 2000EX EASy steep approach qualification. Proof of completion of Falcon 2000EX EASy or Falcon 900EX EASy Series steep approach training is sufficient for showing qualification.

14.4.8 Steep Approach Period of Validity of Competence
Before performing Steep Approach Landing Operations, an operator shall ensure that the commander fulfills the same requirements of EU-OPS1.975(b), (c) and (d).

14.5 Electronic Flight Bag Options

14.5.1 Class 2 EFB (CMC CMA-1100 – Jeppesen TC chart application).
In a separate evaluation, EASA has reviewed an EFB Class 2 (hardware CMC CMA-1100) for the EASy Cockpit. The conclusions are published in an individual report on the EASA website (see ‘Dassault Aviation Class 2 EFB for EASy Cockpit, dated 03 Aug 2011’).

The OEB evaluation found that the Dassault Class 2 Electronic Flight Bag and the applications evaluated satisfy the guidelines of TGL 36 and Draft AMC 20-25 for operational approval of this Class 2 EFB system.

EASA recommends the Dassault proposed training course and operational procedures as specified in that Report.

Please refer to the report for specific details.

14.5.2 Class 1 EFB solution (iPad used in specific conditions).
Dassault Aviation has applied to EASA for an operational evaluation of the use of two iPad 2 (models A1395 and A1396, iOS versions 5.x) to be operated as class 1 Electronic Flight Bags in EASy cockpit aircrafts with the purpose to display:

1. Jeppesen Mobile TC iOS application (version 1.2), as a backup of the Jeppesen terminal charts applications of EASy (in replacement of the current paper backup).
2. Jeppesen Mobile FD iOS application (version 1.0), with terminal charts as a backup of the EASy application, and with en-route charts and airway manuals used as primary means with FMS as a backup.

The evaluation was based upon the following documents:
- A comprehensive Master Policy,
- Flight Crew and Administrator procedures,
- A comprehensive Operational Risk Analysis (ORA),
- A compliance matrix to TGL36, AMC 20-25 draft and Operational Review Item n°09 for EFB,
- Other justification documents (HMI assessment, EMI analysis, flight test reports).

The evaluation has considered the integration of the iPad into the EASy avionics environment as a backup. It is based upon the following assumptions:
- The EFB administrator must lock down the location services (ownship position) of the devices using a passcode protection. Activating the ownship position option would qualify the applications as type C, thus requiring an EASA airworthiness approval.
- The EFB administrator ensures that non-EFB software applications do not adversely impact the operation of the EFB.
- A kneeboard that follows Dassault recommendations (form factor) is used. In that case only the approval may be granted for use during all phases of flight.
- The training proposed by Jeppesen for Mobile FD iOS en-route charts proposes a tutorial as a basic means to allow optimizing the use of the en-route charts, however operators must adapt it to their procedures.

This report does not substitute to, or prevail over any of the terms of the Jeppesen applications End User License Agreements (EULA) and of the Apple hardware and software Product Agreements. The users must read the EULA and have the responsibility to accept the different agreements prior to using the applications.

The EASA-OEB sees no technical objections to the grant by the National Authorities of an operational approval for the iPad with Jeppesen Mobile TC iOS and FD iOS applications, taking the proposed recommendations in this report into account.

15. **Transition course / FAST concept:**

15.1 **General concept:**

FAST designation stands for Falcon Aircraft Shortened Training.

As shown in the figure here below, it designates a short transition course for a pilot being Type Rated on aircraft A, and going for a Type Rating on aircraft B:

![Diagram of FAST concept](image)

This reduced transition training is based on the fact that aircraft A and aircraft B have similar technology, operational procedures, and handling characteristics. Those similarities are documented in ODR tables.

In the frame of FAST, the credits sought are limited to training.

15.2 **FAST F2000EX EASy to F900EX EASy:**

First application of FAST concept has been demonstrated on a transition course from F2000EX EASy to F900EX EASy.

Evaluation took place on October 2008 and involved both EASA and FAA.

For further details, please refer to Addendum D.
16. Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1</td>
<td>MDR table – reserved</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>ODR Tables – reserved</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>Acceptable Initial Pilot Type Rating Training Course</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>Compliance Check-List (JAR-OPS 1 Subparts K and L)</td>
</tr>
<tr>
<td>Appendix 4bis</td>
<td>Compliance Check-List (Regulation (EC) 859/2008 Subparts K and L)</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>Acceptable Pilot Training Course for EFVS</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>Falcon 2000EX EASy Operational Review Items (ORI)</td>
</tr>
<tr>
<td></td>
<td>- ORI n°10: Electronic Checklist Customisation by Operators</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>Acceptable Pilot Training Course for HUD</td>
</tr>
</tbody>
</table>
Addendum A

Operational Evaluation Report Dassault Falcon 2000EX EASy

Variant F2000EX EASy Step 3

A.1 Introduction

The Step 3 is an improvement of the existing Falcon 2000EX EASy.

Step 3 is defined by modification M2656, approved by EASA Certification on 17-Aug-2006 under n°: EASA.A.C.02855.

M2656 only consists in a software modification. However JOEB considers the new functionalities have a direct impact for the crew already using the aircrafts with Step 2.

