Easy Access Rules for Cabin Crew Data
(CS-CCD)

EASA eRules: aviation rules for the 21st century

Rules and regulations are the core of the European Union civil aviation system. The aim of the EASA eRules project is to make them accessible in an efficient and reliable way to stakeholders.

EASA eRules will be a comprehensive, single system for the drafting, sharing and storing of rules. It will be the single source for all aviation safety rules applicable to European airspace users. It will offer easy (online) access to all rules and regulations as well as new and innovative applications such as rulemaking process automation, stakeholder consultation, cross-referencing, and comparison with ICAO and third countries’ standards.

To achieve these ambitious objectives, the EASA eRules project is structured in ten modules to cover all aviation rules and innovative functionalities.

The EASA eRules system is developed and implemented in close cooperation with Member States and aviation industry to ensure that all its capabilities are relevant and effective.

Published February 2018¹

¹ The published date represents the date when the consolidated version of the document was generated.
DISCLAIMER

This version is issued by the European Aviation Safety Agency (EASA) in order to provide its stakeholders with an updated and easy-to-read publication. It has been prepared by putting together the certification specifications with the related guidance material. However, this is not an official publication and EASA accepts no liability for damage of any kind resulting from the risks inherent in the use of this document.
NOTE FROM THE EDITOR

The content of this document is arranged as follows: the certification specifications (CS) are followed by the related guidance material (GM) paragraph(s).

All elements (i.e. CS and GM) are colour-coded and can be identified according to the illustration below. The EASA Executive Director (ED) decision through which the point or paragraph was introduced or last amended is indicated below the paragraph title(s) in italics.

<table>
<thead>
<tr>
<th>Certification specification</th>
<th>ED decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance material</td>
<td>ED decision</td>
</tr>
</tbody>
</table>

The format of this document has been adjusted to make it user-friendly and for reference purposes. Any comments should be sent to erules@easa.europa.eu.
INCORPORATED AMENDMENTS

CS/GM (ED DECISIONS)

<table>
<thead>
<tr>
<th>Incorporated ED Decision</th>
<th>CS/AMC Issue No, Amendment No</th>
<th>Applicability date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED Decision 2014/006/R</td>
<td>CS-CCD/ Initial issue</td>
<td>31/1/2014</td>
</tr>
</tbody>
</table>

Note: To access the official versions, please click on the hyperlinks provided above.
TABLE OF CONTENTS

Disclaimer ... 3
Note from the editor .. 4
Incorporated amendments ... 5
Table of contents .. 6

SUBPART A — GENERAL ... 7
 CS CCD.050 Scope.. 7
 CS CCD.100 Applicability .. 7
 CS CCD.105 Definitions .. 7
 CS CCD.110 OSD box concept – status of provided data 7
 GM1 CCD.110 OSD box concept – status of provided data 8

SUBPART B — DETERMINATION OF A NEW TYPE AND A VARIANT........ 10
 CS CCD.200 Determination process .. 10
 Appendix 1 to CS CCD.200(b)(1) Aircraft difference table 10
 GM1 to Appendix 1 to CS CCD.200(b)(1) Aircraft difference table 16
 GM2 to Appendix 1 to CS CCD.200(b)(1) Aircraft difference table 16
 GM3 to Appendix 1 to CS CCD.200(b)(1) Aircraft difference table 16
 CS CCD.205 Determination elements .. 17
 GM1 CCD.205(b)(2)(vi) Determination elements .. 17
 GM1 CCD.205(b)(4) Determination elements .. 18
 CS CCD.210 Determination of a new type ... 18
 CS CCD.215 Determination of a variant .. 18

SUBPART C — TYPE SPECIFIC DATA FOR CABIN CREW 19
 CS CCD.300 Data required from the applicant .. 19
 CS CCD.305 Supplementary data provided at request of the applicant 19
 CS CCD.310 Type specific data content ... 19
 Appendix 1 to CS CCD.310 Type specific data content 20
 GM1 to Appendix 1 to CS CCD.310 Type specific data content 25

SUBPART D — CABIN ASPECTS OF SPECIAL EMPHASIS 26
 CS CCD.400 Cabin aspects of special emphasis .. 26
CS CCD.050 Scope

These Certification Specifications for Cabin Crew Data (CS-CCD) establish the specifications for the applicant for a type certificate, change approval or supplemental type certificate to develop and provide:

(a) data for the determination process of a new type or variant for cabin crew; and
(b) type specific data for cabin crew.

