TYPE CERTIFICATE
DATA SHEET

No. EASA.IM.R.001

for
S-92A

Type Certificate Holder
Sikorsky Aircraft Corporation

6900 Main Street
Stratford, CT 06615-9129
USA

For Model: S-92A
TABLE OF CONTENTS

SECTION 1: S-92A

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. General</td>
<td>3</td>
</tr>
<tr>
<td>II. Certification Basis</td>
<td>3</td>
</tr>
<tr>
<td>III. Technical Characteristics and Operational Limitations</td>
<td>4</td>
</tr>
<tr>
<td>IV. Operating and Service Instructions</td>
<td>7</td>
</tr>
<tr>
<td>V. Notes</td>
<td>7</td>
</tr>
</tbody>
</table>

SECTION 2: OPERATIONAL SUITABILITY DATA (OSD)

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. OSD Certification Basis</td>
<td>10</td>
</tr>
<tr>
<td>II. OSD Elements</td>
<td>10</td>
</tr>
</tbody>
</table>

SECTION: ADMINISTRATIVE

<table>
<thead>
<tr>
<th>Item</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Acronyms and Abbreviations</td>
<td>11</td>
</tr>
<tr>
<td>II. Type Certificate Holder Record</td>
<td>12</td>
</tr>
<tr>
<td>III. Change Record</td>
<td>12</td>
</tr>
</tbody>
</table>
SECTION 1: S-92A

I. General

1. Type/Model/Variant
 1.1 Type S-92A
 1.2 Model S-92A
 1.3 Variant n/a

2. Airworthiness Category
 Large Rotorcraft, Category A and/or B

3. Manufacturers
 Sikorsky Aircraft Corporation
 6900 Main Street
 Stratford, CT 06615-9129, USA
 and
 Keystone Helicopter Corporation
 110E Stewart Huston Dr.
 Coatesville, PA 19320, USA

4. Type Certification Application Date
to FAA: 1990
to JAA: 12 June 1995

5. State of Design Authority
 Federal Aviation Administration (USA)

6. Type Certificate Date
 by FAA: 17 December 2002
 by EASA: 8 June 2004

7. Type Certificate n°
 by FAA: R00024BO

8. Type Certificate Data Sheet n°
 by FAA: R00024BO

II. Certification Basis

1. Reference Date for determining the applicable requirements
 11 April 2000

2. Airworthiness Requirements
 JAR 29 Change 1

3. Special Conditions
 - HIRF
 - Use of a Dual-Engine 30-Minute Power Rating
 - Search and Rescue modes of the AFCS
 - Flight in Limited Icing (see Note 14.)

4. Exemptions
 none

5. Deviations
 none

6. Equivalent Safety Findings
 - JAR 29.1305(a)(24) APU limit indicators
 - JAR 29.173, 29.175 Static longitudinal stability
 - JAR 29.177 Static directional stability
 - JAR 29.1181(a)(4), 29.1191(b) APU designated fire zone
 - JAR 29.631 Birdstrike.
 See Note 13.

7. Requirements elected to comply
 CS 29.1465 Amdt. 5 (when configured with HUMS on-board software version 92600-01810-109, or later, and SGBA software version 1.91.31.13, or later)

8. Environmental Protection Requirements
 8.1 Noise Requirements

 8.2 Emission Requirements
 Aircraft complies with ICAO Annex 16, Volume 2, second edition (Fuel Venting)

9. Operational Suitability Data (OSD)
 See SECTION 2 below
III. Technical Characteristics and Operational Limitations

1. Type Design Definition
 Sikorsky Drawings
 92000-00001-041 & 92076-00001-011

2. Description
 Main rotor: Four (4) blades
 Tail rotor: Four (4) blades
 Fuselage: Aluminium fuselage construction with composite components
 Landing gear: Retractable landing gear, triangle scheme
 Powerplant: Two (2) free power turbine engines
 FADEC controlled, flight essential APU