It should be noted that during the transition period during which Step 3 is certified but not retrofitted yet on all Step 2 aircraft, new aircraft are directly delivered into Step 3, and all existing Step 2 aircraft are retrofitted into Step 3 in accordance with a retrofit planning covering a period of less than one year (end of retrofit for all aircraft is scheduled May 2007).

After the end of the Step 3 retrofit planning, the entire fleet of F2000EX EASy will be flying in Step 3 configuration.

A.2 Pilot Transition Training from Step 2 to Step 3

A.2.1 Introduction

A meeting held in Paris on 27-Jun-2006 with the JOEB and Dassault Aviation aimed at defining what will be the differences and consequently what will be the minimum pilot training requested by this Step 3 modification (minutes of this meeting are referenced DGT106364 Issue 01 dated on 28-Jun-2006).

As explained above, the Step 2 to Step 3 pilot transition training is temporary, and should be useless once all aircraft are retrofitted into Step 3.

A.2.2 Documentation

The referenced documents for the Step 2 to Step 3 pilot transition training are:

- CODDE 1 (Airplane Description) ref. DGT94085 issue 04, doc F2000-OPS-401
- CODDE 2 (Operations Manual) ref. DGT88899 issue 04, doc F2000-OPS-402
- QRH 1 (Quick Reference Handbook 1) - ref. DGT94712 issue 4, doc F2000-OPS-403
- QRH 2 (Quick Reference Handbook 2) - ref. DGT94713 issue 6, doc F2000-OPS-404
A.2.3 Master Difference Requirements (MDR) - Transition from F2000EX EASy Step 2 to F2000EX EASy Step 3:

The MDR table is:

<table>
<thead>
<tr>
<th>FROM AIRPLANE</th>
<th>F2000EX EASy Step 2</th>
<th>F2000EX EASy Step 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO AIRPLANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2000EX EASy Step 2</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>F2000EX EASy Step 3</td>
<td>C / B / B</td>
<td>N/A</td>
</tr>
</tbody>
</table>

A.2.4 Pilot Training Devices for Step 2 to Step 3 pilot transition training

The FFS should be used for this training. However, an FTD or the aircraft can be used as an alternative – see below.

Pilot training devices to transition from a Step 2 aircraft to a Step 3 aircraft is at the minimum:

- FTD properly qualified according to JAR STD 2A Level FTD 1 configured in F2000EX EASy Step 3 or F900EX EASy Step 3 (due to similarities between the two Falcon)
- FFS of F2000EX EASy Step 3 or F900EX EASy Step 3 is also acceptable.

FTD qualification has not been part of the JOEB process

Also, the JOEB accepts that flight training on the aircraft F2000EX EASy configured in Step 3 be adequate for Step 2 to Step 3 pilot training (in addition to the ground course segment defined in document ref. DGAC06DOT0081 issue 02 dated 27-Jun-2006, doc F2000-OPS-411-1). In that case, duration of the flight should be 45 minutes with a TRI. The ground course can be given in-house by a ground instructor or a TRI who have himself followed a Step 2 to Step 3 pilot training course.

A.2.5 Step 2 to Step 3 pilot training course for F900EX EASy Step 3 / F900DX type rated pilots

Due to the similarities of F2000EX EASy Step 3 with the F900EX EASy Step 3 / F900DX, the JOEB accepts that Step 2 to Step 3 pilot training on F2000EX EASy is not mandatory for pilots already type rated on F900EX EASy Step 3 / F900DX and F2000EX EASy Step 2.

A.3 Pilot Initial Training on Step 3

Until a manufacturer material guidance is produced no later issue is approved. This manufacturer material guidance aims at providing an internal process at manufacturer level to control the updates of the documentation.

The referenced documents for the initial pilot training on F2000EX EASy Step 3 are:

- CODDE 1 (Airplane Description) ref. DGT94085 issue 04, doc F2000-OPS-401
- CODDE 2 (Operations Manual) ref. DGT88899 issue 04, doc F2000-OPS-402
- QRH 1 (Quick Reference Handbook 1) - ref. DGT94712 issue 4, doc F2000-OPS-403
- QRH 2 (Quick Reference Handbook 2) - ref. DGT94713 issue 6, doc F2000-OPS-404
- Detailed Pilot Training Specifications for F2000EX EASy, ref. DSC 04/06/1528-TOD-YT issue 1, doc F2000-OPS-412-2 titled "Detailed Specifications - F2000EX EASy Pilot Initial Type Rating Training Course"

A.4 Pilot License Endorsement

JOEB recommends that the pilot license endorsement remains the same as for F2000EX EASy Step 1 / Step 2, that is to say:

“Falcon 2000EX EASy”
Addendum B

Operational Evaluation Report Dassault Falcon 2000EX EASy
Variant F2000DX

B.1 Introduction

ODR tables dealing with this proposed variant, i.e. F2000EX EASy Step 3 towards F2000DX, has been provided through DA Memo DGT325730.