CS CCD.100 Applicability

These Certification Specifications are applicable to:

(a) aircraft with a passenger seating capacity of more than 19 seats;
(b) aircraft with a passenger seating capacity of 19 seats or less required to carry cabin crew; and
(c) any other aircraft with a passenger seating capacity of 19 seats or less if voluntarily elected by the applicant.

CS CCD.105 Definitions

Within the scope of these Certification Specifications, the following definitions apply:

(a) Applicant means an applicant for, or a holder of, a type certificate (TC), change approval or supplemental type certificate (STC), applying for the approval by the Agency of the related operational suitability data (OSD) for cabin crew.
(b) Base aircraft means an aircraft used as a reference to compare differences with another aircraft.
(c) Candidate aircraft means an aircraft subject to the evaluation process.
(d) New type means an aircraft different from the base aircraft requiring completion of aircraft type specific training.
(e) Passenger deck means a deck where passenger seats or cabin doors/exits or both are installed.
(f) Passenger seating capacity means the passenger seating capacity of the aircraft that is subject to initial TC process as specified in the relevant type certification data sheet or the maximum passenger seating configuration of an individually configured aircraft.
(g) End user means an operator or training organisation approved by the competent authority to provide training courses for cabin crew.
(h) Type specific data means all design related data relevant to new type(s) or variant(s).
(i) Variant means an aircraft that has differences to the base aircraft requiring completion of differences training.
CS CCD.110 OSD box concept – status of provided data

CS-CCD specifies data required from the applicant and data provided at the request of the applicant. Data provided by the applicant is presented as mandatory or non-mandatory (recommendations) for the end user.

(a) Data required from the applicant and mandatory for the end user (Box 1):

- CS CCD.200
- CS CCD.205
- CS CCD.210

 Appendix 1 to CS CCD.200(b)(1) including Impact assessment (a)

- CS CCD.300
- CS CCD.310

 Appendix 1 to CS CCD.310

- CS CCD.400

(b) Data required from the applicant and non-mandatory (recommendations) for the end user (Box 2):

- CS CCD.215
- CS CCD.400

(c) Data at request of the applicant and mandatory for the end user (Box 3):

 Appendix 1 to CS CCD.200(b)(1) Impact assessment (b)

 CS CCD.305(a)

(d) Data at request of the applicant and non-mandatory (recommendations) for the end user (Box 4):

 CS CCD.305(b)
GM1 CCD.110 OSD box concept – status of provided data

OSD BOX CONCEPT DIAGRAM

Box 1: required from the applicant; mandatory for end users
Box 2: required from the applicant; non-mandatory (recommendations) for end users
Box 3: at request of the applicant; mandatory for end users
Box 4: at request of the applicant; non-mandatory (recommendations) for end users
SUBPART B — DETERMINATION OF A NEW TYPE AND A VARIANT

CS CCD.200 Determination process

The candidate aircraft is determined as a new type or a variant of the base aircraft following the determination process conducted by the Agency. For this purpose the applicant:

(a) identifies differences by comparing the type specific elements specified in CS CCD.205; and

(b) completes an aircraft difference table using:

(1) the form specified in Appendix 1 to CS CCD.200(b)(1); or

(2) the applicant’s form provided it contains the elements specified in Appendix 1 to CS CCD.200(b)(1) as applicable to the candidate aircraft, and the form is acceptable to the Agency.

Appendix 1 to CS CCD.200(b)(1) Aircraft difference table

For the purpose of filling in the aircraft difference table, the applicant selects the base and the candidate aircraft.