3. Equipment
 Basic equipment must be installed and operational prior to registration of the helicopter.
 Refer to Equipment list in approved RFM

4. Dimensions
 4.1 Fuselage
 Length: 17.10 m (56 ft 2 in)
 Width hull: 3.89 m (12 ft 9 in)
 Height: 4.32 m (14 ft 2 in)
 4.2 Main Rotor
 Diameter: 17.17 m (56 ft 4 in)
 4.3 Tail Rotor
 Diameter: 3.35 m (11 ft 0 in)

5. Engine
 5.1 Model
 General Electric Company
 2 x Model GE CT7-8 or GE CT7-8A
 5.2 Type Certificate
 FAA TCDS No: E8NE
 EASA TCDS No: EASA.IM.E.010
 5.3 Limitations

5.3.1 Installed Engine Limitations and Transmission Torque Limits

<table>
<thead>
<tr>
<th>CT7-8 Engine</th>
<th>Dual Engine Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
<td>Time</td>
</tr>
<tr>
<td>Max Cont</td>
<td>- - -</td>
</tr>
<tr>
<td>30 Min (2)</td>
<td>30 min</td>
</tr>
<tr>
<td>TKOF</td>
<td>5 min</td>
</tr>
<tr>
<td>Transient</td>
<td>12 sec</td>
</tr>
<tr>
<td></td>
<td>10 sec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single Engine Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating</td>
</tr>
<tr>
<td>Max Cont</td>
</tr>
<tr>
<td>OELI</td>
</tr>
<tr>
<td>OELI</td>
</tr>
<tr>
<td>OELI</td>
</tr>
<tr>
<td>Transient</td>
</tr>
<tr>
<td>Max starting</td>
</tr>
</tbody>
</table>

Notes:
- Boxes with bold borders and numbers denote EEC controlled limiter values.
- Q (%) values are gearbox limits.
(1) 86% Q is not a gearbox limit. Its purpose is to limit flight control loads at high speed thereby preserving dynamic component replacement times.

(2) Rating applies to hovering flight only.

(3) Associated with “torque ramp up” due to abnormal rotor droop at FADEC controlled dual or OEI limit

- 100%Q corresponds to a combined power input from both engines to the MGB of 4 170 shp at a rotor speed of 105% (258 rpm). Power turbine speed (Np) of 105% corresponds to 21 945 rpm.

- Maximum continuous dual engine torque may exceed 100% on one engine to a maximum of 110% provided that the torque on the other engine is proportionally less than 100% and the sum of the individual torque values does not exceed 200%.

- Np overspeed trip is at 120%.

- Ng overspeed trip is at 108.5%.

- When flying at altitudes greater than 8 000 feet at outside temperatures lower than -20°C, it is possible to reach the corrected Ng speed limit of the engine. When this occurs, the engine will not produce more power. The only indication that the pilot will see when reaching this limit is that further increase in collective will commensurately droop Nr.

CT7-8A Engine

Dual Engine Limits

<table>
<thead>
<tr>
<th>Rating</th>
<th>Time</th>
<th>Q [%]</th>
<th>T 4.5 [°C]</th>
<th>Ng [%]</th>
<th>NP [%]</th>
<th>PWR rated @ SLS [shp]</th>
<th>Rated NP [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Cont</td>
<td>- - -</td>
<td>86 (%) for V>100 KIAS</td>
<td>935</td>
<td>99.9</td>
<td>106</td>
<td>2 043</td>
<td>105</td>
</tr>
<tr>
<td>30 Min</td>
<td>30 min</td>
<td>100</td>
<td>988</td>
<td>101.5</td>
<td>106</td>
<td>2 336</td>
<td>105</td>
</tr>
<tr>
<td>TKOF</td>
<td>5 min</td>
<td>100</td>
<td>995</td>
<td>102.9</td>
<td>106</td>
<td>2 520</td>
<td>105</td>
</tr>
<tr>
<td>Transient</td>
<td>12 sec</td>
<td>- - -</td>
<td>1003</td>
<td>103.2</td>
<td>116</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td></td>
<td>10 sec</td>
<td>120 (3)</td>
<td>- - -</td>
</tr>
</tbody>
</table>