The F2000DX is a F2000EX EASy Step 3 (M2656) with the application of the following modifications:

- M3000: F2000DX definition. This Modification mainly consists reducing fuel tanks capacity from 16730 lbs total to 14694 lbs total

B.2 Master Difference Requirements (MDR) - Transition from F2000EX EASy Step 3 to F2000DX

<table>
<thead>
<tr>
<th>TO AIRPLANE</th>
<th>FROM AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2000EX EASy</td>
<td>F2000EX EASy</td>
</tr>
<tr>
<td>F2000DX</td>
<td>A/A/A</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

B.3 Operational Documentation

The respective CODDE versions applicable to F2000DX are listed here below. JOEB recommends approval of the following Dassault Aviation documents:

- CODDE 1 (Airplane Description) ref. DGT94085 issue 06, doc F2000-OPS-401
- CODDE 2 (Operations Manual) ref. DGT88899 issue 06, doc F2000-OPS-402
- QRH 1 (Quick Reference Handbook 1) - Issue 05
- QRH 2 (Quick Reference Handbook 2)
- General Technical Pilot Training Specifications for F2000EX EASy, ref. DSC 04/1055-TOD issue 05 dated 17-Oct-07
- Detailed Pilot Training Specifications for F2000EX EASy, ref. DSC 04-152 issue 02 dated 24-Oct-07
Attention

The pilot initial type rating training course of the Falcon 2000EX EASy includes the specificities of
the F2000DX variant. In other words, the same pilot initial type rating training course must be taken
for pilots of F2000EX EASy and for pilots of F2000DX.

Note: For pilots already type rated on the F2000EX EASy without having followed a pilot initial type
rating training course which includes the F2000DX specific areas, a self-training course covering
these F2000DX specific areas must be taken by these pilots to be authorized to fly the F2000DX
variant.

B.4 Pilot License Endorsement

JOEB recommends adoption of this variant called commercially F2000DX.

The JOEB recommends that the same pilot type rating (single license endorsement) as the
F2000EX EASy be applied to the F2000DX, i.e. Falcon2000EX EASy. The EASA Class and Type
Ratings List and Endorsement List (Aeroplanes) (Table 8) has therefore to be updated with this
variant as follows:

<table>
<thead>
<tr>
<th>1 Manufacturer</th>
<th>2 Aeroplanes</th>
<th>3</th>
<th>4 License Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassault</td>
<td>Falcon 2000 EX EASy</td>
<td>Falcon 2000DX</td>
<td>Falcon 2000EX EASy</td>
</tr>
</tbody>
</table>
Addendum C
Operational Evaluation Report Dassault Falcon 2000EX EASy
Variant F2000LX

C.1 Introduction

ODR tables dealing with this proposed variant, i.e. F2000EX EASy towards F2000LX, are provided in DA document DGAC08DOT026.

The F2000LX is a F2000EX EASy fitted with winglets installed per Modification M2846.

Flight tests have demonstrated that following winglets installation there is no adverse differences in handling characteristics and no perceptible differences in aircraft stability and manoeuvring characteristics.

C.2 Master Difference Requirements (MDR) - Transition from F2000EX EASy / F2000DX to F2000LX

<table>
<thead>
<tr>
<th>TO AIRPLANE</th>
<th>FROM AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F2000EX EASy</td>
</tr>
<tr>
<td>F2000EX EASy</td>
<td>N/A</td>
</tr>
<tr>
<td>F2000DX</td>
<td>A/A/A</td>
</tr>
<tr>
<td>F2000LX</td>
<td>A/A/A</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

C.3 Operational Documentation

The respective CODDE versions applicable to F2000LX are listed here below. JOEB recommends approval of the following Dassault Aviation documents:

- CODDE 1 (Airplane Description) ref. DGT94085 issue 07
- CODDE 2 (Operations Manual) ref. DGT88899 issue 07
- QRH 1 (Quick Reference Handbook 1) - Issue 07
- QRH 2 (Quick Reference Handbook 2) - Issue 09
- Dassault Aviation - Operator Differences Requirements - From F2000EX EASy to F2000LX - DGAC08DOT026 issue 02.

Attention

The pilot initial type rating training course of the Falcon 2000EX EASy includes the specificities of the F2000LX variant. In other words, the same pilot initial type rating training course must be taken for pilots of F2000EX EASy and for pilots of F2000LX.

Note: For pilots already type rated on the F2000EX EASy without having followed a pilot initial type rating training course which included the F2000LX variant, a self-training course (Level A) covering the difference between the F2000EX Easy and the F2000LX must be taken by these pilots to be authorized to fly the F2000LX variant.

C.4 Pilot License Endorsement

JOEB recommends adoption of this variant called commercially F2000LX.

The JOEB recommends that the same pilot type rating (single license endorsement) as the F2000EX EASy and F2000DX be applied to the F2000LX, i.e.

Falcon 2000EX EASy.

The JAA Class and Type Ratings List and Endorsement List (Aeroplanes) (Table 8) has therefore been updated with this variant as follows:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>2 Aeroplanes</th>
<th>3 License Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassault</td>
<td>Falcon 2000 EX EASy</td>
<td>Falcon 2000EX EASy</td>
</tr>
<tr>
<td></td>
<td>Falcon 2000DX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LX</td>
<td></td>
</tr>
</tbody>
</table>
Addendum D

Operational Evaluation Report Dassault Falcon 2000EX EASy
FAST - Falcon 2000EX EASy to Falcon 900EX EASy

D.1 Introduction
This addendum covers Falcon Aircraft Shortened Training (FAST) from F2000EX EASy to F900EX EASy.

