European Aviation Safety Agency

Acceptable Means of Compliance and Guidance Material to Part-FCL

Initial issue
15 December 2011

TABLE OF CONTENTS

SUBPART A — GENERAL REQUIREMENTS

- GM1 FCL.005 Scope 7
- GM1 FCL.010 Definitions 8
- AMC1 FCL.015 Application and issue of licences, ratings and certificates 14
- AMC1 FCL.025 Theoretical knowledge examinations for the issue of licences 15
- AMC1 FCL.050 Recording of flight time 16
- AMC1 FCL.055 Language proficiency 26
- AMC2 FCL.055 Language proficiency 30
- AMC3 FCL.055 Language proficiency 35
- AMC1 FCL.060(b)(1) Recent experience 36
- GM1 FCL.060(b)(1) Recent experience 37
- AMC1 FCL.060(b)(5) Recent experience 38

SUBPART B — LIGHT AIRCRAFT PILOT LICENCE — LAPL

- AMC1 FCL.115; FCL.120 39
- AMC1 FCL.120; FCL.125 43
- AMC1 FCL.125 LAPL — Skill test 44
- AMC2 FCL.125 LAPL — Skill test 48
- AMC1 FCL.125; FCL.235 51
- AMC2 FCL.125; FCL.235 54
- AMC1 FCL.110.A LAPL(A) — Experience requirements and crediting 58
- AMC2 FCL.110.A LAPL(A) — Experience requirements and crediting 66
- GM1 FCL.135.A; FCL.135.H 67
- AMC1 FCL.110.H LAPL(H) — Experience requirements and crediting 68
- AMC2 FCL.110.H LAPL(H) — Experience requirements and crediting 79
- AMC1 FCL.110.S LAPL(S) — Experience requirements and crediting 80
- AMC1 FCL.110.S; FCL.210.S 81
- AMC1 FCL.135.S; FCL.205.S(a) 88
SUBPART C — PRIVATE PILOT LICENCE (PPL), SAILPLANE PILOT LICENCE (SPL) AND BALLOON PILOT LICENCE (BPL)

AMC1 FCL.210; FCL.215
AMC2 FCL.210; FCL.215
AMC3 FCL.210; FCL.215
AMC1 FCL.215; FCL.235
AMC1 FCL.235 Skill test
AMC2 FCL.235 Skill test
AMC3 FCL.235 Skill test
AMC1 FCL.210.A PPL(A) — Experience requirements and crediting
AMC1 FCL.210.H PPL(H) — Experience requirements and crediting
AMC1 FCL.210.As PPL(As) — Experience requirements and crediting
AMC1 FCL.205.S(b) SPL — Privileges and conditions
AMC1 FCL.205.B(b) BPL — Privileges and conditions
AMC1 FCL.225.B BPL — Extension of privileges to another balloon class or group

SUBPART D — COMMERCIAL PILOT LICENCE — CPL

AMC1 FCL.310; FCL.515 (b); FCL.615 (b)

SUBPART F — AIRLINE TRANSPORT PILOT LICENCE — ATPL

AMC1 FCL.510.A (b)(1) ATPL(A) — Prerequisites, experience and crediting
AMC1 FCL.520.A; FCL.520.H
SUBPART G — INSTRUMENT RATING — IR

AMC1 FCL.625(c) IR — Validity, revalidation and renewal

SUBPART H — CLASS AND TYPE RATINGS

GM1 FCL.700 Circumstances in which class or type ratings are required
GM1 FCL.710 Class and type ratings — variants
AMC1 FCL.725(a) Requirements for the issue of class and type ratings
AMC2 FCL.725(a) Requirements for the issue of class and type ratings
AMC1 FCL.740(b)(1) Validity and renewal of class and type ratings
AMC1 FCL.720.A(b)(2)(i) Experience requirements and prerequisites for the issue of class or type ratings — aeroplanes
AMC1 FCL.725.A(b) Theoretical knowledge and flight instruction for the issue of class and type ratings — aeroplanes
AMC1 FCL.735.A; FCL.735.H; FCL.735.As
AMC1 FCL.740.H(a)(3) Revalidation of type ratings — helicopters
GM1 FCL.720.PL Experience requirements and prerequisites for the issue of type ratings — powered-lift aircraft

SUBPART I — ADDITIONAL RATINGS

AMC1 FCL.800 Aerobatic rating
AMC1 FCL.805 Sailplane towing and banner towing rating
AMC1 FCL.810(b) Night rating
AMC1 FCL.815 Mountain rating
AMC2 FCL.815 Mountain rating
AMC1 FCL.820 Flight test rating