Single Engine Limits

<table>
<thead>
<tr>
<th>Rating</th>
<th>Time</th>
<th>Q [%]</th>
<th>T 4.5 [°C]</th>
<th>Ng [%]</th>
<th>NP [%]</th>
<th>PWR rated @ SLS [shp]</th>
<th>Rated NP [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Cont</td>
<td>- - -</td>
<td>120</td>
<td>988</td>
<td>102.4</td>
<td>106</td>
<td>2 498</td>
<td>105</td>
</tr>
<tr>
<td>OEI</td>
<td>2 Min</td>
<td>120</td>
<td>1 006</td>
<td>102.9</td>
<td>106</td>
<td>2 520</td>
<td>100</td>
</tr>
<tr>
<td>OEI</td>
<td>30 Sec</td>
<td>141</td>
<td>1 049</td>
<td>103.7</td>
<td>106</td>
<td>2 740</td>
<td>100</td>
</tr>
<tr>
<td>Transient</td>
<td>5 Sec</td>
<td>156 (3)</td>
<td>- - -</td>
</tr>
<tr>
<td>Max starting</td>
<td>Peak</td>
<td>- - -</td>
<td>1 000</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>

Notes:

- Boxes with bold borders and numbers denote EEC controlled limiter values.
- Q (%) values are gearbox limits.

 (1) 86% Q is not a gearbox limit. Its purpose is to limit flight control loads at high speed thereby preserving dynamic component replacement times.

 (2) Rating applies to hovering flight only.

 (3) Associated with “torque ramp up” due to abnormal rotor droop at FADEC controlled dual or OEI limit

- 100%Q corresponds to a combined power input from both engines to the MGB of 4 170 shp at a rotor speed of 105% (258 rpm). Power turbine speed (Np) of 105% corresponds to 21 945 rpm.

5.3.2 Other Engine and Transmission Torque Limits

Refer to approved RFM

6. Fluids (Fuel/ Oil/ Additives)

6.1 Fuel

6.2 Oil

Engines:

Refer to General Electric Installation Manual SEI-866.

APU: Refer to approved RFM
6.3 Additives

Engines and APU:
For all operations below -20°C (-4°F) ambient temperature, all fuel used must contain MIL-DTL85470(B) or equivalent anti-icing additive in concentrations of not less than 0.1% or more than 1.5% by volume.

7. Fluid capacities

7.1 Fuel

Fuel tank capacity: 2 896 litres (765 US gal)
Usable fuel: 2 877 litres (760 US gal)

7.2 Oil

Engines:
Refer to General Electric Installation Manual SEI-866
APU:
Refer to approved S-92A Maintenance Manual

8. Air Speed Limitations

V_{NE} Power-on: 165 KIAS.
See RFM for variation of V_{NE} with gross weight and density altitude.

\[V_{LE/LO} = \begin{cases} 165 \text{ KIAS} & \text{power-on} \\ 165 \text{ KIAS} & \text{power-off} \end{cases} \]

\[V_{NE} \text{ with floats 'armed': } 80 \text{ KIAS} \]

\[V_{NE} \text{ Power-off: } 120 \text{ KIAS} \]

\[V_{NE} \text{ Hoist extended: } 120 \text{ KIAS} \]

\[V_{NE} \text{ Upper sliding door open: } 120 \text{ KIAS} \]

\[V_{NE} \text{ External cargo: } 120 \text{ KIAS} \]

9. Rotor Speed Limitations

Power-on/off:
Maximum 110%
Minimum 95%

10. Maximum Operating Altitude and Temperature

10.1 Altitude

TKOF/LDG DA: 3 505 m (11 500 ft)
En route DA: 4 570 m (15 000 ft)
Flight in Icing Conditions DA: 3 050 m (10 000 ft) (see Note 12.)