D.2 Transition from F2000EX EASy to F900EX EASy:
FAST is aimed at pilots with a type rating on F2000EX EASy who are willing to become qualified on F900EX EASy. In addition to being F2000EX EASy type rated, the following pre-requisites shall be met by all FAST program participants by applying:

- A minimum of 150 hours PIC and/or Co-pilot time on the base aircraft
- And by adding the following requirements:
 - A proficiency check must have been performed on the base aircraft within the previous 12 months
 - An approved knowledge test, proposed by the training provider, must have been passed prior to beginning the FAST course.

<table>
<thead>
<tr>
<th>FROM AIRPLANE</th>
<th>F2000EX EASy/DX/LX</th>
<th>F900EX EASy/DX</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO AIRPLANE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F2000EX EASy/DX/LX</td>
<td>N/A</td>
<td>No Credit</td>
</tr>
<tr>
<td>F900EX EASy/DX</td>
<td>E (training credits)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

D.3 Operator Difference Requirements
Operators Difference Requirements are provided in the following document:
Operator Differences Requirements - FAST - F2000EX EASy to F900EX EASy (ref. DGAC08DSOF096 Issue 01 dated 2-Oct-2008).

D.4 Training Specifications
Training specifications are provided in the following document:
FAST F2000EX EASy to F900EX EASy - Technical Specifications (ref. DGAC08DSOF095 Issue 02 dated 4-Nov-08).
D.5 Checking and Currency:
Checking is conducted on the F900EX EASy.
Under the FAST concept, pilot type rating check is a full skill test (it is not limited to the differences identified in the ODR table).
Demonstration conducted with EASA focused on initial transition training. No credits for Checking and currency have been sought.

D.6 Operational Documentation
The existing respective CODDE documentation of each aircraft remains applicable.

D.7 Pilot License Endorsement
Existing Pilot License Endorsement designations remain applicable.
Addendum E

Operational Evaluation Report Dassault Falcon 2000EX EASy

Autobrake system

(not applicable to F2000LXS and F2000S Variants)

E.1 Introduction

The Supplement No 7 to the EASA approved Airplane Flight Manual, concerning “Landing with Autobrake active” is applicable for this Addendum.

The autobrake system (optional modifications M3177, M3137, M3138) has been evaluated in flight in the beginning of February 2010 by EASA OEB. The flight was arranged from Dassault Aviation flight test base.

The autobrake system is designed to perform an automatic maximum braking action as soon as two main landing gears are sensing weight on wheels during landing.

As soon as the nose wheel gear is on ground, the pilot disconnects the autobrake system by fully depressing the brake pedals according to the CODDE 2 LANDING procedures.

The use of the autobrake system is limited to landings after normal approaches, and landing after steep approaches at 5.5°.

When the autobrake system is activated, the landing distances are reduced as follows:

- For normal approaches a 5% reduction of the landing distance,
- For steep approaches at 5.5°, refer to Part 2 page 7 of Supplement No 7 of the EASA Airplane Flight Manual.

The use of the autobrake system is mandatory for London City Airport operations in order to meet the necessary landing performance requirement.

E.2 Training Objective

The training shall provide knowledge on the autobrake controls, indications and limitations, and the ability to use the possible reduction in required landing distances correctly.

After the training, the pilot shall be proficient in performing landing with the autobrake during normal and abnormal operations.

E.2.1 Prerequisite

No prerequisite is required before entering the autobrake system pilot course, except current type rating on the aeroplane.

E.2.2 ODR Table

ODR table from F2000EX EASy / DX / LX to F2000EX EASy / DX / LX with M3177, M3137, M3138 is provided in Dassault Aviation document DGAC09DSOF086 and shall be taken into account to design the associated pilot training course, in addition to the following paragraphs.

E.3 Minimum syllabus for initial training for the Autobrake system

As a minimum, flight simulator training is required, and shall comprise:
- Minimum of 3 normal approaches (3° glide slope) per pilot:
 - Two full stop landings with autobrake active,
 - One missed approach with an autobrake failure.

E.3.1 Training areas of special emphasis

The following items shall be emphasized:

- Specificities of the F2000EX EASY autobrake system compared to other aircraft manufacturers autobrake system: the autobrake system should be disengaged by the pilot at nose wheel touch down in order to deal with an autobrake system failure at landing,

- Structural MLW limitation: 30,000 lb (maximum allowable stress on the nose landing gear strut at nose wheel touchdown),

- The check of the autobrake status light in the Before Landing do-list even if the autobrake has not been activated, in order to comply with the structural MLW,

- The activation of the autobrake system is a necessary condition to obtain the minimum landing distance, however all other relevant limitations must be considered (refer to Part 1 page 2 of Supplement No 7 of the EASA Airplane Flight Manual),

- The position of the pilot feet on the top of the brake pedals in order to be able to disengage the autobrake at nose wheel touch down on landing,

- The requirement of the normal procedure to fully depress the brakes pedals at the nose wheel touch down. This will lead to a maximum performance braking and the disengagement of the autobrake.

- The requirement of the normal procedure to use the nose wheel steering after the nose wheel touchdown in order to maintain directional control.