SUBPART J — INSTRUCTORS

GM1 FCL.900 Instructor certificates
AMC1 FCL.920 Instructor competencies and assessment
AMC1 FCL.925 Additional requirements for instructors for the MPL
AMC2 FCL.925(d)(1) Additional requirements for instructors for the MPL
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM1 FCL.925</td>
<td>Additional requirements for instructors for the MPL</td>
<td>287</td>
</tr>
<tr>
<td>AMC1 FCL.935</td>
<td>Assessment of competence</td>
<td>288</td>
</tr>
<tr>
<td>AMC2 FCL.935</td>
<td>Assessment of competence</td>
<td>289</td>
</tr>
<tr>
<td>AMC3 FCL.935</td>
<td>Assessment of competence</td>
<td>290</td>
</tr>
<tr>
<td>AMC4 FCL.935</td>
<td>Assessment of competence</td>
<td>293</td>
</tr>
<tr>
<td>AMC5 FCL.935</td>
<td>Assessment of competence</td>
<td>294</td>
</tr>
<tr>
<td>AMC1 FCL.930.FI</td>
<td>FI — Training course</td>
<td>300</td>
</tr>
<tr>
<td>AMC2 FCL.930.FI</td>
<td>FI — Training course</td>
<td>356</td>
</tr>
<tr>
<td>AMC1 FCL.940.FI(a)(2)</td>
<td>FI — Revalidation and renewal</td>
<td>391</td>
</tr>
<tr>
<td>GM1 FCL.940.FI(a)(2)</td>
<td>FI — Revalidation and renewal</td>
<td>392</td>
</tr>
<tr>
<td>AMC1 FCL.930.TRI</td>
<td>TRI — Training course</td>
<td>399</td>
</tr>
<tr>
<td>AMC2 FCL.930.TRI</td>
<td>TRI — training course</td>
<td>409</td>
</tr>
<tr>
<td>AMC1 FCL.930.CRI</td>
<td>CRI — Training course</td>
<td>414</td>
</tr>
<tr>
<td>AMC1 FCL.940.CRI</td>
<td>CRI — Revalidation and renewal</td>
<td>441</td>
</tr>
<tr>
<td>AMC1 FCL.930.IRI</td>
<td>IRI — Training course</td>
<td>442</td>
</tr>
<tr>
<td>AMC1 FCL.930.MCCI</td>
<td>MCCI — Training course</td>
<td>478</td>
</tr>
<tr>
<td>SUBPART K — EXAMINERS</td>
<td></td>
<td>481</td>
</tr>
<tr>
<td>GM1 FCL.1000</td>
<td>Examiner certificates</td>
<td>481</td>
</tr>
<tr>
<td>GM1 FCL.1005(b)</td>
<td>Limitation of privileges in case of vested interests</td>
<td>482</td>
</tr>
<tr>
<td>AMC1 FCL.1010</td>
<td>Prerequisites for examiners</td>
<td>483</td>
</tr>
<tr>
<td>AMC1 FCL.1015</td>
<td>Examiner standardisation</td>
<td>484</td>
</tr>
<tr>
<td>AMC2 FCL.1015</td>
<td>Examiner standardisation</td>
<td>486</td>
</tr>
<tr>
<td>GM1 FCL.1015</td>
<td>Examiner standardisation</td>
<td>490</td>
</tr>
<tr>
<td>AMC1 FCL.1020</td>
<td>Examiners assessment of competence</td>
<td>491</td>
</tr>
<tr>
<td>AMC1 FCL.1020; FCL.1025</td>
<td></td>
<td>494</td>
</tr>
<tr>
<td>AMC1 FCL.1025</td>
<td>Validity, revalidation and renewal of examiner certificates</td>
<td>495</td>
</tr>
<tr>
<td>AMC1 FCL.1030 (b)(3)</td>
<td>Conduct of skill tests, proficiency checks and assessments of competence</td>
<td>496</td>
</tr>
</tbody>
</table>
APPENDICES

AMC1 to Appendix 3 Training courses for the issue of a CPL and an ATPL 497
GM1 to Appendix 3; Appendix 6; FCL.735.H 524
GM1 to Appendix 5 Integrated MPL training course 527
AMC1 to Appendix 6 Modular training course for the IR 549
AMC2 to Appendix 6 Modular training course for the IR 550
AMC3 to Appendix 6 Modular training course for the IR 554
GM1 to Appendix 7 IR skill test 558
AMC1 to Appendix 7 IR skill test 559
AMC1 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs 560
AMC2 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs 562
SUBPART A — GENERAL REQUIREMENTS

GM1 FCL.005 Scope

INTERPRETATIVE MATERIAL

(a) Whenever licences, ratings, approvals or certificates are mentioned in Part-FCL, these are meant to be valid licences, ratings, approvals or certificates issued in accordance with Part-FCL. In all other cases, these documents are specified.