10.2 Temperature

-40°C to ISA+35°C (see Note 6.)

11. Operating Limitations

Category A and B
VFR Day and Night
IFR
Flight into known Icing Conditions

12. Maximum Mass

TKOF/LDG: 12 020 kg (26 500 lb)
With external load: 12 836 kg (28 300 lb)
Maximum external load: 3 628 kg (8 000 lb)

13. Centre of Gravity Range

Refer to approved RFM

14. Datum

Longitudinal:
the datum plane (STA 0) is located 8 670 mm (341.2 in) forward of main rotor centroid.

Lateral:
fuselage median plane.

15. Levelling Means

Levelling plate at STA 238.3, BL 40 RH and plumb line from top of RH forward doorframe

16. Minimum Flight Crew

two (2), pilot and co-pilot

17. Maximum Passenger Seating Capacity

19, plus 1 observer in cockpit (see Notes 3., 4., 10.)

18. Passenger Emergency Exit

4 (fuselage sides) Type III

19. Maximum Baggage/ Cargo Loads

454 kg (1 000 lb)
20. **Rotor Blade Control Movement**
 For rigging information refer to Maintenance Manual

21. **Auxiliary Power Unit (APU)**
 Honeywell 36-150(S92)

22. **Life-limited Parts**
 See Chapter 4 of the Maintenance Manual
 (see Notes 7. and 8.)

23. **Wheels and Tyres**
 Tyres: 19.5 x 6.75-8 (TSO: C-62D)
 Wheels: 92250-00801 (TSO: C-26C)

IV. Operating and Service Instructions

1. **Flight Manual**
 Rotorcraft Flight Manual as shown in FAA approved
 Sikorsky document SA S92A-FMCD-0000. This document
 specifies the applicable Flight Manual number for each
 aircraft. The applicable Flight Manual number is
 determined by the aircraft configuration and/or
 modifications. SA S92AFMCD-000 will be revised as
 required to add new aircraft or update the RFM required
 for Sikorsky modified aircraft.
 Operations using the Search and Rescue (SAR) modes of
 the AFCS must be in accordance with EASA approved
 Sikorsky FMS E-01.
 Changes to FMS E-01 must be EASA approved.

2. **Maintenance Manual**
 SA S92A-AMM-000
 SA S92A-AMM-AWL-000

3. **Structural Repair Manual**
 SA S92A-SRM-000

4. **Weight and Balance Manual**
 Refer to approved RFM

5. **Illustrated Parts Catalogue**
 Within SA S92A-AMM-000

6. **Service Letters and Service Bulletins**
 As published by Sikorsky and EASA-approved

7. **Required Equipment**
 In order to meet ICAO Annex 16 Volume II, Part II, Chapter 2 requirement to prevent intentional
 discharge to the atmosphere of fuel from the fuel nozzle manifolds following shutdown, the rotorcraft is
 to be modified in accordance with Sikorsky drawing 92080-30001-011 (port side) and 92080- 30001-012
 (starboard side).
 For flight in known icing conditions the aircraft must be fitted with the Rotor Ice Protection System
 (RIPS) as defined in Sikorsky Drawing Number 92076- 55001, and must be operated in accordance with
 the EASA approved RFM.
 Refer to approved RFM for other required equipment.

V. Notes

1. **Manufacturer's eligible serial numbers:**
 Sikorsky Aircraft Corporation under Production Certificate Number 105:
 920006 through 920114,
 920116 through 920126,
 920128, 920130, 920133, 920137, 920143, and subsequent are eligible.
 Keystone Helicopter Corporation for production under Type Certificate only.
 920115 is eligible
 Keystone Helicopter Corporation under Production Certificate Number 121NE:
 920127*, 920129*, 920131, 920132, 920134 through 920136, 920138 through 920142 are eligible.
 Note: * originally designated as eligible for production by Keystone Helicopter Corporation under
 Type Certificate only and re-designated upon addition of S-92A to Production Certificate Number 121NE.

