TCDS EASA.A.151
Issue 20
Date: 09 Aug. 2019

EASA
European Union Aviation Safety Agency

TYPE-CERTIFICATE
DATA SHEET

No. EASA.A.151

AIRBUS A350

Type Certificate Holder:

AIRBUS S.A.S.

2 Rond-point Emile Dewoitine
31700 BLAGNAC
FRANCE

Airworthiness Category: Large Aeroplanes

For Model(s): A350-941
A350-1041
Table of Contents

SECTION 1: A350-900 SERIES

I. GENERAL
 1. Type/Model
 2. Performance Class
 3. Certifying Authority
 4. Manufacturer
 5. EASA Certification Application Date
 6. EASA Type Certification Date

II. CERTIFICATION BASIS
 1. EASA Certification Basis
 2. Special Conditions
 3. Exemptions / Deviations
 4. Equivalent safety findings (21A.21(c)(2))
 5. Environmental requirements
 6. Operational Suitability Data

III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS
 1. A350-900 powered by RR engines
 2. Data pertinent to all A350-900 series

IV. OPERATING AND SERVICE INSTRUCTIONS
 1. Aircraft Flight Manual
 2. Maintenance Instructions and Airworthiness Limitations
 3. ETOPS

V. OPERATIONAL SUITABILITY DATA (OSD)
 1. Master Minimum Equipment List
 2. Flight Crew Data
 3. Cabin Crew Data

SECTION 2: A350-1000 SERIES

I. GENERAL
 1. Type/Model
 2. Performance Class
 3. Certifying Authority
 4. Manufacturer
 5. EASA Certification Application Date
 6. EASA Type Certification Date

II. CERTIFICATION BASIS
 1. EASA Certification Basis
 2. Special Conditions
 3. Exemptions / Deviations
 4. Equivalent safety findings (21A.21(c)(2))
 5. Environmental requirements
 6. Reversions
 7. Operational Suitability Data
III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS 20
1. A350-1000 powered by RR engines 20
2. Data pertinent to all A350-1000 series 21

IV. OPERATING AND SERVICE INSTRUCTIONS 25
1. Aircraft Flight Manual 25
2. Maintenance Instructions and Airworthiness Limitations 25
3. ETOPS 25

V. OPERATIONAL SUITABILITY DATA (OSD) 26
1. Master Minimum Equipment List 26
2. Flight Crew Data 26
3. Cabin Crew Data 26

ADMINISTRATIVE SECTION 27

VI. ACRONYMS AND ABBREVIATIONS 27

VII. CHANGE RECORD 27
SECTION 1: A350-900 SERIES

I. GENERAL

1. Type/Model

 A350-941

2. Performance Class

 A

3. Certifying Authority

 EASA

4. Manufacturer

 AIRBUS
 2 Rond-point Emile Dewoitine
 31700 Blagnac
 FRANCE

5. EASA Certification Application Date

 A350-941: 15 November 2009

6. EASA Type Certification Date

 A350-941: 30 September 2014
II. CERTIFICATION BASIS

1. EASA Certification Basis

The following EASA airworthiness standards are:

- EASA Certification Specification 25.851 (a) and (c) at Amendment 17 for the installation of halon free handheld fire extinguisher.
- EASA Certification Specifications AWO, Initial Issue – All Weather Operations.

2. Special Conditions

SC B-01	Stalling and Scheduled Operating Speeds
SC B-02	Motion and effect of cockpit controls
SC B-04	Static Directional, Lateral and Longitudinal Stability and Low Energy Awareness
SC B-05	Flight envelope protection
SC B-06	Normal Load Factor limiting System
SC B-09	Flight in Icing Condition
SC B-11	Soft Go Around Mode (post-TC)
SC C-01	Crash Survivability for CFRP Fuselage
SC C-02	Design dive speed
SC C-05	Tyre Debris vs. Fuel Leakage for CFRP Fuel Tank
SC C-06	Dynamic braking
SC C-07	Limit pilot forces
SC C-10	Design Manoeuvre Requirements
SC C-14	Pivoting Loads
SC D-04	Crew Rest Compartments (post-TC)
SC D-05	Towbarless Towing
SC D-06	High Altitude Operation / High Cabin Heat Load
SC D-07	Control Surface Position Awareness / Electronic Flight Control Systems
SC D-14	Application of Heat Release and Smoke Density Requirements to Seat Materials
SC D-16	In Flight Fire - Composite Fuselage Construction
SC D-20	Lateral Trim Function through Differential Flap Setting
SC D-21	Type C Passenger Exits
SC D-32	Use of Magnesium Alloys for Passenger Seat Components (post-TC)
SC D-35	Installation of inflatable seat belts (post-TC)
SC D-36	Installation of structure mounted airbag (post-TC)
SC D-37	Installation of mini-suite type seating (post-TC)
SC D-42 Installation of stowage or charging stations for Personal Electronic Devices (PED) in an aircraft cabin (post-TC)

SC D-43 Installation of oblique seats

SC D-44 Installation of Three Point Restraint & Pretensioner System (post-TC)

SC D-45 Incorporation of Inertia Locking Device in Dynamic Seats

SC E-08 Fire withstanding Capability of CFRP Wing Fuel Tanks

SC E-12 Water / Ice in Fuel System

SC F-12 HIRF Protection

SC F-13 Lithium Battery Installations

SC F-26 Flight Recorders including Data Link Recording

SC F-38 Security Assurance Process to isolate or protect the Aircraft Systems and Networks from internal and external Security Threats