The aircraft difference table complies with the following format, or equivalent in accordance with CS CCD.200(b)(2).
Aircraft difference table

Base aircraft

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Existing difference from base aircraft</th>
<th>Description of identified differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Candidate aircraft

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Existing difference from base aircraft</th>
<th>Description of identified differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

| Impact assessment |
|-------------------|--|
| (a) | (b) |
| 1. Impact on description of the element | 1. Potential impact on procedures |
| 2. Impact on operation of the element | 2. Combined impact on operation of the element and potentially on procedures |

AIRCRAFT CONFIGURATION

- Single aisle
- Multi aisle
- Narrow-bodied
- Wide-bodied
- Single passenger deck
- Multi passenger deck

DOORS AND EXITS

- Type(s)
- Number
- Location
- Features (e.g. door/exit assist handles)
- Controls (e.g. door/exit locking indicators)
- Electrical operation and malfunction
- Direction of movement of the operating handle
- Direction of door/exit opening
- Door/exit arming/disarming
SUBPART B — DETERMINATION OF A NEW TYPE AND A VARIANT

Aircraft difference table

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Existing difference from base aircraft</th>
<th>Description of identified differences</th>
<th>Impact assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>Power assist mechanism and malfunction</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Door/exit electrical warning system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation from inside in normal mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation from inside in emergency mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation from outside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral stair</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assisting evacuation means

- Type, number and location of units (e.g. escape slide/slide raft/ramp slide)
- Type and number of additional floatation means (e.g. life raft)
- Single/multi-lane units
- Life lines
- Operation (automatic/manual/electrical) and inflation time
- Slide girt bar engagement (manual/automatic)
- Signalling means of slide readiness (e.g. stop sign/barber pole)
- Capacity and overload
Aircraft difference table

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Existing difference from base aircraft</th>
<th>Description of identified differences</th>
<th>Impact assessment</th>
<th>Impact on description of the element</th>
<th>Impact on operation of the element</th>
<th>Potential impact on procedures</th>
<th>Combined impact on operation of the element and potentially on procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detaching and separating from aircraft</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slide/life raft survival kit (integral/separate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibility to transfer slide/raft to another door/exit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency signalling system (e.g. attached ELT; built-in radio locator beacon (RLB)) and activation on land/in water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AIRCRAFT SYSTEMS

(a) emergency lighting system:
- Controls
- Interior emergency lighting
- Exterior emergency lighting

(b) evacuation alarm signal system:
- Availability of activation/indication panel (flight crew/cabin compartment)
- Alert indications

(c) smoke detection system:
- Function
- Alert indications (aural/visual)
Aircraft difference table

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Base aircraft</th>
<th>Candidate aircraft</th>
<th>Impact assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Existing difference from base aircraft</td>
<td>Description of identified differences</td>
<td>Impact on description of the element</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td>Availability of smoke barrier</td>
<td></td>
<td></td>
<td>1. Impact on description of the element</td>
</tr>
<tr>
<td>(d) automatic fire extinguishing system:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function of built-in fire extinguishing system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) drop-down oxygen system:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type (e.g. gaseous, chemical)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indications associated with activation of oxygen system (changes of cabin altitude);</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) communication system:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of handset unit(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibility of interphone calls in normal and emergency circumstances between cabin and flight crew compartment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability of aural/visual indications associated with interphone calls in normal and emergency circumstances</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signalling panels associated with communication system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) public address system:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aircraft difference table

<table>
<thead>
<tr>
<th>Determination elements</th>
<th>Existing difference from base aircraft</th>
<th>Description of identified differences</th>
<th>Impact assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>(a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Impact on description of the element</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Impact on operation of the element</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. Potential impact on procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Combined impact on operation of the element and potentially on procedures</td>
<td></td>
</tr>
</tbody>
</table>

- **Location of microphone unit when independent from handset unit**

- **Priority order of public announcement system** (flight crew handset/SCCM handset/any other cabin crew handset/evacuation signal alarm)

- **(h) control panels:**
 - Cabin crew panel(s) - controls related to evacuation, lavatory smoke, emergency lights

- **(i) water system:**
 - Availability of manual water shut-off valve

- **(j) other systems as applicable:**

NORMAL AND EMERGENCY OPERATIONS

Design-related element(s) impacting on either normal operations or on emergency operations or on both normal and emergency operations relevant to the aircraft type
INSTRUCTIONS
The ADT may be used by the applicant to include, in addition to the listed elements, a detailed list of differences between the base and the candidate aircraft. For the purpose of filling in the aircraft difference table to identify differences between the base and the candidate aircraft, the following instructions should apply:

1. Differences to any of the specified determination elements should be identified in column ‘Existing differences from the base aircraft’;
2. Identified differences should be described in column ‘Description of identified differences’;
3. The corresponding sub-column(s) should be marked in the part ‘Impact assessment’, as relevant to the assessed element.