2. **reserved**

3. **Seating arrangements for 19 passengers maximum defined by Sikorsky Drawing 92510-02130, have**
V. Notes

been approved by EASA. These arrangements are shown in the loading information section of the EASA approved RFM. Additional optional seating arrangements or related passenger provisions may be approved in accordance with the Type Certificate Basis.

4. Passenger seats located along the aisle way shall not have the armrests installed on the aisle-way side of the seats. Armrests shall be removed from the aisle-way side of any seat to be installed along the aisle-way.

5. The model S-92A rotorcraft employs electronic engine controls that are recognised to be more susceptible to Electromagnetic Interference (EMI) than manual (non-electronic) controls used on other rotorcraft. EMI may be the result of radiated or conducted interference. For this reason, modifications that add or change systems that have the potential for EMI must be either qualified to an EASA acceptable standard or tested at the time of installation for interference to the engine controls. This type of testing must employ the particular engine control’s diagnostic techniques and external diagnostic techniques. This testing must be accomplished in accordance with an EASA approved alternate test plan.

6 Cold Weather Pre-heat kit, Part Number 92700-00110-001, must be used for cold soak starts when the OAT is -25°C or below. See RFM for Cold Weather Procedures.

7. Information essential to the proper maintenance of the rotorcraft is contained in the Sikorsky S-92A Maintenance Manual. Publication SA S92A-AMM-000, and the Airworthiness Limitations and Inspection Requirements Manual SA S92A-AMM-AWL-000 provided with each helicopter. The values of retirement (service) life contained in Chapter 4 of the Airworthiness Limitations and Inspection Requirements Manual or inspection intervals cannot be changed without EASA approval.

8. The term “Unlimited Life” is defined as 30 000 flight hours for the model S-92A rotorcraft. Operation of individual aircraft beyond the 30 000 flight hours is contingent upon a Life Extension Program approved by EASA.

9. The approved JAA JAR 36 (through NPA-3) and ICAO Annex 16, Volume 1, Chapter 8 (Amendment 7) certificated noise levels for the Sikorsky S-92A are as follows:

<table>
<thead>
<tr>
<th>Flight Condition</th>
<th>JAR Part 36 Noise Limits</th>
<th>S-92A Certification Levels</th>
<th>Margins to the JAR Limits</th>
<th>90% Confidence Intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>100.74</td>
<td>94.55</td>
<td>6.19</td>
<td>0.17</td>
</tr>
<tr>
<td>Approach</td>
<td>101.74</td>
<td>97.49</td>
<td>4.25</td>
<td>0.29</td>
</tr>
<tr>
<td>Overflight</td>
<td>99.74</td>
<td>97.19</td>
<td>2.55</td>
<td>0.13</td>
</tr>
</tbody>
</table>

The associated reference operating conditions for each of the conditions are summarized as follows:

<table>
<thead>
<tr>
<th>V<sub>y</sub>/V<sub>H</sub></th>
<th>Main Rotor [rpm]</th>
<th>Tail Rotor [rpm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>80 KIAS</td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>80 KIAS</td>
<td>257.9</td>
</tr>
<tr>
<td>Overflight</td>
<td>150.5 KTAS</td>
<td>1 254.8</td>
</tr>
</tbody>
</table>

Note: IAS = indicated airspeed, TAS = true airspeed, V_{NE} = 167.8 KTAS

10. The S-92A has been certified for Category A with a maximum passenger seating configuration of 19 passenger seats and Category B with a maximum passenger seating configuration of 9 or less passenger seats.

11. Current weight and balance report, including list of equipment included in certified empty weight, and loading instructions, when necessary, must be provided for each rotorcraft at the time of original certification. The certificated empty weight and corresponding C.G. locations must include un-drainable oil and unusable fuel.

See RFM loading section for variations of fuel weight and moment arm with variations of fuel and fuel quantity.

