Comment Response Document (CRD) to Notice of Proposed Amendment (NPA) 2009-02b

for a draft Agency Opinion on a Commission Regulation establishing the Implementing Rules for air operations of Community operators

and

da draft Decision of the Executive Director of the European Aviation Safety Agency on Acceptable Means of Compliance and Guidance Material related to the Implementing Rules for air operations of Community operators ‘Part-NCC and Part-NCO’

CRD b.2 — Resulting text of Part-NCC
Table of contents

Part-NCC - IR

<table>
<thead>
<tr>
<th>Subpart A - General requirements</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCC.GEN.100 Competent authority</td>
<td>17</td>
</tr>
<tr>
<td>NCC.GEN.105 Crew responsibilities</td>
<td>17</td>
</tr>
<tr>
<td>NCC.GEN.106 Pilot-in-command responsibilities and authority</td>
<td>18</td>
</tr>
<tr>
<td>NCC.GEN.110 Compliance with laws, regulations and procedures</td>
<td>20</td>
</tr>
<tr>
<td>NCC.GEN.115 Common Language</td>
<td>20</td>
</tr>
<tr>
<td>NCC.GEN.120 Taxiing of aeroplanes</td>
<td>20</td>
</tr>
<tr>
<td>NCC.GEN.125 Rotor engagement</td>
<td>21</td>
</tr>
<tr>
<td>NCC.GEN.130 Portable electronic devices</td>
<td>21</td>
</tr>
<tr>
<td>NCC.GEN.135 Information on emergency and survival equipment carried</td>
<td>21</td>
</tr>
<tr>
<td>NCC.GEN.140 Documents, manuals and information to be carried</td>
<td>21</td>
</tr>
<tr>
<td>NCC.GEN.145 Preservation, production and use of flight recorder recordings</td>
<td>22</td>
</tr>
<tr>
<td>NCC.GEN.150 Transport of dangerous goods</td>
<td>23</td>
</tr>
</tbody>
</table>

Subpart B - Operational procedures

NCC.OP.100 Use of aerodromes and operating sites	25
NCC.OP.105 Specification of isolated aerodromes - aeroplanes	25
NCC.OP.110 Aerodrome operating minima - general	25
NCC.OP.111 Aerodrome operating minima – NPA, APV, CAT I operations	26
NCC.OP.112 Aerodrome operating minima – circling operations with aeroplanes	27
NCC.OP.113 Aerodrome operating minima – onshore circling operations with helicopters	28
NCC.OP.115 Departure and approach procedures	28
NCC.OP.120 Noise abatement procedures	28
NCC.OP.125 Minimum obstacle clearance altitudes – IFR flights	29
NCC.OP.130 Fuel and oil supply – aeroplanes	29
NCC.OP.131 Fuel and oil supply - helicopters	30
NCC.OP.135 Stowage of baggage and cargo	30
NCC.OP.140 Carriage of passengers	31
NCC.OP.145 Passenger briefing	31
NCC.OP.150 Flight preparation	32
NCC.OP.155 Take-off alternate aerodromes - aeroplanes	32
NCC.OP.156 Destination alternate aerodromes – aeroplanes	32
NCC.OP.157 Destination alternate aerodromes – helicopters	33
NCC.OP.160 Refuelling with passengers embarking, on board or disembarking ... 34
NCC.OP.165 Use of headset ... 34
NCC.OP.170 Securing of passenger compartment and galley(s) 34
NCC.OP.175 Smoking on board .. 34
NCC.OP.180 Meteorological conditions ... 35
NCC.OP.185 Ice and other contaminants – ground procedures 35
NCC.OP.190 Ice and other contaminants – flight procedures 35
NCC.OP.195 Take-off conditions .. 35
NCC.OP.200 Simulated abnormal situations in flight 36
NCC.OP.205 In-flight fuel management .. 36
NCC.OP.210 Use of supplemental oxygen ... 36
NCC.OP.215 Ground proximity detection .. 36
NCC.OP.220 Airborne collision avoidance system (ACAS) 36
NCC.OP.225 Approach and landing conditions 37
NCC.OP.230 Commencement and continuation of approach 37

Subpart C - Aircraft performance and operating limitations39
NCC.POL.100 Operating limitations – all aircraft 39
NCC.POL.105 Mass and balance, loading ... 39
NCC.POL.110 Mass and balance data and documentation 41
NCC.POL.111 Mass and balance data and documentation – alleviations ..42
NCC.POL.115 Performance – general .. 43
NCC.POL.120 Take-off mass limitations – aeroplanes 43
NCC.POL.125 Take-off - aeroplanes .. 43
NCC.POL.130 En-route - one engine inoperative - aeroplanes 44
NCC.POL.135 Landing - aeroplanes .. 44

Subpart D - Instruments, data and equipment45
Section 1 - Aeroplanes ..45
NCC.IDE.A.100 Instruments and equipment - general 45
NCC.IDE.A.105 Minimum equipment for flight 46
NCC.IDE.A.110 Spare electrical fuses .. 46
NCC.IDE.A.115 Operating lights ... 46
NCC.IDE.A.120 Operations under VFR– flight and navigational instruments and associated equipment ..47
NCC.IDE.A.125 Operations under IFR– flight and navigational instruments and associated equipment ..48
NCC.IDE.A.130 Additional equipment for single-pilot operation under IFR ...49
NCC.IDE.A.135 Terrain awareness warning system (TAWS) 49
NCC.IDE.A.140 Airborne collision avoidance system (ACAS) 50
NCC.IDE.A.145 Airborne weather detecting equipment 50
NCC.IDE.A.150 Additional equipment for operations in icing conditions at night ... 50
NCC.IDE.A.155 Flight crew interphone system 50
NCC.IDE.A.160 Cockpit voice recorder .. 50
NCC.IDE.A.165 Flight data recorder .. 51
NCC.IDE.A.170 Data link recording .. 52
NCC.IDE.A.175 Combination recorder .. 53
NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices .. 53
NCC.IDE.A.185 Fasten seat belt and no smoking signs 53
NCC.IDE.A.190 First-aid kit .. 54
NCC.IDE.A.195 Supplemental oxygen – pressurised aeroplanes 54
NCC.IDE.A.200 Supplemental oxygen – non-pressurised aeroplanes 55
NCC.IDE.A.205 Hand fire extinguishers .. 55
NCC.IDE.A.206 Crash axe and crowbar .. 56
NCC.IDE.A.210 Marking of break-in points .. 56
NCC.IDE.A.215 Emergency locator transmitter (ELT) 56
NCC.IDE.A.220 Flight over water .. 56
NCC.IDE.A.230 Survival equipment .. 57
NCC.IDE.A.240 Headset .. 58
NCC.IDE.A.245 Radio communication equipment 58
NCC.IDE.A.250 Navigation equipment ... 58
NCC.IDE.A.255 Transponder ... 59
NCC.IDE.A.260 Electronic navigation data management 59

Section 2 - Helicopters ... 60
NCC.IDE.H.100 Instruments and equipment - general 60
NCC.IDE.H.105 Minimum equipment for flight 61
NCC.IDE.H.115 Operating lights .. 61
NCC.IDE.H.120 Operations under VFR – flight and navigational instruments and associated equipment 61
NCC.IDE.H.125 Operations under IFR – flight and navigational instruments and associated equipment 62
NCC.IDE.H.130 Additional equipment for single pilot operation under IFR .. 63
NCC.IDE.H.145 Airborne weather detecting equipment 64
NCC.IDE.H.150 Additional equipment for operations in icing conditions at night ... 64
NCC.IDE.H.155 Flight crew interphone system 64
NCC.IDE.H.160 Cockpit voice recorder .. 64
NCC.IDE.H.165 Flight data recorder ... 65
NCC.IDE.H.170 Data link recording ... 65
NCC.IDE.H.175 Combination recorder 66
NCC.IDE.H.180 Seats, seat safety belts, restraint systems and child restraint devices .. 66
NCC.IDE.H.185 Fasten seat belt and no smoking signs 67
NCC.IDE.H.190 First-aid kit .. 67
NCC.IDE.H.200 Supplemental oxygen – non-pressurised helicopters 67
NCC.IDE.H.205 Hand fire extinguishers 68
NCC.IDE.H.210 Marking of break-in points 68
NCC.IDE.H.215 Emergency locator transmitter (ELT) 68
NCC.IDE.H.225 Life-jackets ... 69
NCC.IDE.H.226 Crew survival suits .. 69
NCC.IDE.H.227 Life-rafts, survival ELTs and survival equipment on extended overwater flights ... 69
NCC.IDE.H.230 Survival equipment ... 70
NCC.IDE.H.231 Additional requirements for helicopters conducting offshore operations in a hostile sea area 70
NCC.IDE.H.232 Helicopters certified for operating on water - miscellaneous equipment ... 71
NCC.IDE.H.235 All helicopters on flights over water - ditching 71
NCC.IDE.H.240 Headset .. 72
NCC.IDE.H.245 Radio communication equipment 72
NCC.IDE.H.250 Navigation equipment 72
NCC.IDE.H.255 Transponder .. 73

Part-NCC – AMC/GM .. 74

Subpart A - General requirements .. 74

GM1-NCC.GEN.105(e)(2) Crew responsibilities 74
 GENERAL ... 74
AMC1-NCC.GEN.105(g) Crew responsibilities 74
 OCCURRENCE REPORTING ... 74
GM1-NCC.GEN.106 Pilot-in-command responsibilities and authority 75
 GENERAL ... 75
GM1-NCC.GEN.106(b) Pilot-in-command responsibilities and authority .. 75
 AUTHORITY TO REFUSE CARRIAGE OR DISEMBARK 75
AMC1-NCC.GEN.106(c) Pilot-in-command responsibilities and authority .. 75
 REPORTING OF HAZARDOUS FLIGHT CONDITIONS 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC1-NCC.GEN.106(d) Pilot-in-command responsibilities and authority</td>
<td>76</td>
</tr>
<tr>
<td>MITIGATING MEASURES - FATIGUE</td>
<td>76</td>
</tr>
<tr>
<td>GM1-NCC.GEN.106(d) Pilot-in-command responsibilities and authority</td>
<td>76</td>
</tr>
<tr>
<td>MITIGATING MEASURES - FATIGUE – CONTROLLED REST IN THE FLIGHT CREW COMPARTEMENT</td>
<td>76</td>
</tr>
<tr>
<td>AMC1-NCC.GEN.110 Compliance with laws, regulations and procedures</td>
<td>78</td>
</tr>
<tr>
<td>GENERAL</td>
<td>78</td>
</tr>
<tr>
<td>GM1-NCC.GEN.125 Rotor engagement</td>
<td>78</td>
</tr>
<tr>
<td>INTENT OF THE RULE</td>
<td>78</td>
</tr>
<tr>
<td>GM1-NCC.GEN.130 Portable electronic devices</td>
<td>79</td>
</tr>
<tr>
<td>GENERAL</td>
<td>79</td>
</tr>
<tr>
<td>AMC1-NCC.GEN.135 Information on emergency and survival equipment carried</td>
<td>79</td>
</tr>
<tr>
<td>CONTENT OF INFORMATION</td>
<td>79</td>
</tr>
<tr>
<td>AMC1-NCC.GEN.140 Documents, manuals and information to be carried</td>
<td>80</td>
</tr>
<tr>
<td>GENERAL</td>
<td>80</td>
</tr>
<tr>
<td>CURRENT AND SUITABLE CHARTS</td>
<td>80</td>
</tr>
<tr>
<td>GM1-NCC.GEN.140 Documents, manual and information to be carried</td>
<td>81</td>
</tr>
<tr>
<td>DOCUMENTS THAT MAY BE PERTINENT TO THE FLIGHT</td>
<td>81</td>
</tr>
<tr>
<td>STATES CONCERNED WITH THE FLIGHT</td>
<td>81</td>
</tr>
<tr>
<td>SEARCH AND RESCUE INFORMATION</td>
<td>81</td>
</tr>
<tr>
<td>AMC1-NCC.GEN.145 Preservation, production and use of flight recorder recordings</td>
<td>81</td>
</tr>
<tr>
<td>OPERATIONAL CHECKS</td>
<td>81</td>
</tr>
<tr>
<td>GM1-NCC.GEN.145 Preservation, production and use of flight recorder recordings</td>
<td>81</td>
</tr>
<tr>
<td>PROCEDURES FOR THE INSPECTIONS AND MAINTENANCE PRACTICES</td>
<td>81</td>
</tr>
<tr>
<td>REMOVAL OF RECORDERS</td>
<td>81</td>
</tr>
<tr>
<td>AMC1-NCC.GEN.150(e) Transport of dangerous goods</td>
<td>82</td>
</tr>
<tr>
<td>DANGEROUS GOODS ACCIDENT AND INCIDENT REPORTING</td>
<td>82</td>
</tr>
<tr>
<td>GM1-NCC.GEN.150 Transport of dangerous goods</td>
<td>86</td>
</tr>
<tr>
<td>GENERAL</td>
<td>86</td>
</tr>
<tr>
<td>Subpart B - Operational procedures</td>
<td>88</td>
</tr>
<tr>
<td>AMC1-NCC.OP.100 Use of aerodromes and operating sites</td>
<td>88</td>
</tr>
<tr>
<td>USE OF OPERATING SITES</td>
<td>88</td>
</tr>
<tr>
<td>GM1-NCC.OP.100 Use of aerodromes and operating sites</td>
<td>88</td>
</tr>
</tbody>
</table>
PUBLICATIONS

AMC1-NCC.OP.110 Aerodrome operating minima - general

AMC2-NCC.OP.110 Aerodrome operating minima - general

AMC3-NCC.OP.110 Aerodrome operating minima - general

AMC4-NCC.OP.110 Aerodrome operating minima - general

AMC5-NCC.OP.110 Aerodrome operating minima - general

AMC6-NCC.OP.110 Aerodrome operating minima - general

AMC7-NCC.OP.110 Aerodrome operating minima - general

AMC8-NCC.OP.110 Aerodrome operating minima - general

AMC9-NCC.OP.110 Aerodrome operating minima - general

GM1-NCC.OP.110 Aerodrome operating minima - general

GM2-NCC.OP.110 Aerodrome operating minima - general

GM3-NCC.OP.110 Aerodrome operating minima - general

GM1-NCC.OP.112 Aerodrome operating minima - circling operations with aeroplanes

GM1-NCC.OP.120 Noise abatement procedures

AMC1-NCC.OP.120 Noise abatement procedures

AMC1-NCC.OP.125 Minimum obstacle clearance altitudes – IFR flights
GENERAL ... 110
AMC1-NCC.OP.140 Carriage of passengers 110

SEATS THAT PERMIT DIRECT ACCESS TO EMERGENCY EXITS .. 110
GM1-NCC.OP.140 Carriage of passengers 110

MEANING OF DIRECT ACCESS .. 110
AMC1-NCC.OP.145 Passenger briefing 110

TRAINING PROGRAMME .. 110
AMC1-NCC.OP.157 Destination alternate aerodromes - helicopters 111

OFFSHORE ALTERNATE AERODROMES - HELICOPTERS 111
AMC1-NCC.OP.160 Refuelling with passengers embarking, on board or disembarking .. 111

OPERATIONAL PROCEDURES - GENERAL 111
OPERATIONAL PROCEDURES - AEROPLANES 112
OPERATIONAL PROCEDURES - HELICOPTERS 112

GM1-NCC.OP.160 Refuelling with passengers embarking, on board or disembarking .. 113

AIRCRAFT REFUELLING PROVISIONS AND GUIDANCE ON SAFE REFUELLING PRACTICES .. 113
AMC1-NCC.OP.180 Meteorological conditions 113

EVALUATION OF METEOROLOGICAL CONDITIONS 113
GM1-NCC.OP.180 Meteorological conditions 113

CONTINUATION OF A FLIGHT .. 113
GM1-NCC.OP.185 Ice and other contaminants – ground procedures 114

TERMINOLOGY .. 114
ANTI-ICING CODES .. 115

GM2-NCC.OP.185 Ice and other contaminants – ground procedures 116

DE-ICING/ANTI-ICING - PROCEDURES 116
GM3-NCC.OP.185 Ice and other contaminants – ground procedures 120

DE-ICING/ANTI-ICING – BACKGROUND INFORMATION 120
AMC1-NCC.OP.190 Ice and other contaminants – flight procedures 123

FLIGHT IN EXPECTED OR ACTUAL ICING CONDITIONS 123
GM1-NCC.OP.215 Ground proximity detection 124

GUIDANCE MATERIAL FOR TERRAIN AWARENESS WARNING SYSTEM (TAWS) FLIGHT CREW TRAINING PROGRAMMES 124
GM1-NCC.OP.220 Airborne collision avoidance system (ACAS) 133

GENERAL .. 133
ACAS FLIGHT CREW TRAINING ... 133
AMC1-NCC.OP.225 Approach and landing conditions 145

LANDING DISTANCE/FATO SUITABILITY 145
AMC1-NCC.OP.230 Commencement and continuation of approach 145
Subpart C – Aircraft performance and operating limitations 148

AMC1-NCC.POL.105(b) Mass and balance, loading 148
WEIGHING OF AN AIRCRAFT ... 148
CG LIMITS – OPERATIONAL CG ENVELOPE AND IN-FLIGHT CG. 149
AMC1-NCC.POL.105(c) Mass and balance, loading 150
DRY OPERATING MASS .. 150
AMC1-NCC.POL.105(d) Mass and balance, loading 150
MASS VALUES FOR PASSENGERS AND BAGGAGE 150
GM1-NCC.POL.105(d) Mass and balance, loading 151
TYPE OF FLIGHTS .. 151
ADJUSTMENT OF STANDARD MASSES 153
GM1-NCC.POL.105(g) Mass and balance, loading 154
FUEL DENSITY .. 154
AMC1-NCC.POL.110 Mass and balance data and documentation 154
CONTENTS ... 154
INTEGRITY OF MASS AND BALANCE DATA 154
MASS AND BALANCE DOCUMENTATION SENT VIA DATA LINK 154
GM1-NCC.POL.110(b) Mass and balance data and documentation 154
ON BOARD INTEGRATED MASS AND BALANCE COMPUTER
SYSTEM ... 154
STAND-ALONE COMPUTERISED MASS AND BALANCE SYSTEM 155
AMC1-NCC.POL.125 Take-off - aeroplanes 155
TAKE-OFF MASS .. 155
AMC2-NCC.POL.125 Take-off - aeroplanes 155
CONTAMINATED RUNWAY PERFORMANCE DATA 155
AMC3-NCC.POL.125 Take-off - aeroplanes 155
ADEQUATE MARGIN .. 155
GM1-NCC.POL.125 Take-off - aeroplanes 156
RUNWAY SURFACE CONDITION 156
GM2-NCC.POL.125 Take-off - aeroplanes 156
ADEQUATE MARGIN .. 156
AMC1-NCC.POL.135 Landing - aeroplanes 156
ALLOWANCES .. 156

Subpart D – Instrument Data Equipment .. 157

Section 1 - Aeroplanes .. 157
GM1-NCC.IDE.A.100(a) Instruments and equipment – general 157
APPLICABLE AIRWORTHINESS REQUIREMENTS 157
GM1-NCC.IDE.A.100(b)&(c) Instruments and equipment – general 157
INSTRUMENTS AND EQUIPMENT THAT DO NOT NEED TO BE APPROVED

GM1-NCC.IDE.A.100(d) Instruments and equipment – general

POSITIONING OF INSTRUMENTS

GM1-NCC.IDE.A.110 Spare electrical fuses

FUSES

AMC1-NCC.IDE.A.120&NCC.IDE.A.125 Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

INTEGRATED INSTRUMENTS

AMC2-NCC.IDE.A.120 Operations under VFR – flight and navigational instruments and associated equipment

LOCAL FLIGHTS

AMC1-NCC.IDE.A.120(a)(1)&NCC.IDE.A.125(a)(1) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

MEANS OF MEASURING AND DISPLAYING MAGNETIC HEADING

AMC1-NCC.IDE.A.120(a)(2)&NCC.IDE.A.125(a)(2) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

MEANS OF MEASURING AND DISPLAYING THE TIME

AMC1-NCC.IDE.A.120(a)(3)&NCC.IDE.A.125(a)(3) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

CALIBRATION OF THE MEANS FOR MEASURING AND DISPLAYING PRESSURE ALTITUDE

AMC2-NCC.IDE.A.125(a)(3) Operations under IFR – flight and navigational instruments and associated equipment

ALTIMETERS – IFR OR NIGHT OPERATIONS

AMC1-NCC.IDE.A.120(a)(4)&NCC.IDE.A.125(a)(4) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

CALIBRATION OF THE INSTRUMENT INDICATING AIRSPEED

AMC1-NCC.IDE.A.120(c)&NCC.IDE.A.125(c) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment

MULTI-PILOT OPERATIONS - DUPLICATE INSTRUMENTS

AMC1-NCC.IDE.A.125(a)(9) Operations under IFR – flight and navigational instruments and associated equipment

MEANS OF DISPLAYING OUTSIDE AIR TEMPERATURE

AMC1-NCC.IDE.A.125(d) Operations under IFR – flight and navigational instruments and associated equipment

MEANS OF PREVENTING MALFUNCTION DUE TO CONDENSATION OR ICING
AMC1-NCC.IDE.A.125(f) Operations under IFR – flight and navigational instruments and associated equipment .. 161

CHART HOLDER .. 161
AMC1-NCC.IDE.A.135 Terrain awareness warning system (TAWS) 161

EXCESSIVE DOWNWARDS GLIDESLOPE DEVIATION WARNING FOR CLASS A TAWS ... 161
GM1-NCC.IDE.A.135 Terrain awareness warning system (TAWS) 161

ACCEPTABLE STANDARD FOR TAWS .. 161
AMC1-NCC.IDE.A.145 Airborne weather detecting equipment 161

GENERAL .. 161
AMC1-NCC.IDE.A.155 Flight crew interphone system 161

TYPE OF FLIGHT CREW INTERPHONE .. 161
AMC1-NCC.IDE.A.160 Cockpit voice recorder 162

GENERAL .. 162
AMC1-NCC.IDE.A.165 Flight data recorder ... 162

LIST OF PARAMETERS TO BE RECORDED AND PERFORMANCE SPECIFICATIONS FOR THESE PARAMETERS 162
AMC1-NCC.IDE.A.170 Data link recording .. 169

GENERAL .. 169
GM1-NCC.IDE.A.170 Data link recording .. 172

GENERAL .. 172
AMC1-NCC.IDE.A.175 Combination recorder 174

COMBINATION RECORDERS ... 174
GM1-NCC.IDE.A.175 Combination recorder 174

GENERAL .. 174
AMC1-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices .. 174

CHILD RESTRAINT DEVICES (CRD) ... 174
AMC2-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices .. 176

UPPER TORSO RESTRAINT SYSTEM .. 176
SAFETY BELT .. 176
AMC3-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices .. 176

CABIN CREW SEATS ... 176
AMC1-NCC.IDE.A.190 First-aid kit .. 177

CONTENT OF FIRST-AID KITS ... 177
AMC2-NCC.IDE.A.190 First-aid kit .. 178

MAINTENANCE OF FIRST-AID KITS .. 178
AMC1 NCC.IDE.A.195 Supplemental oxygen – pressurised aeroplanes ... 178
DETERMINATION OF OXYGEN ... 178
AMC1-NCC.IDE.A.200 Supplemental oxygen – non-pressurised-aeroplanes................................. 179
DETERMINATION OF OXYGEN ... 179
AMC1-NCC.IDE.A.205 Hand fire extinguishers ... 179
NUMBER, LOCATION AND TYPE ... 179
AMC1-NCC.IDE.A.210 Marking of break-in points.. 180
COLOUR AND CORNERS’ MARKING ... 180
AMC1-NCC.IDE.A.215 Emergency locator transmitter (ELT) 180
ELT BATTERIES ... 180
AMC2-NCC.IDE.A.215 Emergency locator transmitter (ELT) 180
TYPES OF ELT AND GENERAL TECHNICAL SPECIFICATIONS 180
GM1-NCC.IDE.A.215 Emergency locator transmitter (ELT) 181
TERMINOLOGY .. 181
AMC1-NCC.IDE.A.220 Flight over water... 181
ACCESSIBILITY OF LIFE-JACKETS ... 181
RISK ASSESSMENT ... 181
AMC2-NCC.IDE.A.220 Flight over water... 182
LIFE-RAFTS AND EQUIPMENT FOR MAKING DISTRESS SIGNALS 182
GM1-NCC.IDE.A.220 Flight over water ... 182
SEAT CUSHIONS .. 182
AMC1-NCC.IDE.A.230 Survival equipment ... 183
ADDITIONAL SURVIVAL EQUIPMENT .. 183
AMC1-NCC.IDE.A.230(b)(2) Survival equipment.. 183
APPLICABLE AIRWORTHINESS STANDARD ... 183
GM1-NCC.IDE.A.230 Survival equipment ... 183
SIGNALLING EQUIPMENT .. 183
GM2-NCC.IDE.A.230 Survival equipment ... 183
AREAS IN WHICH SEARCH AND RESCUE WOULD BE ESPECIALLY DIFFICULT .. 183
AMC1-NCC.IDE.A.240 Headset .. 184
GENERAL .. 184
GM1-NCC.IDE.A.240 Headset .. 184
GENERAL .. 184
GM1-NCC.IDE.A.245 Radio communication equipment .. 184
APPLICABLE AIRSPACE REQUIREMENTS ... 184
AMC1-NCC.IDE.A.255 Transponder ... 185
SSR TRANSPONDER .. 185
AMC1-NCC.IDE.A.260 Electronic navigation data management 185
ELECTRONIC NAVIGATION DATA PRODUCTS 185
GM1-NCC.IDE.A.260 Electronic navigation data management 185
LETTERS OF ACCEPTANCE AND STANDARDS FOR ELECTRONIC
NAVIGATION DATA PRODUCTS .. 185

Section 2 – Helicopters ... 186
GM1-NCC.IDE.H.100(a) Instruments and equipment – general 186
APPLICABLE AIRWORTHINESS REQUIREMENTS 186
GM1-NCC.IDE.H.100(b)&(c) Instruments and equipment – general 186
INSTRUMENTS AND EQUIPMENT THAT DO NOT NEED TO BE
APPROVED .. 186
GM1-NCC.IDE.H.100(d) Instruments and equipment – general 187
POSITIONING OF INSTRUMENTS ... 187
AMC1-NCC.IDE.H.115 Operating lights ... 187
LANDING LIGHT .. 187
AMC1-NCC.IDE.H.120&NCC.IDE.H.125 Operations under VFR &
operations under IFR – flight and navigational instruments and
associated equipment ... 187
INTEGRATED INSTRUMENTS ... 187
AMC1-NCC.IDE.H.120(a)(1)&NCC.IDE.H.125(a)(1) Operations
under VFR & operations under IFR – flight and navigational
instruments and associated equipment ... 187
MEANS OF MEASURING AND DISPLAYING MAGNETIC
HEADING ... 187
AMC1-NCC.IDE.H.120(a)(2)&NCC.IDE.H.125(a)(2) Operations
under VFR & operations under IFR – flight and navigational
instruments and associated equipment ... 188
MEANS FOR MEASURING AND DISPLAYING THE TIME 188
AMC1-NCC.IDE.H.120(a)(3)&NCC.IDE.H.125(a)(3) Operations
under VFR & operations under IFR – flight and navigational
instruments and associated equipment ... 188
CALIBRATION OF THE MEANS FOR MEASURING AND
DISPLAYING PRESSURE ALTITUDE ... 188
AMC1-NCC.IDE.H.120(a)(4)&NCC.IDE.H.125(a)(4) Operations
under VFR & operations under IFR – flight and navigational
instruments and associated equipment ... 188
CALIBRATION OF THE INSTRUMENT INDICATING AIRSPEED 188
AMC1-NCC.IDE.H.125(a)(9) Operations under IFR – flight and
navigational instruments and associated equipment 188
OUTSIDE AIR TEMPERATURE ... 188
AMC1-NCC.IDE.H.120(c)&NCC.IDE.H.125(c) Operations under VFR
& operations under IFR – flight and navigational instruments and
associated equipment ... 188
MULTI-PILOT OPERATIONS - DUPLICATE INSTRUMENTS 188
AMC1-NCC.IDE.H.120(b)(1)(iii)&NCC.IDE.H.125(a)(8) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment.. 189

STABILISED HEADING... 189

AMC1-NCC.IDE.H.125(d) Operations under VFR & operations under IFR – flight and navigational instruments and associated equipment ... 189

MEANS OF PREVENTING MALFUNCTION DUE TO
CONDENSATION OR ICING ... 189

AMC1-NCC.IDE.H.125(f) Operations under IFR – flight and navigational instruments and associated equipment.......................... 189

CHART HOLDER.. 189

AMC1-NCC.IDE.H.145 Airborne weather detecting equipment 189

GENERAL... 189

AMC1-NCC.IDE.H.155 Flight crew interphone system 189

TYPE OF FLIGHT CREW INTERPHONE ... 189

AMC1-NCC.IDE.H.160 Cockpit voice recorder 189

GENERAL... 189

AMC1-NCC.IDE.H.165 Flight data recorder...................................... 190

LIST OF PARAMETERS TO BE RECORDED... 190

AMC1-NCC.IDE.H.170 Data link recording................................. 194

GENERAL... 194

GM1-NCC.IDE.H.170 Data link recording 196

GENERAL... 196

GM1-NCC.IDE.H.175 Combination recorder 198

COMBINATION RECORDERS... 198

AMC1-NCC.IDE.H.180 Seats, seat safety belts, restraint systems
and child restraint devices ... 199

CHILD RESTRAINT DEVICES (CRD) .. 199

AMC2-NCC.IDE.H.180 Seats, seat safety belts, restraint systems
and child restraint devices ... 201

UPPER TORSO RESTRAINT SYSTEM... 201

SAFETY BELT.. 201

AMC3-NCC.IDE.H.180 Seats, seat safety belts, restraint systems
and child restraint devices ... 201

CABIN CREW SEATS.. 201

AMC1-NCC.IDE.H.190 First-aid kit ... 201

CONTENT OF FIRST-AID KIT ... 201

AMC2-NCC.IDE.H.190 First-aid kit ... 203

MAINTENANCE OF FIRST-AID KITS ... 203

AMC1-NCC.IDE.H.200 Supplemental oxygen – non-pressurised
helicopters.. 203
DETERMINATION OF OXYGEN.. 203
AMC1-NCC.IDE.H.205 Hand fire extinguishers................................. 203
NUMBER, LOCATION AND TYPE .. 203
AMC1-NCC.IDE.H.210 Marking of break-in points 204
COLOUR AND CORNERS’ MARKING 204
AMC1-NCC.IDE.H.215 Emergency locator transmitter (ELT) 204
ELT BATTERIES .. 204
AMC2-NCC.IDE.H.215 Emergency locator transmitter (ELT) 204
TYPES OF ELT AND GENERAL TECHNICAL SPECIFICATIONS ... 204
AMC3-NCC.IDE.H.215 Emergency locator transmitter (ELT) 205
ELT(S) - HELICOPTERS ... 205
GM1-NCC.IDE.H.215 Emergency locator transmitter (ELT) 205
TERMINOLOGY .. 205
AMC1-NCC.IDE.H.225(a) Life-jackets ... 205
ACCESSIBILITY .. 205
GM1-NCC.IDE.H.225 Life-jackets ... 206
SEAT CUSHIONS .. 206
GM1-NCC.IDE.H.226 Crew survival suits 206
ESTIMATING SURVIVAL TIME .. 206
AMC1-NCC.IDE.H.227 Life-rafts, survival ELTs and survival equipment on extended overwater flights 208
LIFE-RAFTS AND EQUIPMENT FOR MAKING DISTRESS SIGNALS ... 208
AMC1-NCC.IDE.H.230 Survival equipment 209
ADDITIONAL SURVIVAL EQUIPMENT 209
GM1-NCC.IDE.H.230 Survival equipment 210
SIGNALLING EQUIPMENT ... 210
GM2-NCC.IDE.H.230 Survival equipment 210
AREAS IN WHICH SEARCH AND RESCUE WOULD BE ESPECIALLY DIFFICULT .. 210
AMC1-NCC.IDE.H.231 Additional requirements for helicopters conducting offshore operations in a hostile sea area 211
INSTALLATION OF THE LIFE-RAFT 211
GM1-NCC.IDE.H.232 Helicopters certificated for operating on water - Miscellaneous equipment 211
INTERNATIONAL REGULATIONS FOR PREVENTING COLLISIONS AT SEA .. 211
AMC1-NCC.IDE.H.240 Headset .. 211
GENERAL ... 211
GM1-NCC.IDE.H.240 Headset .. 212
GENERAL .. 212
GM1-NCC.IDE.H.245 Radio communication equipment .. 212
APPLICABLE AIRSPACE REQUIREMENTS ... 212
AMC1-NCC.IDE.H.255 Transponder .. 212
SSR TRANSPONDER .. 212
Part-NCC — IR

Subpart A — General requirements

NCC.GEN.100 Competent authority

The competent authority shall be the authority designated by the Member State in which the operator has its principal place of business or is residing.

NCC.GEN.105 Crew responsibilities

(a) The crew member shall be responsible for the proper execution of his/her duties that are:

(1) related to the safety of the aircraft and its occupants; and

(2) specified in the instructions and procedures in the operations manual.

(b) During critical phases of flight or whenever deemed necessary by the pilot-in-command in the interest of safety, the crew member shall be seated at his/her assigned station and shall not perform any activities other than those required for the safe operation of the aircraft.

(c) During flight, the flight crew member shall keep his/her safety belt fastened while at his/her station.

(d) During flight, at least one qualified flight crew member shall remain at the controls of the aircraft at all times.

(e) The crew member shall not undertake duties on an aircraft:

(1) if he/she knows or suspects that he/she is suffering from fatigue as referred to in 7.f. of Annex IV to Regulation (EC) No 216/2008\(^1\) or feels otherwise unfit, to the extent that the flight may be endangered; or

when under the influence of psychoactive substances or alcohol or for other reasons as referred to in 7.g. of Annex IV to Regulation (EC) No 216/2008.

(f) The crew member who undertakes duties for more than one operator shall:

(1) maintain his/her individual records regarding flight and duty times and rest periods as referred to in ORO.FTL; and

(2) provide each operator with the data needed to schedule activities in accordance with the applicable FTL requirements.

(g) A crew member shall report to the pilot-in-command:

(1) any fault, failure, malfunction or defect, which he/she believes may affect the airworthiness or safe operation of the aircraft, including emergency systems; and

(2) any incident that was endangering, or could endanger, the safety of the operation.

NCC.GEN.106 Pilot-in-command responsibilities and authority

(a) The pilot-in-command shall be responsible for:

(1) the safety of the aircraft and of all crew members, passengers and cargo on board during aircraft operations as referred to in 1.c of Annex IV to Regulation (EC) No 216/2008;

(2) the initiation, continuation, termination or diversion of a flight in the interest of safety;

(3) ensuring that all instructions, operational procedures and checklists are complied with in accordance with the operations manual and as referred to in 1.b of Annex IV to Regulation (EC) No 216/2008;

(4) only commencing a flight if he/she is satisfied that all operational limitations referred to in 2.a.3. of Annex IV to Regulation (EC) No 216/2008 are complied with, as follows:

(i) the aircraft is airworthy;

(ii) the aircraft is duly registered;

(iii) instruments and equipment required for the execution of that flight are installed in the aircraft and are operative, unless operation with inoperative equipment is permitted by the minimum equipment list (MEL) or equivalent document;
(iv) the mass of the aircraft and centre of gravity location are such that the flight can be conducted within the limits prescribed in the airworthiness documentation;

(v) all cabin baggage, hold luggage and cargo is properly loaded and secured;

(vi) the aircraft operating limitations as specified in the aircraft flight manual (AFM) will not be exceeded at any time during the flight;

(vii) each flight crew member holds a valid licence in accordance with Part-FCL; and

(viii) flight crew members are properly rated and meet competency and recency requirements;

(5) not commencing a flight if any flight crew member is incapacitated from performing duties by any cause such as injury, sickness, fatigue or the effects of any psychoactive substance;

(6) not continuing a flight beyond the nearest weather-permissible aerodrome or operating site, when the capacity of any flight crew member to perform duties is significantly reduced from causes such as fatigue, sickness or lack of oxygen;

(7) deciding on acceptance of the aircraft with unserviceabilities in accordance with the configuration deviation list (CDL) or minimum equipment list (MEL), as applicable;

(8) recording utilisation data and all known or suspected defects in the aircraft at the termination of the flight, or series of flights, in the aircraft technical log or journey log for the aircraft; and

(9) ensuring that flight recorders:

 (i) are not disabled or switched off during flight; and

 (ii) in the event of an accident or an incident that is subject to mandatory reporting:

 (A) are not intentionally erased;

 (B) are deactivated immediately after the flight is completed; and

 (C) are reactivated only with the agreement of the investigating authority.

(b) The pilot-in-command shall have the authority to refuse carriage of or disembark any person, baggage or cargo that may represent a potential hazard to the safety of the aircraft or its occupants.
(c) The pilot-in-command shall, as soon as possible, report to the appropriate air traffic services (ATS) unit any hazardous weather or flight conditions encountered that are likely to affect the safety of other aircraft.

(d) Notwithstanding the provision of (a)(6), in a multi-crew operation the pilot-in-command may continue a flight beyond the nearest weather-permissible aerodrome when adequate mitigating procedures are in place.

(e) The pilot-in-command shall, in an emergency situation that requires immediate decision and action, take any action he/she considers necessary under the circumstances in accordance with 7.d. of Annex IV to Regulation (EC) No 216/2008. In such cases he/she may deviate from rules, operational procedures and methods in the interest of safety.

(f) The pilot-in-command shall submit a report of an act of unlawful interference without delay to the competent authority and shall inform the designated local authority.

(g) The pilot-in-command shall notify the nearest appropriate authority by the quickest available means of any accident involving the aircraft, resulting in serious injury or death of any person or substantial damage to the aircraft or property.

NCC.GEN.110 Compliance with laws, regulations and procedures

(a) The pilot-in-command shall comply with the laws, regulations and procedures of those States where operations are conducted.

(b) The pilot-in-command shall be familiar with the laws, regulations and procedures, pertinent to the performance of his/her duties, prescribed for the areas to be traversed, the aerodromes or operating sites to be used and the related air navigation facilities as referred to in 1.a. of Annex IV to Regulation (EC) No 216/2008.

NCC.GEN.115 Common language

The operator shall ensure that all crew members can communicate with each other in a common language.

NCC.GEN.120 Taxiing of aeroplanes

The operator shall ensure that an aeroplane is only taxied on the movement area of an aerodrome if the person at the controls:

(a) is an appropriately qualified pilot; or

(b) has been designated by the operator and:
(1) is trained to taxi the aircraft;
(2) is trained to use the radio telephone;
(3) has received instruction in respect of aerodrome layout, routes, signs, marking, lights, air traffic control (ATC) signals and instructions, phraseology and procedures; and
(4) is able to conform to the operational standards required for safe aeroplane movement at the aerodrome.

NCC.GEN.125 Rotor engagement

A helicopter rotor shall only be turned under power for the purpose of flight with a qualified pilot at the controls.

NCC.GEN.130 Portable electronic devices

The operator shall not permit any person to use a portable electronic device (PED) on board an aircraft that could adversely affect the performance of the aircraft’s systems and equipment.

NCC.GEN.135 Information on emergency and survival equipment carried

The operator shall at all times have available for immediate communication to rescue coordination centres (RCCs) lists containing information on the emergency and survival equipment carried on board.

NCC.GEN.140 Documents, manuals and information to be carried

(a) The following documents, manuals and information shall be carried on each flight as originals or copies unless otherwise specified:

(1) the AFM, or equivalent document(s);
(2) the original certificate of registration;
(3) the original certificate of airworthiness (CofA);
(4) the noise certificate;
(5) the declaration as specified in ORO.DEC.100;
(6) the list of specific approvals, if applicable;
(7) the aircraft radio licence, if applicable;
(8) the third party liability insurance certificate(s);

(9) the journey log, or equivalent, for the aircraft;

(10) the aircraft technical log, in accordance with Part-M, if applicable;

(11) details of the filed ATS flight plan, if applicable;

(12) current and suitable aeronautical charts for the route of the proposed flight and all routes along which it is reasonable to expect that the flight may be diverted;

(13) procedures and visual signals information for use by intercepting and intercepted aircraft;

(14) information concerning search and rescue services for the area of the intended flight;

(15) the current parts of the operations manual that are relevant to the duties of the crew members, which shall be easily accessible to the crew members;

(16) the MEL or CDL;

(17) appropriate notices to airmen (NOTAMs) and aeronautical information service (AIS) briefing documentation;

(18) appropriate meteorological information;

(19) cargo and/or passenger manifests, if applicable; and

(20) any other documentation that may be pertinent to the flight or is required by the States concerned with the flight.

(b) In case of loss or theft of documents specified in (a)(2) to (a)(8), the operation may continue until the flight reaches its destination or a place where replacement documents can be provided.

NCC.GEN.145 Preservation, production and use of flight recorder recordings

(a) Following an accident or an incident that is subject to mandatory reporting, the operator of an aircraft shall preserve the original recorded data for a period of 60 days unless otherwise directed by the investigating authority.

(b) The operator shall conduct operational checks and evaluations of flight data recorder (FDR) recordings, cockpit voice recorder (CVR) recordings and data link recordings to ensure the continued serviceability of the recorders.

(c) The operator shall save the recordings for the period of operating time of the FDR as required by NCC.IDE.A.165 or NCC.IDE.H.165, except that, for the purpose of
testing and maintaining the FDR, up to 1 hour of the oldest recorded material at the time of testing may be erased.

(d) The operator shall keep and maintain up-to-date documentation that presents the necessary information to convert FDR raw data into parameters expressed in engineering units.

(e) The operator shall make available any flight recorder recording that has been preserved, if so determined by the competent authority.

(f) Without prejudice to applicable national criminal law:

1. CVR recordings shall only be used for purposes other than for the investigation of an accident or an incident subject to mandatory reporting, if all crew members and maintenance personnel concerned consent.

2. FDR recordings or data link recordings shall only be used for purposes other than for the investigation of an accident or an incident that is subject to mandatory reporting, if such records are:
 (i) used by the operator for airworthiness or maintenance purposes only;
 (ii) de-identified; or
 (iii) disclosed under secure procedures.

