2-6. Lightning/High Intensity Radiated Field (L/HIRF) Analysis Procedure

Lightning/High Intensity Radiated Field (L/HIRF) protection systems have been identified for development of dedicated maintenance. The intent of this maintenance is to reduce the possibility that a single failure cause (such as a lightning strike), and the occurrence of a common failure cause (such as ED or AD) across redundant channels of L/HIRF protection, could impact aircraft airworthiness.

This section contains guidelines for development of scheduled maintenance tasks for aircraft L/HIRF Protection Systems. Each L/HIRF Protective System item is evaluated in terms of its susceptibility to degradation from environmental deterioration and/or accidental damage. The L/HIRF maintenance tasks are developed in support of the aircraft type certification and MRB report development.

Using a logic type analysis based on the consequences of the protection’s failure, the Working Group determines the type of scheduled maintenance task that is both applicable and effective along with the frequency (interval) of the task.

L/HIRF maintenance relies on adequate protection provided by both external and internal L/HIRF protection components.

1. **Internal Line Replaceable Unit (LRU) L/HIRF Protection Components**

 L/HIRF protection features are incorporated inside the LRU. Protection devices such as filter pin connectors, discrete filter capacitors and transient protection devices (tranzorbs) are installed within LRUs on one or more of the LRU interface circuits.

 In lieu of application of MSG-3 logic, for LRUs whose failure could have an adverse effect on safety, the aircraft manufacturer will work with the LRU manufacturer to confirm that the LRU manufacturer’s maintenance philosophy will ensure the continued effectiveness of L/HIRF protective features. This maintenance philosophy could include specific LRU CMM procedures or other data acceptable to regulatory authorities to conclude that the L/HIRF protection devices continue to perform their intended functions.

2. **External On Aircraft L/HIRF Protection Components**

 All L/HIRF protection on the aircraft (any protection not within an LRU) that was identified during L/HIRF certification as having an adverse effect on safety must be analyzed. Normally this includes items such as shielded wires, raceways, bonding jumpers, connectors, composite fairings with conductive mesh, and the inherent conductivity of the structure, but may include aircraft specific devices, e.g., RF Gaskets.
2-6-1. L/HIRF Maintenance

L/HIRF maintenance analysis process shall select applicable and effective tasks for L/HIRF protection components that are susceptible to ED/AD. Where no dedicated maintenance is identified within the L/HIRF maintenance process, the Zonal tasks may be used to adequately maintain L/HIRF protection.

1. L/HIRF Protection Analysis Concepts

In cases where no dedicated L/HIRF tasks have been selected, the following concepts are accepted:

1. All visible L/HIRF protection (wires, shields, connectors, bonding straps, or raceways between connectors or termination points) is included in Zonal Inspections.

2. L/HIRF protection within conduit or heatshrink, is covered in the Zonal Inspections by confirming integrity of the protective covering.

3. Maintenance of the inherent conductivity of the aircraft metallic structure is covered by the Zonal Inspections. Corrosion concerns are addressed by the Structural Inspections.

4. Composite fairings with conductive mesh are covered by the Zonal Inspections.

5. Common mode degradation in a localized area is considered in the analysis process.

2. L/HIRF Protection Analysis Ratings

L/HIRF protection requires an analysis for the effects of Environmental Deterioration (ED) and Accidental Damage (AD) to determine the likelihood of component degradation based on the environment in which the component is installed.

Environment - consider the effects of the atmosphere, corrosive products, condensation, temperature, and vibration on the protection, with respect to degradation.

Susceptibility to Damage - consider the likelihood of damage during maintenance or damage during operations. Examples would be areas where connectors could be stepped on, or effects of de-icing fluid on a connector during winter operations.

3. L/HIRF Protection Analysis Process and Flowchart (see Figure 2-6-1.3)

1) Provide a description of the L/HIRF protection systems and assemble a list of L/HIRF protection components by zone whose failure could have an adverse effect on safety. Protection within a given zone should include both electrical and non-electrical protection components. Create a matrix that lists the location of each component within the zone. Examples of electrical components include: Wire shielding, pigtail terminations, backshells, bonding straps, etc. Examples of non-electrical components include: metallic meshes, raceways, conductive gaskets, conductive coatings, structure and substructure, etc.

2) Provide the component characteristics and applicable performance data (if available) for each protection component within a zone. Protection component characteristics are properties that are relied upon to provide L/HIRF protection such as resistance to corrosion, effects of environment and robustness of design. Examples of applicable performance data include: developmental data, qualification test data, in service data etc.