SC F-53 Fuel System low Level Indication / Fuel Exhaustion

SC F-GEN-01 Non-rechargeable lithium battery installations, applicable by the date of this TCDS at issue 18

SC G-01 ETOPS Approval

SC G-06 Cancellation of AFM Engine Management Tables

3. Deviations

None

4. Equivalent safety findings

ESF C-11 Ground Loads Conditions

ESF C-12 Undercarriage Lateral Turning Loads

ESF D-11 Packs off operations

ESF D-15 Post Crash Fire - Composite Fuselage Construction

ESF D-19 Overpressure Relief Valves and Outflow Valves

ESF D-23 Indication of the Passenger Door from outside Position if the Door is not fully Closed, Latched and Locked

ESF D-28 Green Arrow and “Open” Placard for Emergency Exit Marking

ESF D-30 Installation of Angled Seats (post-TC)

ESF D-31 Application of reduced Intrusion Loads in certain Areas of the Flight Deck Boundaries

ESF D-34 APU Doors Compliance to CS 25.783(a)

ESF E-04 Thrust Reverser Testing

ESF E-07 Warning Means for Rolls Royce Engine Fuel Filters

ESF E-09 Rolls Royce Engine Turbine Overheat Detection

ESF E-13 Fire Extinguishing Agent Concentration

ESF E-14 Pressure fuelling system shut-off operation check
5. Environmental Protection Requirements

Fuel venting and emissions:
EASA Certification Specification 34, Initial Issue.

Noise:
See TCDSN No. EASA.A.151

6. Operational Suitability Data

The EASA Type Certification with respect to Operational Suitability Data (OSD) is defined as follows:

MMEL: Certification Specifications for Master Minimum Equipment List CS-MMEL Initial Issue dated 31 January 2014 (Book 1 only)

III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS

1. A350-900 powered by RR engines

1.1 Type Design Definition

A350-941 Type Design Definition: 00 V 000 A0941 / C90 Issue 2 or later approved issues

1.2 Engines

A350-941: Two (2) Rolls Royce Trent XWB-84 or XWB-75 turbofan engines

<table>
<thead>
<tr>
<th>ENGINE LIMITS DATA SHEET EASA E-111</th>
<th>A350-941 RR Trent XWB</th>
</tr>
</thead>
<tbody>
<tr>
<td>XWB-84</td>
<td>XWB-75 (mod 113768)</td>
</tr>
<tr>
<td>Net Take-off (5 minutes)</td>
<td>374.5 kN (84,200 lbf)</td>
</tr>
<tr>
<td>Net Maximum Continuous</td>
<td>317.6 kN (71,400 lbf)</td>
</tr>
<tr>
<td></td>
<td>330 kn (74,200 lbf)</td>
</tr>
<tr>
<td></td>
<td>296.3 kn (66,600 lbf)</td>
</tr>
</tbody>
</table>

The take-off thrust, with the associated limits, shall not be used continuously more than 5 minutes. The duration may be extended to 10 minutes in case of engine failure in multi-engine aircraft. If the duration exceeds 5 minutes, this shall be recorded in the engine log book.

Other engine limitations: See the relevant Engine Type Certificate Data Sheet.

1.3 Fuel and fuel additives

The fuel system has been certified with: JET A, JET A1, JP5, JP8, N° 3 Jet Fuel, RT and TS-1.

Refer to applicable engine “Operating Instructions“ document for additives.

1.4 Oil

Refer to applicable engine “Operating Instructions“ document.

1.5 Limit Speeds

Refer to approved Airplane Flight Manual.

1.6 Centre of Gravity Range

Refer to approved Airplane Flight Manual.
1.7 Maximum Certified Weights

<table>
<thead>
<tr>
<th>VARIANT (Mod number)</th>
<th>000 (Basic)</th>
<th>001 (104052)</th>
<th>002 (107986)</th>
<th>003 (107987)</th>
<th>004 (108086)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-84</td>
<td>XWB-84</td>
<td>XWB-84</td>
<td>XWB-84</td>
<td>XWB-84</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>268</td>
<td>275</td>
<td>272</td>
<td>268</td>
<td>260</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>205</td>
<td>207</td>
<td>207</td>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>192</td>
<td>195.7</td>
<td>194</td>
<td>195.7</td>
<td>195.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIANT (Mod number)</th>
<th>005 (108396)</th>
<th>007 (110117)</th>
<th>008 (108594)</th>
<th>009 (109397)</th>
<th>010 (110113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84</td>
<td>XWB-84</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>250</td>
<td>268</td>
<td>240</td>
<td>275</td>
<td>280</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>205</td>
<td>207</td>
<td>207</td>
<td>207</td>
<td>207</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>192</td>
<td>194</td>
<td>195.7</td>
<td>197.2</td>
<td>195.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIANT (Mod number)</th>
<th>011 (109585)</th>
<th>012 (110115)</th>
<th>013 (110112)*</th>
<th>014 (109837)</th>
<th>015 (110796)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84</td>
<td>XWB-84</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>255</td>
<td>250</td>
<td>280</td>
<td>235</td>
<td>277</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>207</td>
<td>207</td>
<td>205</td>
<td>207</td>
<td>205</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>195.7</td>
<td>194</td>
<td>192</td>
<td>195.7</td>
<td>192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIANT (Mod number)</th>
<th>016 (112672)</th>
<th>018 (112498)</th>
<th>019 (113792)</th>
<th>023 (114698)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-84</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84, XWB-75</td>
<td>XWB-84</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>278</td>
<td>217</td>
<td>235</td>
<td>280</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>207</td>
<td>207</td>
<td>205</td>
<td>205</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>195.7</td>
<td>195.7</td>
<td>192</td>
<td>192</td>
</tr>
</tbody>
</table>