(b) Whenever a reference is made to Member States to mutual recognition of licences, ratings, approvals or certificates, this means a European Union Member State and states associated to the Agency in accordance with Article 55 of the Regulation (EC) No 216/2008 of the European Parliament and of the Council of 20 February 2008.

(c) Whenever ‘or’ is used as an inclusive ‘or’, it should be understood in the sense of ‘and/or’.

Page 7 of 562
GM1 FCL.010 Definitions

ABBREVIATIONS

The following abbreviations apply to the Acceptable Means of Compliance and Guidance Material to Part-FCL:

A Aeroplane
AC Alternating Current
ACAS Airborne Collision Avoidance System
ADF Automatic Direction Finding
ADS Aeronautical Design Standard
AFCS Automatic Flight Control System
AFM Aircraft Flight Manual
AGL Above Ground Level
AIC Aeronautical Information Circular
AIP Aeronautical Information Publication
AIRAC Aeronautical Information regulation and control
AIS Aeronautical Information Services
AMC Acceptable Means of Compliance
AeMC Aero-medical Centre
AME Aero-medical Examiner
AOM Aircraft Operating Manual
APU Auxiliary Power Unit
As Airship
ATC Air Traffic Control
ATIS Automatic Terminal Information Service
ATO Approved Training Organisation
ATP Airline Transport Pilot
ATPL Airline Transport Pilot Licence
ATS Air Traffic Service
AUM All Up Mass

B Balloon
BCAR British Civil Airworthiness Requirement
BEM Basic Empty Mass
BITD Basic Instrument Training Device
BPL Balloon Pilot Licence
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>Calibrated Air Speed</td>
</tr>
<tr>
<td>CAT</td>
<td>Clear Air Turbulence</td>
</tr>
<tr>
<td>CDI</td>
<td>Course Deviation Indicator</td>
</tr>
<tr>
<td>CFI</td>
<td>Chief Flying Instructor</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>CGI</td>
<td>Chief Ground Instructor</td>
</tr>
<tr>
<td>CP</td>
<td>Co-pilot</td>
</tr>
<tr>
<td>CPL</td>
<td>Commercial Pilot Licence</td>
</tr>
<tr>
<td>CRE</td>
<td>Class Rating Examiner</td>
</tr>
<tr>
<td>CRI</td>
<td>Class Rating Instructor</td>
</tr>
<tr>
<td>CRM</td>
<td>Crew Resource Management</td>
</tr>
<tr>
<td>CS</td>
<td>Certification Specification</td>
</tr>
<tr>
<td>CQB</td>
<td>Central Question Bank</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DF</td>
<td>Direction Finding</td>
</tr>
<tr>
<td>DME</td>
<td>Distance Measuring Equipment</td>
</tr>
<tr>
<td>DPATO</td>
<td>Defined Point After Take-off</td>
</tr>
<tr>
<td>DPBL</td>
<td>Defined Point Before Landing</td>
</tr>
<tr>
<td>DR</td>
<td>Dead Reckoning navigation</td>
</tr>
<tr>
<td>EFIS</td>
<td>Electronic Flight Instrument System</td>
</tr>
<tr>
<td>EOL</td>
<td>Engine Off Landings</td>
</tr>
<tr>
<td>ERPM</td>
<td>Engine Revolution Per Minute</td>
</tr>
<tr>
<td>ETA</td>
<td>Estimated Time of Arrival</td>
</tr>
<tr>
<td>ETOPS</td>
<td>Extended-range Twin-engine Operation Performance Standard</td>
</tr>
<tr>
<td>FAF</td>
<td>Final Approach Fix</td>
</tr>
<tr>
<td>FAR</td>
<td>Federal Aviation Regulations</td>
</tr>
<tr>
<td>FCL</td>
<td>Flight Crew Licensing</td>
</tr>
<tr>
<td>FE</td>
<td>Flight Examiner</td>
</tr>
<tr>
<td>F/E</td>
<td>Flight Engineer</td>
</tr>
<tr>
<td>FEM</td>
<td>Flight Examiner Manual</td>
</tr>
<tr>
<td>FFS</td>
<td>Full Flight Simulator</td>
</tr>
<tr>
<td>FI</td>
<td>Flight Instructor</td>
</tr>
<tr>
<td>FIE</td>
<td>Flight Instructor Examiner</td>
</tr>
<tr>
<td>FIS</td>
<td>Flight Information Service</td>
</tr>
<tr>
<td>FMC</td>
<td>Flight Management Computer</td>
</tr>
</tbody>
</table>
FMS Flight Management System
FNPT Flight and Navigation Procedures Trainer
FS Flight Simulator
FSTD Flight Simulation Training Device
ft feet
FTD Flight Training Device