IMPACT ASSESSMENT (a)
Part ‘Impact assessment (a)’ represents required provision from the applicant and mandatory application by the end user.

1. Column ‘Impact on description of the element’ should be marked when there is an identified difference and the information of the identified difference needs to be provided to the user (cabin crew), e.g. location of manual water shut-off valve, location of emergency lighting control button on cabin management system panel. The column implies a knowledge requirement.
2. Column ‘Impact on operation of the element’ should be marked if the identified difference affects the operation of the element, e.g. power assist mechanism on door/exit, detaching and separating slide raft from the aircraft, installation of canopy, controls related to evacuation, smoke, emergency lights on cabin crew control panel. The column implies knowledge and hands-on training requirement.

IMPACT ASSESSMENT (b)
Part ‘Impact assessment (b)’ represents provision at request of the applicant and mandatory application by the end user. The applicant may elect to provide the information to support the operator in identifying those areas which may require a review of procedures by the operator in relation to the identified difference.

1. Column ‘Potential impact on procedures’ should be marked to indicate that operators, in relation to the identified difference, may need to assess if their procedures need to be amended, or new procedures be developed, e.g. built-in fire extinguishing system, evacuation alarm alert indications, capacity and overload of slide raft. Identification implies knowledge requirement attained by aided instruction.
2. Column ‘Combined impact on operation of the element and potentially on procedures’ should be marked to indicate that the identified difference affects the operation of the element and may require the operators to assess if their procedures need to be amended or new procedures
be developed, e.g. function of smoke detection system, door/exit electrical warning system, communication system. Identification implies knowledge requirement attained by aided instruction and hands-on training.

CS CCD.205 Determination elements

(a) At least the following type specific elements, as specified in [Appendix 1 to CS CCD.200][1](b)(1) are assessed to determine whether a candidate aircraft is a new type or a variant of the base aircraft:

1. aircraft configuration;
2. doors and exits;
3. aircraft systems; and
4. normal and emergency operations.

(b) When identifying differences of the elements specified in (a), the applicant assesses the following:

1. aircraft configuration:

 (i) number of aisles - single/multi; narrow/wide-bodied; and

 (ii) number of passenger decks;

2. doors and exits:

 (i) number, types and location;

 (ii) direction of movement of the operating handle;

 (iii) direction of door/exit opening;

 (iv) door/exit arming/disarming;

 (v) power assist mechanism;

 (vi) assisting evacuation means; and

 (vii) door/exit electrical warning system;

3. aircraft systems:

 (i) system operation (i.e. system function, method of operation, malfunction, reset, duration); and

 (ii) location;

4. in normal and emergency operations, any design-related element that would impact either on normal operations or on emergency operations or on both normal and emergency operations.

GM1 CCD.205(b)(2)(vi) Determination elements

ASSISTING EVACUATION MEANS

Assisting evacuation means include, but are not limited to, escape slide, slide raft, ramp slide, life raft, life lines, signalling means of slide readiness, e.g. barber pole or stop sign.
GM1 CCD.205(b)(4) Determination elements

NORMAL AND EMERGENCY OPERATIONS

Design related elements that could impact either on normal operations or on emergency operations or on both normal and emergency operations include, but are not limited to, cabin interior stairs, smoke barrier, e.g. smoke curtain.

CS CCD.210 Determination of a new type

(a) The candidate aircraft is determined a new type:

 (1) if so documented in the application and demonstrated to the Agency; or
 (2) as a result of the determination process required by CS CCD.200.

(b) The candidate aircraft is determined a new type if the type specific elements of CS CCD.205(b)(1) and (b)(2) are different to the base aircraft.

(c) The following need not be a factor in determining the candidate aircraft as a new type unless as specified in (d):

 (1) one additional pair of doors/exits of the same type and operation as any type installed on the base aircraft; or
 (2) doors/exits that are de-rated; or
 (3) self-help exit types as defined by CS-25.

(d) If no differences are identified in the type specific elements of CS CCD.205(b)(1) and (b)(2), but differences are identified in the type specific elements of CS CCD.205(b)(3) or (b)(4) or in both and are combined with one or more of the differences specified in (c), the impact of those differences is assessed and determination of the candidate aircraft as a new type is considered.