E.4 London City (EGLC) training

In order to operate to EGLC, the pilots should receive training in addition to the content of E.2, and E.3 as follows:

- The simulator training for the London City (EGLC) 5.5° Steep approach shall comprise at least:
 - Two full stop landings with autobrake active,
 - One missed approach with autobrake active,
 - One approach with an autobrake failure,

E5 Currency

The recency of experience shall comprise:

- Two full stop landings per pilot using the autobrake system within any consecutive 12 months period either in the aeroplane or in the simulator. If currency is lost, two landings in the simulator or the aeroplane – without passenger – must be performed.
Addendum F

Operational Evaluation Board Report Dassault F2000EX EASy

Variant F2000EX EASy II

F.1 Introduction

Dassault Aviation applied in May 2010 to EASA Flight Standards for the evaluation of Falcon 900EX EASy II, which is a Falcon 900EX EASy with Modification M5340. The application was a joint application with the FAA FSB. Dassault Aviation proposed the F900EX EASy II be a variant to F900EX EASy.

For the F2000EX, the EASA agreed to conduct the Operational Suitability Evaluation of EASy II based on the one already completed on F900EX EASy. The Master Difference Requirements (MDR) from EASy to EASy II on F2000EX EASy are identical to the ones from EASy to EASy II on F900EX EASy.

Major EASy II avionics functions evaluated included the following:

- ADS-B Out (Automatic Dependent Surveillance – Broadcast)
- RAAS (Runway Awareness Advisory System)
- Paperless Charts
- LPV approach capability
- SVS (Synthetic Vision System)
- XM™ graphical weather display
- ATC Datalink

EASA OEB found F2000EX EASy II operationally suitable provided crew are trained in accordance with the recommendations of this Addendum, and operate the aircraft in accordance with Dassault Aviation CODDE documents philosophy or equivalent.

Sample ODR tables dealing with this proposed variant, i.e. F2000EX EASy towards F2000EX EASy II, are provided in Dassault Aviation document DGAC12DSOF158. Sample ODR tables addressing the reverse side, i.e. F2000EX EASy II towards F2000EX EASy, are provided in Dassault Aviation document DGAC12DSOF177.

Note: For the purpose of this addendum, a Cockpit Procedure Trainer (CPT) is a training device which represents the cockpit environment including the cockpit controls, displays and computer programs necessary to represent the aircraft in ground and flight operations to the extent that the systems appear to function as in an aeroplane.

The purpose of the CPT is to allow learning the functioning of the controls and displays as well as practicing CRM principles and application of procedures.

A CPT is based on software issued from FFS simulation, with the exception of Avionics, which is re-hosted from the aircraft software; it is validated for its intended use.
F.2 Master Difference Requirement (MDR) - Differences between the F2000EX EASy II, the F2000DX EASy II and the F2000LX EASy II

The difference levels between the F2000EX EASy II, the F2000DX EASy II and the F2000LX EASy II have been evaluated by analysis and classified as familiarization training as follows:

<table>
<thead>
<tr>
<th>FROM AIRPLANE</th>
<th>F2000EX EASy II</th>
<th>F2000DX EASy II</th>
<th>F2000LX EASy II</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2000EX EASy II</td>
<td>N/A</td>
<td>A/A/A</td>
<td>A/A/A</td>
</tr>
<tr>
<td>F2000DX EASy II</td>
<td>A/A/A</td>
<td>N/A</td>
<td>A/A/A</td>
</tr>
<tr>
<td>F2000LX EASy II</td>
<td>A/A/A</td>
<td>A/A/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

The difference levels between the F2000EX EASy, F2000DX, F2000LX and the F2000EX EASy II, F2000DX EASy II and the F2000LX EASy II have been evaluated by analysis and classified as follows:

<table>
<thead>
<tr>
<th>FROM AIRPLANE</th>
<th>F2000EX EASy</th>
<th>F2000DX</th>
<th>F2000LX</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2000EX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
</tr>
<tr>
<td>F2000DX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
</tr>
<tr>
<td>F2000LX EASy II</td>
<td>D/A/B</td>
<td>D/A/B</td>
<td>D/A/B</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

F.4 Operational Documentation

The respective CODDE versions applicable to F2000EX EASy II are listed here below. OEB recommends approval of the following Dassault Aviation documents:

- CODDE 1 (Airplane Description) ref. DGT94085 Revision 13 or later
- CODDE 2 (Operations Manual) ref. DGT88899 Revision 15 or later
- QRH 1 (Quick Reference Handbook 1) - ref. DGT94712 Revision 16 or later
- QRH 2 (Quick Reference Handbook 2) - ref. DGT94713 Revision 17 or later
F.5 Difference training:

F.5.1 Difference training EASy to EASy II

The prerequisite for this difference training course (EASy to EASy II) is:

- Either a valid type rating on F2000EX EASy, or
- A full initial type rating training on F2000EX EASy, up to but excluding the check ride.

As a result of the OEB evaluation, a footprint for the difference training course consisting in 4 hours ground course, 3 hours Cockpit Procedure Trainer (or by default a fixed base simulator without visual facilities) and 2 hours full flight simulator for each crew member has been found to comply with the applicable regulation and Sample ODR Levels.

F.5.2 Difference training EASy II to EASy

This difference training has not been evaluated by the OEB. However the associated MDR table has been identified by analysis - see paragraph 4.