NCC.GEN.150 Transport of dangerous goods

(a) The transport of dangerous goods by air shall be conducted in accordance with Annex 18 to the Chicago Convention as last amended and amplified by the Technical Instructions for the Safe Transport of Dangerous Goods by Air (ICAO Doc 9284-AN/905), including its supplements and any other addenda or corrigenda.

(b) Dangerous goods shall only be transported by the operator approved in accordance with SPA.DG, except when:

1. they are not subject to the Technical Instructions in accordance with Part 1 of those Instructions; or

2. they are carried by passengers or crew members, or are in baggage, in accordance with Part 8 of the Technical Instructions.

(c) The operator shall establish procedures to ensure that all reasonable measures are taken to prevent dangerous goods from being carried on board inadvertently.

(d) The operator shall provide personnel with the necessary information enabling them to carry out their responsibilities, as required by the Technical Instructions.
(e) The operator shall, in accordance with the Technical Instructions, report without delay to the competent authority and the appropriate authority of the State of occurrence in the event of:

(1) any dangerous goods accidents or incidents;

(2) the discovery of undeclared or misdeclared dangerous goods in cargo or mail; or

(3) the finding of dangerous goods carried by passengers or crew members, or in their baggage, when not in accordance with Part 8 of the Technical Instructions.

(f) The operator shall ensure that passengers are provided with information about dangerous goods in accordance with the Technical Instructions.

(g) The operator shall ensure that notices giving information about the transport of dangerous goods are provided at acceptance points for cargo as required by the Technical Instructions.
Subpart B — Operational procedures

NCC.OP.100 Use of aerodromes and operating sites

The operator shall only use aerodromes and operating sites that are adequate for the type of aircraft and operation concerned.

NCC.OP.105 Specification of isolated aerodromes — aeroplanes

For the selection of alternate aerodromes and the fuel policy, the operator shall consider an aerodrome as an isolated aerodrome if the fuel required to the nearest adequate destination alternate aerodrome is more than:

(a) for aeroplanes with reciprocating engines, fuel to fly for 60 minutes; or

(b) for aeroplanes with turbine engines, fuel to fly for 90 minutes.

NCC.OP.110 Aerodrome operating minima — general

(a) For IFR flights the operator shall specify aerodrome operating minima for each departure, destination and alternate aerodrome to be used. Such minima shall:

(1) not be lower than those established by the State in which the aerodrome is located, except when specifically approved by that State; and

(2) when low visibility operations are being undertaken, be approved by the competent authority in accordance with SPA.LVO.

(b) When establishing aerodrome operating minima, the operator shall take the following into account:

(1) the type, performance and handling characteristics of the aircraft;

(2) the composition, competence and experience of the flight crew;

(3) the dimensions and characteristics of the runways and final approach and take-off areas (FATOs) that may be selected for use;

(4) the adequacy and performance of the available visual and non-visual ground aids;
(5) the equipment available on the aircraft for the purpose of navigation and/or control of the flight path, during the take-off, the approach, the flare, the landing, the rollout and the missed approach;

(6) the obstacles in the approach, the missed approach and the climb-out areas required for the execution of contingency procedures;

(7) the obstacle clearance altitude/height for the instrument approach procedures;

(8) the means to determine and report meteorological conditions; and

(9) the flight technique to be used during the final approach.

(c) The minima for a specific type of approach and landing procedure shall only be used if all the following conditions are met:

(1) the ground equipment required for the intended procedure is operative;

(2) the aircraft systems required for the type of approach are operative;

(3) the required aircraft performance criteria are met; and

(4) the crew is qualified appropriately.

NCC.OP.111 Aerodrome operating minima — NPA, APV, CAT I operations

(a) The decision height (DH) to be used for a non-precision approach (NPA) flown with the continuous descent final approach (CDFA) technique, approach procedure with vertical guidance (APV) or CAT I operation shall not be lower than the highest of:

(1) the minimum height to which the approach aid can be used without the required visual reference;

(2) the obstacle clearance height (OCH) for the category of aircraft;

(3) the published approach procedure decision height (DH) where applicable;

(4) the system minimum specified in Table 1; or

(5) the minimum DH specified in the AFM or equivalent document, if stated.

(b) The minimum descent height (MDH) for an NPA operation flown without the CDFA technique shall not be lower than the highest of:

(1) the OCH for the category of aircraft;

(2) the system minimum specified in Table 1; or

(3) the minimum MDH specified in the AFM, if stated.
Table 1: System minima

<table>
<thead>
<tr>
<th>Facility</th>
<th>Lowest DH/MDH (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument landing system (ILS)</td>
<td>200</td>
</tr>
<tr>
<td>Global navigation satellite system (GNSS)/Satellite-based augmentation system (SBAS) (Lateral precision with vertical guidance approach (LPV))</td>
<td>200</td>
</tr>
<tr>
<td>GNSS (Lateral Navigation (LNAV))</td>
<td>250</td>
</tr>
<tr>
<td>GNSS/Baro-vertical navigation (VNAV) (LNAV/VNAV)</td>
<td>250</td>
</tr>
<tr>
<td>Localiser (LOC) with or without distance measuring equipment (DME)</td>
<td>250</td>
</tr>
<tr>
<td>Surveillance radar approach (SRA) (terminating at ½ NM)</td>
<td>250</td>
</tr>
<tr>
<td>SRA (terminating at 1 NM)</td>
<td>300</td>
</tr>
<tr>
<td>SRA (terminating at 2 NM or more)</td>
<td>350</td>
</tr>
<tr>
<td>VHF omnidirectional radio range (VOR)</td>
<td>300</td>
</tr>
<tr>
<td>VOR/DME</td>
<td>250</td>
</tr>
<tr>
<td>Non-directional beacon (NDB)</td>
<td>350</td>
</tr>
<tr>
<td>NDB/DME</td>
<td>300</td>
</tr>
<tr>
<td>VHF direction finder (VDF)</td>
<td>350</td>
</tr>
</tbody>
</table>

NCC.OP.112 Aerodrome operating minima — circling operations with aeroplanes

(a) The MDH for a circling operation with aeroplanes shall not be lower than the highest of:

(1) the published circling OCH for the aeroplane category;

(2) the minimum circling height derived from Table 2; or

(3) the DH/MDH of the preceding instrument approach procedure.

(b) The minimum visibility for a circling operation with aeroplanes shall be the highest of:
(1) the circling visibility for the aeroplane category, if published;
(2) the minimum visibility derived from Table 2; or
(3) the runway visual range/converted meteorological visibility (RVR/CMV) of the preceding instrument approach procedure.

Table 2: MDH and minimum visibility for circling vs aeroplane category

<table>
<thead>
<tr>
<th>Aeroplane category</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDH (ft)</td>
<td>400</td>
<td>500</td>
<td>600</td>
<td>700</td>
</tr>
<tr>
<td>Minimum meteorological visibility (m)</td>
<td>1 500</td>
<td>1 600</td>
<td>2 400</td>
<td>3 600</td>
</tr>
</tbody>
</table>

NCC.OP.113 Aerodrome operating minima — onshore circling operations with helicopters

The MDH for an onshore circling operation with helicopters shall not be lower than 250 ft and the meteorological visibility not less than 800 m.

NCC.OP.115 Departure and approach procedures

(a) The pilot-in-command shall use the departure and approach procedures established by the State of the aerodrome, if such procedures have been published for the runway or FATO to be used.

(b) Notwithstanding (a), the pilot-in-command shall only accept an ATC clearance to deviate from a published procedure:

 (1) provided that obstacle clearance criteria are observed and full account is taken of the operating conditions; or

 (2) when being radar-vectored by an ATC unit.

(c) In any case, the final approach segment shall be flown visually or in accordance with the published approach procedures.

NCC.OP.120 Noise abatement procedures

The operator shall develop operating procedures taking into account the need to minimise the effect of aircraft noise while ensuring that safety has priority over noise abatement.
NCC.OP.125 Minimum obstacle clearance altitudes — IFR flights

(a) The operator shall specify a method to establish minimum flight altitudes that provide the required terrain clearance for all route segments to be flown in IFR.

(b) The pilot-in-command shall establish minimum flight altitudes for each flight based on this method. The minimum flight altitudes shall not be lower than that published by the State overflown.

NCC.OP.130 Fuel and oil supply — aeroplanes

(a) The pilot-in-command shall only commence a flight if the aeroplane carries sufficient fuel and oil for the following:

(1) for visual flight rules (VFR) flights:
 (i) by day, to fly to the aerodrome of intended landing and thereafter to fly for at least 30 minutes at normal cruising altitude; or
 (ii) by night, to fly to the aerodrome of intended landing and thereafter to fly for at least 45 minutes at normal cruising altitude;

(2) for instrument flight rules (IFR) flights:
 (i) when no destination alternate is required, to fly to the aerodrome of intended landing, and thereafter to fly for at least 45 minutes at normal cruising altitude; or
 (ii) when a destination alternate is required, to fly to the aerodrome of intended landing, to an alternate aerodrome and thereafter to fly for at least 45 minutes at normal cruising altitude.

(b) In computing the fuel required, the following shall be taken into consideration:

(1) forecast meteorological conditions;
(2) anticipated ATC routings and traffic delays;
(3) procedures for loss of pressurisation or failure of one engine while en-route, where applicable; and
(4) any other condition that may delay the landing of the aeroplane or increase fuel and/or oil consumption.

(c) Nothing shall preclude amendment of a flight plan in-flight, in order to re-plan the flight to another destination, provided that all requirements can be complied with from the point where the flight is re-planned.
NCC.OP.131 Fuel and oil supply — helicopters

(a) The pilot-in-command shall only commence a flight if the helicopter carries sufficient fuel and oil for the following:

(1) for VFR flights, to fly to the aerodrome/operating site of intended landing and thereafter to fly for at least 20 minutes at best-range-speed; and

(2) for IFR flights:

(i) to fly to the aerodrome/operating site of intended landing, and thereafter to fly for 30 minutes at holding speed at 450 m (1 500 ft) above the destination aerodrome/operating site under standard temperature conditions and approach and land, when no alternate is required or no weather-permissible alternate aerodrome is available; or

(ii) when an alternate is required, to fly to and execute an approach and a missed approach at the aerodrome/operating site of intended landing, and thereafter:

(A) to fly to the specified alternate; and

(B) to fly for 30 minutes at holding speed at 450 m (1 500 ft) above the alternate aerodrome/operating site under standard temperature conditions and approach and land.

(b) In computing the fuel required including to provide for contingency, the following shall be taken into consideration:

(1) forecast meteorological conditions;

(2) anticipated ATC routings and traffic delays;

(3) procedures for loss of pressurisation or failure of one engine while en-route, where applicable; and

(4) any other condition that may delay the landing of the aircraft or increase fuel and/or oil consumption.

(c) Nothing shall preclude amendment of a flight plan in-flight, in order to re-plan the flight to another destination, provided that all requirements can be complied with from the point where the flight is re-planned.

NCC.OP.135 Stowage of baggage and cargo

The operator shall establish procedures to ensure that:

(a) only hand baggage that can be adequately and securely stowed is taken into the passenger compartment; and
(b) all baggage and cargo on board that might cause injury or damage, or obstruct aisles and exits if displaced, is stowed so as to prevent movement.

NCC.OP.140 Carriage of passengers

The operator shall:

(a) establish procedures to ensure that passengers are seated where, in the event that an emergency evacuation is required, they are able to assist and not hinder evacuation of the aircraft;

(b) ensure that prior to and during taxiing, take-off and landing, and whenever deemed necessary in the interest of safety by the pilot-in-command, each passenger on board occupies a seat or berth and has his/her safety belt or restraint device properly secured; and

(c) make provisions for multiple occupancy which shall only be allowed on specified aircraft seats occupied by one adult and one infant properly secured by a supplementary loop belt or other restraint device.

NCC.OP.145 Passenger briefing

The pilot-in-command shall ensure that:

(a) prior to take-off passengers have been made familiar with the location and use of:

(1) seat belts;

(2) emergency exits; and

(3) passenger emergency briefing cards;

and if applicable

(4) life-jackets;

(5) oxygen dispensing equipment;

(6) life-rafts; and

(7) other emergency equipment provided for individual passenger use; and

(b) in an emergency during flight, passengers are instructed in such emergency action as may be appropriate to the circumstances.
NCC.OP.150 Flight preparation

(a) Before commencing a flight, the pilot-in-command shall ascertain by every reasonable means available that the ground and/or water facilities including communication facilities and navigation aids available and directly required on such flight, for the safe operation of the aircraft, are adequate for the type of operation under which the flight is to be conducted.

(b) Before commencing a flight, the pilot-in-command shall be familiar with all available meteorological information appropriate to the intended flight. Preparation for a flight away from the vicinity of the place of departure, and for every flight under IFR, shall include:

(1) a study of available current weather reports and forecasts; and

(2) the planning of an alternative course of action to provide for the eventuality that the flight cannot be completed as planned, because of weather conditions.

NCC.OP.155 Take-off alternate aerodromes — aeroplanes

(a) For IFR flights, the pilot-in-command shall specify at least one weather-permissible take-off alternate aerodrome in the flight plan if the weather conditions at the aerodrome of departure are at or below the applicable aerodrome operating minima or it would not be possible to return to the aerodrome of departure for other reasons.

(b) The take-off alternate aerodrome shall be located within the following distance from the aerodrome of departure:

(1) for aeroplanes having two engines, not more than a distance equivalent to a flight time of 1 hour at the single-engine cruise speed; and

(2) for aeroplanes having three or more engines, not more than a distance equivalent to a flight time of 2 hours at the one-engine-inoperative (OEI) cruise speed.

(c) For an aerodrome to be selected as a take-off alternate aerodrome the available information shall indicate that, at the estimated time of use, the conditions will be at or above the aerodrome operating minima for that operation.

NCC.OP.156 Destination alternate aerodromes — aeroplanes

For IFR flights, the pilot-in-command shall specify at least one weather-permissible destination alternate aerodrome in the flight plan, unless:

(a) the available current meteorological information indicates that, for the period from 1 hour before until 1 hour after the estimated time of arrival, or from the actual
time of departure to 1 hour after the estimated time of arrival, whichever is the shorter period, the approach and landing may be made under visual meteorological conditions (VMC); or

(b) the place of intended landing is isolated and:

(1) an instrument approach procedure is prescribed for the aerodrome of intended landing; and

(2) available current meteorological information indicates that the following meteorological conditions will exist from 2 hours before to 2 hours after the estimated time of arrival:

(i) a cloud base of at least 300 m (1 000 ft) above the minimum associated with the instrument approach procedure; and

(ii) visibility of at least 5.5 km or of 4 km more than the minimum associated with the procedure.

NCC.OP.157 Destination alternate aerodromes — helicopters

For IFR flights, the pilot-in-command shall specify at least one weather-permissible destination alternate in the flight plan, unless:

(a) available current meteorological information indicates that the following meteorological conditions will exist from 2 hours before to 2 hours after the estimated time of arrival, or from the actual time of departure to 2 hours after the estimated time of arrival, whichever is the shorter period:

(1) a cloud base of at least 120 m (400 ft) above the minimum associated with the instrument approach procedure; and

(2) visibility of at least 1 500 m more than the minimum associated with the procedure; or

(b) the place of intended landing is isolated and:

(1) an instrument approach procedure is prescribed for the aerodrome of intended landing;

(2) the cloud base is at least 120 m (400 ft) above the minimum associated with the instrument approach procedure;

(3) visibility is at least 1 500 m more than the minimum associated with the procedure; and

(4) a point of no return (PNR) is determined in case of an offshore destination.
NCC.OP.160 Refuelling with passengers embarking, on board or disembarking

(a) The aircraft shall not be refuelled with aviation gasoline (AVGAS) or wide-cut type fuel or a mixture of these types of fuel, when passengers are embarking, on board or disembarking.

(b) For all other types of fuel, necessary precautions shall be taken and the aircraft shall be properly manned by qualified personnel ready to initiate and direct an evacuation of the aircraft by the most practical and expeditious means available.

NCC.OP.165 Use of headset

Each flight crew member required to be on duty in the flight crew compartment shall wear a headset with boom microphone, or equivalent, and use it as the primary device to communicate with ATS.

NCC.OP.170 Securing of passenger compartment and galley(s)

The pilot-in-command shall ensure that:

(a) before taxiing, take-off and landing, all exits and escape paths are unobstructed; and

(b) before take-off and landing, and whenever deemed necessary in the interest of safety, all equipment and baggage are properly secured.

NCC.OP.175 Smoking on board

The pilot-in-command shall not allow smoking on board:

(a) whenever considered necessary in the interest of safety;

(b) during refuelling of the aircraft;

(c) while the aircraft is on the surface unless the operator has determined procedures to mitigate the risks during ground operations;

(d) outside designated smoking areas, in the aisle(s) and lavatory(ies);

(e) in cargo compartments and/or other areas where cargo is carried that is not stored in flame-resistant containers or covered by flame-resistant canvas; and

(f) in those areas of the passenger compartment where oxygen is being supplied.
NCC.OP.180 Meteorological conditions

(a) The pilot-in-command shall only commence or continue a VFR flight if the latest available meteorological information indicates that the weather conditions along the route and at the intended destination at the estimated time of use will be at or above the applicable VFR operating minima.

(b) The pilot-in-command shall only commence or continue an IFR flight towards the planned destination aerodrome if the latest available meteorological information indicates that, at the estimated time of arrival, the weather conditions at the destination or at least one destination alternate aerodrome are at or above the applicable aerodrome operating minima.

(c) If a flight contains VFR and IFR segments, the meteorological information referred to in (a) and (b) shall be applicable as far as relevant.

NCC.OP.185 Ice and other contaminants — ground procedures

(a) The operator shall establish procedures to be followed when ground de-icing and anti-icing and related inspections of the aircraft are necessary to allow the safe operation of the aircraft.

(b) The pilot-in-command shall only commence take-off if the aircraft is clear of any deposit that might adversely affect the performance or controllability of the aircraft, except as permitted under the procedures referred to in (a) and in accordance with the AFM.

NCC.OP.190 Ice and other contaminants — flight procedures

(a) The operator shall establish procedures for flights in expected or actual icing conditions.

(b) The pilot-in-command shall only commence a flight or intentionally fly into expected or actual icing conditions if the aircraft is certified and equipped to cope with such conditions as referred to in 2.a.5 of Annex IV to Regulation (EC) No 216/2008.

(c) If icing exceeds the intensity of icing for which the aircraft is certified or if an aircraft not certified for flight in known icing conditions encounters icing, the pilot-in-command shall exit the icing conditions without delay, by a change of level and/or route, and if necessary by declaring an emergency to ATC.

NCC.OP.195 Take-off conditions

Before commencing take-off, the pilot-in-command shall be satisfied that:
(a) according to the information available, the weather at the aerodrome or operating site and the condition of the runway or FATO intended to be used would not prevent a safe take-off and departure; and

(b) applicable aerodrome operating minima will be complied with.

NCC.OP.200 Simulated abnormal situations in flight

The pilot-in-command shall, when carrying passengers or cargo, not simulate:

(a) abnormal or emergency situations that require the application of abnormal or emergency procedures; or

(b) flight in instrument meteorological conditions (IMC) by artificial means.

NCC.OP.205 In-flight fuel management

(a) The operator shall ensure that in-flight fuel checks and fuel management are performed.

(b) The pilot-in-command shall check at regular intervals that the amount of usable fuel remaining in flight is not less than the fuel required to proceed, with the planned final reserve fuel remaining, to a weather-permissible aerodrome or operating site.

NCC.OP.210 Use of supplemental oxygen

The pilot-in-command shall ensure that flight crew members engaged in performing duties essential to the safe operation of an aircraft in flight use supplemental oxygen continuously whenever the cabin altitude exceeds 10 000 ft for a period of more than 30 minutes and whenever the cabin altitude exceeds 13 000 ft.

NCC.OP.215 Ground proximity detection

When undue proximity to the ground is detected by a flight crew member or by a ground proximity warning system, the pilot flying shall take corrective action immediately in order to establish safe flight conditions.

NCC.OP.220 Airborne collision avoidance system (ACAS)

(a) The operator shall establish procedures to ensure that when ACAS is installed and serviceable, it shall be used during flight in a mode that enables resolution advisories (RAs) to be produced for the flight crew when undue proximity to another aircraft is detected, unless inhibition of RA mode using traffic advisory (TA)
only or equivalent is called for by an abnormal procedure or due to performance limiting conditions.

(b) When an RA is produced by ACAS:

(1) the pilot flying shall immediately conform to the indications of the RA, even if this conflicts with an ATC instruction, unless doing so would jeopardise the safety of the aircraft;

(2) as soon as permitted by flight crew workload, shall notify the appropriate ATC unit of any RA that requires a deviation from the current ATC instruction or clearance; and

(3) when the conflict is resolved, the aircraft shall:

 (i) be promptly returned to the terms of the acknowledged ATC instruction or clearance and ATC notified of the manoeuvre; or

 (ii) comply with any amended ATC clearance or instruction issued.

NCC.OP.225 Approach and landing conditions

Before commencing an approach to land, the pilot-in-command shall be satisfied that, according to the information available, the weather at the aerodrome or the operating site and the condition of the runway or FATO intended to be used would not prevent a safe approach, landing or missed approach.

NCC.OP.230 Commencement and continuation of approach

(a) The pilot-in-command may commence an instrument approach regardless of the reported runway visual range/visibility (RVR/VIS).

(b) If the reported RVR/VIS is less than the applicable minimum the approach shall not be continued:

 (1) below 1 000 ft above the aerodrome; or

 (2) into the final approach segment in the case where the decision altitude/height (DA/H) or minimum descent altitude/height (MDA/H) is more than 1 000 ft above the aerodrome.

(c) Where the RVR is not available, RVR values may be derived by converting the reported visibility.

(d) If, after passing 1 000 ft above the aerodrome, the reported RVR/VIS falls below the applicable minimum, the approach may be continued to DA/H or MDA/H.

(e) The approach may be continued below DA/H or MDA/H and the landing may be completed provided that the visual reference adequate for the type of approach.
operation and for the intended runway is established at the DA/H or MDA/H and is maintained.

(f) The touchdown zone RVR shall always be controlling.
Subpart C — Aircraft performance and operating limitations

NCC.POL.100 Operating limitations — all aircraft

(a) During any phase of operation, the loading, the mass and the centre of gravity (CG) position of the aircraft shall comply with any limitation specified in the AFM, or the operations manual, if more restrictive.

(b) Placards, listings, instrument markings, or combinations thereof, containing those operating limitations prescribed by the AFM for visual presentation, shall be displayed in the aircraft.

NCC.POL.105 Mass and balance, loading

(a) The operator shall establish the mass and the CG of any aircraft by actual weighing prior to initial entry into service. The accumulated effects of modifications and repairs on the mass and balance shall be accounted for and properly documented. Aircraft shall be reweighed if the effect of modifications on the mass and balance is not accurately known.

(b) The weighing shall be accomplished by the manufacturer of the aircraft or by an approved maintenance organisation.

(c) The operator shall determine the mass of all operating items and crew members included in the aircraft dry operating mass by actual weighing, including any crew baggage, or by using standard masses. The influence of their position on the aircraft's CG shall be determined. When using standard masses the following mass values for crew members shall be used to determine the dry operating mass:

(1) 85 kg, including hand baggage, for flight crew/technical crew members; and

(2) 75 kg for cabin crew members.

(d) The operator shall establish procedures to enable the pilot-in-command to determine the mass of the traffic load, including any ballast, by:

(1) actual weighing; or

(2) determining the mass of the traffic load in accordance with standard passenger and baggage masses; or

(3) calculating passenger mass on the basis of a statement by, or on behalf of, each passenger and adding to it a predetermined mass to account for hand
baggage and clothing, when the number of passenger seats available on the aircraft is:

(i) less than 10 for aeroplanes; or

(ii) less than six for helicopters.

(e) When using standard masses the following mass values shall be used:

(1) for passengers, those in Table 1 and 2, where hand baggage and the mass of any infant carried by an adult on one passenger seat are included:

Table 1: Standard masses for passengers — aircraft with a total number of passenger seats of 20 or more

<table>
<thead>
<tr>
<th>Passenger seats:</th>
<th>20 and more</th>
<th>30 and more</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>Adults</td>
<td>88 kg</td>
<td>70 kg</td>
</tr>
<tr>
<td>Children</td>
<td>35 kg</td>
<td>35 kg</td>
</tr>
</tbody>
</table>

Table 2: Standard masses for passengers — aircraft with a total number of passenger seats of 19 or less

<table>
<thead>
<tr>
<th>Passenger seats</th>
<th>1 – 5</th>
<th>6 – 9</th>
<th>10 – 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>104 kg</td>
<td>96 kg</td>
<td>92 kg</td>
</tr>
<tr>
<td>Female</td>
<td>86 kg</td>
<td>78 kg</td>
<td>74 kg</td>
</tr>
<tr>
<td>Children</td>
<td>35 kg</td>
<td>35 kg</td>
<td>35 kg</td>
</tr>
</tbody>
</table>

(2) for baggage:

(i) for aeroplanes, when the total number of passenger seats available on the aeroplane is 20 or more, standard mass values for checked baggage of Table 3;

Table 3: Standard masses for baggage — aeroplanes with a total number of passenger seats of 20 or more

<table>
<thead>
<tr>
<th>Type of flight</th>
<th>Baggage standard mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>11 kg</td>
</tr>
</tbody>
</table>
Within the European region | 13 kg
Intercontinental | 15 kg
All other | 13 kg

(ii) for helicopters, when the total number of passenger seats available on the helicopters is 20 or more, the standard mass value for checked baggage of 13 kg;

(f) For aircraft with 19 passenger seats or less, the actual mass of checked baggage shall be determined:

(1) by weighing, or

(2) by calculation on the basis of a statement by, or on behalf of, each passenger. Where this is impractical, a minimum standard mass of 13 kg shall be used.

(g) The operator shall establish procedures to enable the pilot-in-command to determine the mass of the fuel load by using the actual density or, if not known, the density calculated in accordance with a method specified in the operations manual.

(h) The pilot-in-command shall ensure that the loading of:

(1) the aircraft is performed under the supervision of qualified personnel; and

(2) traffic load is consistent with the data used for the calculation of the aircraft mass and balance.

(i) The operator shall establish procedures to enable the pilot-in-command to comply with additional structural limits such as the floor strength limitations, the maximum load per running metre, the maximum mass per cargo compartment and the maximum seating limit.

(j) The operator shall specify, in the operations manual, the principles and methods involved in the loading and in the mass and balance system that meet the requirements contained in (a) to (i). This system shall cover all types of intended operations.

NCC.POL.110 Mass and balance data and documentation

(a) The operator shall establish mass and balance data and produce mass and balance documentation prior to each flight specifying the load and its distribution in such a way that the mass and balance limits of the aircraft are not exceeded. The mass and balance documentation shall contain the following information:

(1) aircraft registration and type;
(2) flight identification, number and date, as applicable;
(3) name of the pilot-in-command;
(4) name of the person who prepared the document;
(5) dry operating mass and the corresponding CG of the aircraft;
(6) mass of the fuel at take-off and the mass of trip fuel;
(7) mass of consumables other than fuel, if applicable;
(8) load components including passengers, baggage, freight and ballast;
(9) take-off mass, landing mass and zero fuel mass;
(10) applicable aircraft CG positions; and
(11) the limiting mass and CG values.

(b) Where mass and balance data and documentation is generated by a computerised mass and balance system, the operator shall verify the integrity of the output data.

(c) When the loading of the aircraft is not supervised by the pilot-in-command, the person supervising the loading of the aircraft shall confirm by hand signature or equivalent that the load and its distribution are in accordance with the mass and balance documentation established by the pilot-in-command. The pilot-in-command shall indicate his/her acceptance by hand signature or equivalent.

(d) The operator shall specify procedures for last minute changes to the load to ensure that:

(1) any last minute change after the completion of the mass and balance documentation is entered in the flight planning documents containing the mass and balance documentation;

(2) the maximum last minute change allowed in passenger numbers or hold load is specified; and

(3) new mass and balance documentation is prepared if this maximum number is exceeded.

NCC.POL.111 Mass and balance data and documentation — alleviations

Notwithstanding NCC.POL.110 (a)(5), the CG position may not need to be on the mass and balance documentation, if the load distribution is in accordance with a pre-calculated balance table or if it can be shown that for the planned operations a correct balance can be ensured, whatever the real load is.
NCC.POL.115 Performance — general

(a) The pilot-in-command shall only operate the aircraft if the performance is adequate to comply with the applicable rules of the air and any other restrictions applicable to the flight, the airspace or the aerodromes or operating sites used, taking into account the charting accuracy of any charts and maps used.

(b) The pilot-in-command shall not operate the aircraft over the congested areas of cities, towns or settlements or over an open-air assembly of persons, if in the event of an engine failure a landing cannot be made without causing undue hazard to persons or property on the ground.

NCC.POL.120 Take-off mass limitations — aeroplanes

The operator shall ensure that:

(a) the mass of the aeroplane at the start of take-off shall not exceed the mass limitations:

 (1) at take-off as required in NCC.POL.125;

 (2) en-route with one engine inoperative (OEI) as required in NCC.POL.130; and

 (3) at landing as required in NCC.POL.135,

 allowing for expected reductions in mass as the flight proceeds, and for fuel jettisoning;

(b) the mass at the start of take-off shall never exceed the maximum take-off mass specified in the AFM for the pressure altitude appropriate to the elevation of the aerodrome or operating site, and if used as a parameter to determine the maximum take-off mass, any other local atmospheric condition; and

(c) the estimated mass for the expected time of landing at the aerodrome or operating site of intended landing and at any destination alternate aerodrome shall never exceed the maximum landing mass specified in the AFM for the pressure altitude appropriate to the elevation of those aerodromes or operating sites, and if used as a parameter to determine the maximum landing mass, any other local atmospheric condition.

NCC.POL.125 Take-off — aeroplanes

(a) When determining the maximum take-off mass, the pilot-in-command shall take the following into account:

 (1) the calculated take-off distance shall not exceed the take-off distance available with a clearway distance not exceeding half of the take-off run available;
(2) the calculated take-off run shall not exceed the take-off run available;

(3) a single value of V_1 shall be used for the rejected and continued take-off, where a V_1 is specified in the AFM; and

(4) on a wet or contaminated runway, the take-off mass shall not exceed that permitted for a take-off on a dry runway under the same conditions.

(b) In the event of an engine failure during take-off, the pilot-in-command shall ensure that:

(1) for the aeroplane where a V_1 is specified in the AFM, the aeroplane shall be able to discontinue the take-off and stop within the accelerate-stop distance available; and

(2) for the aeroplane where a net take-off flight path is specified in the AFM, the aeroplane shall be able to continue the take-off and clear all obstacles along the flight path by an adequate margin until the aeroplane is in a position to comply with NCC.POL.130.

NCC.POL.130 En-route — one engine inoperative — aeroplanes

The pilot-in-command shall ensure that in the event of an engine becoming inoperative at any point along the route, a multi-engined aeroplane shall be able to continue the flight to an adequate aerodrome or operating site without flying below the minimum obstacle clearance altitude at any point.

NCC.POL.135 Landing — aeroplanes

The pilot-in-command shall ensure that at any aerodrome or operating site, after clearing all obstacles in the approach path by a safe margin, the aeroplane shall be able to land and stop, or a seaplane to come to a satisfactorily low speed, within the landing distance available. Allowance shall be made for expected variations in the approach and landing techniques, if such allowance has not been made in the scheduling of performance data.
Subpart D — Instruments, data and equipment

Section 1 — Aeroplanes

NCC.IDE.A.100 Instruments and equipment — general

(a) Instruments and equipment required by this Part shall be approved in accordance with the applicable airworthiness requirements if they are:

(1) used by the flight crew to control the flight path, to comply with NCC.IDE.A.245 and NCC.IDE.A.250; or

(2) installed in the aeroplane.

(b) The following items, when required by this Part, do not need an equipment approval:

(1) spare fuses,

(2) independent portable lights,

(3) an accurate time piece,

(4) chart holder,

(5) first-aid kits,

(6) survival and signalling equipment,

(7) sea anchor and equipment for mooring, and

(8) child restraint device.

(c) Instruments and equipment not required by this Part which do not fall under the requirements of (a) as well as any other equipment which is not required by other Parts, but is carried on a flight, shall comply with the following:

(1) the information provided by these instruments, equipment or accessories shall not be used by the flight crew to comply with Annex I to Regulation (EC) No 216/2008\(^2\) or NCC.IDE.A.245 and NCC.IDE.A.250; and

(2) the instruments and equipment shall not affect the airworthiness of the aeroplane, even in the case of failures or malfunction.

(d) Instruments and equipment shall be readily operable or accessible from the station where the flight crew member that needs to use it is seated.

(e) Those instruments that are used by a flight crew member shall be so arranged as to permit the flight crew member to see the indications readily from his/her station, with the minimum practicable deviation from the position and line of vision which he/she normally assumes when looking forward along the flight path.

(f) All required emergency equipment shall be easily accessible for immediate use.

NCC.IDE.A.105 Minimum equipment for flight

A flight shall not be commenced when any of the aeroplane’s instruments, items of equipment, or functions, required for the intended flight are inoperative or missing, unless:

(a) the aeroplane is operated in accordance with the operator’s minimum equipment list (MEL); or

(b) the operator is approved by the competent authority to operate the aeroplane within the constraints of the master minimum equipment list (MMEL);

(c) the aeroplane is subject to a permit to fly issued in accordance with the applicable airworthiness requirements.

NCC.IDE.A.110 Spare electrical fuses

Aeroplanes shall be equipped with spare electrical fuses, of the ratings required for complete circuit protection, for replacement of those fuses that are allowed to be replaced in flight.

NCC.IDE.A.115 Operating lights

Aeroplanes operated at night shall be equipped with:

(a) an anti-collision light system;

(b) navigation/position lights;

(c) a landing light;

(d) lighting supplied from the aeroplane’s electrical system to provide adequate illumination for all instruments and equipment essential to the safe operation of the aeroplane;

(e) lighting supplied from the aeroplane’s electrical system to provide illumination in all passenger compartments;

(f) an independent portable light for each crew member station; and

(g) lights to conform with the International Regulations for Preventing Collisions at Sea if the aeroplane is operated as a seaplane.

NCC.IDE.A.120 Operations under VFR — flight and navigational instruments and associated equipment

(a) Aeroplanes operated under VFR by day shall be equipped with a means of measuring and displaying:

1. magnetic-heading,
2. time in hours, minutes and seconds,
3. pressure altitude,
4. indicated airspeed,
5. slip, and
6. Mach number whenever speed limitations are expressed in terms of Mach number.

(b) Aeroplanes operated under VMC over water and out of sight of the land, under VMC at night, or in conditions where the aeroplane cannot be maintained in a desired attitude without reference to one or more additional instruments, shall be, in addition to (a), equipped with:

1. a means of measuring and displaying:
 1. turn and slip,
 2. attitude,
 3. vertical speed, and
 4. stabilised heading,

 and

2. a means of indicating when the supply of power to the gyroscopic instruments is not adequate;
(3) a means of preventing malfunction of the airspeed indicating system required in (a)(4) due to condensation or icing.

(c) Whenever two pilots are required for the operation, aeroplanes shall be equipped with an additional separate means of displaying:

(1) pressure altitude,

(2) indicated airspeed,

(3) slip, or turn and slip, as applicable,

(4) attitude, if applicable,

(5) vertical speed, if applicable, and

(6) stabilised heading, if applicable.

NCC.IDE.A.125 Operations under IFR — flight and navigational instruments and associated equipment

Aeroplanes operated under IFR shall be equipped with:

(a) A means of measuring and displaying:

(1) magnetic heading,

(2) time in hours, minutes and seconds,

(3) pressure altitude,

(4) indicated airspeed,

(5) vertical speed,

(6) turn and slip,

(7) attitude,

(8) stabilised heading,

(9) outside air temperature, and

(10) Mach number whenever speed limitations are expressed in terms of Mach number.

(b) A means of indicating when the supply of power to the gyroscopic instruments is not adequate.

(c) Whenever two pilots are required for the operation, an additional separate means of displaying for the second pilot:
(1) pressure altitude,
(2) indicated airspeed,
(3) vertical speed,
(4) turn and slip,
(5) attitude,
(6) stabilised heading, and
(7) Mach number whenever speed limitations are expressed in terms of Mach number, if applicable.

(d) A means for preventing malfunction of the airspeed indicating systems required in (a)(4) and (c)(2) due to condensation or icing.

(e) An alternate source of static pressure.

(f) A chart holder in an easily readable position that can be illuminated for night operations.

(g) A second independent means of measuring and displaying altitude unless already installed to comply with (e).

(h) An emergency power supply, independent of the main electrical generating system, for the purpose of operating and illuminating an attitude indicating system for a minimum period of 30 minutes. The emergency power supply shall be automatically operative after the total failure of the main electrical generating system and clear indication shall be given on the instrument that the attitude indicator is being operated by emergency power.

NCC.IDE.A.130 Additional equipment for single-pilot operation under IFR

Aeroplanes operated under IFR with a single pilot shall be equipped with an autopilot with at least altitude hold and heading mode.

NCC.IDE.A.135 Terrain awareness warning system (TAWS)

Turbine-powered aeroplanes with a maximum certified take-off mass (MCTOM) of more than 5 700 kg or an MOPSC of more than nine shall be equipped with a TAWS that meets the requirements for:

(a) Class A equipment, as specified in an acceptable standard, in the case of aeroplanes for which the individual CofA was first issued after 1 January 2011; or
(b) Class B equipment, as specified in an acceptable standard, in the case of aeroplanes for which the individual certificate of airworthiness was first issued on or before 1 January 2011.

NCC.IDE.A.140 Airborne collision avoidance system (ACAS)

Turbine-powered aeroplanes with an MCTOM of more than 5 700 kg or an MOPSC of more than 19 shall be equipped with ACAS II.

NCC.IDE.A.145 Airborne weather detecting equipment

The following aeroplanes shall be equipped with airborne weather detecting equipment when operated at night or in IMC in areas where thunderstorms or other potentially hazardous weather conditions, regarded as detectable with airborne weather detecting equipment, may be expected to exist along the route:

(a) pressurised aeroplanes;
(b) non-pressurised aeroplanes with an MCTOM of more than 5 700 kg; and
(c) non-pressurised aeroplanes with an MOPSC of more than nine.

NCC.IDE.A.150 Additional equipment for operations in icing conditions at night

(a) Aeroplanes operated in expected or actual icing conditions at night shall be equipped with a means to illuminate or detect the formation of ice.

(b) The means to illuminate the formation of ice shall not cause glare or reflection that would handicap flight crew members in the performance of their duties.

NCC.IDE.A.155 Flight crew interphone system

Aeroplanes operated by more than one flight crew member shall be equipped with a flight crew interphone system, including headsets and microphones for use by all flight crew members.

NCC.IDE.A.160 Cockpit voice recorder

(a) The following aeroplanes shall be equipped with a cockpit voice recorder (CVR):

(1) aeroplanes with an MCTOM of more than 27 000 kg and first issued with an individual CofA on or after 1 January 2016; and

(2) aeroplanes with an MCTOM of more than 2 250 kg:
(i) certified for operation with a minimum crew of at least two pilots;

(i) equipped with turbojet engine(s) or more than one turboprop engine; and

(iii) for which a type certificate is first issued on or after 1 January 2016.

(b) The CVR shall be capable of retaining data recorded during at least the preceding 2 hours.

(c) The CVR shall record with reference to a timescale:

 (1) voice communications transmitted from or received in the flight crew compartment by radio;

 (2) flight crew members’ voice communications using the interphone system and the public address system, if installed;

 (3) the aural environment of the flight crew compartment, including, without interruption, the audio signals received from each boom and mask microphone in use; and

 (4) voice or audio signals identifying navigation or approach aids introduced into a headset or speaker.

(d) The CVR shall start automatically to record prior to the aeroplane moving under its own power and shall continue to record until the termination of the flight when the aeroplane is no longer capable of moving under its own power.

(e) In addition to (d), depending on the availability of electrical power, the CVR shall start to record as early as possible during the cockpit checks prior to engine start at the beginning of the flight until the cockpit checks immediately following engine shutdown at the end of the flight.

(f) The CVR shall have a device to assist in locating it in water.

NCC.IDE.A.165 Flight data recorder

(a) Aeroplanes with an MCTOM of more than 5 700 kg and first issued with an individual CofA on or after 1 January 2016 shall be equipped with an FDR that uses a digital method of recording and storing data and for which a method of readily retrieving that data from the storage medium is available.

(b) The FDR shall record the parameters required to determine accurately the aeroplane flight path, speed, attitude, engine power, configuration and operation and be capable of retaining data recorded during at least the preceding 25 hours.

(c) Data shall be obtained from aeroplane sources that enable accurate correlation with information displayed to the flight crew.
(d) The FDR shall start automatically to record the data prior to the aeroplane being capable of moving under its own power and shall stop automatically after the aeroplane is incapable of moving under its own power.

(e) The FDR shall have a device to assist in locating it in water.

NCC.IDE.A.170 Data link recording

(a) Aeroplanes first issued with an individual CofA on or after 1 January 2016 that have the capability to operate data link communications and are required to be equipped with a CVR shall record on a recorder, where applicable:

1. data link communication messages related to ATS communications to and from the aeroplane, including messages applying to the following applications:

 (i) data link initiation;

 (ii) controller–pilot communication;

 (iii) addressed surveillance;

 (iv) flight information;

 (v) as far as is practicable, given the architecture of the system, aircraft broadcast surveillance;

 (vi) as far as is practicable, given the architecture of the system, aircraft operational control data; and

 (vii) as far as is practicable, given the architecture of the system, graphics;

2. information that enables correlation to any associated records related to data link communications and stored separately from the aeroplane; and

3. information on the time and priority of data link communications messages, taking into account the system’s architecture.

(b) The recorder shall use a digital method of recording and storing data and information and a method for readily retrieving that data. The recording method shall allow the data to match the data recorded on the ground.

(c) The recorder shall be capable of retaining data recorded for at least the same duration as set out for CVRs in NCC.IDE.A.160.

(d) The recorder shall have a device to assist in locating it in water.