(e) When identifying differences in accordance with CS CCD.205(b)(2)(i), if the number, location and operation of doors/exits is the same but the type of installed door/exit is different to the base aircraft, the candidate aircraft need not be determined as a new type.

(f) If differences are identified in CS CCD.205(b)(3) only, the candidate aircraft need not be determined as a new type.

CS CCD.215 Determination of a variant

(a) The candidate aircraft that has not been determined as a new type is determined a variant of the base aircraft.

(b) Existing differences and their assessed impact are compiled in the aircraft difference table in accordance with CS CCD.200(b)(1), or using the applicant’s standard form in accordance with CS CCD.200(b)(2), to support the development of the differences training by end user(s).
SUBPART C — TYPE SPECIFIC DATA FOR CABIN CREW

CS CCD.300 Data required from the applicant

(a) The applicant includes the following in the type specific data for cabin crew:

(1) all necessary data in accordance with CS CCD.310 to support the development of type specific training programme(s); and

(2) all necessary data in accordance with CS CCD.205 to support the development of differences training programmes.

CS CCD.305 Supplementary data provided at request of the applicant

In addition to CS CCD.300, the applicant may elect to provide supplementary data to support the development of relevant training programme(s) by end user(s), such as:

(a) data which can include, but is not limited to, additional equipment and components, when supplied by the applicant:

(1) portable safety and emergency equipment;

(2) passenger seat (seatbelt; seat operation; passenger control unit (PCU); body support floatation equipment where relevant);

(3) overhead stowage compartment (direction of opening/closing; weight limit);

(4) galley components (steam/microwave oven; bakery warmer; freezer; supplemental cooling system; hot beverage brewers/steamers; trash compactor);

(5) layout/description and use of installed galley compartments/components;

(b) data used on a non-mandatory (recommendations) basis by end user(s), such as information that may be based on the training provided to cabin crew members participating in the emergency evacuation demonstration required by CS 25.803:

(1) theoretical and practical modules for training programmes;

(2) delivery methods of the relevant training elements;

(3) duration of training to ensure the attainment of required knowledge and skills.

CS CCD.310 Type specific data content

The applicant includes in the type specific data for cabin crew at least the following elements in accordance with Appendix 1 to CS CCD.310, as applicable:

(a) aircraft description, including:

(1) general;

(2) flight crew compartment;

(3) cabin compartment; and
Appendix 1 to CS CCD.310 Type specific data content

Type specific data content

The type specific data for cabin crew include the following, as relevant to the candidate aircraft:

Aircraft description

General

(a) type of aircraft – narrow/wide-bodied; single/multi passenger deck;
(b) range of operation and maximum operating altitude;
(c) principal dimensions (length; height; width; wing span);
(d) main characteristics (engines; landing gear; fuel tanks; flight controls; speed; maximum take-off weight);
(e) engine danger area;
(f) general information (air conditioning; pressurisation system; electrical power; auxiliary power unit (APU); slats; flaps);
(g) location of cargo compartments and un-pressurised areas;
(h) entrances and emergency exits (entrance and service doors; emergency exits; flight crew compartment window; flight crew compartment emergency hatch; avionics compartment);
(i) passenger seating capacity (as determined during the relevant TC, change to TC or STC process);
(j) required number of flight crew, number and location of cabin crew stations (required and additional);
(k) aircraft crash estimated attitudes (e.g. nose or main landing gear retracted; afloat following a ditching).

Flight crew compartment

(a) layout - number and type of installed seats (e.g. column mounted; comfort seat; folding seat);
(b) description and operation of installed seat type (electrical/ manual; vertical/horizontal/recline/rotating movement; restraint system, i.e. seat belt/crotch strap/shoulder harness and locking mechanism);
(c) oxygen system (stowage; type and description of mask; smoke goggles; N/100 % and Emergency pressure selector; operation);
(d) flight crew compartment door and its monitoring system:
 (1) door type (e.g. intrusion/penetration resistant);
 (2) door components (e.g. locking latches; mortise lock; escape/decompression panel; viewing lens);
 (3) door access control panel (in the case of installed security bullet proof door);
 (4) door operation – normal/emergency access;
 (5) means of monitoring (viewing lens; CCTV system);
(e) exits and escape routes (primary/secondary; sliding window; emergency exit hatch; door escape panel) and escape devices (escape rope; inertia reels);

(f) avionics compartment (location; purpose; operation of avionics access hatch; access from inside/outside).