3) Identify potential degradation of the characteristics for protection components within the zone. Describe the zone environment. This should include considerations of surrounding
(adjacent/above/below) zones that may have an impact on the zone environment. Define each protection component degradation and applicable test data, if available, that identified the degradation. Also include any in-service experience that may have been accumulated from similar protection components currently in-service for each degradation type. In-service includes data gathered during maintenance or performance validation tests. Details associated with the level of degradation and types of degradation are also included in this step in order to benchmark expected in-service performance. (Note: An engineering validation program may be utilized to gather in-service data for maintenance programs and validating the design. Results of such an in-service validation program may be provided as part of updates to the MSG-3 analysis and maintenance program. This data can be analyzed, evaluated, and interpreted by the OEM engineering team for use in determining protection improvements and/or maintenance program adjustments.)

4) Are characteristics of the protection components susceptible (i.e., particularly sensitive) to Environmental Deterioration and Accidental Damage (ED/AD)? A process will be developed and utilized by the working group to determine a rating of the susceptibility of the protection components to ED/AD.

5) No dedicated L/HIRF maintenance task selected.

6) Will the failure condition due to the expected degradation (including common mode in localized area) in combination with an L/HIRF event prevent the continued safe flight and landing of the aircraft?

7) Select applicable and effective L/HIRF maintenance task and interval to detect degradation. Using best judgment and available information, the task and assigned interval must reduce the risk of failure to assure safe operation.

8) Was a task identified? (self-explanatory)

9) Is the task a GVI? (self-explanatory)

10) Is the selected task appropriate for transfer to the Zonal Inspection Program? Determination of appropriateness uses interval, access, visibility or other means. Refer to Zonal Analysis Procedures section of the MSG-3 document.

11) Zonal Inspection Candidate. (self-explanatory)

12) Dedicated L/HIRF maintenance task. This task is listed as part of the L/HIRF maintenance program.

13) Redesign is mandatory. In cases where applicable and effective maintenance cannot be selected to identify the degradation event during a maintenance action, redesign is required.

14) Select applicable and effective L/HIRF maintenance task and interval to detect degradation. Using best judgment and available information, the task and assigned interval must reduce the risk of failure to assure safe operation.

15) Was a task identified? (self-explanatory)

16) Dedicated L/HIRF maintenance task. This task is listed as part of the L/HIRF maintenance program.
Figure 2-6-1.3. L/HIRF Process Flowchart

1. Provide a description of the Lightning/HIRF protection systems and assemble a list of Lightning/HIRF protection components by zone whose failure could have an adverse effect on safety.

2. Provide the component characteristics and applicable performance data, if available, for each protection component within a zone.

3. Identify potential degradation of the characteristics for protection components within the zone.

4. Are characteristics of the protection components susceptible to ED/AD?
 - NO: No dedicated Lightning/HIRF maintenance task selected.
 - YES: Select applicable and effective Lightning/HIRF maintenance task and interval.

5. Will the failure condition due to the expected degradation in combination with a Lightning/HIRF event prevent the continued safe flight and landing of the aircraft?
 - NO: Select applicable and effective Lightning/HIRF maintenance task and interval.
 - YES: Select applicable and effective Lightning/HIRF maintenance task and interval.

6. Select applicable and effective Lightning/HIRF maintenance task and interval.

7. Was a task identified?
 - NO: Select applicable and effective Lightning/HIRF maintenance task and interval.
 - YES: Was the task a GVI?

8. Was the task a GVI?
 - NO: Select applicable and effective Lightning/HIRF maintenance task and interval.
 - YES: Was the selected task appropriate for transfer to the Zonal Inspection Program?

9. Was the selected task appropriate for transfer to the Zonal Inspection Program?
 - NO: Select applicable and effective Lightning/HIRF maintenance task and interval.
 - YES: Zonal Inspection Candidate.

10. Redesign is mandatory.

11. Dedicated Lightning/HIRF maintenance task.

12. Dedicated Lightning/HIRF maintenance task.

13. Dedicated Lightning/HIRF maintenance task.
4. Analysis Approval

Once the analysis is completed, the resulting maintenance tasks and intervals for all L/HIRF systems are submitted to the ISC for approval and inclusion in the MRB Report proposal.

(Move into Glossary)

L/HIRF Protection Systems - Systems comprised of components that avoid, eliminate, or reduce the consequences of an L/HIRF event.

L/HIRF Protection Component - any self-contained part, combination of parts, subassemblies, units, or structures that perform a distinctive function necessary to provide L/HIRF protection.

L/HIRF Characteristics - those properties of L/HIRF protection components that are necessary to perform their intended L/HIRF protection function(s).