F.5.3 Training Areas of Special Emphasis

The training areas of special emphasis applicable to the difference training course F2000EX EASy/DX/LX → F2000EX EASy II are the following:

- Proficiency in using FPV vertical and lateral displacement in new IPFD design
 - The Flight Path Vector, as well as Flight Director, is now subject to wider displacements in case of turbulence, crosswind, or engine failures. The pilot shall be proficient in using the un-caged FPV, especially in low speed manoeuvres such as loss of lateral engine after take-off, or strong crosswind during take-off. Pilots must be alerted to the wide scale relative to pitch attitude and path to avoid over-controlling.

- Proficiency in performing ILS/LPV approaches in raw data
 - Due to the new layout of the IPFD, the sensitivity of the FPV has increased, pilots should be made aware of this new feature, training in this area should focus on maintaining the desired flight path especially during turbulent conditions.

- Proficiency in using FPV in connection with synthetic vision (terrain, virtual runway)
 - The display of the synthetic vision should be cross-checked with references to ground based navigation aids, pilots must be alerted that the relevance of the synthetic vision depends on GPS accuracy, as well as terrain and airport database. Special emphasis should be given to the display colours (blue and blue) during extended flight over water.
 Note: The SVS should only be used for situational awareness.

- Proficiency in using all Flight Management Computer Windows
 - There are multiple small changes relative to departure and approach windows, pilots must be alerted to and trained on these changes.

- DME distance in HUD during LPV approach
 - The crew must be aware that the DME distance displayed in the HUD during LPV approach must be disregarded, as per AFM procedure, until a HUD fix is available (DME distance displayed in the IPFD remains correct).
• VNAV mode
 o Any modification to the descent angle on the AVIONICS / AUTO SPEEDS page will only be effective after the next modification to the flight plan (e.g. DIRECT TO).

F.6 Checking

Checking is defined as level A.

F.7 Currency

• Pilots current on Falcon 2000EX EASy have to undergo the difference course in order to be proficient on Falcon 2000EX EASy II.

• To maintain currency on the Falcon 2000EX EASy and/or Falcon 2000EX EASy II the following applies:
 I. If a pilot has not flown on one variant for more than 6 months, he must perform a self-review on that variant prior to flying on that variant.
 II. If a pilot has not flown on one variant for more than one year, he must perform a minimum two hours Cockpit Procedure Training (CPT) session on that variant, covering the differences between EASy and EASy II specially take off and go around procedures.
 III. If the Falcon 2000EX EASy II has not been flown within a period of 2 years following the differences training, further differences training or a proficiency check on that variant will be required.
 IV. If the Falcon 2000EX EASy has not been flown within a period of 2 years, the pilot shall meet any refresher training requirements as determined by the Authority and complete a proficiency check in accordance with Appendix 9 to Part-FCL.

F.8 ATC Datalink

ATC datalink functions (both FANS1A and ATN B1) are part of the EASy II avionics standard. Operators should ensure that flight crew are thoroughly familiar with all relevant aspects of data link operations according to the Global Operational Data Link Document (GOLD) prior to operation.

F.8.1 Prerequisite

Prerequisite for ATC Datalink training is a type rating training on any EASy Aircraft.

F.8.2 Training Areas of Special Emphasis (TASE)

The following items should receive special emphasis during the ATC Datalink training:

• Crew has to know that the wording used in FANS 1/A and in ATN B1 is not fully identical.
• Crew has to know that the format of data (FL and Mach) to be entered in MCDU is specific and different between FANS 1/A and ATN B1.
• Crew has to know that complete content of message may not be displayed in first page, and in this case, has to look at the other page(s) where a required answer from the crew to the ATC may be displayed (with a specific mention that the acknowledge key for Oceanic Clearances is visible on first page).
• It is recommended that the PNF displays the page in his PDU and not in the MDU shared area.
• Crew has to know that there is no direct access to OCL via shortcut because OCL is part of a sub-page: crew needs to navigate in the page to get the message.
• Crew has to know that the construction of the dialogues are different in FANS 1/A and in ATN B1.
• Crew has to know that there is no automatic handover between FANS 1/A and ATN B1. Handover should follow CODDE2 procedure.
• Crew has to know that FANS 1/A clearance is to be manually loaded in the flight plan (it is not automatic).

F.8.3 Initial Training

Initial Training on ATC Datalink should cover the TASE listed in paragraph F.8.2 above. The initial course should cover the ICAO Global Operational Data Link Document (GOLD) and should include CBT or equivalent to get familiar with the operational use.

The OEB recommends that the first ATC Datalink flight be conducted under supervision.

F.8.4 Checking aspects

As per the regulations.

F.8.5 Pilot recent experience and currency requirements

Compliance with Part-FCL / EU-OPS 1.970 as appropriate is required for recent experience. The OEB recommends one leg using ATC Datalink every 6 months.

F.9 Pilot Licence Endorsement

The OEB recommends adoption of F2000EX EASy II as a variant to the base aircraft F2000EX EASy, DX, LX.