(e) The requirements applicable to the start and stop logic of the recorder are the same as the requirements applicable to the start and stop logic of the CVR contained in NCC.IDE.A.160 (d) and (e).
NCC.IDE.A.175 Combination recorder

Compliance with CVR requirements and FDR requirements may be achieved by:

(a) one flight data and cockpit voice combination recorder if the aeroplane has to be equipped with a CVR or an FDR; or

(b) two flight data and cockpit voice combination recorders if the aeroplane has to be equipped with a CVR and an FDR.

NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices

(a) Aeroplanes shall be equipped with:

 (1) a seat or berth for each person on board who is aged 24 months or more;
 (2) a seat belt on each passenger seat and restraining belts for each berth;
 (3) a child restraint device (CRD) for each person on board younger than 24 months;
 (4) a seat belt with upper torso restraint system incorporating a device that will automatically restrain the occupant’s torso in the event of rapid deceleration:
 (i) on each flight crew seat and on any seat alongside a pilot’s seat; and
 (ii) on each observer’s seat located in the flight crew compartment;
 and
 (5) a seat belt with upper torso restraint system on the seats for the minimum required cabin crew, in the case of aeroplanes first issued with an individual CofA after 31 December 1980.

(b) A seat belt with upper torso restraint system shall:

 (1) have a single point release; and
 (2) on flight crew seats, on any seat alongside a pilot’s seat and on the seats for the minimum required cabin crew, include two shoulder straps and a seat belt that may be used independently.

NCC.IDE.A.185 Fasten seat belt and no smoking signs

Aeroplanes in which all passenger seats are not visible from the flight crew seat(s) shall be equipped with a means of indicating to all passengers and cabin crew when seat belts shall be fastened and when smoking is not allowed.
NCC.IDE.A.190 First-aid kit

(a) Aeroplanes shall be equipped with first-aid kits in accordance with Table 1.

Table 1: Number of first-aid kits required

<table>
<thead>
<tr>
<th>Number of passenger seats installed</th>
<th>Number of first-aid kits required</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 100</td>
<td>1</td>
</tr>
<tr>
<td>101 – 200</td>
<td>2</td>
</tr>
<tr>
<td>201 – 300</td>
<td>3</td>
</tr>
<tr>
<td>301 – 400</td>
<td>4</td>
</tr>
<tr>
<td>401 – 500</td>
<td>5</td>
</tr>
<tr>
<td>501 or more</td>
<td>6</td>
</tr>
</tbody>
</table>

(b) First-aid kits shall be:

(1) readily accessible for use; and

(2) kept up-to-date.

NCC.IDE.A.195 Supplemental oxygen — pressurised aeroplanes

(a) Pressurised aeroplanes operated at flight altitudes for which the oxygen supply is required in accordance with (b) shall be equipped with oxygen storage and dispensing apparatus capable of storing and dispensing the required oxygen supplies.

(b) Pressurised aeroplanes operated above flight altitudes at which the pressure altitude in the passenger compartments is above 10 000 ft shall carry enough breathing oxygen to supply:

(1) all crew members and at least:

 (i) 30 % of the passengers, for any period when, in the event of loss of pressurisation and taking into account the circumstances of the flight, the pressure altitude in the passenger compartment will be between 14 000 ft and 15 000 ft; and

 (ii) 10 % of the passengers for the remainder of the flight time when the pressure altitude in the passenger compartment will be between 10 000 ft and 14 000 ft, after the initial 30 minutes at these altitudes;
(2) all the occupants of the passenger compartment for no less than 10 minutes, in the case of aeroplanes operated at pressure altitudes above 25 000 ft, or operated below that altitude, but under conditions that will not allow them to descend safely to a pressure altitude of 13 000 ft within 4 minutes.

(c) Pressurised aeroplanes operated at flight altitudes above 25 000 ft shall, in addition, be equipped with:

(1) a device to provide a warning indication to the flight crew of any loss of pressurisation; and

(2) quick donning masks for flight crew members;

NCC.IDE.A.200 Supplemental oxygen — non-pressurised aeroplanes

(a) Non-pressurised aeroplanes operated at flight altitudes when the oxygen supply is required in accordance with (b) shall be equipped with oxygen storage and dispensing apparatus capable of storing and dispensing the required oxygen supplies.

(b) Non-pressurised aeroplanes operated above flight altitudes at which the pressure altitude in the passenger compartments is above 10 000 ft shall carry enough breathing oxygen to supply:

(1) all crew members and at least 10% of the passengers for any period in excess of 30 minutes when the pressure altitude in the passenger compartment will be between 10 000 ft and 13 000 ft; and

(2) all crew members and passengers for any period that the pressure altitude in the passenger compartments will be above 13 000 ft.

NCC.IDE.A.205 Hand fire extinguishers

(a) Aeroplanes shall be equipped with at least one hand fire extinguisher:

(1) in the flight crew compartment; and

(2) in each passenger compartment that is separate from the flight crew compartment, except if the compartment is readily accessible to the flight crew.

(b) The type and quantity of extinguishing agent for the required fire extinguishers shall be suitable for the type of fire likely to occur in the compartment where the extinguisher is intended to be used and to minimise the hazard of toxic gas concentration in compartments occupied by persons.
NCC.IDE.A.206 Crash axe and crowbar

(a) Aeroplanes with an MCTOM of more than 5 700 kg or with an MOPSC of more than nine shall be equipped with at least one crash axe or crowbar located in the flight crew compartment.

(b) In the case of aeroplanes with an MOPSC of more than 200, an additional crash axe or crowbar shall be installed in or near the rearmost galley area.

(c) Crash axes and crowbars located in the passenger compartment shall not be visible to passengers.

NCC.IDE.A.210 Marking of break-in points

If areas of the aeroplane’s fuselage suitable for break-in by rescue crews in an emergency are marked, such areas shall be marked as shown in Figure 1.

Figure 1: Marking of break-in points

NCC.IDE.A.215 Emergency locator transmitter (ELT)

(a) Aeroplanes first issued with an individual CofA on or before 1 July 2008 shall be equipped with an ELT of any type.

(b) Aeroplanes first issued with an individual CofA after 1 July 2008 shall be equipped with an automatic ELT.

(c) An ELT of any type shall be capable of transmitting simultaneously on 121.5 MHz and 406 MHz.

NCC.IDE.A.220 Flight over water

(a) The following aeroplanes shall be equipped with a life-jacket for each person on board or equivalent individual floatation device for each person on board younger than 24 months, stowed in a position that is readily accessible from the seat or berth of the person for whose use it is provided:
(1) landplanes operated over water at a distance of more than 50 NM from the shore or taking off or landing at an aerodrome or operating site where, in the opinion of the pilot-in-command the take-off or approach path is so disposed over water that there would be a likelihood of a ditching; and

(2) seaplanes operated over water.

(b) Each life-jacket or equivalent individual flotation device shall be equipped with a means of electric illumination for the purpose of facilitating the location of persons.

(c) Seaplanes operated over water shall be equipped with:

(1) a sea anchor and other equipment necessary to facilitate mooring, anchoring or manoeuvring the aeroplane on water, appropriate to its size, weight and handling characteristics; and

(2) equipment for making the sound signals as prescribed in the International Regulations for Preventing Collisions at Sea, where applicable.

(d) The pilot-in-command of an aeroplane operated at a distance away from land where an emergency landing is possible greater than that corresponding to 30 minutes at normal cruising speed or 50 NM, whichever is the lesser, shall determine the risks to survival of the occupants of the aeroplane in the event of a ditching, based on which he/she shall determine the carriage of:

(1) equipment for making the distress signals;

(2) life-rafts in sufficient numbers to carry all persons on board, stowed so as to facilitate their ready use in emergency; and

(3) life-saving equipment to provide the means of sustaining life, as appropriate to the flight to be undertaken.

NCC.IDE.A.230 Survival equipment

(a) Aeroplanes operated over areas in which search and rescue would be especially difficult shall be equipped with:

(1) signalling equipment to make the distress signals;

(2) at least one survival ELT (ELT(S)); and

(3) additional survival equipment for the route to be flown taking account of the number of persons on board.

(b) The additional survival equipment specified in (a)(3) does not need to be carried when the aeroplane:

(1) remains within a distance from an area where search and rescue is not especially difficult corresponding to:
(i) 120 minutes at one-engine-inoperative (OEI) cruising speed for aeroplanes capable of continuing the flight to an aerodrome with the critical engine(s) becoming inoperative at any point along the route or planned diversion routes; or

(ii) 30 minutes at cruising speed for all other aeroplanes;

or

(2) remains within a distance no greater than that corresponding to 90 minutes at cruising speed from an area suitable for making an emergency landing, for aeroplanes certified in accordance with the applicable airworthiness standard.

NCC.IDE.A.240 Headset

(a) Aeroplanes shall be equipped with a headset with a boom microphone or equivalent for each flight crew member at their assigned station in the flight crew compartment.

(b) Aeroplanes operated under IFR or at night shall be equipped with a transmit button on the manual pitch and roll control for each required flight crew member.

NCC.IDE.A.245 Radio communication equipment

(a) Aeroplanes operated under IFR or at night, or when required by the applicable airspace requirements, shall be equipped with radio communication equipment that, under normal radio propagating conditions, shall be capable of:

(1) conducting two-way communication for aerodrome control purposes;

(2) receiving meteorological information at any time during flight;

(3) conducting two-way communication at any time during flight with those aeronautical stations and on those frequencies prescribed by the appropriate authority; and

(4) providing for communication on the aeronautical emergency frequency 121.5 MHz.

(b) When more than one communication equipment unit is required, each shall be independent of the other or others to the extent that a failure in any one will not result in failure of any other.

NCC.IDE.A.250 Navigation equipment

(a) Aeroplanes shall be equipped with navigation equipment that will enable them to proceed in accordance with:
(1) the ATS flight plan, if applicable; and

(2) the applicable airspace requirements.

(b) Aeroplanes shall have sufficient navigation equipment to ensure that, in the event of the failure of one item of equipment at any stage of the flight, the remaining equipment shall allow safe navigation in accordance with (a).

(c) Aeroplanes operated on flights in which it is intended to land in IMC shall be equipped with suitable equipment capable of providing guidance to a point from which a visual landing can be performed for each aerodrome at which it is intended to land in IMC and for any designated alternate aerodromes.

NCC.IDE.A.255 Transponder

Aeroplanes shall be equipped with a pressure altitude reporting secondary surveillance radar (SSR) transponder and any other SSR transponder capability required for the route being flown.

NCC.IDE.A.260 Electronic navigation data management

(a) The operator shall only use electronic navigation data products that support a navigation application meeting standards of integrity that are adequate for the intended use of the data.

(b) When the electronic navigation data products support a navigation application needed for an operation for which Part-SPA requires an approval, the operator shall demonstrate to the competent authority that the process applied and the delivered products meet standards of integrity that are adequate for the intended use of the data.

(c) The operator shall continuously monitor both the process and the products, either directly or by monitoring the compliance of third party providers.

(d) The operator shall ensure the timely distribution and insertion of current and unaltered electronic navigation data to all aeroplanes that require it.
Section 2 — Helicopters

NCC.IDE.H.100 Instruments and equipment — general

(a) Instruments and equipment required by this Part shall be approved in accordance with the applicable airworthiness requirements if they are:

(1) used by the flight crew to control the flight path, to comply with NCC.IDE.H.245 and NCC.IDE.H.250; or

(2) installed in the helicopter.

(b) The following items, when required by this Part, do not need an equipment approval:

(1) independent portable light,

(2) an accurate time piece,

(3) chart holder,

(4) first-aid kit,

(5) survival and signalling equipment,

(6) sea anchor and equipment for mooring, and

(7) child restraint device;

(c) Instruments and equipment not required by this Part which do not fall under the requirements of (a) as well as any other equipment which is not required by other Parts, but is carried on a flight, shall comply with the following:

(1) the information provided by these instruments, equipment or accessories shall not be used by the flight crew to comply with Annex I to Regulation (EC) No 216/2008 or NCC.IDE.H.245 and NCC.IDE.H.250; and

(2) the instruments and equipment shall not affect the airworthiness of the helicopter, even in the case of failures or malfunction.

(c) Instruments and equipment shall be readily operable or accessible from the station where the flight crew member that needs to use it is seated.

(e) Those instruments that are used by a flight crew member shall be so arranged as to permit the flight crew member to see the indications readily from his/her station, with the minimum practicable deviation from the position and line of vision which he/she normally assumes when looking forward along the flight path.
(f) All required emergency equipment shall be easily accessible for immediate use.

NCC.IDE.H.105 Minimum equipment for flight

A flight shall not be commenced when any of the helicopter’s instruments, items of equipment or functions required for the intended flight are inoperative or missing, unless:

(a) the helicopter is operated in accordance with the operator’s minimum equipment list (MEL); or

(b) the operator is approved by the competent authority to operate the helicopter within the constraints of the master minimum equipment list (MMEL);

(c) the helicopter is subject to a permit to fly issued in accordance with the applicable airworthiness requirements.

NCC.IDE.H.115 Operating lights

Helicopters operated at night shall be equipped with:

(a) an anti-collision light system;

(b) navigation/position lights;

(c) a landing light;

(d) lighting supplied from the helicopter’s electrical system to provide adequate illumination for all instruments and equipment essential to the safe operation of the helicopter;

(e) lighting supplied from the helicopter’s electrical system to provide illumination in all passenger compartments;

(f) an independent portable light for each crew member station; and

(g) lights to conform with the International Regulations for Preventing Collisions at Sea if the helicopter is amphibious.

NCC.IDE.H.120 Operations under VFR — flight and navigational instruments and associated equipment

(a) Helicopters operated under VFR by day shall be equipped with a means of measuring and displaying:

(1) magnetic heading,

(2) time in hours, minutes and seconds,
(3) pressure altitude,
(4) indicated airspeed, and
(5) slip.

(b) Helicopters operated under VMC over water and out of sight of the land, under VMC at night, when the visibility is less than 1 500 m, or in conditions where the helicopter cannot be maintained in a desired attitude without reference to one or more additional instruments, shall be equipped, in addition to (a), with:

(1) a means of measuring and displaying:
 (i) attitude,
 (ii) vertical speed, and
 (iii) stabilised heading,
 and

(2) a means of indicating when the supply of power to the gyroscopic instruments is not adequate;

(3) a means of preventing malfunction of the airspeed indicating system required in (a)(4) due to condensation or icing.

(c) Whenever two pilots are required for the operation, helicopters shall be equipped with an additional separate means of displaying:

(1) pressure altitude,
(2) indicated airspeed,
(3) slip,
(4) attitude, if applicable,
(5) vertical speed, if applicable, and
(6) stabilised heading, if applicable.

NCC.IDE.H.125 Operations under IFR — flight and navigational instruments and associated equipment

Helicopters operated under IFR shall be equipped with:

(a) A means of measuring and displaying:

(1) magnetic heading,
(2) time in hours, minutes and seconds,
(3) pressure altitude,
(4) indicated airspeed,
(5) vertical speed,
(6) slip,
(7) attitude,
(8) stabilised heading, and
(9) outside air temperature.

(b) A means of indicating when the supply of power to the gyroscopic instruments is not adequate.

(c) Whenever two pilots are required for the operation, an additional separate means of displaying:

(1) pressure altitude,
(2) indicated airspeed,
(3) vertical speed,
(4) slip,
(5) attitude, and
(6) stabilised heading.

(d) A means of preventing malfunction of the airspeed indicating systems required in (a)(4) and (c)(2) due to condensation or icing.

(e) An alternate source of static pressure.

(f) A chart holder in an easily readable position that can be illuminated for night operations.

(g) An additional means of measuring and displaying attitude as a standby instrument.

NCC.IDE.H.130 Additional equipment for single-pilot operation under IFR

Helicopters operated under IFR with a single pilot shall be equipped with an autopilot with at least altitude hold and heading mode.
NCC.IDE.H.145 Airborne weather detecting equipment

Helicopters with an MOPSC of more than nine and operated under IFR or at night shall be equipped with airborne weather detecting equipment when current weather reports indicate that thunderstorms or other potentially hazardous weather conditions, regarded as detectable with airborne weather detecting equipment, may be expected to exist along the route to be flown.

NCC.IDE.H.150 Additional equipment for operations in icing conditions at night

(a) Helicopters operated in expected or actual icing conditions at night shall be equipped with a means to illuminate or detect the formation of ice.

(b) The means to illuminate the formation of ice shall not cause glare or reflection that would handicap flight crew members in the performance of their duties.

NCC.IDE.H.155 Flight crew interphone system

Helicopters operated by more than one flight crew member shall be equipped with a flight crew interphone system, including headsets and microphones for use by all flight crew members.

NCC.IDE.H.160 Cockpit voice recorder

(a) Helicopters with a maximum certified take-off mass (MCTOM) of more than 7 000 kg and first issued with an individual CofA on or after 1 January 2016 shall be equipped with a cockpit voice recorder (CVR).

(b) The CVR shall be capable of retaining data recorded during at least the preceding 2 hours.

(c) The CVR shall record with reference to a timescale:

 (1) voice communications transmitted from or received in the flight crew compartment by radio;

 (2) flight crew members’ voice communications using the interphone system and the public address system, if installed;

 (3) the aural environment of the cockpit, including, without interruption, the audio signals received from each crew microphone; and

 (4) voice or audio signals identifying navigation or approach aids introduced into a headset or speaker.
(d) The CVR shall start automatically to record prior to the helicopter moving under its own power and shall continue to record until the termination of the flight when the helicopter is no longer capable of moving under its own power.

(e) In addition to (d), depending on the availability of electrical power, the CVR shall start to record as early as possible during the cockpit checks prior to engine start at the beginning of the flight until the cockpit checks immediately following engine shutdown at the end of the flight.

(f) The CVR shall have a device to assist in locating it in water.

NCC.IDE.H.165 Flight data recorder

(a) Helicopters with an MCTOM of more than 3 175 kg and first issued with an individual CofA on or after 1 January 2016 shall be equipped with an FDR that uses a digital method of recording and storing data and for which a method of readily retrieving that data from the storage medium is available.

(b) The FDR shall record the parameters required to determine accurately the helicopter flight path, speed, attitude, engine power, configuration and operation and be capable of retaining data recorded during at least the preceding 10 hours.

(c) Data shall be obtained from helicopter sources that enable accurate correlation with information displayed to the flight crew.

(d) The FDR shall start automatically to record the data prior to the helicopter being capable of moving under its own power and shall stop automatically after the helicopter is incapable of moving under its own power.

(e) The FDR shall have a device to assist in locating it in water.

NCC.IDE.H.170 Data link recording

(a) Helicopters first issued with an individual CofA on or after 1 January 2016 that have the capability to operate data link communications and are required to be equipped with a CVR shall record on a recorder, where applicable:

(1) data link communication messages related to ATS communications to and from the helicopter, including messages applying to the following applications:

 (i) data link initiation;

 (ii) controller–pilot communication;

 (iii) addressed surveillance;

 (iv) flight information;
(v) as far as is practicable, given the architecture of the system, aircraft broadcast surveillance;

(vi) as far as is practicable, given the architecture of the system, aircraft operational control data; and

(vii) as far as is practicable, given the architecture of the system, graphics;

(2) information that enables correlation to any associated records related to data link communications and stored separately from the helicopter; and

(3) information on the time and priority of data link communications messages, taking into account the system’s architecture.

(b) The recorder shall use a digital method of recording and storing data and information and a method for readily retrieving that data. The recording method shall allow the data to match the data recorded on the ground.

(c) The recorder shall be capable of retaining data recorded for at least the same duration as set out for CVRs in NCC.IDE.H.160.

(d) The recorder shall have a device to assist in locating it in water.

(e) The requirements applicable to the start and stop logic of the recorder are the same as the requirements applicable to the start and stop logic of the CVR contained in NCC.IDE.H.160 (d) and (e).

NCC.IDE.H.175 Combination recorder

Compliance with CVR and FDR requirements may be achieved by one flight data and cockpit voice combination recorder.

NCC.IDE.H.180 Seats, seat safety belts, restraint systems and child restraint devices

(a) Helicopters shall be equipped with:

(1) a seat or berth for each person on board who is aged 24 months or more;

(2) a seat belt on each passenger seat and restraining belts for each berth;

(3) for helicopters first issued with an individual CofA after 31 July 1999, a seat belt with an upper torso restraint system for each passenger who is aged 24 months or more;

(4) a child restraint device (CRD) for each person on board younger than 24 months;
(5) a seat belt with upper torso restraint system incorporating a device that will automatically restrain the occupant’s torso in the event of rapid deceleration on each flight crew seat; and

(6) a seat belt with upper torso restraint system on the seats for the minimum required cabin crew, in the case of helicopters first issued with an individual CoFA after 31 December 1980.

(b) A seat belt with upper torso restraint system shall:

(1) have a single point release; and

(2) on flight crew seats, on any seat alongside a pilot’s seat and on the seats for the minimum required cabin crew, include two shoulder straps and a seat belt that may be used independently.

NCC.IDE.H.185 Fasten seat belt and no smoking signs

Helicopters in which all passenger seats are not visible from the flight crew seat(s) shall be equipped with a means of indicating to all passengers and cabin crew when seat belts shall be fastened and when smoking is not allowed.

NCC.IDE.H.190 First-aid kit

(a) Helicopters shall be equipped with at least one first-aid kit.

(b) First-aid kits shall be:

(1) readily accessible for use; and

(2) kept up-to-date.

NCC.IDE.H.200 Supplemental oxygen — non-pressurised helicopters

(a) Non-pressurised helicopters operated at flight altitudes when the oxygen supply is required in accordance with (b) shall be equipped with oxygen storage and dispensing apparatus capable of storing and dispensing the required oxygen supplies.

(b) Non-pressurised helicopters operated above flight altitudes at which the pressure altitude in the passenger compartments is above 10 000 ft shall carry enough breathing oxygen to supply:

(1) all crew members and at least 10 % of the passengers for any period in excess of 30 minutes when the pressure altitude in the passenger compartment will be between 10 000 ft and 13 000 ft; and
(2) all crew members and passengers for any period that the pressure altitude in the passenger compartment will be above 13 000 ft.

NCC.IDE.H.205 Hand fire extinguishers

(a) Helicopters shall be equipped with at least one hand fire extinguisher:

 (1) in the flight crew compartment; and

 (2) in each passenger compartment that is separate from the flight crew compartment, except if the compartment is readily accessible to the flight crew.

(b) The type and quantity of extinguishing agent for the required fire extinguishers shall be suitable for the type of fire likely to occur in the compartment where the extinguisher is intended to be used and to minimise the hazard of toxic gas concentration in compartments occupied by persons.

NCC.IDE.H.210 Marking of break-in points

If areas of the helicopter's fuselage suitable for break-in by rescue crews in an emergency are marked, such areas shall be marked as shown in Figure 1.

Figure 1: Marking of break-in points

![Marking of break-in points](image)

NCC.IDE.H.215 Emergency locator transmitter (ELT)

(a) Helicopters shall be equipped with at least one automatic ELT.

(b) Helicopters operating in performance class 1 or 2 used in offshore operations on a flight over water in a hostile environment and at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed shall be equipped with an automatically deployable ELT (ELT(AD)).

(c) An ELT of any type shall be capable of transmitting simultaneously on 121.5 MHz and 406 MHz.
NCC.IDE.H.225 Life-jackets

(a) Helicopters shall be equipped with a life-jacket for each person on board or equivalent individual floatation device for each person on board younger than 24 months, stowed in a position that is readily accessible from the seat or berth of the person for whose use it is provided, when operated in:

(1) performance class 1 or 2 on a flight over water at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed;

(2) performance class 3 on a flight over water beyond autorotational distance from the land; or

(3) performance class 2 or 3 when taking off or landing at an aerodrome or operating site where the take-off or approach path is over water.

(b) Each life-jacket or equivalent individual flotation device shall be equipped with a means of electric illumination for the purpose of facilitating the location of persons.

NCC.IDE.H.226 Crew survival suits

Each crew member shall wear a survival suit when operating:

(a) in performance class 1 or 2 on a flight over water in support of offshore operations, at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed, when the weather report or forecasts available to the pilot-in-command indicate that the sea temperature will be less than plus 10 °C during the flight, or when the estimated rescue time exceeds the estimated survival time; or

(b) in performance class 3 on a flight over water beyond autorotational distance or safe forced landing distance from land, when the weather report or forecasts available to the pilot-in-command indicate that the sea temperature will be less than plus 10 °C during the flight.

NCC.IDE.H.227 Life-rafts, survival ELTs and survival equipment on extended overwater flights

Helicopters operated:

(a) in performance class 1 or 2 on a flight over water at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed; or

(b) in performance class 3 on a flight over water at a distance corresponding to more than 3 minutes flying time at normal cruising speed, shall be equipped with:
in the case of a helicopter carrying less than 12 persons, at least one life-raft with a rated capacity of not less than the maximum number of persons on board, stowed so as to facilitate their ready use in emergency;

(2) in the case of a helicopter carrying more than 11 persons, at least two life-rafts, stowed sufficiently together to facilitate their ready use in an emergency, to accommodate all persons capable of being carried on board and, if the life-raft having the largest rated capacity is lost, to ensure that the overload capacity of the remaining life-raft shall be sufficient to accommodate all persons on the helicopter;

(3) at least one survival ELT (ELT(S)) for each required life-raft; and

(4) life-saving equipment, including means of sustaining life, as appropriate to the flight to be undertaken.

NCC.IDE.H.230 Survival equipment

Helicopters operated over areas in which search and rescue would be especially difficult shall be equipped with:

(a) signalling equipment to make distress signals;

(b) at least one survival ELT (ELT(S)); and

(c) additional survival equipment for the route to be flown taking account of the number of persons on board.

NCC.IDE.H.231 Additional requirements for helicopters conducting offshore operations in a hostile sea area

Helicopters operated in offshore operations in a hostile sea area, at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed, shall comply with the following:

(a) When the weather report or forecasts available to the commander indicate that the sea temperature will be less than plus 10 °C during the flight, or when the estimated rescue time exceeds the calculated survival time, or the flight is planned to be conducted at night, all persons on board are wearing a survival suit.

(b) All life-rafts carried in accordance with NCC.IDE.H.227 shall be installed so as to be usable in the sea conditions in which the helicopter's ditching, flotation and trim characteristics were evaluated in order to comply with the ditching requirements for certification.

(c) The helicopter shall be equipped with an emergency lighting system with an independent power supply to provide a source of general cabin illumination to facilitate the evacuation of the helicopter.
(d) All emergency exits, including crew emergency exits, and the means of opening them shall be conspicuously marked for the guidance of occupants using the exits in daylight or in the dark. Such markings shall be designed to remain visible if the helicopter is capsized and the cabin is submerged.

(e) All non-jettisonable doors that are designated as ditching emergency exits shall have a means of securing them in the open position so that they do not interfere with occupants’ egress in all sea conditions up to the maximum required to be evaluated for ditching and flotation.

(f) All doors, windows or other openings in the passenger compartment assessed as suitable for the purpose of underwater escape shall be equipped so as to be operable in an emergency.

(g) Life-jackets shall be worn at all times, unless the passenger or crew member is wearing an integrated survival suit that meets the combined requirement of the survival suit and life-jacket.

NCC.IDE.H.232 Helicopters certified for operating on water — miscellaneous equipment

Helicopters certified for operating on water shall be equipped with:

(a) a sea anchor and other equipment necessary to facilitate mooring, anchoring or manoeuvring the helicopter on water, appropriate to its size, weight and handling characteristics; and

(b) equipment for making the sound signals prescribed in the International Regulations for Preventing Collisions at Sea, where applicable.

NCC.IDE.H.235 All helicopters on flights over water — ditching

(a) Helicopters shall be designed for landing on water or certified for ditching in accordance with the relevant airworthiness code when operated in performance class 1 or 2 on a flight over water in a hostile environment at a distance from land corresponding to more than 10 minutes flying time at normal cruise speed.

(b) Helicopters shall be designed for landing on water or certified for ditching in accordance the relevant airworthiness code or fitted with emergency flotation equipment when operated in:

(1) performance class 1 or 2 on a flight over water in a non-hostile environment at a distance from land corresponding to more than 10 minutes flying time at normal cruising speed;

(2) performance class 2 when taking off or landing over water; or

(3) performance class 3 on a flight over water beyond safe forced landing distance from land.
NCC.IDE.H.240 Headset

Whenever a radio communication and/or radio navigation system is required, helicopters shall be equipped with a headset with boom microphone or equivalent and a transmit button on the flight controls for each required pilot and/or crew member at his/her assigned station.

NCC.IDE.H.245 Radio communication equipment

(a) Helicopters operated under IFR or at night, or when required by the applicable airspace requirements, shall be equipped with radio communication equipment that, under normal radio propagating conditions, shall be capable of:

(1) conducting two-way communication for aerodrome control purposes;
(2) receiving meteorological information;
(3) conducting two-way communication at any time during flight with those aeronautical stations and on those frequencies prescribed by the appropriate authority; and
(4) providing for communication on the aeronautical emergency frequency 121.5 MHz.

(b) When more than one communications equipment unit is required, each shall be independent of the other or others to the extent that a failure in any one will not result in failure of any other.

(c) When a radio communication system is required, and in addition to the flight crew interphone system required in NCC.IDE.H.155, helicopters shall be equipped with a transmit button on the flight controls for each required pilot and crew member at his/her assigned station.

NCC.IDE.H.250 Navigation equipment

(a) Helicopters shall be equipped with navigation equipment that will enable them to proceed in accordance with:

(1) the ATS flight plan, if applicable; and
(2) the applicable airspace requirements.

(b) Helicopters shall have sufficient navigation equipment to ensure that, in the event of the failure of one item of equipment at any stage of the flight, the remaining equipment shall allow safe navigation in accordance with (a).

(c) Helicopters operated on flights in which it is intended to land in IMC shall be equipped with navigation equipment capable of providing guidance to a point from
which a visual landing can be performed for each aerodrome at which it is intended to land in IMC and for any designated alternate aerodromes.

NCC.IDE.H.255 Transponder

Helicopters shall be equipped with a pressure altitude reporting secondary surveillance radar (SSR) transponder and any other SSR transponder capability required for the route being flown.
Subpart A — General requirements

GM1-NCC.GEN.105(e)(2) Crew responsibilities

GENERAL

In accordance with 7.g. of Annex IV to Regulation (EC) No 216/2008 (Essential requirements for air operations), a crew member must not perform duties on board an aircraft when under the influence of psychoactive substances or alcohol or when unfit due to injury, fatigue, medication, sickness or other similar causes. This should be understood as including the following:

1. effects of deep water diving and blood donation, and allowing for a certain time period between these activities and returning to flying; and

2. without prejudice to more restrictive national regulations, the consumption of alcohol while on duty or less than 8 hours prior to the commencement of duties, and commencing a flight duty period with a blood alcohol level in excess of 0.2 per mille.

AMC1-NCC.GEN.105(g) Crew responsibilities

OCCURRENCE REPORTING

Whenever a crew member makes use of the applicable reporting systems, a copy of the report should be communicated to the pilot-in-command.

GM1-NCC.GEN.106 Pilot-in-command responsibilities and authority

GENERAL

In accordance with 1.c. of Annex IV to Regulation (EC) No 216/2008 (Essential Requirements for air operations), the pilot-in-command is responsible for the operation and safety of the aircraft and for the safety of all crew members, passengers and cargo on board. This would normally be from the time that he/she assumes responsibility for the aircraft and passengers prior to a flight until the passengers are deplaned and escorted out of the operational area of the aerodrome or operating site and he/she relinquishes responsibility for the aircraft at the end of a flight or series of flights. The pilot-in-command’s responsibilities and authority should be understood as including at least the following:

1. the safety of all crew members, passengers and cargo on board, as soon as he/she arrives on board, until he/she leaves the aircraft at the end of the flight; and
2. the operation and safety of the aircraft:
 a. from the moment it is first ready to move for the purpose of flight until the moment it comes to rest at the end of the flight and the engine(s) used as primary propulsion unit(s) is/are shut down, for aeroplanes; or
 b. when the rotors start turning for the purpose of flight until the rotors come to a complete stop after flight, for helicopters.

GM1-NCC.GEN.106(b) Pilot-in-command responsibilities and authority

AUTHORITY TO REFUSE CARRIAGE OR DISEMBARK

This may include:

1. passengers who have special needs that cannot be provided on the aircraft; or
2. persons that appear to be under the influence of alcohol or drugs.

AMC1-NCC.GEN.106(c) Pilot-in-command responsibilities and authority

REPORTING OF HAZARDOUS FLIGHT CONDITIONS

1. These reports should include any detail which may be pertinent to the safety of other aircraft.
2. Such reports should be made whenever any of the following conditions are encountered or observed:
 a. severe turbulence;
 b. severe icing;
c. severe mountain wave;
d. thunderstorms, with or without hail, that are obscured, embedded, widespread or in squall lines;
e. heavy dust storm or heavy sandstorm;
f. volcanic ash cloud; and
g. unusual and/or increasing volcanic activity or a volcanic eruption.

3. When other meteorological conditions not listed above, e.g. wind shear, are encountered that, in the opinion of the pilot-in-command, may affect the safety or the efficiency of other aircraft operations, the pilot-in-command should advise the appropriate air traffic services (ATS) unit as soon as practicable.

AMC1-NCC.GEN.106(d) Pilot-in-command responsibilities and authority

MITIGATING MEASURES — FATIGUE

The use of additional crew members and/or controlled rest during flight as described in GM1-NCC.GEN.106(d) may be considered as appropriate fatigue mitigating measures.

GM1-NCC.GEN.106(d) Pilot-in-command responsibilities and authority

MITIGATING MEASURES — FATIGUE — CONTROLLED REST IN THE FLIGHT CREW COMPARTMENT

1. This Guidance Material (GM) addresses controlled rest taken by the minimum certified flight crew. It is not related to planned in-flight rest by members of an augmented crew.

2. Although flight crew members should stay alert at all times during flight, unexpected fatigue can occur as a result of sleep disturbance and circadian disruption. To cater for this unexpected fatigue, and to regain a high level of alertness, a controlled rest procedure in the flight crew compartment, organised by the pilot-in-command, may be used, if workload permits. ‘Controlled rest’ means a period of time ‘off task’ that may include actual sleep. The use of controlled rest has been shown to significantly increase the levels of alertness during the later phases of flight, particularly after the top of descent, and is considered to be good use of crew resource management (CRM) principles. Controlled rest should be used in conjunction with other on board fatigue management countermeasures such as physical exercise, bright flight crew compartment illumination at appropriate times, balanced eating and drinking and intellectual activity.

3. Controlled rest taken in this way should not be considered to be part of a rest period for the purposes of calculating flight time limitations, nor used to justify any duty period extension. Controlled rest may be used to manage both sudden unexpected fatigue and fatigue that is expected to become more severe during
higher workload periods later in the flight. Controlled rest is not related to fatigue management, which is planned before flight.

4. Controlled rest periods should be agreed according to individual needs and the accepted principles of CRM; where the involvement of the cabin crew is required, consideration should be given to their workload.

5. When applying controlled rest procedures, the pilot-in-command should ensure that:
 a. the other flight crew member(s) is(are) adequately briefed to carry out the duties of the resting flight crew member;
 b. one flight crew member is fully able to exercise control of the aircraft at all times; and
 c. any system intervention that would normally require a cross-check according to multi-crew principles is avoided until the resting flight crew member resumes his/her duties.

6. Controlled rest procedures should satisfy the following criteria:
 a. only one flight crew member at a time should take rest at his/her station; the harness should be used and the seat positioned to minimise unintentional interference with the controls;
 b. the rest period should be no longer than 45 minutes (in order to limit any actual sleep to approximately 30 minutes) so as to limit deep sleep and associated long recovery time (sleep inertia);
 c. after this 45-minute period, there should be a recovery period of 20 minutes during which sole control of the aircraft should not be entrusted to the flight crew member taking controlled rest;
 d. in the case of two-crew operations, means should be established to ensure that the non-resting flight crew member remains alert. This may include:
 i. appropriate alarm systems;
 ii. on board systems to monitor flight crew activity; and
 iii. where cabin crew are on board the aircraft, frequent cabin crew checks. In this case, the pilot-in-command should inform the cabin crew member of the intention of the flight crew member to take controlled rest, and of the time of the end of that rest; frequent contact should be established between the non-resting flight crew member and the cabin crew by communication means, and the cabin crew should check that the resting flight crew member is alert at the end of the period;
e. there should be a minimum of 20 minutes between two sequential controlled rest periods in order to overcome the effects of sleep inertia and allow for adequate briefing;

f. if necessary, a flight crew member may take more than one rest period, if time permits, on longer sectors, subject to the restrictions above; and

g. controlled rest periods should terminate at least 30 minutes before the top of descent.

AMC1-NCC.GEN.110 Compliance with laws, regulations and procedures

GENERAL

If required by the State in which the incident occurs, the pilot-in-command should submit a report on any such violation to the appropriate authority of such State; in that event, the pilot-in-command should also submit a copy of it to the competent authority. Such reports should be submitted as soon as possible and normally within ten days.

GM1-NCC.GEN.125 Rotor engagement

INTENT OF THE RULE

1. The following two situations where it is allowed to turn the rotor under power should be distinguished:

 a. for the purpose of flight, this is described in the implementing rule;

 b. for maintenance purposes.

2. Rotor engagement for the purpose of flight: It should be noted that the pilot should not leave the control when the rotors are turning. For example, the pilot is not allowed to get out of the aircraft in order to welcome passengers and adjust their seat belts with the rotors turning.

3. Rotor engagement for the purpose of maintenance: The implementing rule, however, should not prevent ground runs being conducted by qualified personnel other than pilots for maintenance purposes.

 The following conditions should be applied:

 a. The operator should ensure that the qualification of personnel, other than pilots, who are authorised to conduct maintenance runs, is described in the appropriate manual.

 b. Ground runs should not include taxiing the helicopter.

 c. There should be no passengers on board.
d. Maintenance runs should not include collective increase or autopilot engagement (risk of ground resonance).

GM1-NCC.GEN.130 Portable electronic devices

GENERAL

1. Interference can result in:

 a. malfunctioning of multiple systems;

 b. false warnings of unsafe conditions;

 c. increased workload for the flight crew and the possibility of invoking emergency drills;

 d. reduced crew confidence in protection systems which may then be ignored during a genuine warning;

 e. distraction of the flight crew from their normal duties;

 f. noise in the flight crew headphones; and/or

 g. hidden failures of safety systems with loss of protection.

2. Recommendations:

 a. Aircraft operators should consider installing detectors in their aircraft, which together with suitable procedures can assist the cabin crew to detect unauthorised transmissions from commonly used types of cell phone.

 b. Aircraft operators should seek the assistance of airport operators for the display of safety notices at aircraft boarding points reminding passengers to switch off cell phones and other transmitting devices.

AMC1-NCC.GEN.135 Information on emergency and survival equipment carried

CONTENT OF INFORMATION

The information should include, as applicable, the number, colour and type of life-rafts and pyrotechnics, details of emergency medical supplies, water supplies and the type and frequencies of the emergency portable radio equipment.
AMC1-NCC.GEN.140 Documents, manuals and information to be carried

GENERAL

1. The documents, manuals and information may be available in a form other than on printed paper. Accessibility, usability and reliability should be assured. A commonly used format on an electronic storage medium is acceptable.

2. ‘Aircraft flight manual (AFM), or equivalent document’ means the flight manual for the aircraft or other documents containing information required for the operation of the aircraft within the terms of its certificate of airworthiness, unless these data are available in the parts of the operations manual carried on board.

3. ‘Journey log or equivalent’ means that the required information may be recorded in documentation other than a log book, such as the operational flight plan or the aircraft technical log.

4. The procedures and the visual signals information for use by intercepting and intercepted aircraft should reflect those contained in the International Civil Aviation Organisation’s (ICAO) Annex 2. This may be part of the operations manual.

CURRENT AND SUITABLE CHARTS

1. The charts carried should contain data appropriate to the applicable air traffic regulations, rules of the air, flight altitudes, area/route and nature of the operation. Due consideration should be given to carriage of textual and graphic representations of:
 a. aeronautical data including, as appropriate for the nature of the operation:
 i. airspace structure;
 ii. significant points, navigation aids (navaids) and air traffic services (ATS) routes;
 iii. navigation and communication frequencies;
 iv. prohibited, restricted and danger areas; and
 v. sites of other relevant activities that may hazard the flight; and
 b. topographical data, including terrain and obstacle data.

2. A combination of different charts and textual data may be used to provide adequate and current data.

3. The required aeronautical data should be appropriate for the current aeronautical information regulation and control (AIRAC) cycle.

4. The required topographical data should be reasonably recent, having regard to the nature of the planned operation.
GM1-NCC.GEN.140 Documents, manual and information to be carried

DOCUMENTS THAT MAY BE PERTINENT TO THE FLIGHT

Any other documents that may be pertinent to the flight or required by the States concerned with the flight may include, for example, forms to comply with reporting requirements.

STATES CONCERNED WITH THE FLIGHT

The States concerned are those of origin, transit, overflight and destination of the flight.

SEARCH AND RESCUE INFORMATION

This information is usually to be found in the State’s aeronautical information publication (AIP).

AMC1-NCC.GEN.145 Preservation, production and use of flight recorder recordings

OPERATIONAL CHECKS

Whenever a recorder is required to be carried, the operator should:

1. perform an annual inspection of flight data recorder (FDR) recording, cockpit voice recorder (CVR) recording, and, if applicable, data link recording; and

2. check every 5 years or according to a periodicity determined by the sensor manufacturer, that the parameters dedicated to the FDR and not monitored by other means are being recorded within the calibration tolerances.

GM1-NCC.GEN.145 Preservation, production and use of flight recorder recordings

PROCEDURES FOR THE INSPECTIONS AND MAINTENANCE PRACTICES

Procedures for the inspections and maintenance practices of the FDR and CVR systems are given in EUROCAE Document ED-112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems) dated March 2003, including amendments n°1 and 2.

REMOVAL OF RECORDERS

The need for removal of the recorders from the aircraft will be determined by the investigating authority with due regard to the seriousness of an occurrence and the circumstances, including the impact on the operation.
AMC1-NCC.GEN.150(e) Transport of dangerous goods

DANGEROUS GOODS ACCIDENT AND INCIDENT REPORTING

1. Any type of dangerous goods accident or incident or the finding of undeclared or misdeclared dangerous goods should be reported, irrespective of whether the dangerous goods are contained in cargo, mail, passengers’ baggage or crew baggage. For this purposes, the Technical Instructions consider that reporting of undeclared and misdeclared dangerous goods found in cargo also applies to items of operators’ stores that are classified as dangerous goods.