*For aircraft with removed forward cargo compartment as per Mods 110456 & 110512

1.8 Notes
None

2. Data pertinent to all A350-900 series

2.1 Description
Two turbo-fan, long range, twin-aisle, large category airplane

2.2 Fuel quantity

<table>
<thead>
<tr>
<th>Tanks</th>
<th>Usable Fuel (l)</th>
<th>Usable Fuel (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mod number</td>
<td>Basic</td>
<td>110211</td>
</tr>
<tr>
<td>Wing</td>
<td>29,924</td>
<td>29,726</td>
</tr>
</tbody>
</table>
Fuel density is 0.785 kg/l

2.3 Minimum Flight Crew

Two (2): Pilot and Co-pilot

2.4 Minimum Cabin Crew

For the A350-900, the minimum required cabin crew number established during the aircraft certification process is 8 (2 per exit pair), irrespective of the Maximum Operational Passenger Seating Capacity (MOPSC).

The above minimum cabin crew numbers are those demonstrated by the type certificate holder. A lower number is acceptable in the case of specific cabin layouts if documented in an EASA approved major design change or Supplemental Type Certificate (STC).

In accordance with the operational requirement ORO.CC.100-Number and composition of cabin crew, if the MOPSC for the specific aircraft exceeds 400, the minimum required cabin crew number becomes 9.

2.5 Maximum Operational Passenger Seating Capacity

The maximum number of passengers approved for emergency evacuation is:

- 385 for the basic passenger emergency exit configuration C-A-A-A and A-A-C-A,
- 275 for the optional passenger emergency exit configuration C-C-C-A,
- 330 for the optional passenger emergency exit configuration C-A-C-A,

In accordance with the recommendations given in AC 25.807-1, the individual and sequential zone passenger capacities of the presented exit configurations are as follows:
Individual Zone Passenger Capacities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone A</td>
<td>220</td>
<td>165</td>
<td>110</td>
<td>165</td>
<td>220</td>
</tr>
<tr>
<td>Zone B</td>
<td>220</td>
<td>165</td>
<td>110</td>
<td>220</td>
<td>165</td>
</tr>
<tr>
<td>Zone C</td>
<td>220</td>
<td>165</td>
<td>165</td>
<td>220</td>
<td>165</td>
</tr>
</tbody>
</table>

Sequential Zone Passenger Capacities - nose to tail

- Zone A + B

| | 330 | 220 | 165 | 275 | 275 |

- Zone C + B

| | 330 | 275 | 220 | 330 | 275 |

Maximum Passenger Seating Configuration

- Zones A + B + C

| | 440 | 330 | 275 | 385 | 385 |

[Diagram of A350-900 series airplane seating configuration]
The zonal capacities certified on A350-900 are:

<table>
<thead>
<tr>
<th>A350-900</th>
<th>D1-D4</th>
<th>D1-D2</th>
<th>D2-D3</th>
<th>D3-D4</th>
<th>D1-D3</th>
<th>D4-D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAA</td>
<td>440</td>
<td>110</td>
<td>189</td>
<td>141</td>
<td>299</td>
<td>330</td>
</tr>
<tr>
<td>AAAA</td>
<td>428</td>
<td>98</td>
<td>184</td>
<td>146</td>
<td>282</td>
<td>330</td>
</tr>
<tr>
<td>AAAA</td>
<td>439</td>
<td>121</td>
<td>159</td>
<td>159</td>
<td>280</td>
<td>318</td>
</tr>
<tr>
<td>AAAA</td>
<td>432</td>
<td>102</td>
<td>181</td>
<td>149</td>
<td>283</td>
<td>330</td>
</tr>
<tr>
<td>AAAA</td>
<td>440</td>
<td>121</td>
<td>168</td>
<td>151</td>
<td>289</td>
<td>319</td>
</tr>
<tr>
<td>CAAA</td>
<td>385</td>
<td>55</td>
<td>189</td>
<td>141</td>
<td>244</td>
<td>330</td>
</tr>
<tr>
<td>CAAA</td>
<td>385</td>
<td>95</td>
<td>180</td>
<td>110</td>
<td>275</td>
<td>290</td>
</tr>
<tr>
<td>CAAA</td>
<td>385</td>
<td>55</td>
<td>179</td>
<td>151</td>
<td>234</td>
<td>330</td>
</tr>
<tr>
<td>CACA</td>
<td>330</td>
<td>56</td>
<td>129</td>
<td>145</td>
<td>185</td>
<td>274</td>
</tr>
<tr>
<td>CACA</td>
<td>283</td>
<td>24</td>
<td>133</td>
<td>126</td>
<td>157</td>
<td>259</td>
</tr>
<tr>
<td>CACA</td>
<td>295</td>
<td>30</td>
<td>138</td>
<td>127</td>
<td>168</td>
<td>265</td>
</tr>
<tr>
<td>CACA</td>
<td>303</td>
<td>28</td>
<td>138</td>
<td>137</td>
<td>166</td>
<td>275</td>
</tr>
<tr>
<td>AACA</td>
<td>385</td>
<td>111</td>
<td>129</td>
<td>145</td>
<td>240</td>
<td>274</td>
</tr>
<tr>
<td>CCCA</td>
<td>275</td>
<td>63</td>
<td>92</td>
<td>120</td>
<td>155</td>
<td>212</td>
</tr>
</tbody>
</table>

2.6 Cargo compartment loading

<table>
<thead>
<tr>
<th>Cargo compartment</th>
<th>Maximum load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic</td>
</tr>
<tr>
<td>Forward</td>
<td>22,000</td>
</tr>
<tr>
<td>Aft</td>
<td>19,000</td>
</tr>
<tr>
<td>Rear (bulk)</td>
<td>3,468</td>
</tr>
</tbody>
</table>

For the positions and the loading conditions authorized in each position (references of containers, pallets and associated weights), see Weight and Balance Manual Chapter 1.10 ref. 00 V 080 A0001 / C9S.