The OEB recommends that the same pilot type rating (single license endorsement) as the F2000EX EASy, F2000DX and F2000LX is applied to the F2000EX EASy II, F2000DX EASy II and F2000LX EASy II i.e. “Falcon 2000EX EASy” as shown in the following table:

<table>
<thead>
<tr>
<th>1 Manufacturer</th>
<th>2 Aeroplanes</th>
<th>3</th>
<th>4 License Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassault</td>
<td>Falcon 2000EX EASy</td>
<td>(D) ¹⁶</td>
<td>Falcon 2000EX EASy</td>
</tr>
<tr>
<td></td>
<td>Falcon 2000DX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000EX EASy II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000DX EASy II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LX EASy II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹⁶ The differences training course is valid from the Falcon 2000EX EASy/DX/LX to the Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) for crewmembers previously qualified on the Falcon 2000EX EASy/DX/LX. The Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) to Falcon 2000EX EASy/DX/LX differences training shall be evaluated or a full type rating training shall be accomplished.
F.10 Training Credits between F900EX EASy II, F2000EX EASy II and F7X EASy II

F.10.1 EASy II (except ATC Datalink)

Considering the similarities in EASy II definitions among F2000EX, F900EX, and Falcon 7X, the following training credits apply - refer to Dassault Aviation document ref. DGAC13DSOF025:

<table>
<thead>
<tr>
<th>CREW QUALIFIED AND CURRENT ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>F900EX EASy II 1st Cert</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>F2000EX EASy II 1st Cert</td>
</tr>
</tbody>
</table>

Note that neither checking nor currency credit have been determined yet.

F.10.2 ATC Datalink

Considering the similarities in ATC Datalink definitions among F2000EX, F900EX, and Falcon 7X, an ATC Datalink training is valid for all EASy II Falcon aeroplanes.

Checking and currency credit: not applicable.
Addendum G
Operational Evaluation Report Dassault Falcon 2000EX EASy
Variant F2000LXS

G.1 Introduction
ODR tables dealing with this proposed variant, i.e. F2000EX EASy II towards F2000LXS (and reversed), are provided in DA document DGAC11DSOF009.

The F2000LXS is an F2000LX (i.e. F2000EX EASy fitted with winglets per modification M2846), with EASy II avionics (modification M3254), new FADEC software (modification M3453) and MTOW increase by 600 lbs. (modification M3390) fitted with inboard movable slats installed per modification M5000.

T2 Test has been performed and has demonstrated that following installation of the applicable modifications there are no adverse differences in handling characteristics and no significant differences in aircraft stability and manoeuvring characteristics.

G.2 Master Difference Requirements (MDR) - Transition from F2000LX EASy II to F2000LXS.

<table>
<thead>
<tr>
<th>FROM AIRPLANE</th>
<th>F2000LX EASy II</th>
<th>F2000LXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO AIRPLANE</td>
<td>F2000LX EASy II</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>F2000LXS</td>
<td>B/A/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

G.3 Operational Documentation
Respective CODDE versions applicable to F2000LXS are listed here below. The OEB recommends approval of the following Dassault Aviation documents:

- CODDE 1 (Airplane Description) ref. DGT94085 Revision 13 or later
- CODDE 2 (Operations Manual) ref. DGT88899 Revision 15 or later
- QRH 1 (Quick Reference Handbook 1) - ref. DGT94712 Revision 16 or later
- QRH 2 (Quick Reference Handbook 2) - ref. DGT94713 Revision 17 or later
G.4 Prerequisites

From F2000LX EASy II to F2000LXS

The prerequisites are either:

- a type rating on the base aircraft, i.e. F2000LX + EASy II + MTOW increase + New FADEC software (if installed), or
- a full initial type rating training on the base aircraft, i.e. F2000LX + EASy II + MTOW increase + New FADEC software (if installed), up to but excluding the check ride.

From F2000LXS to F2000LX EASy II

The prerequisites are either:

- a type rating on the F2000LXS, or
- a full initial type rating training on the F2000LXS, up to but excluding the check ride.

G.5 Specifications for training and Training Areas of Special Emphasis (TASE)

From F2000LX EASy II to F2000LXS

For pilots to be authorized to fly the F2000LXS variant, an initial type rating training course of the F2000LX EASy II (including MTOW increase and new FADEC software, if installed) and a level B training course covering the differences between the F2000LX EASy II and the F2000LXS must be taken. Pilots already qualified on F2000LX EASy II (including MTOW increase and new FADEC software, if installed) will only have to complete the level B difference training course.

The following items should receive special emphasis during the difference training from the base aircraft (F2000LX EASy II) to the candidate aircraft (F2000LXS):

- Take-off thrust with one engine inoperative is authorized for 10 minutes maximum (instead of 5 minutes for F2000EX EASy without FADEC V9 installed by M3453). Execution of ENG.. OUT abnormal procedure has to be anticipated for the cases where the take-off thrust with one engine inoperative is needed for more than 5 minutes.
- Take-off performance calculations (full reverse thrust must be applied in case of rejected take-off, whether the runway is dry or wet, with one or two engine operative. Aircraft take-off performance on wet runway is computed with this assumption).
- Computation and use of wet runway performance landing data.
- VFR speed computation is different for F2000LXS (VFR = V2 + 25 kts) from other variants (VFR = V2 + 10 kts).
- In case of windshear conditions, the Go-Around button should not be pushed because windshear guidance is not yet available (windshear guidance will be available in EASy II 2nd Certification). Crew has to fly the FPV up to AOA path limit symbol, as per AFM procedure.
- Take-off in SF1 configuration is not allowed until this take-off configuration is type design certified. Once configuration SF1 is approved for take-off this TASE can be disregarded.

From F2000LXS to F2000LX EASy II

To be determined.