2. The first report should be dispatched within 72 hours of the event. It may be sent by any means, including e-mail, telephone or fax. This report should include the details that are known at that time, under the headings identified in 3. If necessary, a subsequent report should be made as soon as possible giving all the details that were not known at the time the first report was sent. If a report has been made verbally, written confirmation should be sent as soon as possible.

3. The first and any subsequent report should be as precise as possible and contain the following data, where relevant:
 a. date of the incident or accident or the finding of undeclared or misdeclared dangerous goods;
 b. location, the flight number and flight date;
 c. description of the goods and the reference number of the air waybill, pouch, baggage tag, ticket, etc.;
 d. proper shipping name (including the technical name, if appropriate) and United Nations (UN)/identification (ID) number, when known;
 e. class or division and any subsidiary risk;
 f. type of packaging, and the packaging specification marking on it;
 g. quantity;
 h. name and address of the shipper, passenger, etc.;
 i. any other relevant details;
 j. suspected cause of the incident or accident;
 k. action taken;
 l. any other reporting action taken; and
 m. name, title, address and telephone number of the person making the report.
4. Copies of relevant documents and any photographs taken should be attached to the report.

5. A dangerous goods accident or incident may also constitute an aircraft accident, serious incident or incident. The criteria for reporting both types of occurrence should be met.

6. The following dangerous goods reporting form should be used, but other forms, including electronic transfer of data, may be used provided that at least the minimum information of this AMC is supplied:

<table>
<thead>
<tr>
<th>DANGEROUS GOODS OCCURRENCE REPORT</th>
<th>DGOR No:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Operator:</td>
<td>2. Date of Occurrence:</td>
</tr>
<tr>
<td></td>
<td>3. Local time of occurrence:</td>
</tr>
<tr>
<td>4. Flight date:</td>
<td>5. Flight No:</td>
</tr>
<tr>
<td>6. Departure aerodrome:</td>
<td>7. Destination aerodrome:</td>
</tr>
<tr>
<td>8. Aircraft type:</td>
<td>9. Aircraft registration:</td>
</tr>
<tr>
<td>10. Location of occurrence:</td>
<td>11. Origin of the goods:</td>
</tr>
<tr>
<td>12. Description of the occurrence, including details of injury, damage, etc. (if necessary continue on the reverse of this form):</td>
<td></td>
</tr>
<tr>
<td>13. Proper shipping name (including the technical name):</td>
<td>14. UN/ID No (when known):</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>23. Reference no of airway Bill:</td>
<td></td>
</tr>
<tr>
<td>24. Reference no of courier pouch, baggage tag, or passenger ticket:</td>
<td></td>
</tr>
<tr>
<td>25. Name and address of shipper, agent, passenger, etc.:</td>
<td></td>
</tr>
<tr>
<td>26. Other relevant information (including suspected cause, any action taken):</td>
<td></td>
</tr>
<tr>
<td>27. Name and title of person making report:</td>
<td>28. Telephone No:</td>
</tr>
<tr>
<td>29. Company:</td>
<td>30. Reporters ref:</td>
</tr>
<tr>
<td>31. Address:</td>
<td>32. Signature:</td>
</tr>
</tbody>
</table>

Description of the occurrence (continuation)
Notes for completion of the form:

1. Any type of dangerous goods occurrence should be reported, irrespective of whether the dangerous goods are contained in cargo, mail or baggage.

2. For this purpose serious injury is an injury that is sustained by a person in an accident and that:

 a. requires hospitalisation for more than 48 hours, commencing within 7 days from the date the injury was received;

 b. results in a fracture of any bones (except simple fractures of fingers, toes or nose);

 c. involves lacerations that cause severe haemorrhage, nerve, muscle or tendon damage;

 d. involves injury to any internal organ;

 e. involves second or third degree burns, or any burns affecting more than 5% of the body surface; or

 f. involves verified exposure to infectious substances or injurious radiation.
A dangerous goods accident may also be an aircraft accident; in which case the normal procedure for reporting of air accidents should be followed.

3. This form should also be used to report any occasion when undeclared or misdeclared dangerous goods are discovered in cargo, mail or unaccompanied baggage or when accompanied baggage contains dangerous goods that passengers or crew are not permitted to take on aircraft.

4. An initial report, which may be made by any means, should be dispatched within 72 hours of the occurrence, to the competent authority of the State of the operator and to the competent authority of the State in which the incident occurred, unless exceptional circumstances prevent this. This occurrence report form, duly completed, should be sent as soon as possible, even if all the information is not available.

5. Copies of all relevant documents and any photographs should be attached to this report.

6. Any further information, or any information not included in the initial report, should be sent as soon as possible to the authorities identified in 5.

7. Providing it is safe to do so, all dangerous goods, packagings, documents, etc., relating to the occurrence should be retained until after the initial report has been sent to the authorities identified in 5., and they have indicated whether or not these should continue to be retained.

GM1-NCC.GEN.150 Transport of dangerous goods

GENERAL

1. The requirement to transport dangerous goods by air in accordance with the Technical Instructions is irrespective of whether:

 a. the flight is wholly or partly within or wholly outside the territory of a State;
 or

 b. an approval to carry dangerous goods in accordance with SPA.DG is held.

2. The Technical Instructions provide that in certain circumstances dangerous goods, which are normally forbidden on an aircraft, may be carried. These circumstances include cases of extreme urgency, when other forms of transport are inappropriate or when full compliance with the prescribed requirements is contrary to the public interest. In these circumstances all the States concerned may grant exemptions from the provisions of the Technical Instructions provided that an overall level of safety that is at least equivalent to that provided by the Technical Instructions is achieved. Although exemptions are most likely to be granted for the carriage of dangerous goods that are not permitted in normal circumstances, they may also be granted in other circumstances, such as when the packaging to be used does not conform with the appropriate packing method or the quantity in the packaging is greater than that permitted. The Technical Instructions also make provision for
some dangerous goods to be carried when an approval has been granted only by
the State of Origin and the competent authority.

3. When an exemption is required, the States concerned are those of origin, transit,
overflight and destination of the consignment and that of the operator. For the
State of overflight, if none of the criteria for granting an exemption are relevant,
an exemption may be granted based solely on whether it is believed that an
equivalent level of safety in air transport has been achieved.

4. The Technical Instructions provide that exemptions and approvals are granted by
the ‘appropriate national authority’, which is intended to be the authority
responsible for the particular aspect against which the exemption or approval is
being sought. The Technical Instructions do not specify who should seek
exemptions and, depending on the legislation of the particular State, this may
mean the operator, the shipper or an agent. If an exemption or approval has been
granted to other than the operator, the operator should ensure a copy has been
obtained before the relevant flight. The operator should ensure that all relevant
conditions on an exemption or approval are met.

5. The exemption or approval referred to in 2. to 4. is in addition to the approval
required by SPA.DG.100.
Subpart B — Operational procedures

AMC1-NCC.OP.100 Use of aerodromes and operating sites

USE OF OPERATING SITES

1. The pilot-in-command should have available from a pre-survey or other publication, for each operating site to be used, diagrams or ground and aerial photographs, depiction (pictorial) and description of:

 a. the overall dimensions of the operating site;
 b. location and height of relevant obstacles to approach and take-off profiles and in the manoeuvring area;
 c. approach and take-off flight paths;
 d. surface condition (blowing dust/snow/sand);
 e. provision of control of third parties on the ground (if applicable);
 f. lighting, if applicable;
 g. procedure for activating the operating site in accordance with national regulations, if applicable;
 h. other useful information, for example details of the appropriate ATS agency and frequency; and
 i. site suitability with reference to available aircraft performance.

2. Where the operator specifically permits operation from sites that are not pre-surveyed, the pilot-in-command should make, from the air, a judgement on the suitability of a site. At least 1.a. to 1.f. inclusive and 1.i. should be considered.

GM1-NCC.OP.100 Use of aerodromes and operating sites

PUBLICATIONS

‘Other publication’ mentioned in AMC1-NCC.OP.100 refers to publication means, such as:

1. civil as well as military aeronautical information publication;
2. visual flight rules (VFR) guides;
3. commercially available aeronautical publications; and
4. non-commercially available publications.

AMC1-NCC.OP.110 Aerodrome operating minima — general

COMMERCIALY AVAILABLE INFORMATION

An acceptable method of specifying aerodrome operating minima is through the use of commercially available information.

AMC2-NCC.OP.110 Aerodrome operating minima — general

GENERAL

1. The aerodrome operating minima should not be lower than the values given in NCC.OP.111 or AMC3-NCC.OP.110 3.
2. Whenever practical approaches should be flown as stabilised approaches (SAp). Different procedures may be used for a particular approach to a particular runway.
3. Whenever practical, non-precision approaches should be flown using the continuous descent final approach (CDFA) technique. Different procedures may be used for a particular approach to a particular runway.
4. For approaches not flown using the CDFA technique: when calculating the minima in accordance with NCC.OP.111, the applicable minimum runway visual range (RVR) should be increased by 200 m for Category A and B aeroplanes and by 400 m for Category C and D aeroplanes, provided the resulting RVR/converted meteorological visibility (CMV) value does not exceed 5 000 m. SAp or CDFA should be used as soon as facilities are improved to allow these techniques.

AMC3-NCC.OP.110 Aerodrome operating minima — general

TAKE-OFF OPERATIONS

1. General:
 a. Take-off minima should be expressed as visibility (VIS) or RVR limits, taking into account all relevant factors for each aerodrome planned to be used and aircraft characteristics. Where there is a specific need to see and avoid obstacles on departure and/or for a forced landing, additional conditions, e.g. ceiling, should be specified.
 b. The pilot-in-command should not commence take-off unless the weather conditions at the aerodrome of departure are equal to or better than applicable minima for landing at that aerodrome, unless a weather-permissible take-off alternate aerodrome is available.
c. When the reported meteorological visibility is below that required for take-off and RVR is not reported, a take-off should only be commenced if the pilot-in-command can determine that the visibility along the take-off runway/area is equal to or better than the required minimum.

d. When no reported meteorological visibility or RVR is available, a take-off should only be commenced if the pilot-in-command can determine that the RVR/VIS along the take-off runway/area is equal to or better than the required minimum.

2. Visual reference:
 a. The take-off minima should be selected to ensure sufficient guidance to control the aircraft in the event of both a rejected take-off in adverse circumstances and a continued take-off after failure of the critical engine.
 b. For night operations, ground lights should be available to illuminate the runway/final approach and take-off area (FATO) and any obstacles.

3. Required RVR/visibility:
 a. Aeroplanes:
 i. For aeroplanes, the take-off minima specified by the operator should be expressed as RVR/VIS values not lower than those specified in Table 1.A.
 ii. When reported RVR or meteorological visibility is not available, the pilot-in-command should not commence take-off unless he/she can determine that the actual conditions satisfy the applicable take-off minima.
 b. Helicopters:
 i. For performance class 1 operations, the operator should specify an RVR/VIS as take-off minima in accordance with Table 1.H.
 ii. For performance class 2 operations onshore, the pilot-in-command should operate to take-off minima of 800 m RVR/VIS and remain clear of cloud during the take-off manoeuvre until reaching performance class 1 capabilities.
 iii. For performance class 2 operations offshore, the pilot-in-command should operate to minima not less than that for performance class 1 and remain clear of cloud during the take-off manoeuvre until reaching performance class 1 capabilities.
 iv. Table 1 of AMC8-NCC.OP.110, for converting reported meteorological visibility to RVR, should not be used for calculating take-off minima.
Table 1.A of AMC3-NCC.OP.110: Take-off — aeroplanes (without LVTO approval)

<table>
<thead>
<tr>
<th>Facilities</th>
<th>RVR/VIS (m)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day only: Nil**</td>
<td>500</td>
</tr>
<tr>
<td>Day: at least runway edge lights or runway centreline markings</td>
<td>400</td>
</tr>
<tr>
<td>Night: at least runway edge lights or runway centreline lights and runway end lights</td>
<td></td>
</tr>
</tbody>
</table>

*: The reported RVR/VIS value representative of the initial part of the take-off run can be replaced by pilot assessment.

**: The pilot is able to continuously identify the take-off surface and maintain directional control.

Table 1.H of AMC3-NCC.OP.110: Take-off — helicopters (without LVTO approval)

<table>
<thead>
<tr>
<th>Onshore aerodromes with instrument flight rules (IFR) departure procedures</th>
<th>RVR/VIS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No light and no markings (day only)</td>
<td>400 or the rejected take-off distance, whichever is the greater</td>
</tr>
<tr>
<td>No markings (night)</td>
<td>800</td>
</tr>
<tr>
<td>Runway edge/FATO light and centreline marking</td>
<td>400</td>
</tr>
<tr>
<td>Runway edge/FATO light, centreline marking and relevant RVR information</td>
<td>400</td>
</tr>
</tbody>
</table>

Offshore helideck *

| Two-pilot operations | 400 |
| Single-pilot operations | 500 |

*: The take-off flight path to be free of obstacles.
AMC4-NCC.OP.110 Aerodrome operating minima — general

CRITERIA FOR ESTABLISHING RVR/CMV

1. In order to qualify for the lowest allowable values of RVR/CMV specified in Table 3 of AMC5-NCC.OP.110, the instrument approach should meet at least the following facility requirements and associated conditions:

 a. Instrument approaches with designated vertical profile up to and including 4.5° for Category A and B aeroplanes, or 3.77° for Category C and D aeroplanes, where the facilities are ILS/microwave landing system (MLS)/GBAS landing system (GLS)/precision approach radar (PAR) or approach procedure with vertical guidance (APV) and where the final approach track is offset by not more than 15° for Category A and B aeroplanes or by not more than 5° for Category C and D aeroplanes.

 b. Instrument approach operations flown using the CDFA technique with a nominal vertical profile, up to and including 4.5° for Category A and B aeroplanes, or 3.77° for Category C and D aeroplanes, where the facilities are NDB, NDB/DME, VOR, VOR/DME, LOC, LOC/DME, VDF, SRA or GNSS/LNAV, with a final approach segment of at least 3 NM, which also fulfil the following criteria:

 i. the final approach track is offset by not more than 15° for Category A and B aeroplanes or by not more than 5° for Category C and D aeroplanes;

 ii. the final approach fix (FAF) or another appropriate fix where descent is initiated is available, or distance to threshold (THR) is available by flight management system (FMS)/area navigation (NDB/DME) or DME; and

 iii. the missed approach point (MAPt) is determined by timing, the distance from FAF to THR is ≤ 8 NM.

 c. Instrument approaches where the facilities are NDB, NDB/DME, VOR, VOR/DME, LOC, LOC/DME, VDF, SRA or GNSS/LNAV, not fulfilling the criteria in 1.b. above, or with a minimum descent height (MDH) ≥ 1 200 ft.

2. The missed approach operation, after an approach operation has been flown using the CDFA technique, should be executed when reaching the decision height/altitude (DH/A) or the MAPt, whichever occurs first. The lateral part of the missed approach procedure should be flown via the MAPt unless otherwise stated on the approach chart.
AMC5-NCC.OP.110 Aerodrome operating minima — general

DETERMINATION OF RVR/CMV/VIS MINIMA FOR NPA, APV, CAT I - AEROPLANES

1. The minimum RVR/CMV/VIS should be the highest of the values specified in Table 2 of AMC5-NCC.OP.110 and Table 3 of AMC5-NCC.OP.110 but not greater than the maximum values specified in Table 3 of AMC5-NCC.OP.110, where applicable.

2. The values in Table 2 of AMC5-NCC.OP.110 should be derived from the formula below:

\[
\text{required RVR/VIS (m)} = \left(\frac{\text{DH/MDH (ft)} \times 0.3048}{\tan \alpha}\right) - \text{length of approach lights (m)};
\]

where \(\alpha\) is the calculation angle, being a default value of 3.00° increasing in steps of 0.10° for each line in Table 5 up to 3.77° and then remains constant.

3. If the approach is flown with a level flight segment at or above MDA/H, 200 m should be added for Category A and B aeroplanes and 400 m for Category C and D aeroplanes to the minimum RVR/CMV/VIS value resulting from the application of Table 2 of AMC5-NCC.OP.110 and Table 3 of AMC5-NCC.OP.110.

4. An RVR of less than 750 m as indicated in Table 2 of AMC5-NCC.OP.110 may be used:

 a. for CAT I operations to runways with full approach light system (FALS), runway touchdown zone lights (RTZL) and runway centreline lights (RCLL);

 b. for CAT I operations to runways without RTZL and RCLL when using an approved head-up guidance landing system (HUDLS), or equivalent approved system, or when conducting a coupled approach or flight-director-flown approach to a DH. The ILS should not be published as a restricted facility; and

 c. for APV operations to runways with FALS, RTZL and RCLL when using an approved HUD.

5. Lower values than those specified in Table 2 of AMC5-NCC.OP.110 may be used for HUDLS and auto-land operations if approved in accordance with SPA.LVO.

6. The visual aids should comprise standard runway day markings and approach and runway lights as specified in Table 1 of AMC5-NCC.OP.110. The competent authority may approve that RVR values relevant to a basic approach light system (BALS) are used on runways where the approach lights are restricted in length below 210 m due to terrain or water, but where at least one cross-bar is available.

7. For night operations or for any operation where credit for runway and approach lights is required, the lights should be on and serviceable, except as provided for in Table 1 of AMC9-NCC.OP.110.
8. For single-pilot operations, the minimum RVR/VIS should be calculated in accordance with the following additional criteria:

1. an RVR of less than 800 m as indicated in Table 2 of AMC5-NCC.OP.110 may be used for CAT I approaches provided any of the following is used at least down to the applicable DH:
 i. a suitable autopilot, coupled to an ILS, MLS or GLS that is not published as restricted; or
 ii. an approved HUDLS, including, where appropriate, enhanced vision system (EVS), or equivalent approved system;

2. where RTZL and/or RCLL are not available, the minimum RVR/CMV should not be less than 600 m; and

3. an RVR of less than 800 m as indicated in Table 2 of AMC5-NCC.OP.110 may be used for APV operations to runways with FALS, RTZL and RCLL when using an approved HUDLS, or equivalent approved system, or when conducting a coupled approach to a DH equal to or greater than 250 ft.

Table 1 of AMC5-NCC.OP.110: Approach light systems

<table>
<thead>
<tr>
<th>Class of lighting facility</th>
<th>Length, configuration and intensity of approach lights</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALS</td>
<td>CAT I light system (HIALS 720 m ≥) distance coded centreline, Barrette centreline</td>
</tr>
<tr>
<td>IALS</td>
<td>Simple approach light system (HIALS 420 – 719 m) single source, Barrette</td>
</tr>
<tr>
<td>BALS</td>
<td>Any other approach light system (HIALS, MIALS or ALS 210 – 419 m)</td>
</tr>
<tr>
<td>NALS</td>
<td>Any other approach light system (HIALS, MIALS or ALS < 210 m) or no approach lights</td>
</tr>
</tbody>
</table>

Note: HIALS: high intensity approach light system; MIALS: medium intensity approach light system; ALS: approach light system.
<table>
<thead>
<tr>
<th>DH or MDH</th>
<th>Class of lighting facility</th>
<th>RVR/CMV (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ft</td>
<td>FALS</td>
<td>IALS</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>210</td>
</tr>
<tr>
<td>211</td>
<td>-</td>
<td>220</td>
</tr>
<tr>
<td>221</td>
<td>-</td>
<td>230</td>
</tr>
<tr>
<td>231</td>
<td>-</td>
<td>240</td>
</tr>
<tr>
<td>241</td>
<td>-</td>
<td>250</td>
</tr>
<tr>
<td>251</td>
<td>-</td>
<td>260</td>
</tr>
<tr>
<td>261</td>
<td>-</td>
<td>280</td>
</tr>
<tr>
<td>281</td>
<td>-</td>
<td>300</td>
</tr>
<tr>
<td>301</td>
<td>-</td>
<td>320</td>
</tr>
<tr>
<td>321</td>
<td>-</td>
<td>340</td>
</tr>
<tr>
<td>341</td>
<td>-</td>
<td>360</td>
</tr>
<tr>
<td>361</td>
<td>-</td>
<td>380</td>
</tr>
<tr>
<td>381</td>
<td>-</td>
<td>400</td>
</tr>
<tr>
<td>401</td>
<td>-</td>
<td>420</td>
</tr>
<tr>
<td>421</td>
<td>-</td>
<td>440</td>
</tr>
<tr>
<td>441</td>
<td>-</td>
<td>460</td>
</tr>
<tr>
<td>461</td>
<td>-</td>
<td>480</td>
</tr>
<tr>
<td>481</td>
<td>-</td>
<td>500</td>
</tr>
<tr>
<td>501</td>
<td>-</td>
<td>520</td>
</tr>
<tr>
<td>521</td>
<td>-</td>
<td>540</td>
</tr>
</tbody>
</table>

See 4., 5., 9. above for RVR < 750/800 m
<table>
<thead>
<tr>
<th>DH or MDH</th>
<th>Class of lighting facility</th>
<th>RVR/CMV (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALS</td>
<td>IALS</td>
</tr>
<tr>
<td>ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541 - 560</td>
<td>1 800</td>
<td>2 100</td>
</tr>
<tr>
<td>561 - 580</td>
<td>1 900</td>
<td>2 200</td>
</tr>
<tr>
<td>581 - 600</td>
<td>2 000</td>
<td>2 300</td>
</tr>
<tr>
<td>601 - 620</td>
<td>2 100</td>
<td>2 400</td>
</tr>
<tr>
<td>621 - 640</td>
<td>2 200</td>
<td>2 500</td>
</tr>
<tr>
<td>641 - 660</td>
<td>2 300</td>
<td>2 600</td>
</tr>
<tr>
<td>661 - 680</td>
<td>2 400</td>
<td>2 700</td>
</tr>
<tr>
<td>681 - 700</td>
<td>2 500</td>
<td>2 800</td>
</tr>
<tr>
<td>701 - 720</td>
<td>2 600</td>
<td>2 900</td>
</tr>
<tr>
<td>721 - 740</td>
<td>2 700</td>
<td>3 000</td>
</tr>
<tr>
<td>741 - 760</td>
<td>2 700</td>
<td>3 000</td>
</tr>
<tr>
<td>761 - 800</td>
<td>2 900</td>
<td>3 200</td>
</tr>
<tr>
<td>801 - 850</td>
<td>3 100</td>
<td>3 400</td>
</tr>
<tr>
<td>851 - 900</td>
<td>3 300</td>
<td>3 600</td>
</tr>
<tr>
<td>901 - 950</td>
<td>3 600</td>
<td>3 900</td>
</tr>
<tr>
<td>951 - 1 000</td>
<td>3 800</td>
<td>4 100</td>
</tr>
<tr>
<td>1 001 - 1 100</td>
<td>4 100</td>
<td>4 400</td>
</tr>
<tr>
<td>1 101 - 1 200</td>
<td>4 600</td>
<td>4 900</td>
</tr>
<tr>
<td>1 201 and above</td>
<td>5 000</td>
<td>5 000</td>
</tr>
</tbody>
</table>

See 4., 5., 9. above for RVR < 750/800 m
Table 3 of AMC5-NCC.OP.110: CAT I, APV, NPA - aeroplanes

Minimum and maximum applicable RVR/CMV (lower and upper cut-off limits)

<table>
<thead>
<tr>
<th>Facility/conditions</th>
<th>RVR/CMV (m)</th>
<th>Aeroplane category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>ILS, MLS, GLS, PAR, GNSS/SBAS, GNSS/VNAV</td>
<td>Min</td>
<td>According to Table 2 of AMC5-NCC.OP.110</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>1 500</td>
</tr>
<tr>
<td>NDB, NDB/DME, VOR, VOR/DME, LOC, LOC/DME, VDF, SRA, GNSS/LNAV with a procedure that fulfils the criteria in AMC4-NCC.OP.110 1.b.</td>
<td>Min</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>1 500</td>
</tr>
<tr>
<td>For NDB, NDB/DME, VOR, VOR/DME, LOC, LOC/DME, VDF, SRA, GNSS/LNAV:</td>
<td>Min</td>
<td>1 000</td>
</tr>
<tr>
<td>— not fulfilling the criteria in AMC4-NCC.OP.110 1.b., or</td>
<td>Max</td>
<td>According to Table 2 of AMC5-NCC.OP.110 if flown using the CDFA technique, otherwise an add-on of 200/400 m applies to the values in Table 2 of AMC5-NCC.OP.110 but not to result in a value exceeding 5 000 m.</td>
</tr>
<tr>
<td>— with a DH or MDH \geq 1 200 ft</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMC6-NCC.OP.110 Aerodrome operating minima — general

DETERMINATION OF RVR/CMV/VIS MINIMA FOR NPA, CAT I — HELICOPTERS

1. For non-precision approach (NPA) operations operated in performance class 1 (PC1) or performance class 2 (PC2), the minima specified in Table 1 of AMC6-NCC.OP.110 should apply:

 a. where the missed approach point is within $\frac{1}{2}$ NM of the landing threshold, the approach minima specified for FALS may be used regardless of the length of approach lights available. However, FATO/runway edge lights, threshold lights, end lights and FATO/runway markings are still required;

 b. for night operations, ground lights should be available to illuminate the FATO/runway and any obstacles; and
c. for single-pilot operations, the minimum RVR is 800 m or the minima in Table 2 of AMC6-NCC.OP.110, whichever is higher.

2. For CAT I operations operated in PC1 or PC2, the minima specified in Table 2 of AMC6-NCC.OP.110 should apply:

a. for night operations, ground light should be available to illuminate the FATO/runway and any obstacles;

b. for single-pilot operations, the minimum RVR/VIS should be calculated in accordance with the following additional criteria:

i. an RVR of less than 800 m should not be used except when using a suitable autopilot coupled to an ILS, MLS or GLS, in which case normal minima apply; and

ii. the DH applied should not be less than 1.25 times the minimum use height for the autopilot.

Table 1 of AMC6-NCC.OP.110 Onshore NPA minima

<table>
<thead>
<tr>
<th>MDH (ft) *</th>
<th>Facilities vs RVR/CMV (m) **, ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALS</td>
</tr>
<tr>
<td>250 – 299</td>
<td>600</td>
</tr>
<tr>
<td>300 – 449</td>
<td>800</td>
</tr>
<tr>
<td>450 and above</td>
<td>1 000</td>
</tr>
</tbody>
</table>

*: The MDH refers to the initial calculation of MDH. When selecting the associated RVR, there is no need to take account of a rounding up to the nearest 10 ft, which may be done for operational purposes, e.g. conversion to MDA.

**: The tables are only applicable to conventional approaches with a nominal descent slope of not greater than 4°. Greater descent slopes will usually require that visual glide slope guidance (e.g. precision path approach indicator (PAPI)) is also visible at the MDH.

***: FALS comprise FATO/runway markings, 720 m or more of high intensity/medium intensity (HI/MI) approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.

IALS comprise FATO/runway markings, 420 – 719 m of HI/MI approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.
BALS comprise FATO/runway markings, < 420 m of HI/MI approach lights, any length of low intensity (LI) approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.

NALs comprise FATO/runway markings, FATO/runway edge lights, threshold lights, FATO/runway end lights or no lights at all.

Table 2 of AMC6-NCC.OP.110 Onshore CAT I minima

<table>
<thead>
<tr>
<th>DH (ft) *</th>
<th>Facilities vs. RVR/CMV (m) **, ***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FALS</td>
</tr>
<tr>
<td>200</td>
<td>500</td>
</tr>
<tr>
<td>201 – 250</td>
<td>550</td>
</tr>
<tr>
<td>251 – 300</td>
<td>600</td>
</tr>
<tr>
<td>301 and above</td>
<td>750</td>
</tr>
</tbody>
</table>

*: The DH refers to the initial calculation of DH. When selecting the associated RVR, there is no need to take account of a rounding up to the nearest 10 ft, which may be done for operational purposes, e.g. conversion to DA.

**: The table is applicable to conventional approaches with a glide slope up to and including 4°.

**: FALS comprise FATO/runway markings, 720 m or more of HI/MI approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.

IALS comprise FATO/runway markings, 420 – 719 m of HI/MI approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.

BALS comprise FATO/runway markings, < 420 m of HI/MI approach lights, any length of LI approach lights, FATO/runway edge lights, threshold lights and FATO/runway end lights. Lights to be on.

NALs comprise FATO/runway markings, FATO/runway edge lights, threshold lights, FATO/runway end lights or no lights at all.

AMC7-NCC.OP.110 Aerodrome operating minima — general

VISUAL APPROACH

For a visual approach operation the RVR should not be less than 800 m.
AMC8-NCC.OP.110 Aerodrome operating minima — general

CONVERSION OF REPORTED METEOROLOGICAL VISIBILITY TO RVR/CMV

1. A conversion from meteorological visibility to RVR/CMV should not be used when:
 a. reported RVR is available;
 b. for calculating take-off minima; and
 c. for other RVR minima less than 800 m.

2. If the RVR is reported as being above the maximum value assessed by the aerodrome operator, e.g. 'RVR more than 1 500 m', it should not be considered as a reported value.

3. When converting meteorological visibility to RVR in circumstances other than those in a. and b. above, the conversion factors specified in Table 9 should be used.

Table 1 of AMC8-NCC.OP.110 Conversion of reported meteorological visibility to RVR/CMV

<table>
<thead>
<tr>
<th>Light elements in operation</th>
<th>RVR/CMV = reported meteorological visibility x</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
</tr>
<tr>
<td>HI approach and runway lights</td>
<td>1.5</td>
</tr>
<tr>
<td>Any type of light installation other than above</td>
<td>1.0</td>
</tr>
<tr>
<td>No lights</td>
<td>1.0</td>
</tr>
</tbody>
</table>

AMC9-NCC.OP.110 Aerodrome operating minima — general

EFFECT ON LANDING MINIMA OF TEMPORARILY FAILED OR DOWNGRADED GROUND EQUIPMENT

1. General

These instructions are intended for both pre-flight and in-flight use. It is however not expected that the pilot-in-command would consult such instructions after passing 1 000 ft above the aerodrome. If failures of ground aids are announced at such a late stage, the approach could be continued at the pilot-in-command’s discretion. If failures are announced before such a late stage in the approach, their effect on the approach should be considered as described in Table 1 of AMC9-NCC.OP.110 and, if considered necessary, the approach should be abandoned.
2. Conditions applicable to Tables 1 of AMC9-NCC.OP.110:

a. multiple failures of runway/FATO lights other than indicated in Table 1 of AMC9-NCC.OP.110 should not be acceptable;

b. deficiencies of approach and runway/FATO lights are treated separately; and

c. failures other than ILS, MLS affect RVR only and not DH.

Table 1 of AMC9-NCC.OP.110 Failed or downgraded equipment — effect on landing minima

<table>
<thead>
<tr>
<th>Failed or downgraded equipment</th>
<th>Effect on landing minima</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILS/MLS standby transmitter</td>
<td>No effect</td>
</tr>
<tr>
<td>Outer marker</td>
<td>No effect if replaced by height check at 1 000 ft</td>
</tr>
<tr>
<td></td>
<td>APV — not applicable</td>
</tr>
<tr>
<td></td>
<td>NPA with FAF: no effect unless used as FAF</td>
</tr>
<tr>
<td></td>
<td>If the FAF cannot be identified (e.g. no method available for timing of descent), non-precision operations cannot be conducted</td>
</tr>
<tr>
<td>Middle marker</td>
<td>No effect</td>
</tr>
<tr>
<td>RVR Assessment Systems</td>
<td>No effect</td>
</tr>
<tr>
<td>Approach lights</td>
<td>Minima as for NALS</td>
</tr>
<tr>
<td>Approach lights except the last 210 m</td>
<td>Minima as for BALS</td>
</tr>
<tr>
<td>Approach lights except the last 420 m</td>
<td>Minima as for IALS</td>
</tr>
<tr>
<td>Standby power for approach lights</td>
<td>No effect</td>
</tr>
<tr>
<td>Edge lights, threshold lights and runway end lights</td>
<td>Day — no effect</td>
</tr>
<tr>
<td></td>
<td>Night — not allowed</td>
</tr>
</tbody>
</table>
Failed or downgraded equipment

<table>
<thead>
<tr>
<th>Failed or downgraded equipment</th>
<th>Effect on landing minima</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centreline lights</td>
<td>No effect if flight director (F/D), HUDLS or autoland; otherwise RVR 750 m</td>
</tr>
<tr>
<td>Centreline lights spacing increased to 30 m</td>
<td>No effect</td>
</tr>
<tr>
<td>Touchdown zone lights</td>
<td>No effect if F/D, HUDLS or autoland; otherwise RVR 750 m</td>
</tr>
<tr>
<td>Taxiway light system</td>
<td>No effect</td>
</tr>
</tbody>
</table>

GM1-NCC.OP.110 Aerodrome operating minima — general

AIRCRAFT CATEGORIES

1. Aircraft categories should be based on the indicated airspeed at threshold (V_{AT}), which is equal to the stalling speed (V_{SO}) multiplied by 1.3 or 1-g (gravity) stall speed (V_{S1g}) multiplied by 1.23 in the landing configuration at the maximum certified landing mass. If both V_{SO} and V_{S1g} are available, the higher resulting V_{AT} should be used.

2. The aircraft categories specified in the Table 1 of GM1-NCC.OP.110 should be used.

Table 1 of GM1-NCC.OP.110 Aircraft categories corresponding to V_{AT} values

<table>
<thead>
<tr>
<th>Aircraft category</th>
<th>V_{AT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Less than 91 kt</td>
</tr>
<tr>
<td>B</td>
<td>from 91 to 120 kt</td>
</tr>
<tr>
<td>C</td>
<td>from 121 to 140 kt</td>
</tr>
</tbody>
</table>
CONTINUOUS DESCENT FINAL APPROACH (CDFA) — AEROPLANES

1. Introduction

 a. Controlled flight into terrain (CFIT) is a major hazard in aviation. Most CFIT accidents occur in the final approach segment of non-precision approaches; the use of stabilised-approach criteria on a continuous descent with a constant, predetermined vertical path is seen as a major improvement in safety during the conduct of such approaches. Operators should ensure that the following techniques are adopted as widely as possible, for all approaches.

 b. The elimination of level flight segments at MDA close to the ground during approaches, and the avoidance of major changes in attitude and power/thrust close to the runway that can destabilise approaches, are seen as ways to reduce operational risks significantly.

 c. The term CDFA has been selected to cover a flight technique for any type of NPA operation.

 d. The advantages of CDFA are as follows:

 i. the technique enhances safe approach operations by the utilisation of standard operating practices;

 ii. the technique is similar to that used when flying an ILS approach, including when executing the missed approach and the associated missed approach procedure manoeuvre;

 iii. the aeroplane attitude may enable better acquisition of visual cues;

 iv. the technique may reduce pilot workload;

 v. the approach profile is fuel-efficient;

 vi. the approach profile affords reduced noise levels;

 vii. the technique affords procedural integration with APV operations; and

 viii. when used and the approach is flown in a stabilised manner, CDFA is the safest approach technique for all NPA operations.
2. **CDFA**

 a. Continuous descent final approach is defined in Annex I to the Regulation on Air Operations.

 b. An approach is only suitable for application of a CDFA technique when it is flown along a nominal vertical profile; a nominal vertical profile is not forming part of the approach procedure design, but can be flown as a continuous descent. The nominal vertical profile information may be published or displayed on the approach chart to the pilot by depicting the nominal slope or range/distance vs height. Approaches with a nominal vertical profile are considered to be:

 i. NDB, NDB/DME (non-directional beacon/distance measuring equipment);

 ii. VOR (VHF omnidirectional radio range), VOR/DME;

 iii. LOC (localiser), LOC/DME;

 iv. VDF (VHF direction finder), SRA (surveillance radar approach); or

 v. GNSS/LNAV (global navigation satellite system/lateral navigation);

 c. Stabilised approach (SAp) is defined in Annex I to the Regulation on Air Operations.

 i. The control of the descent path is not the only consideration when using the CDFA technique. Control of the aeroplane’s configuration and energy is also vital to the safe conduct of an approach.

 ii. The control of the flight path, described above as one of the requirements for conducting an SAp, should not be confused with the path requirements for using the CDFA technique. The predetermined approach slope requirements for applying the CDFA technique are established by the following:

 A. the published ‘nominal’ slope information when the approach has a nominal vertical profile; and

 B. the designated final approach segment minimum of 3 NM, and maximum, when using timing techniques, of 8 NM.

 iv. An SAp will never have any level segment of flight at DA/H or MDA/H, as applicable. This enhances safety by mandating a prompt missed approach procedure manoeuvre at DA/H or MDA/H.
v. An approach using the CDFA technique will always be flown as an SAp, since this is a requirement for applying CDFA. However, an SAp does not have to be flown using the CDFA technique, for example a visual approach.

GM3-NCC.OP.110 Aerodrome operating minima — general

TAKE-OFF MINIMA — HELICOPTERS

To ensure sufficient control of the helicopter in IMC, the speed, before entering in IMC, should be above the minimum authorised speed in IMC, V_{mini}. This is a limitation in the AFM. Therefore, the lowest speed before entering in IMC is the highest of V_{toss} (velocity take-off speed) and V_{mini}.

As example, V_{toss} is 45 kt and V_{mini} 60 kt. In that case, the take–off minima have to include the distance to accelerate to 60 kt. The take-off distance should be increased accordingly.

GM1-NCC.OP.112 Aerodrome operating minima — circling operations with aeroplanes

SUPPLEMENTAL INFORMATION

1. The purpose of this Guidance Material is to provide operators with supplemental information regarding the application of aerodrome operating minima in relation to circling approaches.

2. Conduct of flight — general:
 a. the MDH and obstacle clearance height (OCH) included in the procedure are referenced to aerodrome elevation;
 b. the MDA is referenced to mean sea level;
 c. for these procedures, the applicable visibility is the meteorological visibility; and
 d. operators should provide tabular guidance of the relationship between height above threshold and the in-flight visibility required to obtain and sustain visual contact during the circling manoeuvre.

3. Instrument approach followed by visual manoeuvring (circling) without prescribed tracks:
 a. When the aeroplane is on the initial instrument approach, before visual reference is stabilised, but not below MDA/H — the aeroplane should follow the corresponding instrument approach procedure until the appropriate instrument MAPt is reached.
b. At the beginning of the level flight phase at or above the MDA/H, the instrument approach track determined by radio navigation aids, GNSS, or ILS, MLS, GLS or PAR should be maintained until the pilot:

i. estimates that, in all probability, visual contact with the runway of intended landing or the runway environment will be maintained during the entire circling procedure;

ii. estimates that the aeroplane is within the circling area before commencing circling; and

iii. is able to determine the aeroplane’s position in relation to the runway of intended landing with the aid of the appropriate external references.

c. When reaching the published instrument MAPt and the conditions stipulated in 3.b. are unable to be established by the pilot, a missed approach should be carried out in accordance with that instrument approach procedure.

d. After the aeroplane has left the track of the initial instrument approach, the flight phase outbound from the runway should be limited to an appropriate distance, which is required to align the aeroplane onto the final approach. Such manoeuvres should be conducted to enable the aeroplane:

i. to attain a controlled and stable descent path to the intended landing runway; and

ii. remain within the circling area and in such way that visual contact with the runway of intended landing or runway environment is maintained at all times.

e. Flight manoeuvres should be carried out at an altitude/height that is not less than the circling MDA/H.

f. Descent below MDA/H should not be initiated until the threshold of the runway to be used has been appropriately identified. The aeroplane should be in a position to continue with a normal rate of descent and land within the touchdown zone.

4. Instrument approach followed by a visual manoeuvring (circling) with prescribed track.

a. The aeroplane should remain on the initial instrument approach procedure until one of the following is reached:

i. the prescribed divergence point to commence circling on the prescribed track; or

ii. the MAPt.
b. The aeroplane should be established on the instrument approach track determined by the radio navigation aids, GNSS, or ILS, MLS, GLS, or PAR in level flight at or above the MDA/H at or by the circling manoeuvre divergence point.

c. If the divergence point is reached before the required visual reference is acquired, a missed approach should be initiated not later than the MAPt and completed in accordance with the initial instrument approach procedure.

d. When commencing the prescribed circling manoeuvre at the published divergence point, the subsequent manoeuvres should be conducted to comply with the published routing and published heights/altitudes.

e. Unless otherwise specified, once the aeroplane is established on the prescribed track(s), the published visual reference does not need to be maintained unless:

i. required by the State of the aerodrome; or

ii. the circling MAPt (if published) is reached.

f. If the prescribed circling manoeuvre has a published MAPt and the required visual reference has not been obtained by that point, a missed approach should be executed in accordance with 5.b. and 5.c.

g. Subsequent further descent below MDA/H should only commence when the required visual reference has been obtained.

h. Unless otherwise specified in the procedure, final descent should not be commenced from MDA/H until the threshold of the intended landing runway has been identified and the aeroplane is in a position to continue with a normal rate of descent to land within the touchdown zone.

5. Missed approach

a. Missed approach during the instrument procedure prior to circling:

i. if the missed approach procedure is required to be flown when the aeroplane is positioned on the instrument approach track defined by radio navigation aids, GNSS, or ILS, MLS, GLS or PAR, and before commencing the circling manoeuvre, the published missed approach for the instrument approach should be followed; or

ii. if the instrument approach procedure is carried out with the aid of an ILS, MLS or a stabilised approach (SAp), the MAPt associated with an ILS or MLS procedure without glide path (GP-out procedure) or the SAp, where applicable, should be used.

b. If a prescribed missed approach is published for the circling manoeuvre, this overrides the manoeuvres prescribed below.
c. If visual reference is lost while circling to land after the aeroplane has departed from the initial instrument approach track, the missed approach specified for that particular instrument approach should be followed. It is expected that the pilot will make an initial climbing turn toward the intended landing runway to a position overhead of the aerodrome where the pilot will establish the aeroplane in a climb on the instrument missed approach segment.

d. The aeroplane should not leave the visual manoeuvring (circling) area, which is obstacle protected, unless:

i. established on the appropriate missed approach procedure; or

ii. at minimum sector altitude (MSA).

e. All turns should be made in the same direction and the aeroplane should remain within the circling protected area while climbing to either:

i. the altitude assigned to any published circling missed approach manoeuvre if applicable;

ii. the altitude assigned to the missed approach of the initial instrument approach;

iii. the MSA;

iv. the minimum holding altitude (MHA) applicable for transition to a holding facility or fix, or continue to climb to an MSA; or

v. as directed by ATS.