2.7 Environmental Flight Envelope

Maximum operating altitude is 43,100 ft.
Refer to approved Airplane Flight Manual.

2.8 Other Limitations

Refer to approved Airplane Flight Manual.

ALS-ETWF (Items of equipment subject to on-going Extent of Test without Failure), reference 00V207AETWF/C11 issue 5:
This document identifies temporary limitations due to ongoing tests. Since no failure occurred at time of TC this specific document ALS-ETWF contains temporary limitations that will be updated depending on test progress or deleted when tests are successfully completed. In case of failure, the
failed item will be assessed for introduction in the ALS Part 4 at its demonstrated life limit.

For each item, the recorded progress of the ongoing test is sufficiently ahead of the anticipated fleet leader, even assuming the maximum utilisation rates provided in the approved MRBR.

2.9 Auxiliary Power Unit (APU)

One APU, Honeywell HGT1700.

Fuel and Oil: Refer to applicable approved Manuals.

2.10 Equipment

The equipment required by the applicable requirements shall be installed.

Cabin seats shall conform to the “Passenger Seat Frame Specification” document ref. 00V252K0005/C91 Issue 4.

2.11 All Weather Capabilities

The aircraft is qualified to Cat 3 precision approach and autoland.

2.12 Wheels and Tyres

<table>
<thead>
<tr>
<th>Gear</th>
<th>Quantity</th>
<th>Wheel size</th>
<th>Tyre size</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLG</td>
<td>2</td>
<td>16”</td>
<td>1050 x 395R16 28PR</td>
</tr>
<tr>
<td>MLG</td>
<td>8</td>
<td>23”</td>
<td>1400 x 530R23 42PR</td>
</tr>
</tbody>
</table>

2.13 Hydraulics

Fluid specifications: TYPE IV LD and TYPE V LD, as per NSA 307-110, or any mixture of both.

2.14 Electrical Power Center Configuration Data File Tool

An Airline Configuration Tool (EPDS* Tool Suite) is being developed and qualified to allow airlines to manage the Configuration Data Files of Secondary Power Distribution Boxes (SPDB). This tool will be available post A350 Entry Into Service.
IV. OPERATING AND SERVICE INSTRUCTIONS

1. Aircraft Flight Manual

 A350 Aircraft Flight Manual: STL 35000 (certification reference for TC: 00 V 101 A0941 / C9S Issue 4) or later approved revisions.

2. Maintenance Instructions and Airworthiness Limitations

 - Safe Life Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 1, Revision 00 (Document 00 V 050 ALS01 / C01 Issue 1, [1]);

 - Damage-Tolerant Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 2, Revision 00 (Document 00 V 050 ALS02 / C01 Issue 1, [1]);

 - Certification Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 3, Revision 00 (Document 00 V 050 ALS03 / C01 Issue 2, [1]);

 - A350 System Equipment Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 4, Revision 00 (Document 00 V 050 ALS04 / C01 Issue 1, [1]);

 - A350 Fuel System Airworthiness Limitations are provided in the A350 Airworthiness Limitations Section (ALS) Part 5, Revision 00 (Document 00 V 050 ALS05 / C01 Issue 2, [1]);

 - Maintenance Review Board Report 00 V 050 AMRBR / C01.

Except if documented in Aircraft documentation (Maintenance Procedures, Structural Repair Instructions, Electrical Standard Practices, Service Bulletins), all elements that are part of the Electrical Structure Network (ESN) shall not be modified, removed or repaired without agreement of Airbus.

Note [1]: Initial Revision and subsequent Variations (that may be compiled in a Revision) are approved under the EASA system. The applicable Airworthiness Limitation Section of the ICA is available on the AirbusWorld website.

3. ETOPS

The Type Design, system reliability and performance of the following A350 model(s) were found capable for Extended Range Operations (ETOPS) when configured, maintained and operated in accordance with the current revision of the ETOPS Configuration, Maintenance and Procedures (CMP) document, XWB/EASA: CS 25.1535/CMP.

This finding does not constitute an approval to conduct Extended Range Operations (operational approval must be obtained from the responsible Authority).
The following table provides details on the ETOPS approvals.

<table>
<thead>
<tr>
<th>Model</th>
<th>Engine Type</th>
<th>180 min. Approval date</th>
<th>Beyond 180 min. Approval date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A350-941</td>
<td>Trent XWB-84</td>
<td>14 October 2014</td>
<td>14 October 2014</td>
</tr>
<tr>
<td>A350-941</td>
<td>Trent XWB-75</td>
<td>03 April 2019</td>
<td>03 April 2019</td>
</tr>
</tbody>
</table>

V. OPERATIONAL SUITABILITY DATA (OSD)

The Operational Suitability Data elements listed below are approved by the European Aviation Safety Agency under the EASA Type Certificate [original TC number] as per Commission Regulation (EU) 748/2012 as amended by Commission Regulation (EU) No 69/2014.

1. Master Minimum Equipment List
 a. The Master Minimum Equipment List has been approved as per the defined Operational Suitability Data Certification Basis and as documented in A350 MMEL (reference: STL 35100) first revision dated 06 November 2014, or later approved revisions.
 b. Required for entry into service by EU operator.