Cabin compartment

(a) layout:
 (1) number and type of installed crew seats (e.g. swivel/high-comfort/folding seat);
 (2) description and operation of installed crew seats (restraint system, i.e. seat belt/shoulder harness; quick release buckle; shoulder harness inertial mechanism);

(b) doors and exits - entrance/service doors/emergency exits:
 (1) type(s) and number of door(s)/exit(s)/location/sill height;
 (2) description of features/controls/operation – manual/electrical and malfunction;
 (3) operation from inside in normal/emergency modes;
 (4) operation from outside;
 (5) arm/disarm system;
 (6) power assist system and malfunction;
 (7) integral stair;
 (8) crew assist space;
 (9) life lines;
 (10) access door/opening port to cargo compartment from cabin compartment;
 (11) critical surfaces on aircraft wings requiring ‘no step’ precautions;
 (12) water level door clearance;

(c) escape slide/slide raft/ramp slide/life raft:
 (1) location and stowage;
 (2) type and number of units (single/multi lane; single/multi buoyancy chamber/length and width);
 (3) description and operation;
 (4) slide arm/disarm;
 (5) deployment and duration (automatic/manual);
 (6) signalling means of slide readiness (e.g. stop sign/barber pole);
 (7) capacity and overload;
 (8) detaching and separating from aircraft;
 (9) canopy installation;
 (10) limitation/operation of inverted slide/life raft;
 (11) slide/life raft equipment (description/operation/use);
 (12) attached survival kit (location/content/operation);
(13) malfunction (transfer of slide/raft to another door; use as a hand held chute);
(14) emergency signalling system (e.g. attached ELT, built-in radio locator beacon (RLB) – operation on land/in water);

(d) crew rest compartment:
 (1) location(s) and layout;
 (2) description and operation of entrance door and applicable access control panel;
 (3) escape routes/emergency exit hatch – description/location/operation from the crew rest/cabin compartment;
 (4) systems (fire/smoke detection and prevention; oxygen; communication; lighting; air conditioning);
 (5) crew control panels;
 (6) cabin signs;

(e) lavatories:
 (1) smoke detection system;
 (2) built-in automatic extinguishing system;
 (3) water system (water supply/water shut-off/water heater);
 (4) waste system;
 (5) flush/vacuum reset;
 (6) electrical power;
 (7) lavatory service unit (LSU);
 (8) lavatory door - lock/unlock system from inside/outside;
 (9) operation of waste bin flap

(f) passenger service unit (PSU) (oxygen container; pictogram(s); loudspeaker; reading light; call light; seat row identifier; air vent);

(g) lift – location; description and operation; control panel; malfunction;

(h) galley - description of galley systems.

Aircraft systems including associated equipment

(a) lighting system:
 (1) location and operation;
 (2) interior normal and emergency lighting (ceiling; door sill; over wing exit handle light; exit location/markingsign; floor proximity escape path marking);
 (3) exterior emergency lighting (slide/raft integrated emergency lights; over wing lights);

(b) evacuation alarm signal system:
 (1) description, location and operation of activation/signal panel(s) (flight crew/cabin compartment);
 (2) aural/visual alert indications;
 (3) horn silence at cabin door/exit and flight crew compartment;
(c) smoke detection system:
 (1) location and function (passenger cabin/lavatory/crew rest compartment(s)/cargo compartment);
 (2) location and description of aural/visual indications (warning chime/light; signalling means; reset);
 (3) potential cause of smoke alarm activation;
 (4) smoke barrier/removal (e.g. crew rest compartment staircase hatch; smoke curtain - description/operation/pre-flight check);

(d) fire prevention system:
 (1) type – automatic/manual (e.g. temperature sensor; FES Discharge switch (fire extinguishing system));
 (2) location and function of built-in fire extinguishing system (crew rest compartment(s); lavatory/cargo compartment/engines);
 (3) built-in fire extinguishers – type of agent/content/operation/duration;

(e) oxygen system:
 (1) location (passenger cabin/crew station/crew rest compartment(s)/ lavatory/galley);
 (2) number and distribution of masks in container unit(s);
 (3) activation/operation/duration of oxygen system and malfunction;
 (4) aural and visual indications associated with activation of oxygen system;
 (5) medical oxygen port;