When the missed approach procedure is commenced on the ‘downwind’ leg of the circling manoeuvre, an ‘S’ turn may be undertaken to align the aeroplane on the initial instrument approach missed approach path, provided the aeroplane remains within the protected circling area.

The pilot-in-command should be responsible for ensuring adequate terrain clearance during the above-stipulated manoeuvres, particularly during the execution of a missed approach initiated by ATS.

f. Because the circling manoeuvre may be accomplished in more than one direction, different patterns will be required to establish the aeroplane on the prescribed missed approach course depending on its position at the time visual reference is lost. In particular, all turns are to be in the prescribed direction if this is restricted, e.g. to the west/east (left or right hand) to remain within the protected circling area.

g. If a missed approach procedure is published for a particular runway onto which the aeroplane is conducting a circling approach and the aeroplane has commenced a manoeuvre to align with the runway, the missed approach for this direction may be accomplished. The ATS unit should be informed of the
intention to fly the published missed approach procedure for that particular runway.

h. The pilot-in-command should advise ATS when any missed approach procedure has been commenced, the height/altitude the aeroplane is climbing to and the position the aeroplane is proceeding towards and/or heading the aeroplane is established on.

AMC1-NCC.OP.120 Noise abatement procedures

NADP DESIGN

1. For each aeroplane type two departure procedures should be defined, in accordance with ICAO Doc. 8168 (Procedures for Air Navigation Services, ‘PANS-OPS’), Volume I:

 a. noise abatement departure procedure one (NADP 1), designed to meet the close-in noise abatement objective; and

 b. noise abatement departure procedure two (NADP 2), designed to meet the distant noise abatement objective.

2. For each type of NADP (1 and 2), a single climb profile should be specified for use at all aerodromes, which is associated with a single sequence of actions. The NADP 1 and NADP 2 profiles may be identical.

GM1-NCC.OP.120 Noise abatement procedures

TERMINOLOGY

1. ‘Climb profile’ means in this context the vertical path of the NADP as it results from the pilot’s actions (engine power reduction, acceleration, slats/flaps retraction).

2. ‘Sequence of actions’ means the order in which these pilot’s actions are done and their timing.

GENERAL

3. The requirement addresses only the vertical profile of the departure procedure. Lateral track has to comply with the standard instrument departure (SID).

EXAMPLE

4. For a given aeroplane type, when establishing the distant NADP, the operator should choose either to reduce power first and then accelerate, or to accelerate first and then wait until slats/flaps are retracted before reducing power. The two methods constitute two different sequences of actions.
5. For an aeroplane type, each of the two departure climb profiles may be defined by one sequence of actions (one for close-in, one for distant) and two above aerodrome level (AAL) altitudes/heights. These are:

 a. the altitude of the first pilot’s action (generally power reduction with or without acceleration). This altitude should not be less than 800 ft AAL; or

 b. the altitude of the end of the noise abatement procedure. This altitude should usually not be more than 3,000 ft AAL.

These two altitudes may be runway specific when the aeroplane flight management system (FMS) has the relevant function that permits the crew to change thrust reduction and/or acceleration altitude/height. If the aeroplane is not FMS equipped or the FMS is not fitted with the relevant function, two fixed heights should be defined and used for each of the two NADPs.

AMC1-NCC.OP.125 Minimum obstacle clearance altitudes — IFR flights

GENERAL

Commercially available information specifying minimum obstacle clearance altitudes may be used.

AMC1-NCC.OP.140 Carriage of passengers

SEATS THAT PERMIT DIRECT ACCESS TO EMERGENCY EXITS

Passengers who occupy seats that permit direct access to emergency exits should appear to be reasonably fit, strong and able to assist the rapid evacuation of the aircraft in an emergency after an appropriate briefing by the crew.

GM1-NCC.OP.140 Carriage of passengers

MEANING OF DIRECT ACCESS

‘Direct access’ means a seat from which a passenger can proceed directly to the exit without entering an aisle or passing around an obstruction.

AMC1-NCC.OP.145 Passenger briefing

TRAINING PROGRAMME

1. The operator may replace the briefing/demonstration with a passenger training programme covering all safety and emergency procedures for a given type of aircraft.
2. Only passengers who have been trained according to this programme and have flown on the aircraft type within the last 90 days may be carried on board without receiving a briefing/demonstration.

AMC1-NCC.OP.157 Destination alternate aerodromes — helicopters

OFFSHORE ALTERNATE AERODROMES — HELICOPTERS

1. Weather-permissible offshore alternate aerodromes may be selected and specified subject to the following:

 a. the offshore alternate aerodrome should only be used after passing a point of no return (PNR). Prior to a PNR, onshore alternate aerodromes should be used;

 b. mechanical reliability of critical control systems and critical components should be considered and taken into account when determining the suitability of the alternate aerodrome;

 c. one-engine-inoperative (OEI) performance capability should be attainable prior to arrival at the alternate;

 d. to the extent possible, deck availability should be guaranteed; and

 e. weather information should be reliable and accurate.

2. Offshore alternate aerodromes should not be used when it is possible to carry enough fuel to have an onshore alternate aerodrome. Offshore alternate aerodromes should not be used in a hostile environment.

3. The landing technique specified in the AFM following control system failure may preclude the nomination of certain helidecks as alternate aerodromes.

AMC1-NCC.OP.160 Refuelling with passengers embarking, on board or disembarking

OPERATIONAL PROCEDURES — GENERAL

1. When refuelling with other than aviation gasoline (AVGAS) or wide-cut type fuel or a mixture of these types of fuel, with passengers on board, ground servicing activities and work inside the aeroplane, such as catering and cleaning, should be conducted in such a manner that they do not create a hazard and that the aisles and emergency doors are unobstructed.

2. The deployment of integral aircraft stairs or the opening of emergency exits as a prerequisite to refuelling is not necessarily required.
OPERATIONAL PROCEDURES — AEROPLANES

3. Operational procedures should specify that at least the following precautions are taken:

 a. one qualified person should remain at a specified location during fuelling operations with passengers on board. This qualified person should be capable of handling emergency procedures concerning fire protection and fire-fighting, handling communications and initiating and directing an evacuation;

 b. two-way communication should be established and should remain available by the aeroplane’s inter-communication system or other suitable means between the ground crew supervising the refuelling and the qualified personnel on board the aeroplane;

 c. crew members, personnel and passengers should be warned that refuelling will take place;

 d. ‘Fasten seat belts’ signs should be off;

 e. ‘NO SMOKING’ signs should be on, together with interior lighting to enable emergency exits to be identified;

 f. passengers should be instructed to unfasten their seat belts and refrain from smoking;

 g. the minimum required number of cabin crew should be on board and be prepared for an immediate emergency evacuation;

 h. if the presence of fuel vapour is detected inside the aeroplane, or any other hazard arises during refuelling, fuelling should be stopped immediately;

 i. the ground area beneath the exits intended for emergency evacuation and slide deployment areas should be kept clear at doors where stairs are not in position for use in the event of evacuation; and

 j. provision should be made for a safe and rapid evacuation.

OPERATIONAL PROCEDURES — HELICOPTERS

4. Operational procedures should specify that at least the following precautions are taken:

 a. door(s) on the refuelling side of the helicopter remain closed;

 b. door(s) on the non-refuelling side of the helicopter remain open, weather permitting;

 c. firefighting facilities of the appropriate scale be positioned so as to be immediately available in the event of a fire;
d. sufficient personnel should be immediately available to move passengers clear of the helicopter in the event of a fire;

e. sufficient qualified personnel be on board and be prepared for an immediate emergency evacuation;

f. if the presence of fuel vapour is detected inside the helicopter, or any other hazard arises during refuelling, fuelling should be stopped immediately;

g. the ground area beneath the exits intended for emergency evacuation and slide deployment areas be kept clear; and

h. provision should be made for a safe and rapid evacuation.

GM1-NCC.OP.160 Refuelling with passengers embarking, on board or disembarking

AIRCRAFT REFUELLING PROVISIONS AND GUIDANCE ON SAFE REFUELLING PRACTICES

Provisions concerning aircraft refuelling are contained in Volume I (Aerodrome Design and Operations) of ICAO Annex 14 (Aerodromes), and guidance on safe refuelling practices is contained in Parts 1 and 8 of the ICAO Airport Services Manual (Doc 9137).

AMC1-NCC.OP.180 Meteorological conditions

EVALUATION OF METEOROLOGICAL CONDITIONS

Pilots should carefully evaluate the available meteorological information relevant to the proposed flight, such as applicable surface observations, winds and temperatures aloft, terminal and area forecasts, air meteorological information reports (AIRMETs), significant meteorological information (SIGMET) and pilot reports. The ultimate decision whether, when, and where to make the flight rests with the pilot-in-command. Pilots should continue to re-evaluate changing weather conditions.

GM1-NCC.OP.180 Meteorological conditions

CONTINUATION OF A FLIGHT

In the case of in-flight re-planning, continuation of a flight refers to the point from which a revised flight plan applies.
GM1-NCC.OP.185 Ice and other contaminants — ground procedures

TERMINOLOGY

Terms used in the context of de-icing/anti-icing have the meaning defined in the following subparagraphs.

1. ‘Anti-icing fluid’ includes, but is not limited to, the following:
 a. Type I fluid if heated to min 60 °C at the nozzle;
 b. mixture of water and Type I fluid if heated to min 60 °C at the nozzle;
 c. Type II fluid;
 d. mixture of water and Type II fluid;
 e. Type III fluid;
 f. mixture of water and Type III fluid;
 g. Type IV fluid;
 h. mixture of water and Type IV fluid.

 On uncontaminated aircraft surfaces Type II, III and IV anti-icing fluids are normally applied unheated.

2. ‘Clear ice’: a coating of ice, generally clear and smooth, but with some air pockets. It forms on exposed objects, the temperatures of which are at, below or slightly above the freezing temperature, by the freezing of super-cooled drizzle, droplets or raindrops.

3. Conditions conducive to aircraft icing on the ground (e.g. freezing fog, freezing precipitation, frost, rain or high humidity (on cold soaked wings), snow or mixed rain and snow).

4. ‘Contamination’, in this context, is understood as being all forms of frozen or semi-frozen moisture, such as frost, snow, slush or ice.

5. ‘Contamination check’: a check of aircraft for contamination to establish the need for de-icing.

6. ‘De-icing fluid’: such fluid includes, but is not limited to, the following:
 a. heated water;
 b. Type I fluid;
 c. mixture of water and Type I fluid;
 d. Type II fluid;
e. mixture of water and Type II fluid;
f. Type III fluid;
g. mixture of water and Type III fluid;
h. Type IV fluid;
i. mixture of water and Type IV fluid.

De-icing fluid is normally applied heated to ensure maximum efficiency.

7. ‘De-icing/anti-icing’: this is the combination of de-icing and anti-icing performed in either one or two steps.

8. ‘Ground ice detection system (GIDS)’: system used during aircraft ground operations to inform the personnel involved in the operation and/or the flight crew about the presence of frost, ice, snow or slush on the aircraft surfaces.

9. ‘Lowest operational use temperature (LOUT)’: the lowest temperature at which a fluid has been tested and certified as acceptable in accordance with the appropriate aerodynamic acceptance test whilst still maintaining a freezing point buffer of not less than:

a. 10 °C for a Type I de-icing/anti-icing fluid; or
b. 7 °C for Type II, III or IV de-icing/anti-icing fluids.

10. ‘Post-treatment check’: an external check of the aircraft after de-icing and/or anti-icing treatment accomplished from suitably elevated observation points (e.g. from the de-icing/anti-icing equipment itself or other elevated equipment) to ensure that the aircraft is free from any frost, ice, snow or slush.

11. ‘Pre-take-off check’: an assessment normally performed from within the flight deck, to validate the applied hold-over time (HoT).

12. ‘Pre-take-off contamination check’: a check of the treated surfaces for contamination, performed when the HoT has been exceeded or if any doubt exists regarding the continued effectiveness of the applied anti-icing treatment. It is normally accomplished externally, just before commencement of the take-off run.

ANTI-ICING CODES

13. The following are examples of anti-icing codes:

a. ‘Type I’ at (start time) — to be used if anti-icing treatment has been performed with a Type I fluid;
b. ‘Type II/100’ at (start time) — to be used if anti-icing treatment has been performed with undiluted Type II fluid;
c. ‘Type II/75’ at (start time) — to be used if anti-icing treatment has been performed with a mixture of 75 % Type II fluid and 25 % water; and

d. ‘Type IV/50’ at (start time) — to be used if anti-icing treatment has been performed with a mixture of 50 % Type IV fluid and 50 % water.

14. When a two-step de-icing/anti-icing operation has been carried out, the anti-icing code should be determined by the second step fluid. Fluid brand names may be included, if desired.

GM2-NCC.OP.185 Ice and other contaminants — ground procedures

DE-ICING/ANTI-ICING — PROCEDURES

1. De-icing and/or anti-icing procedures should take into account manufacturer’s recommendations, including those that are type-specific, and should cover:

 a. contamination checks, including detection of clear ice and under-wing frost; limits on the thickness/area of contamination published in the AFM or other manufacturers’ documentation should be followed;

 b. procedures to be followed if de-icing and/or anti-icing procedures are interrupted or unsuccessful;

 c. post-treatment checks;

 d. pre-take-off checks;

 e. pre-take-off contamination checks;

 f. the recording of any incidents relating to de-icing and/or anti-icing; and

 g. the responsibilities of all personnel involved in de-icing and/or anti-icing.

2. The operator’s procedures should ensure the following:

 a. When aircraft surfaces are contaminated by ice, frost, slush or snow, they are de-iced prior to take-off, according to the prevailing conditions. Removal of contaminants may be performed with mechanical tools, fluids (including hot water), infrared heat or forced air, taking account of aircraft type-specific requirements.

 b. Account is taken of the wing skin temperature versus outside air temperature (OAT), as this may affect:

 i. the need to carry out aircraft de-icing and/or anti-icing; and/or

 ii. the performance of the de-icing/anti-icing fluids.

 c. When freezing precipitation occurs or there is a risk of freezing precipitation occurring which would contaminate the surfaces at the time of take-off,
aircraft surfaces should be anti-iced. If both de-icing and anti-icing are required, the procedure may be performed in a one or two-step process, depending upon weather conditions, available equipment, available fluids and the desired hold-over time (HoT). One-step de-icing/anti-icing means that de-icing and anti-icing are carried out at the same time, using a mixture of de-icing/anti-icing fluid and water. Two-step de-icing/anti-icing means that de-icing and anti-icing are carried out in two separate steps. The aircraft is first de-iced using heated water only or a heated mixture of de-icing/anti-icing fluid and water. After completion of the de-icing operation a layer of a mixture of de-icing/anti-icing fluid and water, or of de-icing/anti-icing fluid only, is sprayed over the aircraft surfaces. The second step will be applied before the first-step fluid freezes, typically within three minutes and, if necessary, area by area.

d. When an aircraft is anti-iced and a longer HoT is needed/desired, the use of a less diluted Type II or Type IV fluid should be considered.

e. All restrictions relative to OAT and fluid application (including, but not necessarily limited to, temperature and pressure) published by the fluid manufacturer and/or aircraft manufacturer, are followed and procedures, limitations and recommendations to prevent the formation of fluid residues are followed.

f. During conditions conducive to aircraft icing on the ground or after de-icing and/or anti-icing, an aircraft is not dispatched for departure unless it has been given a contamination check or a post-treatment check by a trained and qualified person. This check should cover all treated surfaces of the aircraft and be performed from points offering sufficient accessibility to these parts. To ensure that there is no clear ice on suspect areas, it may be necessary to make a physical check (e.g. tactile).

g. The required entry is made in the technical log.

h. The pilot-in-command continually monitors the environmental situation after the performed treatment. Prior to take-off he/she performs a pre-take-off check, which is an assessment of whether the applied HoT is still appropriate. This pre-take-off check includes, but is not limited to, factors such as precipitation, wind and OAT.

i. If any doubt exists as to whether a deposit may adversely affect the aircraft's performance and/or controllability characteristics, the pilot-in-command should arrange for a pre-take-off contamination check to be performed in order to verify that the aircraft’s surfaces are free of contamination. Special methods and/or equipment may be necessary to perform this check, especially at night time or in extremely adverse weather conditions. If this check cannot be performed just before take-off, re-treatment should be applied.
j. When retreatment is necessary, any residue of the previous treatment should be removed and a completely new de-icing/anti-icing treatment should be applied.

k. When a ground ice detection system (GIDS) is used to perform an aircraft surfaces check prior to and/or after a treatment, the use of GIDS by suitably trained personnel should be part of the procedure.

3. Special operational considerations

a. When using thickened de-icing/anti-icing fluids, the operator should consider a two-step de-icing/anti-icing procedure, the first step preferably with hot water and/or un-thickened fluids.

b. The use of de-icing/anti-icing fluids should be in accordance with the aircraft manufacturer’s documentation. This is particularly important for thickened fluids to assure sufficient flow-off during take-off.

c. The operator should comply with any type-specific operational requirement(s), such as an aircraft mass decrease and/or a take-off speed increase associated with a fluid application.

d. The operator should take into account any flight handling procedures (stick force, rotation speed and rate, take-off speed, aircraft attitude etc.) laid down by the aircraft manufacturer when associated with a fluid application.

e. The limitations or handling procedures resulting from 3.c. and/or 3.d. should be part of the flight crew pre-take-off briefing.

4. Communications

a. Before aircraft treatment. When the aircraft is to be treated with the flight crew on board, the flight and personnel involved in the operation should confirm the fluid to be used, the extent of treatment required and any aircraft type-specific procedure(s) to be used. Any other information needed to apply the HoT tables should be exchanged.

b. Anti-icing code. The operator’s procedures should include an anti-icing code, which indicates the treatment the aircraft has received. This code provides the flight crew with the minimum details necessary to estimate an HoT and confirms that the aircraft is free of contamination.

c. After treatment. Before reconfiguring or moving the aircraft, the flight crew should receive a confirmation from the personnel involved in the operation that all de-icing and/or anti-icing operations are complete and that all personnel and equipment are clear of the aircraft.

5. Hold-over protection

The operator should publish in the operations manual, when required, the HoTs in the form of a table or a diagram, to account for the various types of ground icing.
conditions and the different types and concentrations of fluids used. However, the
times of protection shown in these tables are to be used as guidelines only and are
normally used in conjunction with the pre-take-off check.

6. Training

The operator’s initial and recurrent de-icing and/or anti-icing training programmes
(including communication training) for flight crew and those of its personnel
involved in the operation who are involved in de-icing and/or anti-icing should
include additional training if any of the following is introduced:

a. a new method, procedure and/or technique;
b. a new type of fluid and/or equipment; or
c. a new type of aircraft.

7. Contracting

When the operator contracts training on de-icing/anti-icing, the operator should
ensure that the contractor complies with the operator’s training/qualification
procedures, together with any specific procedures in respect of:

a. de-icing and/or anti-icing methods and procedures;
b. fluids to be used, including precautions for storage and preparation for use;
c. specific aircraft requirements (e.g. no-spray areas, propeller/engine de-
ing, auxiliary power unit (APU) operation etc.); and
d. checking and communications procedures.

8. Special maintenance considerations

a. General

The operator should take proper account of the possible side effects of fluid
use. Such effects may include, but are not necessarily limited to, dried
and/or re-hydrated residues, corrosion and the removal of lubricants.

b. Special considerations regarding residues of dried fluids

The operator should establish procedures to prevent or detect and remove
residues of dried fluid. If necessary the operator should establish
appropriate inspection intervals based on the recommendations of the
airframe manufacturers and/or the operator’s own experience:

i. Dried fluid residues

Dried fluid residues could occur when surfaces have been treated and
the aircraft has not subsequently been flown and has not been subject
to precipitation. The fluid may then have dried on the surfaces.
ii. Re-hydrated fluid residues

Repetitive application of thickened de-icing/anti-icing fluids may lead to the subsequent formation/build-up of a dried residue in aerodynamically quiet areas, such as cavities and gaps. This residue may re-hydrate if exposed to high humidity conditions, precipitation, washing, etc., and increase to many times its original size/volume. This residue will freeze if exposed to conditions at or below 0 °C. This may cause moving parts, such as elevators, ailerons, and flap actuating mechanisms to stiffen or jam in-flight. Re-hydrated residues may also form on exterior surfaces, which can reduce lift, increase drag and stall speed. Re-hydrated residues may also collect inside control surface structures and cause clogging of drain holes or imbalances to flight controls. Residues may also collect in hidden areas, such as around flight control hinges, pulleys, grommets, on cables and in gaps.

iii. Operators are strongly recommended to obtain information about the fluid dry-out and re-hydration characteristics from the fluid manufacturers and to select products with optimised characteristics.

iv. Additional information should be obtained from fluid manufacturers for handling, storage, application and testing of their products.

GM3-NCC.OP.185 Ice and other contaminants — ground procedures

DE-ICING/ANTI-ICING — BACKGROUND INFORMATION

1. General

 a. Any deposit of frost, ice, snow or slush on the external surfaces of an aircraft may drastically affect its flying qualities because of reduced aerodynamic lift, increased drag, modified stability and control characteristics. Furthermore, freezing deposits may cause moving parts, such as elevators, ailerons, flap actuating mechanism etc., to jam and create a potentially hazardous condition. Propeller/engine/APU/systems performance may deteriorate due to the presence of frozen contaminants on blades, intakes and components. Also, engine operation may be seriously affected by the ingestion of snow or ice, thereby causing engine stall or compressor damage. In addition, ice/frost may form on certain external surfaces (e.g. wing upper and lower surfaces, etc.) due to the effects of cold fuel/structures, even in ambient temperatures well above 0 °C.

 b. Procedures established by the operator for de-icing and/or anti-icing are intended to ensure that the aircraft is clear of contamination so that
degradation of aerodynamic characteristics or mechanical interference will not occur and, following anti-icing, to maintain the airframe in that condition during the appropriate Hot.

c. Under certain meteorological conditions, de-icing and/or anti-icing procedures may be ineffective in providing sufficient protection for continued operations. Examples of these conditions are freezing rain, ice pellets and hail, heavy snow, high wind velocity, fast dropping OAT or any time when freezing precipitation with high water content is present. No Hot guidelines exist for these conditions.

d. Material for establishing operational procedures can be found, for example, in:

i. ICAO Annex 3, Meteorological Service for International Air Navigation;

ii. ICAO Manual of Aircraft Ground De-icing/Anti-icing Operations;

iii. International Organization for Standardization (ISO) 11075 Aircraft — De-icing/anti-icing fluids — ISO type I;

iv. ISO 11076 Aircraft — De-icing/anti-icing methods with fluids;

v. ISO 11077 Aerospace — Self-propelled de-icing/anti-icing vehicles — Functional requirements;

vi. ISO 11078 Aircraft — De-icing/anti-icing fluids — ISO types II, III and IV;

vii. Association of European Airlines (AEA) 'Recommendations for de-icing/anti-icing of aircraft on the ground';

viii. AEA ‘Training recommendations and background information for de-icing/anti-icing of aircraft on the ground’;

ix. EUROCAE ED-104A Minimum Operational Performance Specification for Ground Ice Detection Systems;

x. Society of Automotive Engineers (SAE) AS5681 Minimum Operational Performance Specification for Remote On-Ground Ice Detection Systems;

xi. SAE ARP4737 Aircraft — De-icing/anti-icing methods;

xii. SAE AMS1424 De-icing/anti-Icing Fluid, Aircraft, SAE Type I;

xiii. SAE AMS1428 Fluid, Aircraft De-icing/anti-icing, Non-Newtonian, (Pseudoplastic), SAE Types II, III, and IV;

xiv. SAE ARP1971 Aircraft De-icing Vehicle — Self-Propelled, Large and Small Capacity;
2. Fluids

a. Type I fluid: Due to its properties, Type I fluid forms a thin, liquid-wetting film on surfaces to which it is applied which, under certain weather conditions, gives a very limited HoT. With this type of fluid, increasing the concentration of fluid in the fluid/water mix does not provide any extension in HoT.

b. Type II and Type IV fluids contain thickeners that enable the fluid to form a thicker liquid-wetting film on surfaces to which it is applied. Generally, this fluid provides a longer HoT than Type I fluids in similar conditions. With this type of fluid, the HoT can be extended by increasing the ratio of fluid in the fluid/water mix.

c. Type III fluid is a thickened fluid especially intended for use on aircraft with low rotation speeds.

d. Fluids used for de-icing and/or anti-icing should be acceptable to the operator and the aircraft manufacturer. These fluids normally conform to specifications such as SAE AMS1424, SAE AMS1428 or equivalent. Use of non-conforming fluids is not recommended due to their characteristics being unknown. The anti-icing and aerodynamic properties of thickened fluids may be seriously degraded by, for example, inappropriate storage, treatment, application, application equipment and age.

3. Hold-over protection

a. Hold-over protection is achieved by a layer of anti-icing fluid remaining on and protecting aircraft surfaces for a period of time. With a one-step de-icing/anti-icing procedure, the HoT begins at the commencement of de-icing/anti-icing. With a two-step procedure, the HoT begins at the commencement of the second (anti-icing) step. The hold-over protection runs out:

i. at the commencement of the take-off roll (due to aerodynamic shedding of fluid); or

ii. when frozen deposits start to form or accumulate on treated aircraft surfaces, thereby indicating the loss of effectiveness of the fluid.

b. The duration of hold-over protection may vary depending on the influence of factors other than those specified in the HoT tables. Guidance should be provided by the operator to take account of such factors, which may include:
i. atmospheric conditions, e.g. exact type and rate of precipitation, wind direction and velocity, relative humidity and solar radiation; and

ii. the aircraft and its surroundings, such as aircraft component inclination angle, contour and surface roughness, surface temperature, operation in close proximity to other aircraft (jet or propeller blast) and ground equipment and structures.

c. HoTs are not meant to imply that flight is safe in the prevailing conditions if the specified HoT has not been exceeded. Certain meteorological conditions, such as freezing drizzle or freezing rain, may be beyond the certification envelope of the aircraft.

d. References to usable HoT tables may be found in the AEA ‘Recommendations for de-icing/anti-icing of aircraft on the ground’.

AMC1-NCC.OP.190 Ice and other contaminants — flight procedures

FLIGHT IN EXPECTED OR ACTUAL Icing CONDITIONS

1. The procedures to be established by the operator should take account of the design, the equipment, the configuration of the aircraft and the necessary training. For these reasons, different aircraft types operated by the same company may require the development of different procedures. In every case the relevant limitations are those that are defined in the AFM and other documents produced by the manufacturer.

2. The operator should ensure that the procedures take account of the following:

 a. the equipment and instruments that should be serviceable for flight in icing conditions;

 b. the limitations on flight in icing conditions for each phase of flight. These limitations may be imposed by the aircraft’s de-icing or anti-icing equipment or the necessary performance corrections that have to be made;

 c. the criteria the flight crew should use to assess the effect of icing on the performance and/or controllability of the aircraft;

 d. the means by which the flight crew detects, by visual cues or the use of the aircraft’s ice detection system, that the flight is entering icing conditions; and

 e. the action to be taken by the flight crew in a deteriorating situation (which may develop rapidly) resulting in an adverse effect on the performance and/or controllability of the aircraft, due to:

 i. the failure of the aircraft’s anti-icing or de-icing equipment to control a build-up of ice; and/or
ii. ice build-up on unprotected areas.

3. Training for dispatch and flight in expected or actual icing conditions. The content of the operations manual should reflect the training, both conversion and recurrent, that flight crew, cabin crew and all other relevant operational personnel require in order to comply with the procedures for dispatch and flight in icing conditions:

a. For the flight crew, the training should include:

 i. instruction on how to recognise, from weather reports or forecasts that are available before flight commences or during flight, the risks of encountering icing conditions along the planned route and on how to modify, as necessary, the departure and in-flight routes or profiles;

 ii. instruction on the operational and performance limitations or margins;

 iii. the use of in-flight ice detection, anti-icing and de-icing systems in both normal and abnormal operation; and

 iv. instruction on the differing intensities and forms of ice accretion and the consequent action which should be taken.

b. For the cabin crew, the training should include:

 i. awareness of the conditions likely to produce surface contamination; and

 ii. the need to inform the flight crew of significant ice accretion.

GM1-NCC.OP.215 Ground proximity detection

GUIDANCE MATERIAL FOR TERRAIN AWARENESS WARNING SYSTEM (TAWS) FLIGHT CREW TRAINING PROGRAMMES

1. Introduction

 a. This GM contains performance-based training objectives for TAWS flight crew training.

 b. The training objectives cover five areas: theory of operation; pre-flight operations; general in-flight operations; response to TAWS cautions; response to TAWS warnings.

 c. The term ‘TAWS’ in this GM means a ground proximity warning system (GPWS) enhanced by a forward-looking terrain avoidance function. Alerts include both cautions and warnings.

 d. The content of this GM is intended to assist operators who are producing training programmes. The information it contains has not been tailored to any specific aircraft or TAWS equipment, but highlights features that are
typically available where such systems are installed. It is the responsibility of the individual operator to determine the applicability of the content of this Guidance Material to each aircraft and TAWS equipment installed and their operation. Operators should refer to the AFM and/or aircraft/flight crew operating manual (A/FCOM), or similar documents, for information applicable to specific configurations. If there should be any conflict between the content of this Guidance Material and that published in the other documents described above, then the information contained in the AFM or A/FCOM will take precedence.

2. Scope
 a. The scope of this GM is designed to identify training objectives in the areas of: academic training; manoeuvre training; initial evaluation; recurrent qualification. Under each of these four areas, the training material has been separated into those items that are considered essential training items and those that are considered to be desirable. In each area, objectives and acceptable performance criteria are defined.
 b. No attempt is made to define how the training programme should be implemented. Instead, objectives are established to define the knowledge that a pilot operating a TAWS is expected to possess and the performance expected from a pilot who has completed TAWS training. However, the guidelines do indicate those areas in which the pilot receiving the training should demonstrate his/her understanding, or performance, using a real time interactive training device, i.e. a flight simulator. Where appropriate, notes are included within the performance criteria that amplify or clarify the material addressed by the training objective.

3. Performance-based training objectives
 a. TAWS academic training
 i. This training is typically conducted in a classroom environment. The knowledge demonstrations specified in this section may be completed through the successful completion of written tests or by providing correct responses to non-real time computer-based training (CBT) questions.
 ii. Theory of operation. The pilot should demonstrate an understanding of TAWS operation and the criteria used for issuing cautions and warnings. This training should address system operation. Objective: to demonstrate knowledge of how a TAWS functions. Criteria: the pilot should demonstrate an understanding of the following functions:

 A. Surveillance

 1. The GPWS computer processes data supplied from an air data computer, a radio altimeter, an instrument landing system (ILS)/microwave landing system (MLS)/multi-mode
(MM) receiver, a roll attitude sensor, and actual position of
the surfaces and of the landing gear.

2. The forward-looking terrain avoidance function utilises an
accurate source of known aircraft position, such as that
which may be provided by a flight management system
(FMS) or global positioning system (GPS), or an electronic
terrain database. The source and scope of the terrain,
obstacle and airport data, and features such as the terrain
clearance floor, the runway picker, and geometric altitude
(where provided), should all be described.

3. Displays required to deliver TAWS outputs include a
loudspeaker for voice announcements, visual alerts
(typically amber and red lights) and a terrain awareness
display (that may be combined with other displays). In
addition, means should be provided for indicating the
status of the TAWS and any partial or total failures that
may occur.

B. Terrain avoidance. Outputs from the TAWS computer provide
visual and audio synthetic voice cautions and warnings to alert
the flight crew about potential conflicts with terrain and
obstacles.

C. Alert thresholds. Objective: to demonstrate knowledge of the
criteria for issuing cautions and warnings. Criteria: the pilot
should be able to demonstrate an understanding of the
methodology used by a TAWS to issue cautions and alerts and
the general criteria for the issuance of these alerts, including:

1. basic GPWS alerting modes specified in the ICAO standard:

 Mode 1: excessive sink rate;

 Mode 2: excessive terrain closure rate;

 Mode 3: descent after take-off or missed approach;

 Mode 4: unsafe proximity to terrain; and

 Mode 5: descent below ILS glide slope (caution only);

2. an additional, optional alert mode:

 Mode 6: radio altitude call-out (information only); and

3. TAWS cautions and warnings that alert the flight crew to
obstacles and terrain ahead of the aircraft in line with or
adjacent to its projected flight path (forward-looking terrain
avoidance (FLTA) and premature descent alert (PDA) functions).

D. TAWS limitations. Objective: to verify that the pilot is aware of the limitations of TAWS. Criteria: the pilot should demonstrate knowledge and an understanding of TAWS limitations identified by the manufacturer for the equipment model installed, such as:

1. navigation should not be predicated on the use of the terrain display;
2. unless geometric altitude data is provided, use of predictive TAWS functions is prohibited when altimeter subscale settings display ‘QFE’ (atmospheric pressure at aerodrome elevation/runway threshold);
3. nuisance alerts can be issued if the aerodrome of intended landing is not included in the TAWS airport database;
4. in cold weather operations, corrective procedures should be implemented by the pilot unless the TAWS has in-built compensation, such as geometric altitude data;
5. loss of input data to the TAWS computer could result in partial or total loss of functionality. Where means exist to inform the flight crew that functionality has been degraded, this should be known and the consequences understood;
6. radio signals not associated with the intended flight profile (e.g. ILS glide path transmissions from an adjacent runway) may cause false alerts;
7. inaccurate or low accuracy aircraft position data could lead to false or non-annunciation of terrain or obstacles ahead of the aircraft; and
8. minimum equipment list (MEL) restrictions should be applied in the event of the TAWS becoming partially or completely unserviceable. (It should be noted that basic GPWS has no forward-looking capability.)

E. TAWS inhibits. Objective: to verify that the pilot is aware of the conditions under which certain functions of a TAWS are inhibited. Criteria: the pilot should demonstrate knowledge and an understanding of the various TAWS inhibits, including means of the following:

1. silencing voice alerts;
2. inhibiting ILS glide path signals (as may be required when executing an ILS back beam approach);
3. inhibiting flap position sensors (as may be required when executing an approach with the flaps not in a normal position for landing);

4. inhibiting the FLTA and PDA functions; and

5. selecting or deselecting the display of terrain information, together with appropriate annunciation of the status of each selection.

b. Operating procedures. The pilot should demonstrate the knowledge required to operate TAWS avionics and to interpret the information presented by a TAWS. This training should address the following topics:

i. Use of controls. Objective: to verify that the pilot can properly operate all TAWS controls and inhibits. Criteria: the pilot should demonstrate the proper use of controls, including the means by which:

 A. before flight, any equipment self-test functions can be initiated;
 B. TAWS information can be selected for display; and
 C. all TAWS inhibits can be operated and what the consequent annunciations mean with regard to loss of functionality.

ii. Display interpretation. Objective: to verify that the pilot understands the meaning of all information that can be annunciated or displayed by a TAWS. Criteria: the pilot should demonstrate the ability to properly interpret information annunciated or displayed by a TAWS, including the following:

 A. knowledge of all visual and aural indications that may be seen or heard;
 B. response required on receipt of a caution;
 C. response required on receipt of a warning; and
 D. response required on receipt of a notification that partial or total failure of the TAWS has occurred (including annunciation that the present aircraft position is of low accuracy).

iii. Use of basic GPWS or use of the FLTA function only. Objective: to verify that the pilot understands what functionality will remain following loss of the GPWS or of the FLTA function. Criteria: the pilot should demonstrate knowledge of how to recognise un-commanded loss of the:

 A. GPWS function, or how to isolate this function and how to recognise the level of the remaining controlled flight into terrain (CFIT) protection (essentially, this is the FLTA function); and
B. FLTA function, or how to isolate this function and how to recognise the level of the remaining CFIT protection (essentially, this is the basic GPWS).

iv. Crew coordination. Objective: to verify that the pilot adequately briefs other flight crew members on how TAWS alerts will be handled. Criteria: the pilot should demonstrate that the pre-flight briefing addresses procedures that will be used in preparation for responding to TAWS cautions and warnings, including the following:

A. the action to be taken, and by whom, in the event that a TAWS caution and/or warning is issued; and

B. how multi-function displays will be used to depict TAWS information at take-off, in the cruise and for the descent, approach, landing (and any missed approach). This will be in accordance with procedures specified by the operator, who will recognise that it may be more desirable that other data is displayed at certain phases of flight and that the terrain display has an automatic ‘pop-up’ mode in the event that an alert is issued.

v. Reporting requirements. Objective: to verify that the pilot is aware of the requirements for reporting alerts to the controller and other authorities. Criteria: the pilot should demonstrate knowledge of the following:

A. when, following recovery from a TAWS alert or caution, a transmission of information should be made to the appropriate ATC unit; and

B. the type of written report that is required, how it is to be compiled and whether any cross-reference should be made in the aircraft technical log and/or voyage report (in accordance with procedures specified by the operator), following a flight in which the aircraft flight path has been modified in response to a TAWS alert, or if any part of the equipment appears not to have functioned correctly.

vi. Alert thresholds. Objective: to demonstrate knowledge of the criteria for issuing cautions and warnings. Criteria: the pilot should be able to demonstrate an understanding of the methodology used by a TAWS to issue cautions and warnings and the general criteria for the issuance of these alerts, including awareness of the following:

A. modes associated with basic GPWS, including the input data associated with each; and

B. visual and aural announcements that can be issued by TAWS and how to identify which are cautions and which are warnings.
c. TAWS manoeuvre training. The pilot should demonstrate the knowledge required to respond correctly to TAWS cautions and warnings. This training should address the following topics:

i. Response to cautions:

A. Objective: to verify that the pilot properly interprets and responds to cautions. Criteria: the pilot should demonstrate an understanding of the need, without delay:

1. to initiate action required to correct the condition that has caused the TAWS to issue the caution and to be prepared to respond to a warning, if this should follow; and

2. if a warning does not follow the caution, to notify the controller of the new position, heading and/or altitude/flight level of the aircraft, and what the pilot-in-command intends to do next.

B. The correct response to a caution might require the pilot:

1. to reduce a rate of descent and/or to initiate a climb;

2. to regain an ILS glide path from below, or to inhibit a glide path signal if an ILS is not being flown;

3. to select more flap, or to inhibit a flap sensor if the landing is being conducted with the intent that the normal flap setting will not be used;

4. to select gear down; and/or

5. to initiate a turn away from the terrain or obstacle ahead and towards an area free of such obstructions if a forward-looking terrain display indicates that this would be a good solution and the entire manoeuvre can be carried out in clear visual conditions.

ii. Response to warnings. Objective: to verify that the pilot properly interprets and responds to warnings. Criteria: the pilot should demonstrate an understanding of the following:

A. The need, without delay, to initiate a climb in the manner specified by the operator.

B. The need, without delay, to maintain the climb until visual verification can be made that the aircraft will clear the terrain or obstacle ahead or until above the appropriate sector safe altitude (if certain about the location of the aircraft with respect to terrain) even if the TAWS warning stops. If, subsequently, the aircraft climbs up through the sector safe altitude, but the
visibility does not allow the flight crew to confirm that the terrain hazard has ended, checks should be made to verify the location of the aircraft and to confirm that the altimeter subscale settings are correct.

C. When workload permits, that the flight crew should notify the air traffic controller of the new position and altitude/flight level and what the pilot-in-command intends to do next.

D. That the manner in which the climb is made should reflect the type of aircraft and the method specified by the aircraft manufacturer (which should be reflected in the operations manual) for performing the escape manoeuvre. Essential aspects will include the need for an increase in pitch attitude, selection of maximum thrust, confirmation that external sources of drag (e.g. spoilers/speed brakes) are retracted and respect of the stick shaker or other indication of eroded stall margin.

E. That TAWS warnings should never be ignored. However, the pilot’s response may be limited to that which is appropriate for a caution, only if:

1. the aircraft is being operated by day in clear, visual conditions; and
2. it is immediately clear to the pilot that the aircraft is in no danger in respect of its configuration, proximity to terrain or current flight path.

d. TAWS initial evaluation:

i. The flight crew member’s understanding of the academic training items should be assessed by means of a written test.

ii. The flight crew member’s understanding of the manoeuvre training items should be assessed in a flight simulation training device (FSTD) equipped with TAWS visual and aural displays and inhibit selectors similar in appearance and operation to those in the aircraft that the pilot will fly. The results should be assessed by a flight simulation training instructor, synthetic flight examiner, type rating instructor or type rating examiner.

iii. The range of scenarios should be designed to give confidence that proper and timely responses to TAWS cautions and warnings will result in the aircraft avoiding a CFIT accident. To achieve this objective, the pilot should demonstrate taking the correct action to prevent a caution developing into a warning and, separately, the escape manoeuvre needed in response to a warning. These demonstrations should take place when the external visibility is zero, though there is much to be learnt if, initially, the training is given in ‘mountainous’ or ‘hilly’ terrain with clear visibility. This training should
comprise a sequence of scenarios, rather than be included in line orientated flight training (LOFT).

iv. A record should be made, after the pilot has demonstrated competence, of the scenarios that were practised.

e. TAWS recurrent training:

i. TAWS recurrent training ensures that pilots maintain the appropriate TAWS knowledge and skills. In particular, it reminds pilots of the need to act promptly in response to cautions and warnings and of the unusual attitude associated with flying the escape manoeuvre.

ii. An essential item of recurrent training is the discussion of any significant issues and operational concerns that have been identified by the operator. Recurrent training should also address changes to TAWS logic, parameters or procedures and to any unique TAWS characteristics of which pilots should be aware.

f. Reporting procedures:

i. Verbal reports. Verbal reports should be made promptly to the appropriate ATC unit:

A. whenever any manoeuvre has caused the aircraft to deviate from an air traffic clearance;

B. when, following a manoeuvre that has caused the aircraft to deviate from an air traffic clearance, the aircraft has returned to a flight path that complies with the clearance; and/or

C. when an air traffic control unit issues instructions that, if followed, would cause the pilot to manoeuvre the aircraft towards terrain or obstacle or it would appear from the display that a potential CFIT occurrence is likely to result.

ii. Written reports. Written reports should be submitted in accordance with the operator's occurrence reporting scheme and they also should be recorded in the aircraft technical log:

A. whenever the aircraft flight path has been modified in response to a TAWS alert (false, nuisance or genuine);

B. whenever a TAWS alert has been issued and is believed to have been false; and/or

C. if it is believed that a TAWS alert should have been issued, but was not.

iii. Within this GM, and with regard to reports:
A. the term 'false' means that the TAWS issued an alert that could not possibly be justified by the position of the aircraft in respect to terrain and it is probable that a fault or failure in the system (equipment and/or input data) was the cause;

B. the term 'nuisance' means that the TAWS issued an alert that was appropriate, but was not needed because the flight crew could determine by independent means that the flight path was, at that time, safe;

C. the term 'genuine' means that the TAWS issued an alert that was both appropriate and necessary.

The report terms described in 3.f.iii are only meant to be assessed after the occurrence is over, to facilitate subsequent analysis, the adequacy of the equipment and the programmes it contains. The intention is not for the flight crew to attempt to classify an alert into any of these three categories when visual and/or aural cautions or warnings are annunciated.