G Gravity forces
GLONASS Global Orbiting Navigation Satellite System
GM Guidance Material
GNSS Global Navigation Satellite Systems
GPS Global Positioning System

H Helicopter
HF High Frequency
HOFCS High Order Flight Control System
HPA High Performance Aeroplane
hrs Hours
HUMS Health and Usage Monitoring System
HT Head of Training

IAS Indicated Air Speed
ICAO International Civil Aviation Organisation
IGE In Ground Effect
IFR Instrument Flight Rules
ILS Instrument Landing System
IMC Instrument Meteorological Conditions
IR Instrument Rating
IRE Instrument Rating Examiner
IRI Instrument Rating Instructor
ISA International Standard Atmosphere

JAR Joint Aviation Requirements

kg Kilogram

LAPL Light Aircraft Pilot Licence
LDP Landing Decision Point
LMT Local Mean Time
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>Learning Objectives</td>
</tr>
<tr>
<td>LOFT</td>
<td>Line Orientated Flight Training</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MCC</td>
<td>Multi-Crew Cooperation</td>
</tr>
<tr>
<td>MCCI</td>
<td>Multi-Crew Cooperation Instructor</td>
</tr>
<tr>
<td>ME</td>
<td>Multi-engine</td>
</tr>
<tr>
<td>MEL</td>
<td>Minimum Equipment List</td>
</tr>
<tr>
<td>MEP</td>
<td>Multi-engine Piston</td>
</tr>
<tr>
<td>MET</td>
<td>Multi-engine Turboprop</td>
</tr>
<tr>
<td>METAR</td>
<td>Meteorological Aerodrome Report</td>
</tr>
<tr>
<td>MI</td>
<td>Mountain Rating Instructor</td>
</tr>
<tr>
<td>MP</td>
<td>Multi-pilot</td>
</tr>
<tr>
<td>MPA</td>
<td>Multi-pilot Aeroplane</td>
</tr>
<tr>
<td>MPL</td>
<td>Multi-crew Pilot Licence</td>
</tr>
<tr>
<td>MPH</td>
<td>Multi-pilot Helicopter</td>
</tr>
<tr>
<td>MTOM</td>
<td>Maximum Take-off Mass</td>
</tr>
<tr>
<td>NDB</td>
<td>Non-directional Beacon</td>
</tr>
<tr>
<td>NM</td>
<td>Nautical Miles</td>
</tr>
<tr>
<td>NOTAM</td>
<td>Notice To Airmen</td>
</tr>
<tr>
<td>NOTAR</td>
<td>No Tail Rotor</td>
</tr>
<tr>
<td>OAT</td>
<td>Outside Air Temperature</td>
</tr>
<tr>
<td>OBS</td>
<td>Omni Bearing Selector</td>
</tr>
<tr>
<td>OEI</td>
<td>One Engine Inoperative</td>
</tr>
<tr>
<td>OGE</td>
<td>Out of Ground Effect</td>
</tr>
<tr>
<td>OML</td>
<td>Operational Multi-pilot Limitation</td>
</tr>
<tr>
<td>OSL</td>
<td>Operational Safety Pilot Limitation</td>
</tr>
<tr>
<td>OTD</td>
<td>Other Training Devices</td>
</tr>
<tr>
<td>PAPI</td>
<td>Precision Approach Path Indicator</td>
</tr>
<tr>
<td>PF</td>
<td>Pilot Flying</td>
</tr>
<tr>
<td>PIC</td>
<td>Pilot-In-Command</td>
</tr>
<tr>
<td>PICUS</td>
<td>Pilot-In-Command Under Supervision</td>
</tr>
<tr>
<td>PL</td>
<td>Powered-lift</td>
</tr>
<tr>
<td>PNF</td>
<td>Pilot Not Flying</td>
</tr>
<tr>
<td>PPL</td>
<td>Private Pilot Licence</td>
</tr>
</tbody>
</table>
QDM Magnetic heading
QFE Atmospheric pressure at aerodrome elevation
QNH Altimeter sub-scale setting to obtain elevation when on the ground