12. For flight in icing conditions, aircraft must be equipped with Rotorcraft Ice Protection System (RIPS) and RFM as shown in FAA Approved Sikorsky document SA S92A-FMCD-000, Revision 5 and subsequent. For flight into icing conditions, RIPS must be turned ‘ON’. RIPS equipped aircraft are not
V. Notes

approved for flight in icing conditions above 10 000 ft PA, or for flight in freezing rain, freezing drizzle or Supercooled Large Drop (SLD) icing conditions.

13. When the Anticollision light system is installed in accordance with Sikorsky Drawing 33792-52871: Basis of certification is the same as for the S-92A, plus:

 EASA Equivalent Level of Safety for JAR 29.1401(d) Anticollision Light System.

14. Operations in Limited Icing per SAC Flight Manual Supplement No. E-03 Basis of Certification is the same as for the S-92A, plus:

 EASA Special Condition for Helicopter Limited Icing Approval

SECTION 2: OPERATIONAL SUITABILITY DATA (OSD)

The OSD elements listed below are approved by the European Aviation Safety Agency as per Commission Regulation (EU) 748/2012, as amended by Commission Regulation (EU) No 69/2014.

I. OSD Certification Basis

I.1 Reference Date for determining the applicable OSD requirements
 Date of Application: 2 February 2015.

I.2 MMEL - Certification Basis
 JAR-MMEL Amdt. 1

I.3 Flight Crew Data - Certification Basis

I.4 SIM Data - Certification Basis
 reserved

I.5 Maintenance Certifying Staff Data - Certification Basis
 reserved

I.6 Cabin Crew Data - Certification Basis
 reserved

II. OSD Elements

II.1 MMEL
 Sikorsky Aircraft Corporation S-92A MMEL, dated 24 November 2015

II.2 Flight Crew Data
 Sikorsky S92A Operational Suitability Data (OSD) – Flight Crew, dated 20 November 2015