(f) electrical system:
 (1) galley - hot water container; control panel – control switches; circuit breakers; galley emergency power off switch;
 (2) lift (unit operation; control panel; circuit breakers systems);
 (3) door electrical warning system (cabin pressure/slide armed/safeguard sensor);
 (4) power socket (flight crew/cabin compartment);
 (5) lavatory (razor outlet; built-in hairdryer; water heating system);
 (6) passenger seat (electrical operation; seat power outlet);
 (7) video control centre/passenger individual screen/cabin main screen;
 (8) aircraft own electrical power and APU;

(g) communication system:
 (1) location of handset unit(s) (crew station/flight crew/crew rest compartment(s));
 (2) description and use of interphone integrated keys;
 (3) operation of interphone and initiating calls in normal and emergency circumstances (calls: cabin to flight crew compartment; cabin crew to cabin crew station; cabin/flight crew compartment to crew rest compartment(s); cabin crew/flight crew to purser and vice versa);
(4) aural/visual indications associated with interphone calls in normal and emergency circumstances;

(5) location and description of signalling panels associated with communication system;

(6) emergency communication alert system (ECAS) – description/location/operation in cabin and flight crew compartment;

(h) passenger address system:

(1) location/description/operation of handset unit(s) (crew station/flight crew compartment/crew rest compartment(s));

(2) description of operation in cabin/flight crew/crew rest compartment(s);

(3) description/operation of the public announcements broadcast to the entire/individual cabin compartment(s);

(4) availability of loudspeakers in passenger cabin/flight crew/crew rest compartment(s)/galley/lavatory and muted volume;

(5) description of the priority order of public announcement system (e.g. flight crew handset/purser handset/any other cabin crew handset/evacuation signal alarm);

(6) automatic broadcast of public announcements (description / operation);

(i) passenger call system:

(1) location of activation (passenger seat/lavatory);

(2) way to initiate/cancel/disable passenger call system;

(3) signalling system (indication (aural/visual); control panels);

(j) water system:

(1) areas of supply;

(2) location and operation of water supply manual shut-off valve (galley/lavatory; partial or entire cabin supply);

(3) water tanks (location of checking water tanks status);

(k) waste system:

(1) location (galley/lavatory);

(2) waste tanks (location of checking waste tanks status);

(l) air conditioning/ventilation/pressurisation – source of supply (engines/external ground power (EGP)/APU; control management);

(m) control panels:

(1) cabin crew panel (cabin management system) – main/additional panel(s); location; description of installed functions; operation; malfunction;

(2) cabin crew indication panel - type (i.e. area indication panel/area call panel); location (crew station/galley/crew rest compartment(s)); description of functions;

(3) cabin air/floor temperature control panel – location and operation; areas of effect;
(4) cabin signs – location (door/exit area; passenger cabin; crew station; crew rest compartment(s); galley; LSU); type (e.g. fasten seatbelt/no smoking/return to seat/lavatory occupied/exit sign); aural/visual indication;

(n) other systems – installed emergency locator transmitter.

GM1 to Appendix 1 to CS CCD.310 Type specific data content

SOURCE DOCUMENTS FOR TYPE SPECIFIC DATA

Type specific data for cabin crew need not be developed new by the applicant. They may originate from any technical documentation issued by the original manufacturer of the aircraft, aeronautical products, parts or appliances (e.g. aircraft flight manual (AFM), aircraft operating manual (AOM), aircraft maintenance manual (AMM), component maintenance manual (CMM), design documentation).

TYPE SPECIFIC DATA

Type specific data required by this Appendix contain detailed technical information useful for cabin crew to obtain general knowledge on the type of aircraft they are to be qualified on.
CS CCD.400 Cabin aspects of special emphasis

The applicant includes, as applicable, any information relevant to the aircraft that cabin crew and end users should be aware of. Such information can include, but is not limited to:

(a) information identified during emergency evacuation demonstration required by CS 25.803, such as:
 (1) passenger movement during evacuation including door/exit overload,
 (2) dried up door/exit and subsequent re-direction,
 (3) door/exit by-pass recommendations,
 (4) general crowd control,
 (5) seating location of cabin crew members,

(b) other unique elements identified during the certification process, e.g. direct view, trolley lift barrier, external viewing means, remote cabin areas, etc.