2. Flight Crew Data
 a. The Flight Crew data has been approved as per the defined Operational Suitability Data Certification Basis and as documented in “A350 Operational Suitability Data Flight Crew, (Ref: Airbus V01RP1505446 Issue 1, dated 05 May 2015)”, or later approved revisions.
 b. Required for entry into service by EU operator.
 c. Pilot Type Rating: The licence endorsement for the A350-900 series aircraft is "A330/A350". The A350-900 and the A330 series aircraft are variants of the same type of aircraft.

3. Cabin Crew Data
 a. The Cabin Crew data has been approved as per the defined Operational Suitability Data Certification Basis and as documented in “A350 Operational Suitability Data Cabin Crew, Issue 1.0. (Ref: Airbus V01RP1519368 dated 03 July 2015)”, or later approved revisions.
 b. Required for entry into service by EU operator.
 c. The A350-900 aircraft model is determined to be a variant to the A330-200/-300 aircraft model(s).
SECTION 2: A350-1000 SERIES

I. GENERAL

1. Type/Model

A350-1041

2. Performance Class

A

3. Certifying Authority

EASA

4. Manufacturer

AIRBUS S.A.S
2 Rond-point Emile Dewoitine
31700 Blagnac
FRANCE

5. EASA Certification Application Date

A350-1041: 30 July 2013

6. EASA Type Certification Date

A350-1041: 21 November 2017
II. CERTIFICATION BASIS

The Certification Basis included in the below §1 to §7 is valid for all areas of the A350-1041 (no distinction between affected or non-affected areas).

1. EASA Certification Basis

The following EASA airworthiness standards are applicable:

- EASA Certification Specification 25, Amendment 13 – Large Aeroplanes
- EASA Certification Specification 25.851 (a) and (c) at Amendment 17 for the installation of halon free handheld fire extinguisher.
- EASA Certification Specification AWO, Initial Issue – All Weather Operations

2. Special Conditions

SC B-01 Stalling and Scheduled Operating Speeds
SC B-1002 Motion and effect of cockpit controls
SC B-04 Static Directional, Lateral and Longitudinal Stability and Low Energy Awareness
SC B-05 Flight envelope protection
SC B-09 Flight in Icing Condition
SC B-11 Soft Go Around mode

SC C-01 Crash Survivability for CFRP Fuselage
SC C-05 Tyre Debris vs. Fuel Leakage for CFRP Fuel Tank
SC C-06 Dynamic braking
SC C-14 Pivoting Loads

SC D-04 Crew Rest Compartments
SC D-06 High Altitude Operation / High Cabin Heat Load
SC D-07 Control Surface Position Awareness / Electronic Flight Control Systems
SC D-14 Application of Heat Release and Smoke Density Requirements to Seat Materials
SC D-16 In Flight Fire - Composite Fuselage Construction
SC D-20 Lateral Trim Function through Differential Flap Setting
SC D-32 Use of magnesium alloys for passenger seats components
SC D-35 Installation of inflatable seat belts
SC D-36 Installation of structure-mounted airbag
SC D-37 Installation of mini-suite type seating
SC D-42 Installation of stowage or charging stations for Personal Electronic Devices (PED) in an aircraft cabin (post-TC)
SC D-43 Installation of oblique seats
SC D-44 Installation of Three Point Restraint & Pretensioner System (post-TC)
SC D-45 Incorporation of Inertia Locking Device in Dynamic Seats
3. Deviations

None

4. Equivalent Safety Findings

ESF C-11 Ground Loads Conditions
ESF C-12 Undercarriage Lateral Turning Loads
ESF D-11 Packs off operations
ESF D-15 Post Crash Fire – Composite Fuselage Construction
ESF D-19 Overpressure Relief Valves and Outflow Valves
ESF D-23 Indication of the Passenger Door from outside Position if the Door is not fully Closed, Latched and Locked
ESF D-28 Green Arrow and “Open” Placard for Emergency Exit Marking
ESF D-30 Installation of Angled Seats
ESF D-31 Application of reduced Intrusion Loads in certain Areas of the Flight Deck Boundaries
ESF D-34 APU Doors Compliance to CS 25.783(a)
ESF E-1004 Trent XWB 97k Thrust Reverser Testing
ESF E-07 Warning Means for Rolls Royce Engine Fuel Filters
ESF E-09 Rolls Royce Engine Turbine Overheat Detection
ESF E-13 Fire Extinguishing Agent Concentration
ESF E-14 Pressure fuelling system shut-off operation check
ESF E-1022 Trent XWB -97 zone 2 and 3 (seals and caps) fire withstanding capability
ESF F-22 Minimum Mass Flow of Supplemental Oxygen
ESF F-23 Landing Light Switch
ESF F-33 Pneumatic Systems – harmonised 25.1438
ESF F-52 Crew Determination of Quantity of Oxygen in Passenger Oxygen System
ESF F-63 Improved Passenger Oxygen Mask Deployment System
ESF F-69 Pitot Heat Indication Systems
ESF G-05 Engine Oil Temperature Indication
ESF K-03 Localizer Excessive Deviation Alerts
ESF K-04 Limit Risk
ESF K-08 CAT 3 Operations – Super Fail Passive Anomalies

5. Environmental requirements

Fuel venting and emissions:
EASA Certification Specification 34, Amendment 1.

Noise:
See TCDSN No. EASA.A.151

6. Reversions

Reversion to Amendment 8 is applied for paragraph CS 25.1322 “Flight Crew Alerting”.