II.3 SIM Data
 reserved

II.4 Maintenance Certifying Staff Data
 reserved

II.6 Cabin Crew Data
 reserved
SECTION: ADMINISTRATIVE

I. Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEO</td>
<td>All Engines Operative</td>
</tr>
<tr>
<td>AFCS</td>
<td>Automatic Flight Control System</td>
</tr>
<tr>
<td>Amdt.</td>
<td>Amendment</td>
</tr>
<tr>
<td>AMM</td>
<td>Aircraft Maintenance Manual</td>
</tr>
<tr>
<td>APU</td>
<td>Auxiliary Power Unit</td>
</tr>
<tr>
<td>B.L.</td>
<td>Butt Line</td>
</tr>
<tr>
<td>C.G.</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>CR</td>
<td>(European) Commission Regulation</td>
</tr>
<tr>
<td>CRI</td>
<td>Certification Review Item</td>
</tr>
<tr>
<td>DA</td>
<td>Density altitude</td>
</tr>
<tr>
<td>EMI</td>
<td>Electro Magnetic Interference</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>FADEC</td>
<td>Full Authority Digital Engine Control</td>
</tr>
<tr>
<td>FMS</td>
<td>Flight Management System</td>
</tr>
<tr>
<td>HIRF</td>
<td>High Intensity Radiated Field</td>
</tr>
<tr>
<td>HUMS</td>
<td>Health and Usage Monitoring System</td>
</tr>
<tr>
<td>IAS</td>
<td>Indicated Air Speed</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organization</td>
</tr>
<tr>
<td>IFR</td>
<td>Instrument Flight Rules</td>
</tr>
<tr>
<td>ISA</td>
<td>International Standard Atmosphere</td>
</tr>
<tr>
<td>JAA</td>
<td>Joint Aviation Authorities</td>
</tr>
<tr>
<td>JAR</td>
<td>Joint Aviation Requirements</td>
</tr>
<tr>
<td>LDG</td>
<td>Landing</td>
</tr>
<tr>
<td>MGB</td>
<td>Main Gear Box</td>
</tr>
<tr>
<td>MMEL</td>
<td>Master Minimum Equipment List</td>
</tr>
<tr>
<td>NPA</td>
<td>Notice of Proposed Amendment</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OEB</td>
<td>Operational Evaluation Board</td>
</tr>
<tr>
<td>OEI</td>
<td>One Engine Inoperative</td>
</tr>
<tr>
<td>OSD</td>
<td>Operational Suitability Data</td>
</tr>
<tr>
<td>PA</td>
<td>Pressure altitude</td>
</tr>
<tr>
<td>PWR</td>
<td>Power</td>
</tr>
<tr>
<td>RFM</td>
<td>Rotorcraft Flight Manual</td>
</tr>
<tr>
<td>RFMS</td>
<td>Rotorcraft Flight Manual supplement</td>
</tr>
<tr>
<td>RIPS</td>
<td>Rotorcraft Ice Protection System</td>
</tr>
<tr>
<td>RPM</td>
<td>Rounds Per Minute</td>
</tr>
<tr>
<td>SAC</td>
<td>Sikorsky Aircraft Corporation</td>
</tr>
<tr>
<td>SC</td>
<td>Special Condition</td>
</tr>
<tr>
<td>SGBA</td>
<td>Sikorsky Ground Based Application</td>
</tr>
<tr>
<td>shp</td>
<td>Shaft Horse Power</td>
</tr>
<tr>
<td>SLD</td>
<td>Supercooled Large Droplets</td>
</tr>
<tr>
<td>SLS</td>
<td>Sea Level Standard</td>
</tr>
<tr>
<td>STA</td>
<td>Station</td>
</tr>
<tr>
<td>TAS</td>
<td>True Air Speed</td>
</tr>
<tr>
<td>TCCA</td>
<td>Transport Canada Civil Aviation</td>
</tr>
<tr>
<td>TKOF</td>
<td>Take-off</td>
</tr>
<tr>
<td>TSO</td>
<td>Technical Standard Order</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>V_{H}</td>
<td>Maximum speed in level flight at maximum continuous power</td>
</tr>
<tr>
<td>$V_{\text{LE/O}}$</td>
<td>Landing gear extending/operating</td>
</tr>
<tr>
<td>V_{NE}</td>
<td>Never Exceed Speed</td>
</tr>
<tr>
<td>V_Y</td>
<td>Best rate of climb speed</td>
</tr>
</tbody>
</table>
II. Type Certificate Holder Record

<table>
<thead>
<tr>
<th>Type Certificate Holder</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikorsky Aircraft Corporation</td>
<td>Since initial TC</td>
</tr>
<tr>
<td>6900 Main Street</td>
<td></td>
</tr>
<tr>
<td>Stratford, CT 06615-9129, USA</td>
<td></td>
</tr>
</tbody>
</table>

III. Change Record

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Changes</th>
<th>TC issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 1</td>
<td>8 Jun 2004</td>
<td>Initial Issue</td>
<td>Initial Issue, 8 June 2004</td>
</tr>
<tr>
<td>Issue 2</td>
<td>31 Jan 2005</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 3</td>
<td>12 Apr 2006</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 4</td>
<td>2 Sep 2010</td>
<td>Keystone Helicopter added as Manufacturer</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 5</td>
<td>27 Apr 2011</td>
<td>Note 1. revised to identify aircraft manufactured at Keystone.</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 6</td>
<td>24 May 2013</td>
<td>Change in format; addition of Special Condition for Limited Icing and ELOS for Anticollision light.</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 7</td>
<td>18 Dec 2015</td>
<td>Change in format; OSD added.</td>
<td>- -</td>
</tr>
<tr>
<td>Issue 8</td>
<td>20 Dec 2018</td>
<td>II.3., V.13.: references to CRI removed; II.7.: CS 29.1465 Amdt. 5 added</td>
<td>- -</td>
</tr>
</tbody>
</table>

- end of file -