RNAV Radio Navigation
RPM Revolution Per Minute
RRPM Rotor Revolution Per Minute
R/T Radiotelephony

S Sailplane
SATCOM Satellite communication
SE Single-engine
SEP Single-engine Piston
SET Single-engine Turboprop
SFE Synthetic Flight Examiner
SFI Synthetic Flight Instructor
SID Standard Instrument Departure
SIGMET Significant Meteorological Weather
SLPC Single Lever Power Control
SOP Standard Operating Procedure
SP Single-pilot
SPA Single-pilot Aeroplane
SPH Single-pilot Helicopter
SPIC Student PIC
SPL Sailplane Pilot Licence
SSR Secondary Surveillance Radar
STI Synthetic Training Instructor

TAF (Terminal Area Forecasts) Aerodrome Forecast
TAS True Air Speed
TAWS Terrain Awareness Warning System
TDP Take-off Decision Point
TEM Threat and Error Management
TMG Touring Motor Glider
TORA Take-off Run Available
TODA Take-off Distance Available
TR Type Rating
TRE Type Rating Examiner
TRI Type Rating Instructor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
</tr>
<tr>
<td>VASI</td>
<td>Visual Approach Slope Indicator</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rules</td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency</td>
</tr>
<tr>
<td>VMC</td>
<td>Visual Meteorological Conditions</td>
</tr>
<tr>
<td>VOR</td>
<td>VHF Omni-directional Radio Range</td>
</tr>
<tr>
<td>ZFTT</td>
<td>Zero Flight Time Training</td>
</tr>
<tr>
<td>ZFM</td>
<td>Zero Fuel Mass</td>
</tr>
</tbody>
</table>
AMC1 FCL.015 Application and issue of licences, ratings and certificates

APPLICATION AND REPORT FORMS

Common application and report forms can be found:

(a) For skill tests, proficiency checks for issue, revalidation or renewal of LAPL, BPL, SPL, PPL, CPL and IR in AMC1 to Appendix 7.

(b) For training, skill tests or proficiency checks for ATPL, MPL and class and type ratings, in AMC1 to Appendix 9.

(c) For assessments of competence for instructors, in AMC5 FCL.935.
AMC1 FCL.025 Theoretical knowledge examinations for the issue of licences

TERMINOLOGY

The meaning of the following terms used in FCL.025 should be as follows:

(a) ‘Entire set of examinations’: an examination in all subjects required by the licence level.

(b) ‘Examination’: the demonstration of knowledge in one or more examination papers.

(c) ‘Examination paper’: a set of questions to be answered by a candidate for examination.

(d) ‘Attempt’: a try to pass a specific paper.

(e) ‘Sitting’: a period of time established by the competent authority within which a candidate can take an examination. This period should not exceed 10 consecutive days. Only one attempt at each examination paper is allowed in one sitting.
AMC1 FCL.050 Recording of flight time

GENERAL

(a) The record of the flights flown should contain at least the following information:

(1) personal details: name(s) and address of the pilot;

(2) for each flight:
 (i) name(s) of PIC;
 (ii) date of flight;
 (iii) place and time of departure and arrival;
 (iv) type, including make, model and variant, and registration of the aircraft;
 (v) indication if the aircraft is SE or ME, if applicable;
 (vi) total time of flight;
 (vii) accumulated total time of flight.

(3) for each FSTD session, if applicable:
 (i) type and qualification number of the training device;
 (ii) FSTD instruction;
 (iii) date;
 (iv) total time of session;
 (v) accumulated total time.

(4) details on pilot function, namely PIC, including solo, SPIC and PICUS time, co-pilot, dual, FI or FE;

(5) Operational conditions, namely if the operation takes place at night, or is conducted under instrument flight rules.