7. Operational Suitability Data

The EASA Type Certification with respect to Operational Suitability Data (OSD) is defined as follows:

CCD: Certification Specifications and Guidance Material for Cabin Crew Data CS-CCD Initial Issue

MMEL: Certification Specifications for Master Minimum Equipment List CS-MMEL Initial Issue (Book 1 only)

FCD: Certification Specifications for Operational Suitability Data (OSD) Flight Crew Data CS-FCD Initial Issue
III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS

1. A350-1000 powered by RR engines

1.1 Type Design Definition

A350-1041 Type Design Definition: 00 V 000 A1041 / C10 Issue 2 or later approved issues

1.2 Engines

A350-1041: Two (2) Rolls Royce Trent XWB-97 turbofan engines

<table>
<thead>
<tr>
<th>ENGINE LIMITS DATA SHEET EASA E-111</th>
<th>A350-1041 RR Trent XWB-97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Take-off (5 minutes)</td>
<td>431.5 kN (97,000 lbf)</td>
</tr>
<tr>
<td>Net Maximum Continuous</td>
<td>369.6 kN (83,100 lbf)</td>
</tr>
</tbody>
</table>

The take-off thrust, with the associated limits, shall not be used continuously more than 5 minutes. The duration may be extended to 10 minutes in case of engine failure in multi-engine aircraft. If the duration exceeds 5 minutes, this shall be recorded in the engine log book.

Other engine limitations: See the relevant Engine Type Certificate Data Sheet.

1.3 Fuel and fuel additives

The fuel system has been certified with: JET A, JET A1, JP5, JP8, N° 3 Jet Fuel, RT and TS-1.

Refer to applicable engine “Operating Instructions” document for additives.

1.4 Oil

Refer to applicable engine “Operating Instructions” document.

1.5 Limit Speeds

Refer to approved Airplane Flight Manual.

1.6 Centre of Gravity Range

Refer to approved Airplane Flight Manual.
1.7 Maximum Certified Weights

<table>
<thead>
<tr>
<th>VARIANT</th>
<th>000 (Basic)</th>
<th>001 (110476)</th>
<th>002 (110134)</th>
<th>004 (112750)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-97</td>
<td>XWB-97</td>
<td>XWB-97</td>
<td>XWB-97</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>308</td>
<td>311</td>
<td>316</td>
<td>308</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>233</td>
<td>236</td>
<td>236</td>
<td>236</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>220</td>
<td>223</td>
<td>223</td>
<td>223</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIANT</th>
<th>005 (112751)</th>
<th>009 (114124)</th>
<th>010 (114125)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine model</td>
<td>XWB-97</td>
<td>XWB-97</td>
<td>XWB-97</td>
</tr>
<tr>
<td>MTOW (t)</td>
<td>270</td>
<td>290</td>
<td>300</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>236</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>223</td>
<td>220</td>
<td>220</td>
</tr>
</tbody>
</table>

2. Data pertinent to all A350-1000 series

2.1 Description

Two turbo-fan, long range, twin-aisle, large category airplane

2.2 Fuel quantity

<table>
<thead>
<tr>
<th>Tanks</th>
<th>Usable Fuel (l)</th>
<th>Usable Fuel (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing</td>
<td>29,437</td>
<td>23,108</td>
</tr>
<tr>
<td>Center</td>
<td>99,917</td>
<td>78,435</td>
</tr>
<tr>
<td>Total</td>
<td>158,791</td>
<td>124,651</td>
</tr>
</tbody>
</table>

Fuel density is 0.785 kg/l

2.3 Minimum Flight Crew

Two (2): Pilot and Co-pilot

2.4 Minimum Cabin Crew

For the A350-1000, the minimum required cabin crew number established during the aircraft certification process is 8, irrespective of the Maximum Operational Passenger Seating Capacity (MOPSC).

The above minimum cabin crew numbers are those demonstrated by the type certificate holder. A lower number is acceptable in the case of specific cabin layouts if documented in an EASA approved major design change or Supplemental Type Certificate (STC).

In accordance with the operational requirement ORO.CC.100-Number and composition of cabin crew, if the MOPSC for the specific aircraft exceeds 400, the minimum required cabin crew number becomes 9.
2.5 Maximum Operational Passenger Seating Capacity

The maximum number of passengers approved for emergency evacuation is:

- 385 for the basic passenger emergency exit configuration C-A-A-A and A-A-C-A,
- 330 for the optional passenger emergency exit configuration C-A-C-A,

In accordance with the recommendations given in AC 25.807-1, the individual and sequential zone passenger capacities of the presented exit configurations are as follows:

The zonal capacities certified on A350-1000 only are not acceptable for A350-900:

<table>
<thead>
<tr>
<th>A350-1000 only</th>
<th>D1-D4</th>
<th>D1-D2</th>
<th>D2-D3</th>
<th>D3-D4</th>
<th>D1-D3</th>
<th>D4-D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAA</td>
<td>440</td>
<td>110</td>
<td>177</td>
<td>153</td>
<td>287</td>
<td>330</td>
</tr>
<tr>
<td>AAAA</td>
<td>440</td>
<td>110</td>
<td>158</td>
<td>172</td>
<td>268</td>
<td>330</td>
</tr>
<tr>
<td>AAAA</td>
<td>440</td>
<td>110</td>
<td>165</td>
<td>165</td>
<td>275</td>
<td>330</td>
</tr>
<tr>
<td>CAAA</td>
<td>385</td>
<td>55</td>
<td>158</td>
<td>172</td>
<td>213</td>
<td>330</td>
</tr>
<tr>
<td>CAAA</td>
<td>370</td>
<td>40</td>
<td>162</td>
<td>168</td>
<td>202</td>
<td>330</td>
</tr>
<tr>
<td>CACA</td>
<td>330</td>
<td>55</td>
<td>110</td>
<td>165</td>
<td>165</td>
<td>275</td>
</tr>
<tr>
<td>AACA</td>
<td>385</td>
<td>110</td>
<td>110</td>
<td>165</td>
<td>220</td>
<td>275</td>
</tr>
</tbody>
</table>