GM1-NCC.OP.220 Airborne collision avoidance system (ACAS)

GENERAL

1. The ACAS operational procedures and training programmes established by the operator should take into account this Guidance Material. It incorporates advice contained in:
 a. ICAO Annex 10, Volume IV;
 b. ICAO PANS-OPS, Volume 1;
 c. ICAO PANS-ATM; and
 d. ICAO guidance material ‘ACAS Performance-Based Training Objectives’ (published under Attachment E of State Letter AN 7/1.3.7.2-97/77).

2. Additional guidance material on ACAS may be referred to, including information available from such sources as EUROCONTROL.

ACAS FLIGHT CREW TRAINING

1. During the implementation of ACAS, several operational issues were identified that had been attributed to deficiencies in flight crew training programmes. As a result, the issue of flight crew training has been discussed within the ICAO, which has developed guidelines for operators to use when designing training programmes.

2. This Guidance Material contains performance-based training objectives for ACAS II flight crew training. Information contained here related to traffic advisories (TAs) is also applicable to ACAS I and ACAS III users. The training objectives cover five
areas: theory of operation; pre-flight operations; general in-flight operations; response to TAs; and response to resolution advisories (RAs).

3. The information provided is valid for version 7 and 7.1 (ACAS II). Where differences arise, these are identified.

4. The performance-based training objectives are further divided into the areas of: academic training; manoeuvre training; initial evaluation and recurrent qualification. Under each of these four areas, the training material has been separated into those items which are considered essential training items and those which are considered desirable. In each area, objectives and acceptable performance criteria are defined.

5. ACAS academic training

a. This training is typically conducted in a classroom environment. The knowledge demonstrations specified in this section may be completed through the successful completion of written tests or through providing correct responses to non-real-time computer-based training (CBT) questions.

b. Essential items

i. Theory of operation. The flight crew member should demonstrate an understanding of ACAS II operation and the criteria used for issuing TAs and RAs. This training should address the following topics:

 A. System operation

 Objective: to demonstrate knowledge of how ACAS functions.

 Criteria: the flight crew member should demonstrate an understanding of the following functions:

 1. Surveillance

 a. ACAS interrogates other transponder-equipped aircraft within a nominal range of 14 NM.

 b. ACAS surveillance range can be reduced in geographic areas with a large number of ground interrogators and/or ACAS II-equipped aircraft.

 c. If the operator's ACAS implementation provides for the use of the Mode S extended squitter, the normal surveillance range may be increased beyond the nominal 14 NM. However, this information is not used for collision avoidance purposes.

 2. Collision avoidance
a. TAs can be issued against any transponder-equipped aircraft that responds to the ICAO Mode C interrogations, even if the aircraft does not have altitude reporting capability.

b. RAs can be issued only against aircraft that are reporting altitude and in the vertical plane only.

c. RAs issued against an ACAS-equipped intruder are co-ordinated to ensure complementary RAs are issued.

d. Failure to respond to an RA deprives own aircraft of the collision protection provided by own ACAS.

e. Additionally, in ACAS-ACAS encounters, it also restricts the choices available to the other aircraft's ACAS and thus renders the other aircraft's ACAS less effective than if own aircraft were not ACAS equipped.

B. Advisory thresholds

Objective: to demonstrate knowledge of the criteria for issuing TAs and RAs.

Criteria: the flight crew member should demonstrate an understanding of the methodology used by ACAS to issue TAs and RAs and the general criteria for the issuance of these advisories, including the following:

1. ACAS advisories are based on time to closest point of approach (CPA) rather than distance. The time should be short and vertical separation should be small, or projected to be small, before an advisory can be issued. The separation standards provided by ATS are different from the miss distances against which ACAS issues alerts.

2. Thresholds for issuing a TA or an RA vary with altitude. The thresholds are larger at higher altitudes.

3. A TA occurs from 15 to 48 seconds and an RA from 15 to 35 seconds before the projected CPA.

4. RAs are chosen to provide the desired vertical miss distance at CPA. As a result, RAs can instruct a climb or descent through the intruder aircraft's altitude.

C. ACAS limitations
Objective: to verify that the flight crew member is aware of the limitations of ACAS.

Criteria: the flight crew member should demonstrate knowledge and understanding of ACAS limitations, including the following:

1. ACAS will neither track nor display non-transponder-equipped aircraft, nor aircraft not responding to ACAS Mode C interrogations.

2. ACAS will automatically fail if the input from the aircraft’s barometric altimeter, radio altimeter or transponder is lost.
 a. In some installations, the loss of information from other on board systems such as an inertial reference system (IRS) or attitude heading reference system (AHRS) may result in an ACAS failure. Individual operators should ensure that their flight crews are aware of the types of failure which will result in an ACAS failure.
 b. ACAS may react in an improper manner when false altitude information is provided to own ACAS or transmitted by another aircraft. Individual operators should ensure that their flight crew are aware of the types of unsafe conditions which can arise. Flight crew members should ensure that when they are advised, if their own aircraft is transmitting false altitude reports, an alternative altitude reporting source is selected, or altitude reporting is switched off.

3. Some aeroplanes within 380 ft above ground level (AGL) (nominal value) are deemed to be ‘on ground’ and will not be displayed. If ACAS is able to determine an aircraft below this altitude is airborne, it will be displayed.

4. ACAS may not display all proximate transponder-equipped aircraft in areas of high density traffic.

5. The bearing displayed by ACAS is not sufficiently accurate to support the initiation of horizontal manoeuvres based solely on the traffic display.

6. ACAS will neither track nor display intruders with a vertical speed in excess of 10 000 ft/min. In addition, the design implementation may result in some short-term errors in the tracked vertical speed of an intruder during periods of high vertical acceleration by the intruder.
7. Ground proximity warning systems/ground collision avoidance systems (GPWS/GCASs) warnings and wind shear warnings take precedence over ACAS advisories. When either a GPWS/GCAS or wind shear warning is active, ACAS aural annunciations will be inhibited and ACAS will automatically switch to the 'TA only' mode of operation.

D. ACAS inhibits

Objective: to verify that the flight crew member is aware of the conditions under which certain functions of ACAS are inhibited.

Criteria: the flight crew member should demonstrate knowledge and understanding of the various ACAS inhibits, including the following:

1. 'Increase Descent' RAs are inhibited below 1 450 ft AGL.
2. 'Descend' RAs are inhibited below 1 100 ft AGL.
3. All RAs are inhibited below 1 000 ft AGL.
4. All TA aural annunciations are inhibited below 500 ft AGL.
5. Altitude and configuration under which 'Climb' and 'Increase Climb' RAs are inhibited. ACAS can still issue 'Climb' and 'Increase Climb' RAs when operating at the aeroplane's certified ceiling. (In some aircraft types, 'Climb' or 'Increase Climb' RAs are never inhibited.)

ii. Operating procedures

The flight crew member should demonstrate the knowledge required to operate the ACAS avionics and interpret the information presented by ACAS. This training should address the following:

A. Use of controls

Objective: to verify that the pilot can properly operate all ACAS and display controls.

Criteria: demonstrate the proper use of controls including the following:

1. Aircraft configuration required to initiate a self-test.
2. Steps required to initiate a self-test.
3. Recognising when the self-test was successful and when it was unsuccessful. When the self-test is unsuccessful,
recognising the reason for the failure and, if possible, correcting the problem.

4. Recommended usage of range selection. Low ranges are used in the terminal area and the higher display ranges are used in the en-route environment and in the transition between the terminal and en-route environment.

5. Recognising that the configuration of the display does not affect the ACAS surveillance volume.

6. Selection of lower ranges when an advisory is issued, to increase display resolution.

7. Proper configuration to display the appropriate ACAS information without eliminating the display of other needed information.

8. If available, recommended usage of the above/below mode selector. The above mode should be used during climb and the below mode should be used during descent.

9. If available, proper selection of the display of absolute or relative altitude and the limitations of using this display if a barometric correction is not provided to ACAS.

B. Display interpretation

Objective: to verify that the flight crew member understands the meaning of all information that can be displayed by ACAS. The wide variety of display implementations require the tailoring of some criteria. When the training programme is developed, these criteria should be expanded to cover details for the operator's specific display implementation.

Criteria: the flight crew member should demonstrate the ability to properly interpret information displayed by ACAS, including the following:

1. Other traffic, i.e. traffic within the selected display range that is not proximate traffic, or causing a TA or RA to be issued.

2. Proximate traffic, i.e. traffic that is within 6 NM and ± 1 200 ft.

3. Non-altitude reporting traffic.

4. No bearing TAs and RAs.
5. Off-scale TAs and RAs: the selected range should be changed to ensure that all available information on the intruder is displayed.

6. TAs: the minimum available display range that allows the traffic to be displayed should be selected, to provide the maximum display resolution.

7. RAs (traffic display): the minimum available display range of the traffic display that allows the traffic to be displayed should be selected, to provide the maximum display resolution.

8. RAs (RA display): flight crew members should demonstrate knowledge of the meaning of the red and green areas or the meaning of pitch or flight path angle cues displayed on the RA display. Flight crew members should also demonstrate an understanding of the RA display limitations, i.e. if a vertical speed tape is used and the range of the tape is less than 2 500 ft/min, an increase rate RA cannot be properly displayed.

9. If appropriate, awareness that navigation displays oriented on 'Track-Up' may require a flight crew member to make a mental adjustment for drift angle when assessing the bearing of proximate traffic.

C. Use of the TA only mode

Objective: to verify that a flight crew member understands the appropriate times to select the TA only mode of operation and the limitations associated with using this mode.

Criteria: the flight crew member should demonstrate the following:

1. Knowledge of the operator's guidance for the use of TA only.

2. Reasons for using this mode. If TA only is not selected when an airport is conducting simultaneous operations from parallel runways separated by less than 1 200 ft, and to some intersecting runways, RAs can be expected. If for any reason TA only is not selected and an RA is received in these situations, the response should comply with the operator's approved procedures.

3. All TA aural annunciations are inhibited below 500 ft AGL. As a result, TAs issued below 500 ft AGL may not be noticed unless the TA display is included in the routine instrument scan.
D. Crew coordination

Objective: to verify that the flight crew member understands how ACAS advisories will be handled.

Criteria: the flight crew member should demonstrate knowledge of the crew procedures that should be used when responding to TAs and RAs, including the following:

1. task sharing between the pilot flying and the pilot monitoring;
2. expected call-outs; and
3. communications with ATC.

E. Phraseology requirements

Objective: to verify that the flight crew member is aware of the requirements for reporting RAs to the controller.

Criteria: the flight crew member should demonstrate the following:

1. the use of the phraseology contained in ICAO PANS-OPS;
2. an understanding of the procedures contained in ICAO PANS-ATM and ICAO Annex 2; and
3. the understanding that verbal reports should be made promptly to the appropriate ATC unit:
 a. whenever any manoeuvre has caused the aeroplane to deviate from an air traffic clearance;
 b. when, subsequent to a manoeuvre that has caused the aeroplane to deviate from an air traffic clearance, the aeroplane has returned to a flight path that complies with the clearance; and/or
 c. when air traffic issue instructions that, if followed, would cause the crew to manoeuvre the aircraft contrary to an RA with which they are complying.

F. Reporting requirements

Objective: to verify that the flight crew member is aware of the requirements for reporting RAs to the operator.

Criteria: the flight crew member should demonstrate knowledge of where information can be obtained regarding the need for making written reports to various States when an RA is issued.
Various States have different reporting requirements and the material available to the flight crew member should be tailored to the operator’s operating environment. This responsibility is satisfied by the flight crew member reporting to the operator according to the applicable reporting requirements.

c. Non-essential items: advisory thresholds

Objective: to demonstrate knowledge of the criteria for issuing TAs and RAs.

Criteria: the flight crew member should demonstrate an understanding of the methodology used by ACAS to issue TAs and RAs and the general criteria for the issuance of these advisories, including the following:

i. The minimum and maximum altitudes below/above which TAs will not be issued.

ii. When the vertical separation at CPA is projected to be less than the ACAS-desired separation, a corrective RA that requires a change to the existing vertical speed will be issued. This separation varies from 300 ft at low altitude to a maximum of 700 ft at high altitude.

iii. When the vertical separation at CPA is projected to be just outside the ACAS-desired separation, a preventive RA that does not require a change to the existing vertical speed will be issued. This separation varies from 600 to 800 ft.

iv. RA fixed range thresholds vary between 0.2 and 1.1 NM.

6. ACAS manoeuvre training

a. Demonstration of the flight crew member’s ability to use ACAS displayed information to properly respond to TAs and RAs should be carried out in a full flight simulator equipped with an ACAS display and controls similar in appearance and operation to those in the aircraft. If a full flight simulator is utilised, crew resource management (CRM) should be practised during this training.

b. Alternatively, the required demonstrations can be carried out by means of an interactive CBT with an ACAS display and controls similar in appearance and operation to those in the aircraft. This interactive CBT should depict scenarios in which real-time responses should be made. The flight crew member should be informed whether or not the responses made were correct. If the response was incorrect or inappropriate, the CBT should show what the correct response should be.

c. The scenarios included in the manoeuvre training should include: corrective RAs; initial preventive RAs; maintain rate RAs; altitude crossing RAs; increase rate RAs; RA reversals; weakening RAs; and multi-aircraft encounters. The consequences of failure to respond correctly should be
demonstrated by reference to actual incidents such as those publicised in EUROCONROL ACAS II ‘safety flash’ Bulletins.

i. TA responses

Objective: to verify that the pilot properly interprets and responds to TAs.

Criteria: the pilot should demonstrate the following:

A. Proper division of responsibilities between the pilot flying and the pilot monitoring. The pilot flying should fly the aircraft using any type-specific procedures and be prepared to respond to any RA that might follow. For aircraft without an RA pitch display, the pilot flying should consider the likely magnitude of an appropriate pitch change. The pilot monitoring should provide updates on the traffic location shown on the ACAS display, using this information to help visually acquire the intruder.

B. Proper interpretation of the displayed information. Flight crew members should confirm that the aircraft they have visually acquired is that which has caused the TA to be issued. Use should be made of all information shown on the display, note being taken of the bearing and range of the intruder (amber circle), whether it is above or below (data tag), and its vertical speed direction (trend arrow).

C. Other available information should be used to assist in visual acquisition, including ATC ‘party-line’ information, traffic flow in use, etc.

D. Because of the limitations described, the pilot flying should not manoeuvre the aircraft based solely on the information shown on the ACAS display. No attempt should be made to adjust the current flight path in anticipation of what an RA would advise, except that if own aircraft is approaching its cleared level at a high vertical rate with a TA present, vertical rate should be reduced to less than 1 500 ft/min.

E. When visual acquisition is attained, and as long as no RA is received, normal right of way rules should be used to maintain or attain safe separation. No unnecessary manoeuvres should be initiated. The limitations of making manoeuvres based solely on visual acquisition, especially at high altitude or at night, or without a definite horizon should be demonstrated as being understood.

ii. RA responses

Objective: to verify that the pilot properly interprets and responds to RAs.
Criteria: the pilot should demonstrate the following:

A. Proper response to the RA, even if it is in conflict with an ATC instruction and even if the pilot believes that there is no threat present.

B. Proper task sharing between the pilot flying and the pilot monitoring. The pilot flying should respond to a corrective RA with appropriate control inputs. The pilot monitoring should monitor the response to the RA and should provide updates on the traffic location by checking the traffic display. Proper CRM should be used.

C. Proper interpretation of the displayed information. The pilot should recognise the intruder causing the RA to be issued (red square on display). The pilot should respond appropriately.

D. For corrective RAs, the response should be initiated in the proper direction within 5 seconds of the RA being displayed. The change in vertical speed should be accomplished with an acceleration of approximately ¼ g (gravitational acceleration of 9.81 m/sec²).

E. Recognition of the initially displayed RA being modified. Response to the modified RA should be properly accomplished, as follows:

1. For increase rate RAs, the vertical speed change should be started within 2½ seconds of the RA being displayed. The change in vertical speed should be accomplished with an acceleration of approximately ⅓ g.

2. For RA reversals, the vertical speed reversal should be started within 2½ seconds of the RA being displayed. The change in vertical speed should be accomplished with an acceleration of approximately ⅓ g.

3. For RA weakenings, the vertical speed should be modified to initiate a return towards the original clearance.

4. An acceleration of approximately ¼ g will be achieved if the change in pitch attitude corresponding to a change in vertical speed of 1500 ft/min is accomplished in approximately 5 seconds, and of ⅓ g if the change is accomplished in approximately 3 seconds. The change in pitch attitude required to establish a rate of climb or descent of 1500ft/min from level flight will be approximately 6° when the true airspeed (TAS) is 150 kt, 4° at 250 kt, and 2° at 500 kt. (These angles are derived from the formula: 1 000 divided by TAS.).
F. Recognition of altitude crossing encounters and the proper response to these RAs.

G. For preventive RAs, the vertical speed needle or pitch attitude indication, should remain outside the red area on the RA display.

H. For maintain rate RAs, the vertical speed should not be reduced. Pilots should recognise that a maintain rate RA may result in crossing through the intruder's altitude.

I. When the RA weakens, or when the green 'fly to' indicator changes position, the pilot should initiate a return towards the original clearance, and when 'clear of conflict' is annunciated, the pilot should complete the return to the original clearance.

J. The controller should be informed of the RA as soon as time and workload permit, using the standard phraseology.

K. When possible, an ATC clearance should be complied with while responding to an RA. For example, if the aircraft can level at the assigned altitude while responding to RA (an 'adjust vertical speed' RA (version 7) or 'level off' (version 7.1) it should be done; the horizontal (turn) element of an ATC instruction should be followed.

L. Knowledge of the ACAS multi-aircraft logic and its limitations, and that ACAS can optimise separations from two aircraft by climbing or descending towards one of them. For example, ACAS only considers intruders that it considers to be a threat when selecting an RA. As such, it is possible for ACAS to issue an RA against one intruder that results in a manoeuvre towards another intruder that is not classified as a threat. If the second intruder becomes a threat, the RA will be modified to provide separation from that intruder.

7. ACAS initial evaluation

a. The flight crew member’s understanding of the academic training items should be assessed by means of a written test or interactive CBT that records correct and incorrect responses to phrased questions.

b. The flight crew member’s understanding of the manoeuvre training items should be assessed in a full flight simulator equipped with an ACAS display and controls similar in appearance and operation to those in the aircraft the flight crew member will fly, and the results assessed by a qualified instructor, inspector, or check airman. The range of scenarios should include: corrective RAs; initial preventive RAs; maintain rate RAs; altitude crossing RAs; increase rate RAs; RA reversals; weakening RAs; and multi-threat encounters. The scenarios should also include demonstrations of the consequences of not responding to RAs, slow or late responses, and manoeuvring opposite to the direction called for by the displayed RA.
c. Alternatively, exposure to these scenarios can be conducted by means of an interactive CBT with an ACAS display and controls similar in appearance and operation to those in the aircraft the pilot will fly. This interactive CBT should depict scenarios in which real-time responses should be made and a record made of whether or not each response was correct.

8. ACAS recurrent training

a. ACAS recurrent training ensures that flight crew members maintain the appropriate ACAS knowledge and skills. ACAS recurrent training should be integrated into and/or conducted in conjunction with other established recurrent training programmes. An essential item of recurrent training is the discussion of any significant issues and operational concerns that have been identified by the operator. Recurrent training should also address changes to ACAS logic, parameters or procedures and to any unique ACAS characteristics which flight crew members should be made aware of.

b. It is recommended that operator's recurrent training programmes using full flight simulators include encounters with conflicting traffic when these simulators are equipped with ACAS. The full range of likely scenarios may be spread over a 2 year period. If a full flight simulator, as described above, is not available, use should be made of an interactive CBT that is capable of presenting scenarios to which pilot responses should be made in real-time.

AMC1-NCC.OP.225 Approach and landing conditions

LANDING DISTANCE/FATO SUITABILITY

The in-flight determination of the landing distance/FATO suitability should be based on the latest available meteorological report.

AMC1-NCC.OP.230 Commencement and continuation of approach

VISUAL REFERENCES FOR INSTRUMENT APPROACHES

1. NPA, APV and CAT I operations

 At DH or MDH, at least one of the visual references specified below should be distinctly visible and identifiable to the pilot:

 a. elements of the approach light system;
 b. the threshold;
 c. the threshold markings;
 d. the threshold lights;
 e. the threshold identification lights;
f. the visual glide slope indicator;
g. the touchdown zone or touchdown zone markings;
h. the touchdown zone lights;
i. runway edge lights; or
j. other visual references specified in the operations manual.

2. LTS CAT I operations

At DH, the visual references specified below should be distinctly visible and identifiable to the pilot:

a. a segment of at least three consecutive lights, being the centreline of the approach lights, or touchdown zone lights, or runway centreline lights, or runway edge lights, or a combination of these; and

b. this visual reference should include a lateral element of the ground pattern, such as an approach light crossbar or the landing threshold or a barrette of the touchdown zone light unless the operation is conducted utilising an approved HUDLS usable to at least 150 ft.

3. CAT II or OTS CAT II operations

At DH, the visual references specified below should be distinctly visible and identifiable to the pilot:

a. a segment of at least three consecutive lights being the centreline of the approach lights, or touchdown zone lights, or runway centreline lights, or runway edge lights, or a combination of these; and

b. this visual reference should include a lateral element of the ground pattern, such as an approach light crossbar or the landing threshold or a barrette of the touchdown zone light unless the operation is conducted utilising an approved HUDLS to touchdown.

4. CAT III operations

a. For CAT IIIA operations and for CAT IIIB operations conducted either with fail-passive flight control systems or with the use of an approved HUDLS: at DH, a segment of at least three consecutive lights being the centreline of the approach lights, or touchdown zone lights, or runway centreline lights, or runway edge lights, or a combination of these is attained and can be maintained by the pilot.

b. For CAT IIIB operations conducted either with fail-operational flight control systems or with a fail-operational hybrid landing system using a DH: at DH, at least one centreline light is attained and can be maintained by the pilot.
c. For CAT IIIB operations with no DH there is no requirement for visual reference with the runway prior to touchdown.

5. Approach operations utilising EVS

a. At DH or MDH, the following visual references should be displayed and identifiable to the pilot on the EVS:

 i. elements of the approach light; or

 ii. the runway threshold, identified by at least one of the following: the beginning of the runway landing surface, the threshold lights, the threshold identification lights; and the touchdown zone, identified by at least one of the following: the runway touchdown zone landing surface, the touchdown zone lights, the touchdown zone markings or the runway lights.

b. At 100 ft above runway threshold elevation at least one of the visual references specified below should be distinctly visible and identifiable to the pilot without reliance on the EVS:

 i. the lights or markings of the threshold; or

 ii. the lights or markings of the touchdown zone.
Subpart C — Aircraft performance and operating limitations

AMC1-NCC.POL.105(b) Mass and balance, loading

WEIGHING OF AN AIRCRAFT

1. New aircraft that have been weighed at the factory may be placed into operation without reweighing if the mass and balance records have been adjusted for alterations or modifications to the aircraft. Aircraft transferred from one EU operator to another EU operator do not have to be weighed prior to use by the receiving operator, unless the mass and balance cannot be accurately established by calculation.

2. The mass and centre of gravity (CG) position of an aircraft should be revised whenever the cumulative changes to the dry operating mass exceed ±0.5 % of the maximum landing mass or for aeroplanes the cumulative change in CG position exceeds 0.5 % of the mean aerodynamic chord. This should be done either by weighing the aircraft or by calculation.

3. When weighing an aircraft, normal precautions should be taken, which are consistent with good practices such as:

 a. checking for completeness of the aircraft and equipment;
 b. determining that fluids are properly accounted for;
 c. ensuring that the aircraft is clean; and
 d. ensuring that weighing is accomplished in an enclosed building.

4. Any equipment used for weighing should be properly calibrated, zeroed and used in accordance with the manufacturer's instructions. Each scale should be calibrated either by the manufacturer, by a civil department of weights and measures or by an appropriately authorised organisation within 2 years or within a time period defined by the manufacturer of the weighing equipment, whichever is less. The equipment should enable the mass of the aircraft to be established accurately. One single accuracy criterion for weighing equipment cannot be given. However, the weighing accuracy is considered satisfactory if the accuracy criteria in Table 1 are met by the individual scales/cells of the weighing equipment used:
Table 1: Accuracy criteria for weighing equipment

<table>
<thead>
<tr>
<th>For a scale/cell load</th>
<th>An accuracy of</th>
</tr>
</thead>
<tbody>
<tr>
<td>below 2 000 kg</td>
<td>± 1 %</td>
</tr>
<tr>
<td>from 2 000 kg to 20 000 kg</td>
<td>± 20 kg</td>
</tr>
<tr>
<td>above 20 000 kg</td>
<td>± 0.1 %</td>
</tr>
</tbody>
</table>

CG LIMITS — OPERATIONAL CG ENVELOPE AND IN-FLIGHT CG

In the Certificate Limitations section of the AFM, forward and aft CG limits are specified. These limits ensure that the certification stability and control criteria are met throughout the whole flight and allow the proper trim setting for take-off. The operator should ensure that these limits are respected by:

1. defining and applying operational margins to the certified CG envelope in order to compensate for the following deviations and errors:

a. Deviations of actual CG at empty or operating mass from published values due, for example, to weighing errors, unaccounted modifications and/or equipment variations.

b. Deviations in fuel distribution in tanks from the applicable schedule.

c. Deviations in the distribution of baggage and cargo in the various compartments as compared with the assumed load distribution as well as inaccuracies in the actual mass of baggage and cargo.

d. Deviations in actual passenger seating from the seating distribution assumed when preparing the mass and balance documentation. Large CG errors may occur when ‘free seating’, i.e. freedom of passengers to select any seat when entering the aircraft, is permitted. Although in most cases reasonably even longitudinal passenger seating can be expected, there is a risk of an extreme forward or aft seat selection causing very large and unacceptable CG errors, assuming that the balance calculation is done on the basis of an assumed even distribution. The largest errors may occur at a load factor of approximately 50 % if all passengers are seated in either the forward or aft half of the cabin. Statistical analysis indicates that the risk of such extreme seating adversely affecting the CG is greatest on small aircraft.

e. Deviations of the actual CG of cargo and passenger load within individual cargo compartments or cabin sections from the normally assumed mid position.

f. Deviations of the CG caused by gear and flap positions and by application of the prescribed fuel usage procedure, unless already covered by the certified limits.
g. Deviations caused by in-flight movement of cabin crew, galley equipment and passengers.

2. Defining and applying operational procedures in order to:
 a. ensure an evenly distribution of passengers in the cabin;
 b. take into account any significant CG travel during flight caused by passenger/crew movement; and
 c. take into account any significant CG travel during flight caused by fuel consumption/transfer.

AMC1-NCC.POL.105(c) Mass and balance, loading

DRY OPERATING MASS

1. The dry operating mass should include:
 a. crew and crew baggage;
 b. catering and removable passenger service equipment; and
 c. tank water and lavatory chemicals.

2. The operator should correct the dry operating mass to account for any additional crew baggage. The position of this additional baggage should be accounted for when establishing the centre of gravity of the aeroplane.

AMC1-NCC.POL.105(d) Mass and balance, loading

MASS VALUES FOR PASSENGERS AND BAGGAGE

1. The predetermined mass for hand baggage and clothing should be established by the operator on the basis of studies relevant to its particular operation. In any case, it should not be less than:
 a. 4 kg for clothing; and
 b. 6 kg for hand baggage.

The passengers’ stated mass and the mass of passengers’ clothing and hand baggage should be checked prior to boarding and adjusted, if necessary. The operator should establish a procedure in the operations manual when to select actual or standard masses and the procedure to be followed when using verbal statements.
2. When determining the actual mass by weighing, passengers’ personal belongings and hand baggage should be included. Such weighing should be conducted immediately prior to boarding the aircraft.

3. When determining the mass of passengers by using standard mass values, provided in Tables 1 and 2 of NCC.POL.105(d), infants occupying separate passenger seats should be considered as children for the purpose of this AMC. When the total number of passenger seats available on an aircraft is 20 or more, the standard masses of male and female in Table 1 of NCC.POL.105(d) should be used. As an alternative, in cases where the total number of passenger seats available is 30 or more, the ‘All Adult’ mass values in Table 1 of NCC.POL.105(d) may be used.

On aeroplane flights with 19 passenger seats or less and all helicopter flights where no hand baggage is carried in the cabin or where hand baggage is accounted for separately, 6 kg may be deducted from male and female masses in Table 2 of NCC.POL.105(d). Articles such as an overcoat, an umbrella, a small handbag or purse, reading material or a small camera are not considered as hand baggage.

For helicopter operations in which a survival suit is provided to passengers, 3 kg should be added to the passenger mass value.

The mass of checked baggage should be checked prior to lading and increased, if necessary.

5. On any flight identified as carrying a significant number of passengers whose masses, including hand baggage, are expected to significantly deviate from the standard passenger mass, the operator should determine the actual mass of such passengers by weighing or by adding an adequate mass increment.

6. If standard mass values for checked baggage are used and a significant number of passengers checked baggage is expected to significantly deviate from the standard baggage mass, the operator should determine the actual mass of such baggage by weighing or by adding an adequate mass increment.

GM1-NCC.POL.105(d) Mass and balance, loading

TYPE OF FLIGHTS

1. For the purpose of Table 3 of NCC.POL.105(d):

 a. domestic flight means a flight with origin and destination within the borders of one State.

 b. flights within the European region means flights, other than domestic flights, whose origin and destination are within the area specified in paragraph (e).
c. Intercontinental flight means flights beyond the European region with origin and destination in different continents.

2. Flights within the European region are flights conducted within the following area:

 - N7200 E04500
 - N4000 E04500
 - N3500 E03700
 - N3000 E03700
 - N3000 W00600
 - N2700 W00900
 - N2700 W03000
 - N6700 W03000
 - N7200 W01000
 - N7200 E04500

 as depicted in Figure 1: European region.
Figure 1: European region

ADJUSTMENT OF STANDARD MASSES

When standard mass values are used, paragraph 5 of AMC1-NCC.POL.105(d) states that the operator should identify and adjust the passenger and checked baggage masses in cases where significant numbers of passengers or quantities of baggage are suspected of significantly deviating from the standard values. Therefore, the operations manual should contain instructions to ensure that:

1. check-in, operations and loading personnel as well as cabin crew report or take appropriate action when a flight is identified as carrying a significant number of passengers whose masses, including hand baggage, are expected to significantly deviate from the standard passenger mass, and/or groups of passengers carrying exceptionally heavy baggage (e.g. military personnel or sports teams); and

2. on small aircraft, where the risks of overload and/or CG errors are the greatest, pilots pay special attention to the load and its distribution and make proper adjustments.
GM1-NCC.POL.105(g) Mass and balance, loading

FUEL DENSITY

1. If the actual fuel density is not known, the operator may use standard fuel density values for determining the mass of the fuel load. Such standard values should be based on current fuel density measurements for the airports or areas concerned.

2. Typical fuel density values are:
 - a. Gasoline (reciprocating engine fuel) – 0.71
 - b. JET A1 (Jet fuel JP 1) – 0.79
 - c. JET B (Jet fuel JP 4) – 0.76
 - d. Oil – 0.88

AMC1-NCC.POL.110 Mass and balance data and documentation

CONTENTS

The mass and balance documentation should include advice to the pilot-in-command whenever a non-standard method has been used for determining the mass of the load.

INTEGRITY OF MASS AND BALANCE DATA

The operator should verify the integrity of mass and balance data and documentation generated by a computerised mass and balance system, at intervals not exceeding 6 months. The operator should establish a system to check that amendments of its input data are incorporated properly in the system and that the system is operating correctly on a continuous basis.

MASS AND BALANCE DOCUMENTATION SENT VIA DATA LINK

Whenever the mass and balance documentation is sent to the aircraft via data link, a copy of the final mass and balance documentation as accepted by the pilot-in-command should be available on the ground.

GM1-NCC.POL.110(b) Mass and balance data and documentation

ON BOARD INTEGRATED MASS AND BALANCE COMPUTER SYSTEM

An on board integrated mass and balance computer system may be an aircraft installed system capable of receiving input data either from other aircraft systems or from a mass and balance system on ground, in order to generate mass and balance data as an output.
STAND-ALONE COMPUTERISED MASS AND BALANCE SYSTEM

A stand-alone computerised mass and balance system may be a computer, either as part of an electronic flight bag (EFB) system or solely dedicated to mass and balance purposes, requiring input from the user, in order to generate mass and balance data as an output.

AMC1-NCC.POL.125 Take-off — aeroplanes

TAKE-OFF MASS

The following should be considered for determining the maximum take-off mass:

1. the pressure altitude at the aerodrome;
2. the ambient temperature at the aerodrome;
3. the runway surface condition and the type of runway surface;
4. the runway slope in the direction of take-off;
5. not more than 50% of the reported head-wind component or not less than 150% of the reported tailwind component; and
6. the loss, if any, of runway length due to alignment of the aeroplane prior to take-off.

AMC2-NCC.POL.125 Take-off — aeroplanes

CONTAMINATED RUNWAY PERFORMANCE DATA

Wet and contaminated runway performance data, if made available by the manufacturer, should be taken into account. If such data is not made available, the operator should account for wet and contaminated runway conditions by using the best information available.

AMC3-NCC.POL.125 Take-off — aeroplanes

ADEQUATE MARGIN

The adequate margin should be defined in the operations manual.
GM1-NCC.POL.125 Take-off — aeroplanes

RUNWAY SURFACE CONDITION

Operation on runways contaminated with water, slush, snow or ice implies uncertainties with regard to runway friction and contaminant drag and therefore to the achievable performance and control of the aeroplane during take-off or landing, since the actual conditions may not completely match the assumptions on which the performance information is based. In the case of a contaminated runway, the first option for the pilot-in-command is to wait until the runway is cleared. If this is impracticable, he/she may consider a take-off or landing, provided that he/she has applied the applicable performance adjustments, and any further safety measures he/she considers justified under the prevailing conditions. The excess runway length available including the criticality of the overrun area should also be considered.

GM2-NCC.POL.125 Take-off — aeroplanes

ADEQUATE MARGIN

‘An adequate margin’ is illustrated by the appropriate examples included in Attachment C to ICAO Annex 6, Part I.

AMC1-NCC.POL.135 Landing — aeroplanes

ALLOWANCES

These allowances should be stated in the operations manual.
Subpart D — Instrument Data Equipment

Section 1 — Aeroplanes

GM1-NCC.IDE.A.100(a) Instruments and equipment — general

APPLICABLE AIRWORTHINESS REQUIREMENTS

The applicable airworthiness requirements for approval of instruments and equipment required by this Part are the following:

1. Regulation (EC) 1702/2003 for:
 a. aeroplanes registered in the EU; and
 b. aeroplanes registered outside the EU but manufactured or designed by an EU organisation.

2. Airworthiness requirements of the state of registry for aeroplanes registered, designed and manufactured outside the EU.

GM1-NCC.IDE.A.100(b)&(c) Instruments and equipment — general

INSTRUMENTS AND EQUIPMENT THAT DO NOT NEED TO BE APPROVED

1. The provision of this paragraph does not exempt the item of equipment from complying with the applicable airworthiness requirements if the instrument or equipment is installed in the aeroplane. In this case, the installation should be approved as required in the applicable airworthiness requirements and should comply with the applicable airworthiness codes.

2. The functionality of non-installed instruments and equipment required by this Part that do not need an equipment approval should be checked against recognised industry standards appropriate for the intended purpose. The operator is responsible for ensuring the maintenance of these instruments and equipment.

3. The failure of additional non-installed instruments or equipment not required by this Part or by the applicable airworthiness requirements or any applicable airspace requirements should not adversely affect the airworthiness and/or the safe operation of the aircraft. Examples are the following:

a. instruments supplying additional flight information (e.g. stand-alone global positioning system (GPS));

b. mission dedicated equipment (e.g. radios); and

c. non-installed passenger entertainment equipment.

GM1-NCC.IDE.A.100(d) Instruments and equipment — general

POSITIONING OF INSTRUMENTS

This requirement implies that whenever a single instrument is required in an aeroplane operated in a multi-crew environment, the instrument needs to be visible from each flight crew station.

GM1-NCC.IDE.A.110 Spare electrical fuses

FUSES

A spare electrical fuse means a replaceable fuse in the flight crew compartment, not an automatic circuit breaker or circuit breakers in the electric compartments.

AMC1-NCC.IDE.A.120&NCC.IDE.A.125 Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

INTEGRATED INSTRUMENTS

1. Individual equipment requirements may be met by combinations of instruments, by integrated flight systems or by a combination of parameters on electronic displays. The information so available to each required pilot should not be less than that required in the applicable operational requirements, and the equivalent safety of the installation should be approved during type certification of the aeroplane for the intended type of operation.

2. The means of measuring and indicating turn and slip, aeroplane attitude and stabilised aeroplane heading may be met by combinations of instruments or by integrated flight director systems, provided that the safeguards against total failure, inherent in the three separate instruments, are retained.
AMC2-NCC.IDE.A.120 Operations under VFR — flight and navigational instruments and associated equipment

LOCAL FLIGHTS

For flights that do not exceed 60 minutes duration, that take off and land at the same aerodrome, and that remain within 50 NM of that aerodrome, an equivalent means of complying with NCC.IDE.A.120 (a)(5) & (b)(1)(i) may be:

1. a turn and slip indicator;
2. a turn co-ordinator; or
3. both an attitude indicator and a slip indicator.

AMC1-NCC.IDE.A.120(a)(1)&NCC.IDE.A.125(a)(1) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MEANS OF MEASURING AND DISPLAYING MAGNETIC HEADING

The means of measuring and displaying magnetic heading should be a magnetic compass or equivalent.

AMC1-NCC.IDE.A.120(a)(2)&NCC.IDE.A.125(a)(2) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MEANS OF MEASURING AND DISPLAYING THE TIME

An acceptable means of compliance is a clock displaying hours, minutes and seconds, with a sweep-second pointer or digital presentation.

AMC1-NCC.IDE.A.120(a)(3)&NCC.IDE.A.125(a)(3) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

CALIBRATION OF THE MEANS FOR MEASURING AND DISPLAYING PRESSURE ALTITUDE

The instrument measuring and displaying pressure altitude should be of a sensitive type calibrated in feet (ft), with a sub-scale setting, calibrated in hectopascals/millibars, adjustable for any barometric pressure likely to be set during flight.
AMC2-NCC.IDE.A.125(a)(3) Operations under IFR — flight and navigational instruments and associated equipment

ALTIMETERS — IFR OR NIGHT OPERATIONS

Except for unpressurised aeroplanes operating below 10 000 ft, the altimeters of aeroplanes operating under IFR or at night should have counter drum-pointer or equivalent presentation.

AMC1-NCC.IDE.A.120(a)(4)&NCC.IDE.A.125(a)(4) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

CALIBRATION OF THE INSTRUMENT INDICATING AIRSPEED

The instrument indicating airspeed should be calibrated in knots (kt).

AMC1-NCC.IDE.A.120(c)&NCC.IDE.A.125(c) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MULTI-PILOT OPERATIONS - DUPLICATE INSTRUMENTS

Duplicate instruments include separate displays for each pilot and separate selectors or other associated equipment where appropriate.

AMC1-NCC.IDE.A.125(a)(9) Operations under IFR — flight and navigational instruments and associated equipment

MEANS OF DISPLAYING OUTSIDE AIR TEMPERATURE

1. The means of displaying outside air temperature should be calibrated in degrees Celsius.

2. The means of displaying outside air temperature may be an air temperature indicator that provides indications that are convertible to outside air temperature.

AMC1-NCC.IDE.A.125(d) Operations under IFR — flight and navigational instruments and associated equipment

MEANS OF PREVENTING MALFUNCTION DUE TO CONDENSATION OR ICING

The means of preventing malfunction due to either condensation or icing of the airspeed indicating system should be a heated pitot tube or equivalent.
AMC1-NCC.IDE.A.125(f) Operations under IFR — flight and navigational instruments and associated equipment

CHART HOLDER

An acceptable means of compliance with the chart holder requirement would be to display a pre-composed chart on an electronic flight bag (EFB).

AMC1-NCC.IDE.A.135 Terrain awareness warning system (TAWS)

EXCESSIVE DOWNWARDS GLIDESLOPE DEVIATION WARNING FOR CLASS A TAWS

The requirement for a Class A TAWS to provide a warning to the flight crew for excessive downwards glideslope deviation should apply to all final approach glideslopes with angular vertical navigation (VNAV) guidance, whether provided by the instrument landing system (ILS), microwave landing system (MLS), satellite-based augmentation system approach procedure with vertical guidance (SBAS APV (localiser performance with vertical guidance approach LPV)), ground-based augmentation system (GBAS (GPS landing system, GLS)) or any other systems providing similar guidance. The same requirement should not apply to systems providing vertical guidance based on barometric VNAV.

GM1-NCC.IDE.A.135 Terrain awareness warning system (TAWS)

ACCEPTABLE STANDARD FOR TAWS

An acceptable standard for Class A and Class B TAWS may be the applicable European technical standards order (ETSO) issued by the Agency or equivalent.

AMC1-NCC.IDE.A.145 Airborne weather detecting equipment

GENERAL

The airborne weather detecting equipment should be an airborne weather radar. However, for propeller-driven pressurised aeroplanes with an MCTOM not more than 5 700 kg and an MPSC of not more than nine, other equipment capable of detecting thunderstorms and other potentially hazardous weather conditions, regarded as detectable with airborne weather radar equipment, are also acceptable.