G.6 Checking aspects

No checking associated to the F2000LXS variant is required.
G.7 Currency aspects

No currency associated to the F2000LXS variant is required.

G.8 Pilot License Endorsement

The OEB recommends adoption of F2000LXS as a variant to the base aircraft.

The OEB recommends that the same pilot type rating (single license endorsement) as the F2000EX EASy, F2000EX EASy II, F2000DX, F2000DX EASy II, F2000LX and F2000LX EASy II is applied to the F2000LXS i.e.

Falcon 2000EX EASy

as shown in the following table:

<table>
<thead>
<tr>
<th>1 Manufacturer</th>
<th>2 Aeroplanes</th>
<th>3</th>
<th>4 License Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassault</td>
<td>Falcon 2000EX EASy</td>
<td></td>
<td>Falcon 2000EX EASy</td>
</tr>
<tr>
<td></td>
<td>Falcon 2000DX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000EX EASy II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000DX EASy II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LX EASy II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Falcon 2000LXS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 The differences training course is valid from the Falcon 2000EX EASy/DX/LX to the Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) for crewmembers previously qualified on the Falcon 2000EX EASy/DX/LX. The Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) to Falcon 2000EX EASy/DX/LX differences training shall be evaluated or a full type rating training shall be accomplished.
Addendum H
Operational Evaluation Report Dassault Falcon 2000EX EASy
Variant F2000S

H.1 Introduction
ODR tables dealing with this proposed variant, i.e. F2000LXS towards F2000S (and reversed), are provided in DA document DGAC11DSOF047.

The F2000S can be considered as an F2000LXS with reduction of fuel tank capacity (modification M3000, DX variant) and without the extension of MTOW (i.e. without modification M3390).

H.2 Master Difference Requirements (MDR) - Transition from F2000LXS to F2000S.

<table>
<thead>
<tr>
<th>TO AIRPLANE</th>
<th>FROM AIRPLANE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2000LXS</td>
<td>F2000S</td>
</tr>
<tr>
<td>F2000LXS</td>
<td>N/A</td>
</tr>
<tr>
<td>F2000S</td>
<td>A/A/A</td>
</tr>
</tbody>
</table>

Note: Refer to paragraph 4 of this report for the consolidated table reflecting the summarized MDR tables of all airplane variants evaluations contained in this document.

H.3 Operational Documentation
Respective CODDE versions applicable to F2000S are listed here below. The OEB recommends approval of the following Dassault Aviation documents:

- CODDE 1 (Airplane Description) ref. DGT94085 Revision 13 or later
- CODDE 2 (Operations Manual) ref. DGT88899 Revision 15 or later
- QRH 1 (Quick Reference Handbook 1) - ref. DGT94712 Revision 16 or later
- QRH 2 (Quick Reference Handbook 2) - ref. DGT94713 Revision 17 or later

H.4 Prerequisites
From F2000LXS to F2000S

The prerequisites are either:

- A type rating on the base aircraft, i.e. F2000LXS; or
- A full initial type rating training on the base aircraft, i.e. F2000LXS, up to but excluding the check ride.

From F2000S to F2000LXS

The prerequisites are either:

- a type rating on the F2000S, or
- a full initial type rating training on the F2000S, up to but excluding the check ride.
H.5 Specifications for training

From F2000LXS to F2000S

Pilots already qualified on the F2000LXS will have to complete a level A difference training course covering the F2000S specific areas to be authorized to fly the F2000S variant.

From F2000S to F2000LXS

To be determined.

H.6 Checking aspects

No checking associated to the F2000S variant is required.

H.7 Currency aspects

No currency associated to the F2000S variant is required.

H.8 Pilot License Endorsement

The OEB recommends adoption of F2000S as a variant to the base aircraft.

The OEB recommends that the same pilot type rating (single license endorsement) as the F2000EX EASy, F2000EX EASy II, F2000DX, F2000DX EASy II, F2000LX, F2000LX EASy II and F2000LXS is applied to the F2000S i.e.

Falcon 2000EX EASy

as shown in the following table:

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>2 Aeroplanes</th>
<th>3</th>
<th>4 License Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dassault</td>
<td>Falcon 2000EX EASy
Falcon 2000DX
Falcon 2000LX</td>
<td>(D) 16</td>
<td>Falcon 2000EX EASy</td>
</tr>
<tr>
<td></td>
<td>Falcon 2000EX EASy II
Falcon 2000DX EASy II
Falcon 2000LX EASy II
Falcon 2000LXS
Falcon 2000S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16 The differences training course is valid from the Falcon 2000EX EASy/DX/LX to the Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) for crewmembers previously qualified on the Falcon 2000EX EASy/DX/LX. The Falcon 2000EX EASy/DX/LX modified with EASy II (M3254) to Falcon 2000EX EASy/DX/LX differences training shall be evaluated or a full type rating training shall be accomplished.
Attachment 1

London City Airport / Other Airports

1. Applicability to London City Airport

This procedure has been assessed by the EASA OEB team for London City Airport.

Refer to Dassault CODDE2, reference DGT88899.

2. Other Airports

The process and the associated close-in NADP procedure have been developed for the London City Airport, and can be validated for other airports, provided:

- The new NADP procedure is accepted by the local Authority, and
- All obstacle clearance requirements are fulfilled.