The zonal capacities certified on A350-900 (ref. Section 1, III, §2.5) are also considered acceptable for A350-1000.
2.6 Cargo compartment loading

<table>
<thead>
<tr>
<th>Cargo compartment</th>
<th>Maximum load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>26,500</td>
</tr>
<tr>
<td>Aft</td>
<td>24,500</td>
</tr>
<tr>
<td>Rear (bulk)</td>
<td>1,500</td>
</tr>
</tbody>
</table>

For the positions and the loading conditions authorized in each position (references of containers, pallets and associated weights), see Weight and Balance Manual Chapter CTL-LIM ref. 00 V 080 A0001 / C1S.

2.7 Environmental Flight Envelope

Maximum operating altitude is 41,450 ft.

Refer to approved Airplane Flight Manual.

2.8 Other Limitations

Refer to approved Airplane Flight Manual.

ALS-ETWF (Items of equipment subject to on-going Extent of Test without Failure), reference 00V207AETWF/C11 issue 5:
This document identifies temporary limitations due to ongoing tests. Since no failure occurred at time of TC this specific document ALS-ETWF contains temporary limitations that will be updated depending on test progress or deleted when tests are successfully completed. In case of failure, the failed item will be assessed for introduction in the ALS Part 4 at its demonstrated life limit.

For each item, the recorded progress of the ongoing test is sufficiently ahead of the anticipated fleet leader, even assuming the maximum utilisation rates provided in the approved MRBR.

2.9 Auxiliary Power Unit (APU)

One APU, Honeywell HGT1700.

Fuel and Oil: Refer to applicable approved Manuals.

2.10 Equipment

The equipment required by the applicable requirements shall be installed.

Cabin seats shall conform to the “Passenger Seat Frame Specification” document ref. 00V252K0005/C01 Issue 1.
2.11 All Weather Capabilities
The aircraft is qualified to Cat 3 precision approach and autoland.

2.12 Wheels and Tyres

<table>
<thead>
<tr>
<th>Gear</th>
<th>Quantity</th>
<th>Wheel size</th>
<th>Tyre size</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLG</td>
<td>2</td>
<td>16”</td>
<td>1050 x 395R16 28PR</td>
</tr>
<tr>
<td>MLG</td>
<td>12</td>
<td>22”</td>
<td>50 x 20.0R22 34PR</td>
</tr>
</tbody>
</table>

2.13 Hydraulics
Fluid specifications: TYPE IV LD and TYPE V LD, as per NSA 307-110, or any mixture of both.

2.14 Electrical Power Center Configuration Data File Tool
An Airline Configuration Tool (EPDS* Tool Suite) is being developed and qualified to allow airlines to manage the Configuration Data Files of Secondary Power Distribution Boxes (SPDB). This tool will be available post A350 Entry Into Service.
IV. OPERATING AND SERVICE INSTRUCTIONS

1. Aircraft Flight Manual

 A350 Aircraft Flight Manual: STL 35000 (certification reference for TC: 00 V 101 A1041 / C1S Issue 3) or later approved revisions.

2. Maintenance Instructions and Airworthiness Limitations

 - Limitations applicable to Safe Life Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 1 [1],
 - Limitations applicable to Damage-Tolerant Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 2 [1],
 - Certification Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 3 [1],
 - System Equipment Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 4 [1],
 - Fuel System Airworthiness Limitations are provided in the A350 Airworthiness Limitations Section (ALS) Part 5 [1],
 - Maintenance Review Board Report 00 V 050 AMRBR / C01 issue 2.

 Except if documented in Aircraft documentation (Maintenance Procedures, Structural Repair Instructions, Electrical Standard Practices, Service Bulletins), all elements that are part of the Electrical Structure Network (ESN) shall not be modified, removed or repaired without agreement of Airbus.

 Note [1]: Initial Revision and subsequent Variations (that may be compiled in a Revision) are approved under the EASA system. The applicable Airworthiness Limitation Section of the ICA is available on the AirbusWorld website.

3. ETOPS

 The Type Design, system reliability and performance of the following A350 model(s) were found capable for Extended Range Operations (ETOPS) when configured, maintained and operated in accordance with the current revision of the ETOPS Configuration, Maintenance and Procedures (CMP) document, XWB/EASA: CS 25.1535/CMP.

 This finding does not constitute an approval to conduct Extended Range Operations (operational approval must be obtained from the responsible Authority).
The following table provides details on the ETOPS approvals.

<table>
<thead>
<tr>
<th>Model</th>
<th>Engine Type</th>
<th>120 min. Approval date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A350-1041</td>
<td>Trent XWB-97</td>
<td>06 February 2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Engine Type</th>
<th>180 min. Approval date</th>
<th>Beyond 180 min. Approval date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A350-1041</td>
<td>Trent XWB-97</td>
<td>19 June 2018</td>
<td>06 July 2018</td>
</tr>
</tbody>
</table>

V. OPERATIONAL SUITABILITY DATA (OSD)

The Operational Suitability Data elements listed below are approved by the European Aviation Safety Agency under the EASA Type Certificate [original TC number] as per Commission Regulation (EU) 748/2012 as amended by Commission Regulation (EU) No 69/2014.