AMC1-NCC.IDE.A.155 Flight crew interphone system

TYPE OF FLIGHT CREW INTERPHONE

The flight crew interphone system should not be of a handheld type.
AMC1-NCC.IDE.A.160 Cockpit voice recorder

GENERAL

The operational performance requirements for cockpit voice recorders (CVRs) should be those laid down in the European Organisation for Civil Aviation Equipment (EUROCAE) Document ED-112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems), dated March 2003, including amendments n°1 and 2.

AMC1-NCC.IDE.A.165 Flight data recorder

LIST OF PARAMETERS TO BE RECORDED AND PERFORMANCE SPECIFICATIONS FOR THESE PARAMETERS

1. The flight data recorder should record, with reference to a timescale, the list of parameters in Table 1 and Table 2, as applicable.

2. The parameters to be recorded should meet the performance specifications (designated ranges, sampling intervals, accuracy limits and minimum resolution in read-out) as defined in the relevant tables of EUROCAE Document ED-112, dated March 2003, including amendments n°1 and 2.

Table 1: All Aeroplanes

<table>
<thead>
<tr>
<th>No*</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>Time; or</td>
</tr>
<tr>
<td>1b</td>
<td>Relative time count</td>
</tr>
<tr>
<td>1c</td>
<td>Global navigation satellite system (GNSS) time synchronisation</td>
</tr>
<tr>
<td>2</td>
<td>Pressure altitude</td>
</tr>
<tr>
<td>3</td>
<td>Indicated airspeed; or calibrated airspeed</td>
</tr>
<tr>
<td>4</td>
<td>Heading (primary flight crew reference) - when true or magnetic heading can be selected, the primary heading reference, a discrete indicating selection, should be recorded</td>
</tr>
<tr>
<td>5</td>
<td>Normal acceleration</td>
</tr>
<tr>
<td>6</td>
<td>Pitch attitude</td>
</tr>
<tr>
<td>7</td>
<td>Roll attitude</td>
</tr>
<tr>
<td>8</td>
<td>Manual radio transmission keying and CVR/FDR synchronisation reference.</td>
</tr>
<tr>
<td>9</td>
<td>Engine thrust/power</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>9a</td>
<td>Parameters required to determine propulsive thrust/power on each engine</td>
</tr>
<tr>
<td>9b</td>
<td>Cockpit thrust/power lever position for aeroplanes with non-mechanically linked cockpit — engine control</td>
</tr>
<tr>
<td>14</td>
<td>Total or outside air temperature (OAT)</td>
</tr>
<tr>
<td>16</td>
<td>Longitudinal acceleration (body axis)</td>
</tr>
<tr>
<td>17</td>
<td>Lateral acceleration</td>
</tr>
<tr>
<td>18</td>
<td>Primary flight control surface and primary flight control pilot input (for multiple or split surfaces, a suitable combination of inputs is acceptable instead of recording each surface separately. For aeroplanes that have a flight control break-away capability that allows either pilot to operate the controls independently, record both inputs):</td>
</tr>
<tr>
<td>18a</td>
<td>Pitch axis</td>
</tr>
<tr>
<td>18b</td>
<td>Roll axis</td>
</tr>
<tr>
<td>18c</td>
<td>Yaw axis</td>
</tr>
<tr>
<td>19</td>
<td>Pitch trim surface position</td>
</tr>
<tr>
<td>23</td>
<td>Marker beacon passage</td>
</tr>
<tr>
<td>24</td>
<td>Warnings — in addition to the master warning each ‘red’ warning (including smoke warnings from other compartments) should be recorded when the warning condition cannot be determined from other parameters or from the CVR</td>
</tr>
<tr>
<td>25</td>
<td>Each navigation receiver frequency selection</td>
</tr>
<tr>
<td>27</td>
<td>Air-ground status and, if the sensor is installed, each landing gear</td>
</tr>
<tr>
<td>38</td>
<td>Selected barometric setting — to be recorded for the aeroplane in which the parameter is displayed electronically</td>
</tr>
<tr>
<td>44</td>
<td>Selected flight path (all pilot selectable modes of operation) — to be recorded for the aeroplane in which the parameter is displayed electronically</td>
</tr>
<tr>
<td>45</td>
<td>Selected decision height — to be recorded for the aeroplane in which the parameter is displayed electronically</td>
</tr>
<tr>
<td>75</td>
<td>All cockpit flight control input forces (for fly-by-wire flight control systems, where control surface position is a function of the displacement of the control input device only, it is not necessary to record this parameter):</td>
</tr>
<tr>
<td>75a</td>
<td>Control wheel</td>
</tr>
</tbody>
</table>
The number in the left hand column reflects the serial number depicted in EUROCAE ED-112.

Table 2: Aeroplanes for which the data source for the parameter is either used by aeroplane systems or is available on the instrument panel for use by the flight crew to operate the aeroplane

<table>
<thead>
<tr>
<th>No*</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Flaps: Trailing edge flap position and cockpit control selection</td>
</tr>
<tr>
<td>11</td>
<td>Slats: Leading edge flap (slat) position and cockpit control selection</td>
</tr>
<tr>
<td>12</td>
<td>Thrust reverse status</td>
</tr>
<tr>
<td>13</td>
<td>Ground spoiler and speed brake</td>
</tr>
<tr>
<td>13a</td>
<td>Ground spoiler position</td>
</tr>
<tr>
<td>13b</td>
<td>Ground spoiler selection</td>
</tr>
<tr>
<td>13c</td>
<td>Speed brake position</td>
</tr>
<tr>
<td>13d</td>
<td>Speed brake selection</td>
</tr>
<tr>
<td>15</td>
<td>Autopilot, autothrottle, automatic flight control system (AFCS) mode and engagement status</td>
</tr>
<tr>
<td>20</td>
<td>Radio altitude. For autoland/CAT III operations, each radio altimeter should be recorded. It is acceptable to arrange them so that at least one is recorded every second.</td>
</tr>
<tr>
<td>21</td>
<td>Vertical deviation — the approach aid in use should be recorded. For autoland/CAT III operations, each system should be recorded. It is acceptable to arrange them so that at least one is recorded every second).</td>
</tr>
<tr>
<td>21a</td>
<td>ILS/GPS/GLS glide path</td>
</tr>
<tr>
<td>21b</td>
<td>MLS elevation</td>
</tr>
<tr>
<td>21c</td>
<td>GNSS approach path/integrated area navigation (IRNAV) vertical deviation</td>
</tr>
<tr>
<td>22</td>
<td>Horizontal deviation — the approach aid in use should be recorded. For autoland/CAT III operations, each system should be recorded. It is acceptable to arrange them so that at least one is recorded every second).</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>22a</td>
<td>ILS/GPS/GLS localiser</td>
</tr>
<tr>
<td>22b</td>
<td>MLS azimuth</td>
</tr>
<tr>
<td>22c</td>
<td>GNSS approach path/IRNAV lateral deviation</td>
</tr>
<tr>
<td>26</td>
<td>Distance measuring equipment (DME) 1 and 2 distances</td>
</tr>
<tr>
<td>26a</td>
<td>Distance to runway threshold (GLS)</td>
</tr>
<tr>
<td>26b</td>
<td>Distance to missed approach Point (IRNAV/IAN)</td>
</tr>
<tr>
<td>28</td>
<td>Ground proximity warning system (GPWS)/TAWS/ground collision avoidance system (GCAS) status:</td>
</tr>
<tr>
<td>28a</td>
<td>Selection of terrain display mode, including pop-up display status</td>
</tr>
<tr>
<td>28b</td>
<td>Terrain alerts, including cautions and warnings and advisories</td>
</tr>
<tr>
<td>28c</td>
<td>On/off switch position</td>
</tr>
<tr>
<td>29</td>
<td>Angle of attack</td>
</tr>
<tr>
<td>30</td>
<td>Low pressure warning (each system):</td>
</tr>
<tr>
<td>30a</td>
<td>Hydraulic pressure</td>
</tr>
<tr>
<td>30b</td>
<td>Pneumatic pressure</td>
</tr>
<tr>
<td>31</td>
<td>Ground speed</td>
</tr>
<tr>
<td>32</td>
<td>Landing gear:</td>
</tr>
<tr>
<td>32a</td>
<td>Landing gear</td>
</tr>
<tr>
<td>32b</td>
<td>Gear selector position</td>
</tr>
<tr>
<td>33</td>
<td>Navigation data:</td>
</tr>
<tr>
<td>33a</td>
<td>Drift angle</td>
</tr>
<tr>
<td>33b</td>
<td>Wind speed</td>
</tr>
<tr>
<td>33c</td>
<td>Wind direction</td>
</tr>
<tr>
<td>33d</td>
<td>Latitude</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>33e</td>
<td>Longitude</td>
</tr>
<tr>
<td>33f</td>
<td>GNSS augmentation in use</td>
</tr>
<tr>
<td>34</td>
<td>Brakes:</td>
</tr>
<tr>
<td>34a</td>
<td>Left and right brake pressure</td>
</tr>
<tr>
<td>34b</td>
<td>Left and right brake pedal position</td>
</tr>
<tr>
<td>35</td>
<td>Additional engine parameters (if not already recorded in parameter 9 of Table 1 of AMC1-NCC.IDE.A.165 and if the aeroplane is equipped with a suitable data source):</td>
</tr>
<tr>
<td>35a</td>
<td>Engine pressure ratio (EPR)</td>
</tr>
<tr>
<td>35b</td>
<td>N_1</td>
</tr>
<tr>
<td>35c</td>
<td>Indicated vibration level</td>
</tr>
<tr>
<td>35d</td>
<td>N_2</td>
</tr>
<tr>
<td>35e</td>
<td>Exhaust gas temperature (EGT)</td>
</tr>
<tr>
<td>35f</td>
<td>Fuel flow</td>
</tr>
<tr>
<td>35g</td>
<td>Fuel cut-off lever position</td>
</tr>
<tr>
<td>35h</td>
<td>N_3</td>
</tr>
<tr>
<td>36</td>
<td>Traffic alert and collision avoidance system (TCAS)/ACAS — a suitable combination of discretes should be recorded to determine the status of the system:</td>
</tr>
<tr>
<td>36a</td>
<td>Combined control</td>
</tr>
<tr>
<td>36b</td>
<td>Vertical control</td>
</tr>
<tr>
<td>36c</td>
<td>Up advisory</td>
</tr>
<tr>
<td>36d</td>
<td>Down advisory</td>
</tr>
<tr>
<td>36e</td>
<td>Sensitivity level</td>
</tr>
<tr>
<td>37</td>
<td>Wind shear warning</td>
</tr>
<tr>
<td>38</td>
<td>Selected barometric setting</td>
</tr>
<tr>
<td>38a</td>
<td>Pilot</td>
</tr>
<tr>
<td>No</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>38b</td>
<td>Co-pilot</td>
</tr>
<tr>
<td>39</td>
<td>Selected altitude (all pilot selectable modes of operation) — to be recorded for the aeroplane where the parameter is displayed electronically</td>
</tr>
<tr>
<td>40</td>
<td>Selected speed (all pilot selectable modes of operation) — to be recorded for the aeroplane where the parameter is displayed electronically</td>
</tr>
<tr>
<td>41</td>
<td>Selected Mach (all pilot selectable modes of operation) — to be recorded for the aeroplane where the parameter is displayed electronically</td>
</tr>
<tr>
<td>42</td>
<td>Selected vertical speed (all pilot selectable modes of operation) — to be recorded for the aeroplane where the parameter is displayed electronically</td>
</tr>
<tr>
<td>43</td>
<td>Selected heading (all pilot selectable modes of operation) — to be recorded for the aeroplane where the parameter is displayed electronically</td>
</tr>
<tr>
<td>44a</td>
<td>Course/desired track (DSTRK)</td>
</tr>
<tr>
<td>44b</td>
<td>Path angle</td>
</tr>
<tr>
<td>44c</td>
<td>Coordinates of final approach path (IRNAV/IAN)</td>
</tr>
<tr>
<td>46</td>
<td>Electronic flight instrument system (EFIS) display format:</td>
</tr>
<tr>
<td>46a</td>
<td>Pilot</td>
</tr>
<tr>
<td>46b</td>
<td>Co-pilot</td>
</tr>
<tr>
<td>47</td>
<td>Multi-function/engine/alerts display format</td>
</tr>
<tr>
<td>48</td>
<td>AC electrical bus status — each bus</td>
</tr>
<tr>
<td>49</td>
<td>DC electrical bus status — each bus</td>
</tr>
<tr>
<td>50</td>
<td>Engine bleed valve position</td>
</tr>
<tr>
<td>51</td>
<td>Auxiliary power unit (APU) bleed valve position</td>
</tr>
<tr>
<td>52</td>
<td>Computer failure — critical flight and engine control system</td>
</tr>
<tr>
<td>53</td>
<td>Engine thrust command</td>
</tr>
<tr>
<td>54</td>
<td>Engine thrust target</td>
</tr>
<tr>
<td>55</td>
<td>Computed centre of gravity (CG)</td>
</tr>
<tr>
<td>56</td>
<td>Fuel quantity or fuel quantity in CG trim tank</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>57</td>
<td>Head-up display in use</td>
</tr>
<tr>
<td>58</td>
<td>Para visual display on</td>
</tr>
<tr>
<td>59</td>
<td>Operational stall protection, stick shaker and pusher activation</td>
</tr>
<tr>
<td>60</td>
<td>Primary navigation system reference:</td>
</tr>
<tr>
<td>60a</td>
<td>GNSS</td>
</tr>
<tr>
<td>60b</td>
<td>Inertial navigational system (INS)</td>
</tr>
<tr>
<td>60c</td>
<td>VHF omnidirectional radio range (VOR)/DME</td>
</tr>
<tr>
<td>60d</td>
<td>MLS</td>
</tr>
<tr>
<td>60e</td>
<td>Loran C</td>
</tr>
<tr>
<td>60f</td>
<td>ILS</td>
</tr>
<tr>
<td>61</td>
<td>Ice detection</td>
</tr>
<tr>
<td>62</td>
<td>Engine warning — each engine vibration</td>
</tr>
<tr>
<td>63</td>
<td>Engine warning — each engine over temperature</td>
</tr>
<tr>
<td>64</td>
<td>Engine warning — each engine oil pressure low</td>
</tr>
<tr>
<td>65</td>
<td>Engine warning — each engine over speed</td>
</tr>
<tr>
<td>66</td>
<td>Yaw trim surface position</td>
</tr>
<tr>
<td>67</td>
<td>Roll trim surface position</td>
</tr>
<tr>
<td>68</td>
<td>Yaw or sideslip angle</td>
</tr>
<tr>
<td>69</td>
<td>De-icing and/or anti-icing systems selection</td>
</tr>
<tr>
<td>70</td>
<td>Hydraulic pressure — each system</td>
</tr>
<tr>
<td>71</td>
<td>Loss of cabin pressure *</td>
</tr>
<tr>
<td>72</td>
<td>Cockpit trim control input position pitch — when mechanical means for control inputs are not available, cockpit display trim positions or trim command should be recorded</td>
</tr>
<tr>
<td>73</td>
<td>Cockpit trim control input position roll — when mechanical means for control inputs are not available, cockpit display trim positions or trim command should be recorded</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>74</td>
<td>Cockpit trim control input position yaw — when mechanical means for control inputs are not available, cockpit display trim positions or trim command should be recorded</td>
</tr>
<tr>
<td>76</td>
<td>Event marker</td>
</tr>
<tr>
<td>77</td>
<td>Date</td>
</tr>
<tr>
<td>78</td>
<td>Actual navigation performance (ANP) or estimate of position error (EPE) or estimate of position uncertainty (EPU)</td>
</tr>
</tbody>
</table>

* The number in the left hand column reflects the serial number depicted in EUROCAE ED-112.

AMC1-NCC.IDE.A.170 Data link recording

GENERAL

1. As a means of compliance with NCC.IDE.A.170 (a) the recorder should be:
 a. the CVR;
 b. the FDR;
 c. a combination recorder when NCC.IDE.A.175 is applicable; or
 d. a dedicated flight recorder. In that case, the operational performance requirements for this recorder should be those laid down in EUROCAE Document ED-112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems), dated March 2003, including amendments No 1 and 2.

2. As a means of compliance with NCC.IDE.A.170 (a)(2) the operator should enable correlation by providing information that allows an accident investigator to understand what data was provided to the aircraft and, when the provider identification is contained in the message, by which provider.

3. The timing information associated with the data link communications messages required to be recorded by NCC.IDE.A.170 (a)(3) should be capable of being determined from the airborne-based recordings. This timing information should include at least the following:
 a. the time each message was generated;
 b. the time any message was available to be displayed by the flight crew;
 c. the time each message was actually displayed or recalled from a queue; and
d. the time of each status change.

4. The message priority should be recorded when it is defined by the protocol of the data link communication message being recorded.

5. The expression ‘taking into account the system’s architecture’, in NCC.IDE.A.170 (a)(3), means that the recording of the specified information may be omitted if the existing source systems involved would require a major upgrade. The following should be considered:

a. the extent of the modification required;

b. the down-time period; and

c. equipment software development.

6. Data link communications messages that support the applications in Table 1 below should be recorded.

7. Further details on the recording requirements can be found in the recording requirement matrix in Appendix D.2 of EUROCAE Document ED-93 (Minimum Aviation System Performance Specification for CNS/ATM Recorder Systems), dated November 1998.

Table 1: Data link recording

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Application Type</th>
<th>Application Description</th>
<th>Required Recording Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data link initiation</td>
<td>This includes any application used to log on to, or initiate, a data link service. In future air navigation system (FANS)-1/A and air traffic navigation (ATN), these are ATS facilities notification (AFN) and context management (CM), respectively.</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Controller/pilot communication</td>
<td>This includes any application used to exchange requests, clearances, instructions and reports between the flight crew and controllers on the ground. In FANS-1/A and ATN, this includes the controller pilot data link communications (CPDLC) application. It also includes applications used for the exchange of oceanic clearances (OCL) and departure clearances (DCL), as well as data link delivery of taxi clearances.</td>
<td>C</td>
</tr>
<tr>
<td>Item No.</td>
<td>Application Type</td>
<td>Application Description</td>
<td>Required Recording Content</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Addressed surveillance</td>
<td>This includes any surveillance application in which the ground sets up contracts for delivery of surveillance data. In FANS-1/A and ATN, this includes the automatic dependent surveillance-contract (ADS-C) application.</td>
<td>C, F2</td>
</tr>
<tr>
<td>4</td>
<td>Flight information</td>
<td>This includes any application used for delivery of flight information data to specific aeroplanes. This includes for example data link-automatic terminal information service (D ATIS), data link-operational terminal information service (D OTIS), digital weather information services (data link-meteorological aerodrome or aeronautical report (D-METAR) or terminal weather information for pilots (TWIP)), data link flight information service (D-FIS), and Notice to Airmen (electronic NOTAM) delivery.</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Broadcast surveillance</td>
<td>This includes elementary and enhanced surveillance systems, as well as automatic dependent surveillance-broadcast (ADS-B) output data.</td>
<td>M*, F2</td>
</tr>
<tr>
<td>6</td>
<td>Aeronautical operational control (AOC) data</td>
<td>This includes any application transmitting or receiving data used for AOC purposes (in accordance with the ICAO definition of AOC). Such systems may also process aeronautical administrative communication (AAC) messages, but there is no requirement to record AAC messages</td>
<td>M*</td>
</tr>
<tr>
<td>7</td>
<td>Graphics</td>
<td>This includes any application receiving graphical data to be used for operational purposes (i.e. excluding applications that are receiving such things as updates to manuals).</td>
<td>M*, F1</td>
</tr>
</tbody>
</table>
GM1-NCC.IDE.A.170 Data link recording

GENERAL

1. The letters and expressions in Table 1 of AMC1-NCC.IDE.A.170 have the following meaning:

 a. C: complete contents recorded.
 b. M: information that enables correlation with any associated records stored separately from the aeroplane.
 c. *: applications that are to be recorded only as far as is practicable, given the architecture of the system.
 d. F1: graphics applications may be considered as AOC messages when they are part of a data link communications application service run on an individual basis by the operator itself in the framework of the operational control.
 e. F2: where parametric data sent by the aeroplane, such as Mode S, is reported within the message, it should be recorded unless data from the same source is recorded on the FDR.

2. The definitions of the applications type in Table 1 of AMC1-NCC.IDE.A.170 are described in Table 1 below.

Table 1: Definitions of the applications type

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Application Type</th>
<th>Messages</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CM</td>
<td></td>
<td>CM is an ATN service</td>
</tr>
<tr>
<td>2</td>
<td>AFN</td>
<td></td>
<td>AFN is a FANS 1/A service</td>
</tr>
<tr>
<td>3</td>
<td>CPDLC</td>
<td></td>
<td>All implemented up and downlink messages to be recorded</td>
</tr>
<tr>
<td>4</td>
<td>ADS-C</td>
<td>ADS-C reports</td>
<td>All contract requests and reports recorded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Position reports</td>
<td>Only used within FANS 1/A. Mainly used in oceanic and remote areas.</td>
</tr>
<tr>
<td>5</td>
<td>ADS-B</td>
<td>Surveillance data</td>
<td>Information that enables correlation with any associated records stored separately from the aeroplane.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D-FIS</td>
<td>D-FIS is an ATN service. All implemented up and downlink messages to be recorded</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TWIP</td>
<td>TWIP messages</td>
<td>Terminal weather information for pilots</td>
</tr>
<tr>
<td>8</td>
<td>D-ATIS</td>
<td>ATIS messages</td>
<td>EUROCAE ED-89A, dated December 2003: Data Link Application System Document (DLASD) for the ‘ATIS’ data link service</td>
</tr>
<tr>
<td>9</td>
<td>OCL</td>
<td>OCL messages</td>
<td>EUROCAE ED-106A, dated March 2004: Data Link Application System Document (DLASD) for ‘Oceanic Clearance’ (OCL) data link service</td>
</tr>
<tr>
<td>10</td>
<td>DCL</td>
<td>DCL messages</td>
<td>EUROCAE ED-85A, dated December 2005: Data Link Application System Document (DLASD) for ‘Departure Clearance’ data link service</td>
</tr>
<tr>
<td>11</td>
<td>Graphics</td>
<td>Weather maps & other graphics</td>
<td>Graphics exchanged in the framework of procedures within the operational control, as specified in Part-ORO. Information that enables correlation with any associated records stored separately from the aeroplane.</td>
</tr>
<tr>
<td>12</td>
<td>AOC</td>
<td>Aeronautical operational control messages</td>
<td>Messages exchanged in the framework of procedures within the operational control, as specified in Part-ORO. Information that enables correlation with any associated records stored separately from the aeroplane. Definition in EUROCAE ED-112, dated March 2003.</td>
</tr>
<tr>
<td>13</td>
<td>Surveillance</td>
<td>Downlinked aircraft parameters (DAP)</td>
<td>As defined in ICAO Annex 10 Volume IV (Surveillance systems and ACAS).</td>
</tr>
</tbody>
</table>
AMC1-NCC.IDE.A.175 Combination recorder

COMBINATION RECORDERS

When two flight data and cockpit voice combination recorders are installed, one should be located near the flight crew compartment in order to minimise the risk of data loss due to a failure of the wiring that gathers data to the recorder. The other should be located at the rear section of the aeroplane in order to minimise the risk of data loss due to recorder damage in the case of a crash.

GM1-NCC.IDE.A.175 Combination recorder

GENERAL

1. A flight data and cockpit voice combination recorder is a flight recorder that records:
 a. all voice communications and the aural environment required by NCC.IDE.A.160; and
 b. all parameters and specifications required by NCC.IDE.A.165, with the same specifications required by NCC.IDE.A.160 and NCC.IDE.A.165.

2. In addition, a flight data and cockpit voice combination recorder may record data link communication messages and related information required by NCC.IDE.A.170.

AMC1-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices

CHILD RESTRAINT DEVICES (CRD)

1. A CRD is considered to be acceptable if:
 a. it is a supplementary loop belt manufactured with the same techniques and the same materials of the approved safety belts; or
 b. it complies with 2.

2. Provided the CRD can be installed properly on the respective aircraft seat, the following CRDs are considered acceptable:
 a. CRDs approved for use in aircraft by a competent authority on the basis of a technical standard and marked accordingly.
 b. CRDs approved for use in motor vehicles according to the UN standard ECE R 44, -03 or later series of amendments.
c. CRDs approved for use in motor vehicles and aircraft according to Canadian CMVSS 213/213.1.

d. CRDs approved for use in motor vehicles and aircraft according to US FMVSS No 213 and manufactured to these standards on or after February 26, 1985. US approved CRDs manufactured after this date should bear the following labels in red letters:

i. ‘THIS CHILD RESTRAINT SYSTEM CONFORMS TO ALL APPLICABLE FEDERAL MOTOR VEHICLE SAFETY STANDARDS’; and

ii. ‘THIS RESTRAINT IS CERTIFIED FOR USE IN MOTOR VEHICLES AND AIRCRAFT’.

e. CRDs qualified for use in aircraft according to the German ‘Qualification Procedure for Child Restraint Systems for Use in Aircraft’ (TÜV Doc. TÜV/958-01/2001).

f. Devices approved for use in cars, manufactured and tested to standards equivalent to those listed above. The device should be marked with an associated qualification sign showing the name of the qualification organisation and a specific identification number, related to the associated qualification project. The qualifying organisation should be a competent and independent organisation.

3. Location

a. Forward facing CRDs may be installed on both forward and rearward facing passenger seats but only when fitted in the same direction as the passenger seat on which it is positioned. Rearward facing CRDs can only be installed on forward facing passenger seats. A CRD may not be installed within the radius of action of an airbag, unless it is obvious that the airbag is de-activated or it can be demonstrated that there is no negative impact from the airbag.

b. A person in a restraint device should be located as near to a floor level exit as feasible.

c. A person in a restraint device should not hinder evacuation for any passenger.

4. Installation

a. CRDs should only be installed on a suitable aircraft seat with the type of connecting device they are approved or qualified for. For example, CRDs to be connected by a three point harness only (most rearward facing baby CRDs currently available) should not be attached to an aircraft seat with a lap belt only; a CRD designed to be attached to a vehicle seat by means of rigid bar lower anchorages (ISO-FIX or US equivalent) only, should only be used on aircraft seats that are equipped with such connecting devices and should not be attached by the aircraft seat lap belt. The method of
connecting should be the one shown in the manufacturer’s instructions provided with each CRD.

b. All safety and installation instructions should be followed carefully by the responsible person accompanying the infant.

c. If a forward facing CRD with a rigid backrest is to be fastened by a lap belt, the restraint device should be fastened when the backrest of the passenger seat on which it rests is in a reclined position. Thereafter, the backrest is to be positioned upright. This procedure ensures better tightening of the CRD on the aircraft seat if the aircraft seat is reclinable.

d. The buckle of the adult safety belt should be easily accessible for both opening and closing, and should be in line with the seat belt halves (not canted) after tightening.

e. Forward facing restraint devices with an integral harness must not be installed such that the adult safety belt is secured over the child.

5. Operation

a. Each CRD should remain secured to a passenger seat during all phases of flight, unless it is properly stowed when not in use.

b. Where a CRD is adjustable in recline, it should be in an upright position for all occasions when passengers are required to fasten their safety belts.

AMC2-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices

UPPER TORSO RESTRAINT SYSTEM

An upper torso restraint system having three straps is deemed to be compliant with the requirement for restraint systems with two shoulder straps.

SAFETY BELT

A safety belt with diagonal shoulder strap (three anchorage points) is deemed to be compliant with the requirement for safety belts (two anchorage points).

AMC3-NCC.IDE.A.180 Seats, seat safety belts, restraint systems and child restraint devices

CABIN CREW SEATS

1. Seats for the minimum required cabin crew members should be located near required floor level emergency exits, except if the emergency evacuation of passengers would be enhanced by seating cabin crew members elsewhere. In this case other locations are acceptable.
2. Such seats should be forward or rearward facing within 15° of the longitudinal axis of the aeroplane.

AMC1-NCC.IDE.A.190 First-aid kit

CONTENT OF FIRST-AID KITS

1. First-aid kits (FAKs) compliant with to DIN 13164 or DIN 13157 are considered to meet the objective of NCC.IDE.A.190.

2. First-aid kits should be equipped with appropriate and sufficient medications and instrumentation. However, these kits should be amended by the operator according to the characteristics of the operation (scope of operation, flight duration, number and demographics of passengers etc.).

3. The following should be included in the FAKs:
 a. Equipment:
 i. bandages (assorted sizes);
 ii. burns dressings (unspecified);
 iii. wound dressings (large and small);
 iv. adhesive dressings (assorted sizes);
 v. adhesive tape;
 vi. adhesive wound closures;
 vii. safety pins;
 viii. safety scissors;
 ix. antiseptic wound cleaner;
 x. disposable resuscitation aid;
 xi. disposable gloves;
 xii. tweezers: splinter; and
 xiii thermometers (non-mercury).
 b. Medications:
 i. simple analgesic (may include liquid form);
 ii. antiemetic;
iii. nasal decongestant;
iv. gastrointestinal antacid, in the case of aeroplanes carrying more than nine passengers;
v. anti-diarrhoeal medication, in the case of aeroplanes carrying more than nine passengers; and
vi. antihistamine.

c. Other:
i. a list of contents in at least two languages (English and one other). This should include information on the effects and side effects of medications carried;
ii. first-aid handbook, current edition;
iii. medical incident report form; and
iv. biohazard disposal bags.

d. An eye irrigator, although not required to be carried in the FAK, should, where possible, be available for use on the ground.

AMC2-NCC.IDE.A.190 First-aid kit

MAINTENANCE OF FIRST-AID KITS

To be kept up to date first-aid kits should be:

1. inspected periodically to confirm, to the extent possible, that contents are maintained in the condition necessary for their intended use; and

2. replenished at regular intervals, in accordance with instructions contained on their labels, or as circumstances warrant.

AMC1 NCC.IDE.A.195 Supplemental oxygen — pressurised aeroplanes

DETERMINATION OF OXYGEN

1. In the determination of the amount of oxygen required for the routes to be flown, it is assumed that the aeroplane will descend in accordance with the emergency procedures specified in the operations manual, without exceeding its operating limitations, to a flight altitude that will allow the flight to be completed safely (i.e. flight altitudes ensuring adequate terrain clearance, navigational accuracy, hazardous weather avoidance etc.).
2. The amount of oxygen should be determined on the basis of cabin pressure altitude, flight duration and, on the assumption that a cabin pressurisation failure will occur at the pressure altitude or point of flight that is most critical from the standpoint of oxygen need.

3. Following a cabin pressurisation failure, the cabin pressure altitude should be considered to be the same as the aeroplane pressure altitude, unless it can be demonstrated to the competent authority that no probable failure of the cabin or pressurisation system will result in a cabin pressure altitude equal to the aeroplane pressure altitude. Under these circumstances, the demonstrated maximum cabin pressure altitude may be used as a basis for determination of oxygen supply.

AMC1-NCC.IDE.A.200 Supplemental oxygen — non-pressurised-aeroplanes

DETERMINATION OF OXYGEN

On routes where the oxygen is necessary to be carried for 10% of the passengers for the flight time between 10,000 ft and 13,000 ft, the oxygen may be provided by:

1. a plug-in or drop-out oxygen system with sufficient outlets and dispensing units uniformly distributed throughout the cabin so as to provide oxygen to each passenger at his/her own discretion when seated on his/her assigned seat; or

2. portable bottles, when a cabin crew member is required for the flight.

AMC1-NCC.IDE.A.205 Hand fire extinguishers

NUMBER, LOCATION AND TYPE

1. The number and location of hand fire extinguishers should be such as to provide adequate availability for use, account being taken of the number and size of the passenger compartments, the need to minimise the hazard of toxic gas concentrations and the location of toilets, galleys etc.. These considerations may result in the number of fire extinguishers being greater than the minimum prescribed.

2. There should be at least one hand fire extinguisher installed in the flight crew compartment and this should be suitable for fighting both flammable fluid and electrical equipment fires. Additional hand fire extinguishers may be required for the protection of other compartments accessible to the crew in flight. Dry chemical fire extinguishers should not be used in the flight crew compartment, or in any compartment not separated by a partition from the flight crew compartment, because of the adverse effect on vision during discharge and, if conductive, interference with electrical contacts by the chemical residues.

3. Where only one hand fire extinguisher is required in the passenger compartments it should be located near the cabin crew member’s station, where provided.
4. Where two or more hand fire extinguishers are required in the passenger compartments and their location is not otherwise dictated by consideration of (1), an extinguisher should be located near each end of the cabin with the remainder distributed throughout the cabin as evenly as is practicable.

5. Unless an extinguisher is clearly visible, its location should be indicated by a placard or sign. Appropriate symbols may also be used to supplement such a placard or sign.

AMC1-NCC.IDE.A.210 Marking of break-in points

COLOUR AND CORNERS’ MARKING

1. The colour of the markings should be red or yellow and, if necessary, should be outlined in white to contrast with the background.

2. If the corner markings are more than 2 m apart, intermediate lines 9 cm x 3 cm should be inserted so that there is no more than 2 m between adjacent markings.

AMC1-NCC.IDE.A.215 Emergency locator transmitter (ELT)

ELT BATTERIES

Batteries used in the ELTs should be replaced (or recharged, if the battery is rechargeable) when the equipment has been in use for more than 1 cumulative hour, and also when 50 % of their useful life (or for rechargeable, 50 % of their useful life of charge), as established by the equipment manufacturer, has expired. The new expiry date for the replacement (or recharged) battery should be legibly marked on the outside of the equipment. The battery useful life (or useful life of charge) requirements of this paragraph do not apply to batteries (such as water-activated batteries) that are essentially unaffected during probable storage intervals.

AMC2-NCC.IDE.A.215 Emergency locator transmitter (ELT)

TYPES OF ELT AND GENERAL TECHNICAL SPECIFICATIONS

1. The ELT required by this provision should be one of the following:
 a. Automatic fixed (ELT(AF)). An automatically activated ELT that is permanently attached to an aircraft and is designed to aid search and rescue (SAR) teams in locating the crash site.
 b. Automatic portable (ELT(AP)). An automatically activated ELT that is rigidly attached to an aircraft before a crash, but is readily removable from the aircraft after a crash. It functions as an ELT during the crash sequence. If the ELT does not employ an integral antenna, the aircraft-mounted antenna may be disconnected and an auxiliary antenna (stored on the ELT case)
attached to the ELT. The ELT can be tethered to a survivor or a life-raft. This type of ELT is intended to aid SAR teams in locating the crash site or survivor(s).

c. Automatic deployable (ELT(AD)). An ELT that is rigidly attached to the aircraft before the crash and that is automatically ejected, deployed and activated by an impact, and, in some cases, also by hydrostatic sensors. Manual deployment is also provided. This type of ELT should float in water and is intended to aid SAR teams in locating the crash site.

d. Survival ELT (ELT(S)). An ELT that is removable from an aircraft, stowed so as to facilitate its ready use in an emergency and manually activated by a survivor. An ELT(S) may be activated manually or automatically (e.g. by water activation). It should be designed to be tethered to a life-raft or a survivor.

2. To minimise the possibility of damage in the event of crash impact, the automatic ELT should be rigidly fixed to the aircraft structure, as far aft as is practicable, with its antenna and connections arranged so as to maximise the probability of the signal being transmitted after a crash.

3. Any ELT carried should operate in accordance with the relevant provisions of ICAO Annex 10, Volume III and should be registered with the national agency responsible for initiating search and rescue or other nominated agency.

GM1-NCC.IDE.A.215 Emergency locator transmitter (ELT)

TERMINOLOGY

An ELT is a generic term describing equipment that broadcasts distinctive signals on designated frequencies and, depending on application, may be activated by impact or may be manually activated.

AMC1-NCC.IDE.A.220 Flight over water

ACCESSIBILITY OF LIFE-JACKETS

The life-jacket should be accessible from the seat or berth of the person for whose use it is provided, with a safety belt or restraint system fastened.

RISK ASSESSMENT

1. When conducting the risk assessment, the pilot-in-command should base his/her decision, as far as is practicable, on the Implementing Rules and AMCs applicable to the operation of the aeroplane.

2. The pilot-in-command should, for determining the risk, take the following operating environment and conditions into account:
a. sea state;
b. sea and air temperatures;
c. the distance from land suitable for making an emergency landing; and
d. the availability of search and rescue facilities.

AMC2-NCC.IDE.A.220 Flight over water

LIFE-RAFTS AND EQUIPMENT FOR MAKING DISTRESS SIGNALS

1. The following should be readily available with each life-raft:
 a. means for maintaining buoyancy;
 b. a sea anchor;
 c. life-lines and means of attaching one life-raft to another;
 d. paddles for life-rafts with a capacity of six or less;
 e. means of protecting the occupants from the elements;
 f. a water-resistant torch;
 g. signalling equipment to make the pyrotechnic distress signals described in ICAO Annex 2, Rules of the Air;
 h. 100 g of glucose tablets for each four, or fraction of four, persons that the life-raft is designed to carry:
 i. at least two litres of drinkable water provided in durable containers or means of making sea water drinkable or a combination of both; and
 j. first-aid equipment.

2. As far as practicable, items listed in (1) should be contained in a pack.

GM1-NCC.IDE.A.220 Flight over water

SEAT CUSHIONS

Seat cushions are not considered to be flotation devices.
AMC1-NCC.IDE.A.230 Survival equipment

ADDITIONAL SURVIVAL EQUIPMENT

1. The following additional survival equipment should be carried when required:
 a. 500 ml of water for each four, or fraction of four, persons on board;
 b. one knife;
 c. first-aid equipment; and
 d. one set of air/ground codes.

2. In addition, when polar conditions are expected, the following should be carried:
 a. a means of melting snow;
 b. one snow shovel and one ice saw;
 c. sleeping bags for use by 1/3 of all persons on board and space blankets for the remainder or space blankets for all passengers on board; and
 d. one arctic/polar suit for each crew member carried.

3. If any item of equipment contained in the above list is already carried on board the aircraft in accordance with another requirement, there is no need for this to be duplicated.

AMC1-NCC.IDE.A.230(b)(2) Survival equipment

APPLICABLE AIRWORTHINESS STANDARD

The applicable airworthiness standard should be CS-25 or equivalent.

GM1-NCC.IDE.A.230 Survival equipment

SIGNALLING EQUIPMENT

The signalling equipment for making distress signals is described in ICAO Annex 2, Rules of the Air.

GM2-NCC.IDE.A.230 Survival equipment

AREAS IN WHICH SEARCH AND RESCUE WOULD BE ESPECIALLY DIFFICULT

The expression ‘areas in which search and rescue would be especially difficult’ should be interpreted, in this context, as meaning:
1. areas so designated by the competent authority responsible for managing search and rescue; or

2. areas that are largely uninhabited and where:

a. the competent authority responsible for managing search and rescue has not published any information to confirm whether search and rescue would be or would not be especially difficult; and

 b. the competent authority referred to in (1) does not, as a matter of policy, designate areas as being especially difficult for search and rescue.

AMC1-NCC.IDE.A.240 Headset

GENERAL

1. A headset consists of a communication device that includes two earphones to receive and a microphone to transmit audio signals to the aeroplane's communication system. To comply with the minimum performance requirements, the earphones and microphone should match the communication system’s characteristics and the flight crew compartment environment. The headset should be adequately adjustable in order to fit the flight crew’s head. Headset boom microphones should be of the noise cancelling type.

2. If the intention is to utilise noise cancelling earphones, the operator should ensure that the earphones do not attenuate any aural warnings or sounds necessary for alerting the flight crew on matters related to the safe operation of the aeroplane.

GM1-NCC.IDE.A.240 Headset

GENERAL

The term ‘headset’ includes any aviation helmet incorporating headphones and microphone worn by a flight crew member.

GM1-NCC.IDE.A.245 Radio communication equipment

APPLICABLE AIRSPACE REQUIREMENTS

For aeroplanes being operated under European air traffic control, the applicable airspace requirements include the Single European Sky legislation.
AMC1-NCC.IDE.A.255 Transponder

SSR TRANSPONDER

1. The secondary surveillance radar (SSR) transponders of aeroplanes being operated under European air traffic control should comply with any applicable Single European Sky legislation.

2. If the Single European Sky legislation is not applicable, the SSR transponders should operate in accordance with the relevant provisions of Volume IV of ICAO Annex 10.

AMC1-NCC.IDE.A.260 Electronic navigation data management

ELECTRONIC NAVIGATION DATA PRODUCTS

1. When the operator of a complex motor-powered aeroplane uses a navigation database that supports an airborne navigation application as a primary means of navigation, the navigation database supplier should hold a Type 2 letter of acceptance (LoA), or equivalent.

2. If this airborne navigation application is needed for an operation requiring a specific approval in accordance with Part-SPA, the operator’s procedures should be based upon the Type 2 LoA acceptance process.

GM1-NCC.IDE.A.260 Electronic navigation data management

LETTERS OF ACCEPTANCE AND STANDARDS FOR ELECTRONIC NAVIGATION DATA PRODUCTS

1. A Type 2 LoA is issued by the Agency in accordance with the Agency’s Opinion No 01/2005 on The Acceptance of Navigation Database Suppliers (hereinafter referred to as the Agency’s Opinion No 01/2005). The definitions of navigation database, navigation database supplier, data application integrator, Type 1 LoA and Type 2 LoA can be found in the Agency’s Opinion No 01/2005.

2. Equivalent to a Type 2 LoA is the FAA Type 2 LoA, issued in accordance with the Federal Aviation Administration (FAA) Advisory Circular AC 20-153 or AC 20-153A, and the Transport Canada Civil Aviation (TCCA) ‘Acknowledgement Letter of an Aeronautical Data Process’, which uses the same basis.

3. EUROCAE ED-76/Radio Technical Commission for Aeronautics (RTCA) DO-200A Standards for Processing Aeronautical Data contains guidance relating to the processes which the supplier may follow.
Section 2 — Helicopters

GM1-NCC.IDE.H.100(a) Instruments and equipment — general

APPLICABLE AIRWORTHINESS REQUIREMENTS

The applicable airworthiness requirements for approval of instruments and equipment required by this Part are the following:

1. Regulation (EC) 1702/2003 for:
 a. helicopters registered in the EU; and
 b. helicopters registered outside the EU but manufactured or designed by an EU organisation.

2. Airworthiness requirements of the state of registry for helicopters registered, designed and manufactured outside the EU.