1. Master Minimum Equipment List
 a. The Master Minimum Equipment List has been approved as per the defined Operational Suitability Data Certification Basis and as documented in A350 MMEL (reference: STL 35100), first revision at Type Certification date, or later applicable revision.
 b. Required for entry into service by EU operator.

2. Flight Crew Data
 a. The Flight Crew data has been approved as per the defined Operational Suitability Data Certification Basis and as documented in “Operational Suitability Data – Flight Crew – A330/A350 (ref: A330 350 FCDR update for A350-1000_V00RP1731843_v1.0, dated 13 October 2017), or later approved revisions.
 b. Required for entry into service by EU operator.
 c. Pilot Type Rating: The licence endorsement for the A350-900 and A350-1000 series aircraft is “A330/A350”. The A350-900, the A350-1000 and the A330 series aircraft are variants of the same type of aircraft.

3. Cabin Crew Data
 a. The Cabin Crew data has been approved as per the defined Operational Suitability Data Certification Basis and as documented in “A350 Operational Suitability Data Cabin Crew, Issue 2 (Ref: Airbus V01RP1519368 dated 17 May 2017)”, or later approved revisions.
 b. Required for entry into service by EU operator.
 c. The A350-1000 model is determined to be the same aircraft type as the A350-900 model. The A350-900/-1000 model(s) are determined to be variants to the A330-200/-300 aircraft model(s).
ADMINISTRATIVE SECTION

VI. ACRONYMS AND ABBREVIATIONS

AFM Aircraft Flight Manual
ALS Airworthiness Limitations Section
APU Auxiliary Power Unit
AWO All Weather Operations
CFRP Carbon Fiber Reinforced Plastic
EASA European Aviation Safety Agency
ESF Equivalent Safety Finding
ETOPS Extended Range Operation with Two-Engine Aeroplanes
HIRF High Intensity Radiated Field
P/N Part Number
RR Rolls Royce
SC Special Condition
TC Type Certification
TCDS Type Certificate Data Sheet
XWB Extra Wide Body

VII. CHANGE RECORD

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>30 September 2014</td>
<td>Initial Issue for TC</td>
</tr>
<tr>
<td>02</td>
<td>14 October 2014</td>
<td>Approval of ETOPS 180 min and beyond 180 min</td>
</tr>
<tr>
<td>03</td>
<td>09 January 2015</td>
<td>- Part II – Paragraph 2.1;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part III – Paragraph 1.1 ; Part III – Paragraph 2.10 ;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part III – Paragraph 2.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part IV – Paragraph 1 ; Part IV – Paragraph 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part V – Paragraph 1</td>
</tr>
<tr>
<td>04</td>
<td>31 August 2015</td>
<td>- Part II – Paragraph 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part III – Paragraph 1.7, Paragraph 2.2, Paragraph 2.4 (new)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part V – Paragraph 1, Paragraph 2, Paragraph 3;</td>
</tr>
<tr>
<td>05</td>
<td>22 February 2016</td>
<td>- Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>06</td>
<td>18 May 2016</td>
<td>- Part II – Paragraph 2.1</td>
</tr>
<tr>
<td>07</td>
<td>24 October 2016</td>
<td>- Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>08</td>
<td>08 December 2016</td>
<td>- Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>09</td>
<td>30 June 2017</td>
<td>- Part II – Paragraph 2.1, Paragraph 6;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>10</td>
<td>21 November 2017</td>
<td>- Section 1, Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>11</td>
<td>21 December 2017</td>
<td>- Section 2, Part III – Paragraph 1.7</td>
</tr>
<tr>
<td>Change No.</td>
<td>Date</td>
<td>Changes Note</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>29 May 2018</td>
<td>- Section 2, Part IV – Paragraph 2</td>
</tr>
<tr>
<td>13</td>
<td>27 June 2018</td>
<td>- Section 1. Part II – Paragraph 2.1, SC D-45 added</td>
</tr>
<tr>
<td>14</td>
<td>09 July 2018</td>
<td>- Section 2, Part IV – Paragraph 3, ETOPS beyond 180min added</td>
</tr>
<tr>
<td>15</td>
<td>26 September 2018</td>
<td>- Section 1, Part II – Paragraph 2.1, SCs D-42 and D-44 added</td>
</tr>
<tr>
<td>16</td>
<td>12 March 2019</td>
<td>- Section 1, Part II – Paragraph 1, CS 25.851(a)(c) amdt 17 added for halon free handheld fire extinguishers</td>
</tr>
<tr>
<td>17</td>
<td>03 April 2019</td>
<td>- Section 1, Part III – Paragraph 1.2, wording correction</td>
</tr>
<tr>
<td>18</td>
<td>15 May 2018</td>
<td>- Section 1, Part II – Paragraph 2, SC F-GEN-01 added</td>
</tr>
<tr>
<td>Issue</td>
<td>Date</td>
<td>Changes</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>02 July 2019</td>
<td>- Section 1, Part III – Paragraph 1.7, engine rating and WV 023 added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Section 2, Part III – Paragraph 1.7, WV 005, 009, 010 added</td>
</tr>
<tr>
<td>20</td>
<td>09 Aug. 2019</td>
<td>- Section 1, Part II – Paragraph 2, SC D-43 added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Section 1, Part III – Paragraph 1.7, WV 019 and clarification * for WV 013 added</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Section 2, Part II – Paragraph 2, SC D-43 added</td>
</tr>
</tbody>
</table>