GM1-NCC.IDE.H.100(b)&(c) Instruments and equipment — general

INSTRUMENTS AND EQUIPMENT THAT DO NOT NEED TO BE APPROVED

1. The provision of this paragraph does not exempt the item of equipment from complying with the applicable airworthiness requirements if the instrument or equipment is installed in the helicopter. In this case, the installation should be approved as required in the applicable airworthiness requirements and should comply with the applicable airworthiness codes.

2. The functionality of non-installed instruments and equipment required by this Part that do not need an equipment approval should be checked against recognised industry standards appropriate for the intended purpose. The operator is responsible for ensuring the maintenance of these instruments and equipment.

3. The failure of additional non-installed instruments or equipment not required by this Part or by the applicable airworthiness requirements or any applicable airspace requirements should not adversely affect the airworthiness and/or the safe operation of the aircraft. Examples are the following:
 a. instruments supplying additional flight information (e.g. stand-alone global positioning system (GPS));
 b. some aerial work equipment (e.g. some mission dedicated radios, wire cutters); and
 c. non-installed passenger entertainment equipment.
GM1-NCC.IDE.H.100(d) Instruments and equipment — general

POSITIONING OF INSTRUMENTS

This requirement implies that whenever a single instrument is required in a helicopter operated in a multi-crew environment, the instrument needs to be visible from each flight crew station.

AMC1-NCC.IDE.H.115 Operating lights

LANDING LIGHT

The landing light should be trainable, at least in the vertical plane.

AMC1-NCC.IDE.H.120&NCC.IDE.H.125 Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

INTEGRATED INSTRUMENTS

1. Individual equipment requirements may be met by combinations of instruments or by integrated flight systems or by a combination of parameters on electronic displays. The information so available to each required pilot should not be less than that required in the applicable operational requirements, and the equivalent safety of the installation should be approved during type certification of the helicopter for the intended type of operation.

2. The means of measuring and indicating slip, helicopter attitude and stabilised helicopter heading may be met by combinations of instruments or by integrated flight director systems, provided that the safeguards against total failure, inherent in the three separate instruments, are retained.

AMC1-NCC.IDE.H.120(a)(1)&NCC.IDE.H.125(a)(1) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MEANS OF MEASURING AND DISPLAYING MAGNETIC HEADING

The means of measuring and displaying magnetic heading should be a magnetic compass or equivalent.
AMC1-NCC.IDE.H.120(a)(2)&NCC.IDE.H.125(a)(2) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MEANS FOR MEASURING AND DISPLAYING THE TIME

An acceptable means of compliance could be a clock displaying hours, minutes and seconds, with a sweep-second pointer or digital presentation.

AMC1-NCC.IDE.H.120(a)(3)&NCC.IDE.H.125(a)(3) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

CALIBRATION OF THE MEANS FOR MEASURING AND DISPLAYING PRESSURE ALTITUDE

The instrument measuring and displaying pressure altitude should be of a sensitive type calibrated in feet (ft), with a sub-scale setting, calibrated in hectopascals/millibars, adjustable for any barometric pressure likely to be set during flight.

AMC1-NCC.IDE.H.120(a)(4)&NCC.IDE.H.125(a)(4) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

CALIBRATION OF THE INSTRUMENT INDICATING AIRSPEED

The instrument indicating airspeed should be calibrated in knots (kt).

AMC1-NCC.IDE.H.125(a)(9) Operations under IFR — flight and navigational instruments and associated equipment

OUTSIDE AIR TEMPERATURE

1. The means of displaying outside air temperature should be calibrated in degrees Celsius.

2. The means of displaying outside air temperature may be an air temperature indicator that provides indications that are convertible to outside air temperature.

AMC1-NCC.IDE.H.120(c)&NCC.IDE.H.125(c) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MULTI-PILOT OPERATIONS — DUPLICATE INSTRUMENTS

Duplicate instruments include separate displays for each pilot and separate selectors or other associated equipment where appropriate.
AMC1-NCC.IDE.H.120(b)(1)(iii)&NCC.IDE.H.125(a)(8) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

STABILISED HEADING

Stabilised heading should be achieved for VFR flights by a gyroscopic heading indicator, whereas for IFR flights, this should be achieved through a magnetic gyroscopic heading indicator.

AMC1-NCC.IDE.H.125(d) Operations under VFR & operations under IFR — flight and navigational instruments and associated equipment

MEANS OF PREVENTING MALFUNCTION DUE TO CONDENSATION OR ICING

The means of preventing malfunction due to either condensation or icing of the airspeed indicating system should be a heated pitot tube or equivalent.

AMC1-NCC.IDE.H.125(f) Operations under IFR — flight and navigational instruments and associated equipment

CHART HOLDER

An acceptable means of compliance with the chart holder requirement would be to display a pre-composed chart on an electronic flight bag (EFB).

AMC1-NCC.IDE.H.145 Airborne weather detecting equipment

GENERAL

The airborne weather detecting equipment should be an airborne weather radar.

AMC1-NCC.IDE.H.155 Flight crew interphone system

TYPE OF FLIGHT CREW INTERPHONE

The flight crew interphone system should not be of a handheld type.

AMC1-NCC.IDE.H.160 Cockpit voice recorder

GENERAL

The operational performance requirements for CVRs should be those laid down in EUROCAE Document ED-112 (Minimum Operational Performance Specification for Crash
Protected Airborne Recorder Systems), dated March 2003, including amendments n°1 and 2.

AMC1-NCC.IDE.H.165 Flight data recorder

LIST OF PARAMETERS TO BE RECORDED

1. The FDR should record, with reference to a timescale, the list of parameters in Table 1 and Table 2, as applicable.

2. The parameters recorded by the FDR should meet, as far as practicable, the performance specifications (designated ranges, sampling intervals, accuracy limits and minimum resolution in read-out) defined in EUROCAE ED-112, dated 2003.

Table 1: FDR parameters — All helicopters

<table>
<thead>
<tr>
<th>No*</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time or relative time count</td>
</tr>
<tr>
<td>2</td>
<td>Pressure altitude</td>
</tr>
<tr>
<td>3</td>
<td>Indicated airspeed</td>
</tr>
<tr>
<td>4</td>
<td>Heading</td>
</tr>
<tr>
<td>5</td>
<td>Normal acceleration</td>
</tr>
<tr>
<td>6</td>
<td>Pitch attitude</td>
</tr>
<tr>
<td>7</td>
<td>Roll attitude</td>
</tr>
<tr>
<td>8</td>
<td>Manual radio transmission keying CVR/FDR synchronisation reference</td>
</tr>
<tr>
<td>9</td>
<td>Power on each engine</td>
</tr>
<tr>
<td>9a</td>
<td>Free power turbine speed (N_F)</td>
</tr>
<tr>
<td>9b</td>
<td>Engine torque</td>
</tr>
<tr>
<td>9c</td>
<td>Engine gas generator speed (N_G)</td>
</tr>
<tr>
<td>9d</td>
<td>Cockpit power control position</td>
</tr>
<tr>
<td>9e</td>
<td>Other parameters to enable engine power to be determined</td>
</tr>
<tr>
<td>10a</td>
<td>Main rotor speed</td>
</tr>
<tr>
<td>10b</td>
<td>Rotor brake (if installed)</td>
</tr>
</tbody>
</table>
Table 2: FDR Parameters — Helicopters for which the data source for the parameter is either used by helicopter systems or is available on the instrument panel for use by the flight crew to operate the helicopter.

<table>
<thead>
<tr>
<th>No*</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Primary flight controls — Pilot input and/or control output position (if applicable)</td>
</tr>
<tr>
<td>11a</td>
<td>Collective pitch</td>
</tr>
<tr>
<td>11b</td>
<td>Longitudinal cyclic pitch</td>
</tr>
<tr>
<td>11c</td>
<td>Lateral cyclic pitch</td>
</tr>
<tr>
<td>11d</td>
<td>Tail rotor pedal</td>
</tr>
<tr>
<td>11e</td>
<td>Controllable stabilator (if applicable)</td>
</tr>
<tr>
<td>11f</td>
<td>Hydraulic selection</td>
</tr>
<tr>
<td>12</td>
<td>Hydraulics low pressure (each system should be recorded.)</td>
</tr>
<tr>
<td>13</td>
<td>Outside air temperature</td>
</tr>
<tr>
<td>18</td>
<td>Yaw rate or yaw acceleration</td>
</tr>
<tr>
<td>20</td>
<td>Longitudinal acceleration (body axis)</td>
</tr>
<tr>
<td>21</td>
<td>Lateral acceleration</td>
</tr>
<tr>
<td>25</td>
<td>Marker beacon passage</td>
</tr>
<tr>
<td>26</td>
<td>Warnings — a discrete should be recorded for the master warning, gearbox low oil pressure and sas failure. Other ‘red’ warnings should be recorded where the warning condition cannot be determined from other parameters or from the cockpit voice recorder.</td>
</tr>
<tr>
<td>27</td>
<td>Each navigation receiver frequency selection</td>
</tr>
<tr>
<td>37</td>
<td>Engine control modes</td>
</tr>
</tbody>
</table>

* The number in the left hand column reflects the serial number depicted in EUROCAE ED-112.
<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Main gear box oil pressure</td>
</tr>
<tr>
<td>17</td>
<td>Gear box oil temperature</td>
</tr>
<tr>
<td>17a</td>
<td>Main gear box oil temperature</td>
</tr>
<tr>
<td>17b</td>
<td>Intermediate gear box oil temperature</td>
</tr>
<tr>
<td>17c</td>
<td>Tail rotor gear box oil temperature</td>
</tr>
<tr>
<td>19</td>
<td>Indicated sling load force (if signals readily available)</td>
</tr>
<tr>
<td>22</td>
<td>Radio altitude</td>
</tr>
<tr>
<td>23</td>
<td>Vertical deviation — the approach aid in use should be recorded.</td>
</tr>
<tr>
<td>23a</td>
<td>ILS glide path</td>
</tr>
<tr>
<td>23b</td>
<td>MLS elevation</td>
</tr>
<tr>
<td>23c</td>
<td>GNSS approach path</td>
</tr>
<tr>
<td>24</td>
<td>Horizontal deviation — the approach aid in use should be recorded.</td>
</tr>
<tr>
<td>24a</td>
<td>ILS localiser</td>
</tr>
<tr>
<td>24b</td>
<td>MLS azimuth</td>
</tr>
<tr>
<td>24c</td>
<td>GNSS approach path</td>
</tr>
<tr>
<td>28</td>
<td>DME 1 & 2 distances</td>
</tr>
<tr>
<td>29</td>
<td>Navigation data</td>
</tr>
<tr>
<td>29a</td>
<td>Drift angle</td>
</tr>
<tr>
<td>29b</td>
<td>Wind speed</td>
</tr>
<tr>
<td>29c</td>
<td>Wind direction</td>
</tr>
<tr>
<td>29d</td>
<td>Latitude</td>
</tr>
<tr>
<td>29e</td>
<td>Longitude</td>
</tr>
<tr>
<td>29f</td>
<td>Ground speed</td>
</tr>
<tr>
<td>30</td>
<td>Landing gear or gear selector position</td>
</tr>
<tr>
<td>31</td>
<td>Engine exhaust gas temperature (T₄)</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>32</td>
<td>Turbine inlet temperature (TIT/ITT)</td>
</tr>
<tr>
<td>33</td>
<td>Fuel contents</td>
</tr>
<tr>
<td>34</td>
<td>Altitude rate (vertical speed) — only necessary when available from cockpit instruments</td>
</tr>
<tr>
<td>35</td>
<td>Ice detection</td>
</tr>
<tr>
<td>36</td>
<td>Helicopter health and usage monitor system (HUMS) — only when information from the HUMS is used by the crew or aircraft system</td>
</tr>
<tr>
<td>36a</td>
<td>Engine data</td>
</tr>
<tr>
<td>36b</td>
<td>Chip detector</td>
</tr>
<tr>
<td>36c</td>
<td>Track timing</td>
</tr>
<tr>
<td>36d</td>
<td>Exceedance discretes</td>
</tr>
<tr>
<td>36e</td>
<td>Broadband average engine vibration</td>
</tr>
<tr>
<td>38</td>
<td>Selected barometric setting — to be recorded for helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>38a</td>
<td>Pilot</td>
</tr>
<tr>
<td>38b</td>
<td>Co-pilot</td>
</tr>
<tr>
<td>39</td>
<td>Selected altitude (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>40</td>
<td>Selected speed (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>41</td>
<td>Not used (selected Mach)</td>
</tr>
<tr>
<td>42</td>
<td>Selected vertical speed (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>43</td>
<td>Selected heading (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>44</td>
<td>Selected flight path (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>45</td>
<td>Selected decision height (all pilot selectable modes of operation) — to be recorded for the helicopters where the parameter is displayed electronically</td>
</tr>
<tr>
<td>No*</td>
<td>Parameter</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>46</td>
<td>EFIS display format</td>
</tr>
<tr>
<td>47</td>
<td>Multi-function/engine/alerts display format</td>
</tr>
<tr>
<td>48</td>
<td>Event marker</td>
</tr>
</tbody>
</table>

* The number in the left hand column reflects the serial number depicted in EUROCAE ED-112.

AMC1-NCC.IDE.H.170 Data link recording

GENERAL

1. As a means of compliance with NCC.IDE.H.170, the recorder on which the data link messages are recorded should be:
 a. the CVR;
 b. the FDR;
 c. a combination recorder when NCC.IDE.H.175 is applicable; or
 d. a dedicated flight recorder. In such case, the operational performance requirements for this recorder should be those laid down in EUROCAE Document ED-112 (Minimum Operational Performance Specification for Crash Protected Airborne Recorder Systems), dated March 2003, including amendments n°1 and n°2.

2. As a means of compliance with NCC.IDE.H.170 (a)(2), the operator should enable correlation by providing information that allows an accident investigator to understand what data was provided to the aircraft and, when the provider identification is contained in the message, by which provider.

3. The timing information associated with the data link communications messages required to be recorded by NCC.IDE.H.170(a)(3) should be capable of being determined from the airborne-based recordings. This timing information should include at least the following:
 a. the time each message was generated;
 b. the time any message was available to be displayed by the flight crew;
 c. the time each message was actually displayed or recalled from a queue; and
 d. the time of each status change.

4. The message priority should be recorded when it is defined by the protocol of the data link communication message being recorded.
5. The expression ‘taking into account the system’s architecture’, in NCC.IDE.H.170 (a)(3), means that the recording of the specified information may be omitted if the existing source systems involved would require a major upgrade. The following should be considered:
 a. the extent of the modification required;
 b. the down-time period; and
 c. equipment software development.

6. Data link communications messages that support the applications in Table 1 should be recorded.

7. Further details on the recording requirements can be found in the recording requirement matrix in Appendix D.2 of EUROCAE Document ED-93 (Minimum Aviation System Performance Specification for CNS/ATM Recorder Systems), dated November 1998.

Table 1: Data link recording

<table>
<thead>
<tr>
<th>Item No</th>
<th>Application Type</th>
<th>Application Description</th>
<th>Required Recording Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data link initiation</td>
<td>This includes any application used to log on to, or initiate, a data link service. In future air navigation system (FANS)-1/A and air traffic navigation (ATN), these are ATS facilities notification (AFN) and context management (CM), respectively.</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>Controller/pilot communication</td>
<td>This includes any application used to exchange requests, clearances, instructions and reports between the flight crew and controllers on the ground. In FANS-1/A and ATN, this includes the controller pilot data link communications (CPDLC) application. It also includes applications used for the exchange of oceanic clearances (OCL) and departure clearances (DCL), as well as data link delivery of taxi clearances.</td>
<td>C</td>
</tr>
<tr>
<td>Item No</td>
<td>Application Type</td>
<td>Application Description</td>
<td>Required Recording Content</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3</td>
<td>Addressed surveillance</td>
<td>This includes any surveillance application in which the ground sets up contracts for delivery of surveillance data. In FANS-1/A and ATN, this includes the automatic dependent surveillance-contract (ADS-C) application, controller access parameters (CAP) and system access parameters (SAP).</td>
<td>C, F2</td>
</tr>
<tr>
<td>4</td>
<td>Flight information</td>
<td>This includes any application used for delivery of flight information data to specific aeroplanes. This includes for example data link-automatic terminal information service (D-ATIS), data link-operational terminal information service (D-OTIS), digital weather information services (D-METAR or TWIP), data link-flight information service (D-FIS) and Notice to Airmen (electronic NOTAM) delivery.</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td>Broadcast surveillance</td>
<td>This includes elementary and enhanced surveillance systems, as well as automatic dependent surveillance-broadcast (ADS-B) output data.</td>
<td>M*, F2</td>
</tr>
<tr>
<td>6</td>
<td>AOC data</td>
<td>This includes any application transmitting or receiving data used for AOC purposes (in accordance with the ICAO definition of AOC). Such systems may also process AAC messages, but there is no requirement to record AAC messages</td>
<td>M*</td>
</tr>
<tr>
<td>7</td>
<td>Graphics</td>
<td>This includes any application receiving graphical data to be used for operational purposes (i.e. excluding applications that are receiving such things as updates to manuals).</td>
<td>M*, F1</td>
</tr>
</tbody>
</table>

GM1-NCC.IDE.H.170 Data link recording

GENERAL

1. The letters and expressions in Table 1 of AMC2-NCC.IDE.H.170 have the following meaning:

 a. C: complete contents recorded.
b. M: information that enables correlation with any associated records stored separately from the helicopter.

c. *: applications that are to be recorded only as far as is practicable, given the architecture of the system.

d. F1: graphics applications may be considered as AOC messages when they are part of a data link communications application service run on an individual basis by the operator itself in the framework of the operational control.

e. F2: where parametric data sent by the helicopter, such as Mode S, is reported within the message, it should be recorded unless data from the same source is recorded on the FDR.

2. The definitions of the applications type in Table 1 of AMC2-NCC.IDE.H.170 are described in Table 1 below.

<table>
<thead>
<tr>
<th>Item No</th>
<th>Application Type</th>
<th>Messages</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CM</td>
<td></td>
<td>CM is an ATN service</td>
</tr>
<tr>
<td>2</td>
<td>AFN</td>
<td></td>
<td>AFN is a FANS 1/A service</td>
</tr>
<tr>
<td>3</td>
<td>CPDLC</td>
<td></td>
<td>All implemented up and downlink messages to be recorded</td>
</tr>
<tr>
<td>4</td>
<td>ADS-C</td>
<td>ADS-C reports</td>
<td>All contract requests and reports recorded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Position reports</td>
<td>Only used within FANS 1/A. Mainly used in oceanic and remote areas.</td>
</tr>
<tr>
<td>5</td>
<td>ADS-B</td>
<td>Surveillance data</td>
<td>Information that enables correlation with any associated records stored separately from the helicopter.</td>
</tr>
<tr>
<td>6</td>
<td>D-FIS</td>
<td></td>
<td>D-FIS is an ATN service. All implemented up and downlink messages to be recorded</td>
</tr>
<tr>
<td>7</td>
<td>TWIP</td>
<td>TWIP messages</td>
<td>Terminal weather information for pilots</td>
</tr>
<tr>
<td>8</td>
<td>D ATIS</td>
<td>ATIS messages</td>
<td>EUROCAE ED-89A, dated December 2003: Data Link Application System Document (DLASD) for the ‘ATIS’ data link service</td>
</tr>
<tr>
<td>Item No</td>
<td>Application Type</td>
<td>Messages</td>
<td>Comments</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>9</td>
<td>OCL</td>
<td>OCL</td>
<td>EUROCAE ED-106A, dated March 2004: Data Link Application System Document (DLASD) for 'Oceanic Clearance' (OCL) data link service</td>
</tr>
<tr>
<td>10</td>
<td>DCL</td>
<td>DCL</td>
<td>EUROCAE ED-85A, dated March 2003: Data Link Application System Document (DLASD) for 'Departure Clearance' data link service</td>
</tr>
<tr>
<td>11</td>
<td>Graphics</td>
<td>Weather maps & other graphics</td>
<td>Graphics exchanged in the framework of procedures within the operational control, as specified in Part-ORO. Information that enables correlation with any associated records stored separately from the helicopter.</td>
</tr>
<tr>
<td>12</td>
<td>AOC</td>
<td>Aeronautical operational control messages</td>
<td>Messages exchanged in the framework of procedures within the operational control, as specified in Part-ORO. Information that enables correlation with any associated records stored separately from the helicopter. Definition in EUROCAE ED-112, dated March 2003.</td>
</tr>
<tr>
<td>13</td>
<td>Surveillance</td>
<td>Downlinked Aircraft Parameters (DAP)</td>
<td>As defined in ICAO Annex 10 Volume IV (Surveillance systems and ACAS).</td>
</tr>
</tbody>
</table>

GM1-NCC.IDE.H.175 Combination recorder

COMBINATION RECORDERS

1. A flight data and cockpit voice combination recorder is a flight recorder that records:
 a. all voice communications and the aural environment required by NCC.IDE.H.160; and
 b. all parameters and specifications required by NCC.IDE.H.165, with the same specifications required by NCC.IDE.H.160 and NCC.IDE.H.165.
2. In addition a flight data and cockpit voice combination recorder may record data link communication messages and related information required by the NCC.IDE.H.170.

AMC1-NCC.IDE.H.180 Seats, seat safety belts, restraint systems and child restraint devices

CHILD RESTRAINT DEVICES (CRD)

1. A CRD is considered to be acceptable if:
 a. it is a supplementary loop belt manufactured with the same techniques and the same materials of the approved safety belts; or
 b. it complies with 2.

2. Provided the CRD can be installed properly on the respective aircraft seat, the following CRDs are considered acceptable:
 a. CRDs approved for use in aircraft by a competent authority on the basis of a technical standard and marked accordingly.
 b. CRDs approved for use in motor vehicles according to the UN standard ECE R 44, -03 or later series of amendments.
 c. CRDs approved for use in motor vehicles and aircraft according to Canadian CMVSS 213/213.1.
 d. CRDs approved for use in motor vehicles and aircraft according to US FMVSS No 213 and manufactured to these standards on or after February 26, 1985. US approved CRDs manufactured after this date should bear the following labels in red letters:
 i. ‘THIS CHILD RERAINT SYSTEM CONFORMS TO ALL APPLICABLE FEDERAL MOTOR VEHICLE SAFETY STANDARDS’; and
 ii. ‘THIS RESTRAINT IS CERTIFIED FOR USE IN MOTOR VEHICLES AND AIRCRAFT’.
 e. CRDs qualified for use in aircraft according to the German ‘Qualification Procedure for Child Restraint Systems for Use in Aircraft’ (TÜV Doc.: TÜV/958-01/2001).
 f. Devices approved for use in cars, manufactured and tested to standards equivalent to those listed above. The device should be marked with an associated qualification sign showing the name of the qualification organisation and a specific identification number, related to the associated qualification project. The qualifying organisation should be a competent and independent organisation.
3. Location
 a. Forward facing CRDs may be installed on both forward and rearward facing passenger seats but only when fitted in the same direction as the passenger seat on which it is positioned. Rearward facing CRDs can only be installed on forward facing passenger seats. A CRD may not be installed within the radius of action of an airbag, unless it is obvious that the airbag is deactivated or it can be demonstrated that there is no negative impact from the airbag.
 b. A person in a restraint device should be located as near to a floor level exit as feasible.
 c. A person in a restraint device should not hinder evacuation for any passenger.

4. Installation
 a. CRDs should only be installed on a suitable aircraft seat with the type of connecting device they are approved or qualified for. For example, CRDs to be connected by a three point harness only (most rearward facing baby CRDs currently available) should not be attached to an aircraft seat with a lap belt only; a CRD designed to be attached to a vehicle seat by means of rigid bar lower anchorages (ISO-FIX or US equivalent) only, should only be used on aircraft seats that are equipped with such connecting devices and should not be attached by the aircraft seat lap belt. The method of connecting should be the one shown in the manufacturer’s instructions provided with each CRD.
 b. All safety and installation instructions should be followed carefully by the responsible person accompanying the infant.
 c. If a forward facing CRD with a rigid backrest is to be fastened by a lap belt, the restraint device should be fastened when the backrest of the passenger seat on which it rests is in a reclined position. Thereafter, the backrest is to be positioned upright. This procedure ensures better tightening of the CRD on the aircraft seat if the aircraft seat is reclinable.
 d. The buckle of the adult safety belt should be easily accessible for both opening and closing, and should be in line with the seat belt halves (not canted) after tightening.
 e. Forward facing restraint devices with an integral harness should not be installed such that the adult safety belt is secured over the child.

5. Operation
 a. Each CRD should remain secured to a passenger seat during all phases of flight, unless it is properly stowed when not in use.
b. Where a CRD is adjustable in recline it should be in an upright position for all occasions when passengers are required to fasten their safety belts.

AMC2-NCC.IDE.H.180 Seats, seat safety belts, restraint systems and child restraint devices

UPPER TORSO RESTRAINT SYSTEM

An upper torso restraint system having three straps is deemed to be compliant with the requirement for restraint systems with two shoulder straps.

SAFETY BELT

A safety belt with diagonal shoulder strap (three anchorage points) is deemed to be compliant with the requirement for safety belts (two anchorage points).

AMC3-NCC.IDE.H.180 Seats, seat safety belts, restraint systems and child restraint devices

CABIN CREW SEATS

1. Seats for the minimum required cabin crew members should be located near required floor level emergency exits, except if the emergency evacuation of passengers would be enhanced by seating the cabin crew members elsewhere. In this case other locations are acceptable. This criterion should also apply, if the number of required cabin crew members exceeds the number of floor level emergency exits.

2. Seats for cabin crew member(s) should be forward or rearward facing within 15° of the longitudinal axis of the helicopter.

AMC1-NCC.IDE.H.190 First-aid kit

CONTENT OF FIRST-AID KIT

1. First-aid kits (FAKs) compliant with DIN 13164 or DIN 13157 are considered to meet the objective of NCC.IDE.H.300.

2. First-aid kits should be equipped with appropriate and sufficient medications and instrumentation. However, these kits should be amended by the operator according to the characteristics of the operation (scope of operation, flight duration, number and demographics of passengers etc.).

3. The following should be included in the FAKs:
 a. Equipment:
 i. bandages (assorted sizes);
ii. burns dressings (unspecified);

iii. wound dressings (large and small);

iv. adhesive dressings (assorted sizes);

v. adhesive tape;

vi. adhesive wound closures;

vii. safety pins;

viii. safety scissors;

ix. antiseptic wound cleaner;

x. disposable resuscitation aid;

xi. disposable gloves;

xii. tweezers: splinter; and

xiii. thermometers (non mercury).

b. Medications:

i. simple analgesic (may include liquid form);

ii. antiemetic;

iii. nasal decongestant;

iv. gastrointestinal antacid, in the case of helicopters carrying more than 9 passengers;

v. anti-diarrhoeal medication in the case of helicopters carrying more than nine passengers; and

vi. antihistamine.

c. Other:

i. a list of contents in at least two languages (English and one other). This should include information on the effects and side effects of medications carried;

ii. first-aid handbook;

iii. medical incident report form; and

iv. biohazard disposal bags.
d. An eye irrigator, although not required to be carried in the FAK, should, where possible, be available for use on the ground.

AMC2-NCC.IDE.H.190 First-aid kit

MAINTENANCE OF FIRST-AID KITS

To be kept up to date first-aid kits should be:

1. inspected periodically to confirm, to the extent possible, that contents are maintained in the condition necessary for their intended use; and
2. replenished at regular intervals, in accordance with instructions contained on their labels, or as circumstances warrant.

AMC1-NCC.IDE.H.200 Supplemental oxygen — non-pressurised helicopters

DETERMINATION OF OXYGEN

The amount of supplemental oxygen required for a particular operation should be determined on the basis of flight altitudes and flight duration, consistent with the operating procedures, including emergency, procedures, established for each operation and the routes to be flown as specified in the operations manual.

AMC1-NCC.IDE.H.205 Hand fire extinguishers

NUMBER, LOCATION AND TYPE

1. The number and location of hand fire extinguishers should be such as to provide adequate availability for use, account being taken of the number and size of the passenger compartments, the need to minimise the hazard of toxic gas concentrations and the location of toilets, galleys etc. These considerations may result in the number of fire extinguishers being greater than the minimum prescribed.

2. There should be at least one hand fire extinguisher installed in the flight crew compartment and this should be suitable for fighting both flammable fluid and electrical equipment fires. Additional hand fire extinguishers may be required for the protection of other compartments accessible to the crew in flight. Dry chemical fire extinguishers should not be used in the flight crew compartment, or in any compartment not separated by a partition from the flight crew compartment, because of the adverse effect on vision during discharge and, if conductive, interference with electrical contacts by the chemical residues.

3. Where only one hand fire extinguisher is required in the passenger compartments it should be located near the cabin crew member’s station, where provided.
4. Where two or more hand fire extinguishers are required in the passenger compartments and their location is not otherwise dictated by consideration of (1), an extinguisher should be located near each end of the cabin with the remainder distributed throughout the cabin as evenly as is practicable.

5. Unless an extinguisher is clearly visible, its location should be indicated by a placard or sign. Appropriate symbols may also be used to supplement such a placard or sign.

AMC1-NCC.IDE.H.210 Marking of break-in points

COLOUR AND CORNERS’ MARKING

1. The colour of the markings should be red or yellow and, if necessary, should be outlined in white to contrast with the background.

2. If the corner markings are more than 2 m apart, intermediate lines 9 cm x 3 cm should be inserted so that there is no more than 2 m between adjacent markings.

AMC1-NCC.IDE.H.215 Emergency locator transmitter (ELT)

ELT BATTERIES

Batteries used in the ELTs should be replaced (or recharged, if the battery is rechargeable) when the equipment has been in use for more than 1 cumulative hour, and also when 50% of their useful life (or for rechargeable, 50% of their useful life of charge), as established by the equipment manufacturer has expired. The new expiry date for the replacement (or recharged) battery should be legibly marked on the outside of the equipment. The battery useful life (or useful life of charge) requirements of this paragraph do not apply to batteries (such as water-activated batteries) that are essentially unaffected during probable storage intervals.

AMC2-NCC.IDE.H.215 Emergency locator transmitter (ELT)

TYPES OF ELT AND GENERAL TECHNICAL SPECIFICATIONS

1. The ELT required by this provision should be one of the following:
 a. Automatic fixed (ELT(AF)). An automatically activated ELT that is permanently attached to an aircraft and is designed to aid SAR teams in locating the crash site.
 b. Automatic portable (ELT(AP)). An automatically activated ELT that is rigidly attached to an aircraft before a crash, but is readily removable from the aircraft after a crash. It functions as an ELT during the crash sequence. If the ELT does not employ an integral antenna, the aircraft-mounted antenna may be disconnected and an auxiliary antenna (stored on the ELT case)
attached to the ELT. The ELT can be tethered to a survivor or a life-raft. This type of ELT is intended to aid SAR teams in locating the crash site or survivor(s).

c. Automatic deployable (ELT(AD)). An ELT that is rigidly attached to the aircraft before the crash and that is automatically ejected, deployed and activated by an impact, and, in some cases, also by hydrostatic sensors. Manual deployment is also provided. This type of ELT should float in water and is intended to aid SAR teams in locating the crash site.

d. Survival ELT (ELT(S)). An ELT that is removable from an aircraft, stowed so as to facilitate its ready use in an emergency, and manually activated by a survivor. An ELT(S) may be activated manually or automatically (e.g. by water activation). It should be designed to be tethered to a life-raft or a survivor.

2. To minimise the possibility of damage in the event of crash impact, the automatic ELT should be rigidly fixed to the aircraft structure, as far aft as is practicable, with its antenna and connections arranged so as to maximise the probability of the signal being transmitted after a crash.

3. Any ELT carried should operate in accordance with the relevant provisions of ICAO Annex 10, Volume III and should be registered with the national agency responsible for initiating search and rescue or other nominated agency.

AMC3-NCC.IDE.H.215 Emergency locator transmitter (ELT)

ELT(S) - HELICOPTERS

An ELT(AP) may be used to replace one required ELT(S) provided that it meets the ELT(S) requirements. A water-activated ELT(S) is not an ELT(AP).

GM1-NCC.IDE.H.215 Emergency locator transmitter (ELT)

TERMINOLOGY

An ELT is a generic term describing equipment that broadcasts distinctive signals on designated frequencies and, depending on application, may be activated by impact or may be manually activated.

AMC1-NCC.IDE.H.225(a) Life-jackets

ACCESSIBILITY

The life-jacket should be accessible from the seat or berth of the person for whose use it is provided, with a safety belt or restraint system fastened.
GM1-NCC.IDE.H.225 Life-jackets

SEAT CUSHIONS

Seat cushions are not considered to be flotation devices.

GM1-NCC.IDE.H.226 Crew survival suits

ESTIMATING SURVIVAL TIME

1. Introduction

 a. A person accidentally immersed in cold seas (typically offshore Northern Europe) will have a better chance of survival if he/she is wearing an effective survival suit in addition to a life-jacket. By wearing the survival suit, he/she can slow down the rate which his/her body temperature falls and, consequently, protect himself/herself from the greater risk of drowning brought about by incapacitation due to hypothermia.

 b. The complete survival suit system — suit, life-jacket and clothes worn under the suit — should be able to keep the wearer alive long enough for the rescue services to find and recover him/her. In practice the limit is about 3 hours. If a group of persons in the water cannot be rescued within this time they are likely to have become so scattered and separated that location will be extremely difficult, especially in the rough water typical of Northern European sea areas. If it is expected that in water protection could be required for periods greater than 3 hours, improvements should, rather, be sought in the search and rescue procedures than in the immersion suit protection.

2. Survival times

 a. The aim should be to ensure that a person in the water can survive long enough to be rescued, i.e. the survival time should be greater than the likely rescue time. The factors affecting both times are shown in Figure 1. The figure emphasises that survival time is influenced by many factors, physical and human. Some of the factors are relevant to survival in cold water and some are relevant in water at any temperature.
Figure 1: The survival equation

b. Broad estimates of likely survival times for the thin individual offshore are given in Table 1 below. As survival time is significantly affected by the prevailing weather conditions at the time of immersion, the Beaufort wind scale has been used as an indicator of these surface conditions.

Table 1: Timescale within which the most vulnerable individuals are likely to succumb to the prevailing conditions.

<table>
<thead>
<tr>
<th>Clothing assembly</th>
<th>Beaufort wind force</th>
<th>Times within which the most vulnerable individuals are likely to drown (water temp 5 °C)</th>
<th>Times within which the most vulnerable individuals are likely to drown (water temp 13 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working clothes</td>
<td>0 – 2</td>
<td>Within ¾ hour</td>
<td>Within 1 ¼ hours</td>
</tr>
<tr>
<td>(no immersion suit)</td>
<td>3 – 4</td>
<td>Within ½ hour</td>
<td>Within ½ hour</td>
</tr>
<tr>
<td></td>
<td>5 and above</td>
<td>Significantly less than ½ hour</td>
<td>Significantly less than ½ hour</td>
</tr>
<tr>
<td>Immersion suit worn over working clothes (with</td>
<td>0 – 2</td>
<td>May well exceed 3 hours</td>
<td>May well exceed 3 hours</td>
</tr>
<tr>
<td></td>
<td>3 – 4</td>
<td>Within 2 ¾ hours</td>
<td>May well exceed 3 hours</td>
</tr>
</tbody>
</table>
Clothing assembly

<table>
<thead>
<tr>
<th>Beaufort wind force</th>
<th>Times within which the most vulnerable individuals are likely to drown</th>
</tr>
</thead>
</table>
| 5 and above | (water temp 5 °C)
| | Significantly less than 2 ¾ hours. May well exceed 1 hour |
| | (water temp 13 °C)
| | May well exceed 3 hours |

- Consideration should also be given to escaping from the helicopter itself should it submerge or invert in the water. In this case escape time is limited to the length of time the occupants can hold their breath. The breath holding time can be greatly reduced by the effect of cold shock. Cold shock is caused by the sudden drop in skin temperature on immersion, and is characterised by a gasp reflex and uncontrolled breathing. The urge to breath rapidly becomes overwhelming and, if still submerged, the individual will inhale water resulting in drowning. Delaying the onset of cold shock by wearing an immersion suit will extend the available escape time from a submerged helicopter.

- The effects of water leakage and hydrostatic compression on the insulation quality of clothing are well recognised. In a nominally dry system the insulation is provided by still air trapped within the clothing fibres and between the layers of suit and clothes. It has been observed that many systems lose some of their insulating capacity either because the clothes under the ‘waterproof’ survival suit get wet to some extent or because of hydrostatic compression of the whole assembly. As a result of water leakage and compression, survival times will be shortened. The wearing of warm clothing under the suit is recommended.

- Whatever type of survival suit and other clothing is provided, it should not be forgotten that significant heat loss can occur from the head.

AMC1-NCC.IDE.H.227 Life-rafts, survival ELTs and survival equipment on extended overwater flights

LIFE-RAFTS AND EQUIPMENT FOR MAKING DISTRESS SIGNALS

1. Each required life-raft should conform to the following specifications:
 a. be of an approved design and stowed so as to facilitate their ready use in an emergency;
 b. be radar conspicuous to standard airborne radar equipment;
 c. when carrying more than one life-raft on board, at least 50 % of the rafts should be able to be deployed by the crew while seated at their normal station, where necessary by remote control; and
d. life-rafts that are not deployable by remote control or by the crew should be of such weight as to permit handling by one person. 40 kg should be considered a maximum weight.

2. Each required life-raft should contain at least the following:
 a. one approved survivor locator light;
 b. one approved visual signalling device;
 c. one canopy (for use as a sail, sunshade or rain catcher) or other mean to protect occupants from the elements;
 d. one radar reflector;
 e. one 20 m retaining line designed to hold the life-raft near the helicopter but to release it if the helicopter becomes totally submerged;
 f. one sea anchor; and
 g. one survival kit, appropriately equipped for the route to be flown, which should contain at least the following:
 i. one life-raft repair kit;
 ii. one bailing bucket;
 iii. one signalling mirror;
 iv. one police whistle;
 v. one buoyant raft knife;
 vi. one supplementary means of inflation;
 vii. sea sickness tablets;
 viii. one first-aid kit;
 ix. one portable means of illumination;
 x. 500 ml of pure water and one sea water desalting kit; and
 xi. one comprehensive illustrated survival booklet in an appropriate language.

AMC1-NCC.IDE.H.230 Survival equipment

ADDITIONAL SURVIVAL EQUIPMENT

1. The following additional survival equipment should be carried when required:
a. 500 ml of water for each four, or fraction of four, persons on board;
b. one knife;
c. first-aid equipment; and
d. one set of air/ground codes.

2. In addition, when polar conditions are expected, the following should be carried:
 a. a means of melting snow;
 b. one snow shovel and one ice saw;
 c. sleeping bags for use by 1/3 of all persons on board and space blankets for the remainder or space blankets for all passengers on board; and
 d. one arctic/polar suit for each crew member carried.

3. If any item of equipment contained in the above list is already carried on board the aircraft in accordance with another requirement, there is no need for this to be duplicated.

GM1-NCC.IDE.H.230 Survival equipment

SIGNALLING EQUIPMENT

The signalling equipment for making distress signals is described in ICAO Annex 2, Rules of the Air.

GM2-NCC.IDE.H.230 Survival equipment

AREAS IN WHICH SEARCH AND RESCUE WOULD BE ESPECIALLY DIFFICULT

The expression ‘areas in which search and rescue would be especially difficult’ should be interpreted, in this context, as meaning:

1. areas so designated by the competent authority responsible for managing search and rescue; or

2. areas that are largely uninhabited and where:
 a. the competent authority responsible for managing search and rescue has not published any information to confirm whether search and rescue would be or would not be especially difficult; and
 b. the competent authority referred to in (1) does not, as a matter of policy, designate areas as being especially difficult for search and rescue.
AMC1-NCC.IDE.H.231 Additional requirements for helicopters conducting offshore operations in a hostile sea area

INSTALLATION OF THE LIFE-RAFT

1. Projections on the exterior surface of the helicopter, that are located in a zone delineated by boundaries that are 1.22 m (4 ft) above and 0.61 m (2 ft) below the established static water line could cause damage to a deployed life-raft. Examples of projections which need to be considered are aerials, overboard vents, unprotected split-pin tails, guttering and any projection sharper than a three dimensional right angled corner.

2. While the boundaries specified in (1) are intended as a guide, the total area that should be considered should also take into account the likely behaviour of the life-raft after deployment in all sea states up to the maximum in which the helicopter is capable of remaining upright.

3. Wherever a modification or alteration is made to a helicopter within the boundaries specified, the need to prevent the modification or alteration from causing damage to a deployed life-raft should be taken into account in the design.

4. Particular care should also be taken during routine maintenance to ensure that additional hazards are not introduced by, for example, leaving inspection panels with sharp corners proud of the surrounding fuselage surface, or allowing door sills to deteriorate to a point where sharp edges become a hazard.

5. The same considerations apply in respect of emergency flotation equipment.

GM1-NCC.IDE.H.232 Helicopters certificated for operating on water — Miscellaneous equipment

INTERNATIONAL REGULATIONS FOR PREVENTING COLLISIONS AT SEA

International Regulations for Preventing Collisions at Sea are those that were published by the International Maritime Organisation (IMO) in 1972.

AMC1-NCC.IDE.H.240 Headset

GENERAL

1. A headset consists of a communication device that includes two earphones to receive and a microphone to transmit audio signals to the helicopter's communication system. To comply with the minimum performance requirements, the earphones and microphone should match the communication system’s characteristics and the flight crew compartment environment. The headset should be adequately adjustable in order to fit the flight crew's head. Headset boom microphones should be of the noise cancelling type.
2. If the intention is to utilise noise cancelling earphones, the operator should ensure that the earphones do not attenuate any aural warnings or sounds necessary for alerting the flight crew on matters related to the safe operation of the helicopter.

GM1-NCC.IDE.H.240 Headset

GENERAL

The term ‘headset’ includes any aviation helmet incorporating headphones and microphone worn by a flight crew member.

GM1-NCC.IDE.H.245 Radio communication equipment

APPLICABLE AIRSPACE REQUIREMENTS

For helicopters being operated under European air traffic control, the applicable airspace requirements include the Single European Sky legislation.

AMC1-NCC.IDE.H.255 Transponder

SSR TRANSPONDER

1. The secondary surveillance radar (SSR) transponders of helicopters being operated under European air traffic control should comply with any applicable Single European Sky legislation.

2. If the Single European Sky legislation is not applicable, the SSR transponders should operate in accordance with the relevant provisions of Volume IV of ICAO Annex 10.