(b) Logging of time:

(1) PIC flight time:
 (i) the holder of a licence may log as PIC time all of the flight time during which he or she is the PIC;
 (ii) the applicant for or the holder of a pilot licence may log as PIC time all solo flight time, flight time as SPIC and flight time under supervision provided that such SPIC time and flight time under supervision are countersigned by the instructor;
 (iii) the holder of an instructor certificate may log as PIC all flight time during which he or she acts as an instructor in an aircraft;
 (iv) the holder of an examiner’s certificate may log as PIC all flight time during which he or she occupies a pilot’s seat and acts as an examiner in an aircraft;
 (v) a co-pilot acting as PICUS on an aircraft on which more than one pilot is required under the type certification of the aircraft or as required by operational requirements.
provided that such PICUS time is countersigned by the PIC;

(vi) if the holder of a licence carries out a number of flights upon the same day returning on each occasion to the same place of departure and the interval between successive flights does not exceed 30 minutes, such series of flights may be recorded as a single entry.

(2) co-pilot flight time: the holder of a pilot licence occupying a pilot seat as co-pilot may log all flight time as co-pilot flight time on an aircraft on which more than one pilot is required under the type certification of the aircraft, or the regulations under which the flight is conducted;

(3) cruise relief co-pilot flight time: a cruise relief co-pilot may log all flight time as co-pilot when occupying a pilot’s seat;

(4) instruction time: a summary of all time logged by an applicant for a licence or rating as flight instruction, instrument flight instruction, instrument ground time, etc., may be logged if certified by the appropriately rated or authorised instructor from whom it was received;

(5) PICUS flight time: provided that the method of supervision is acceptable to the competent authority, a co-pilot may log as PIC flight time flown as PICUS when all the duties and functions of PIC on that flight were carried out in such a way that the intervention of the PIC in the interest of safety was not required.

(c) Format of the record:

(1) details of flights flown under commercial air transport may be recorded in a computerised format maintained by the operator. In this case an operator should make the records of all flights operated by the pilot, including differences and familiarisation training, available upon request to the flight crew member concerned;

(2) for other types of flight, the pilot should record the details of the flights flown in the following logbook format. For sailplanes and balloons, a suitable format should be used that contains the relevant items mentioned in (a) and additional information specific to the type of operation.
PILOT LOGBOOK

Holder’s name(s) ____________________________________

Holder’s licence number ____________________________________
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>DEPARTURE</td>
<td>ARRIVAL</td>
<td>AIRCRAFT</td>
<td>SINGLE-PILOT TIME</td>
<td>MULTI-PILOT TIME</td>
<td>TOTAL TIME OF FLIGHT</td>
<td>NAME(S) PIC</td>
</tr>
<tr>
<td></td>
<td>PLACE</td>
<td>TIME</td>
<td>PLACE</td>
<td>TIME</td>
<td>MAKE, MODEL, VARIANT</td>
<td>REGISTRATION</td>
<td>SE</td>
</tr>
<tr>
<td></td>
<td>DAY</td>
<td>NIGHT</td>
<td>TOTAL THIS PAGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL FROM PREVIOUS PAGES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATIONAL CONDITION TIME</td>
<td>PILOT FUNCTION TIME</td>
<td>FSTD SESSION</td>
<td>REMARKS AND ENDORSEMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIGHT IFR PIC CO-PILOT DUAL INSTRUCTOR DATE (dd/mm/yy) TYPE TOTAL TIME OF SESSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I certify that the entries in this log are true.

PILOT’S SIGNATURE
INSTRUCTIONS FOR USE

(d) FCL.050 requires holders of a pilot licence to record details of all flights flown. This logbook enables pilot licence holders to record flying experience in a manner which will facilitate this process while providing a permanent record of the licence holders flying. Pilots who fly regularly aeroplanes and helicopters or other aircraft categories are recommended to maintain separate logbooks for each aircraft category.

(e) Flight crew logbook entries should be made as soon as practicable after any flight undertaken. All entries in the logbook should be made in ink or indelible pencil.

(f) The particulars of every flight in the course of which the holder of a flight crew licence acts as a member of the operating crew of an aircraft are to be recorded in the appropriate columns using one line for each flight, provided that if an aircraft carries out a number of flights upon the same day returning on each occasion to the same place of departure and the interval between successive flights does not exceed 30 minutes, such series of flights may be recorded as a single entry.

(g) Flight time is recorded:
 (1) for aeroplanes, touring motor gliders and powered-lift aircraft, from the moment an aircraft first moves to taking off until the moment it finally comes to rest at the end of the flight;
 (2) for helicopters, from the moment a helicopter’s rotor blades start turning until the moment the helicopter finally comes to rest at the end of the flight, and the rotor blades are stopped;
 (3) for airships, from the moment an airship is released from the mast to taking off until the moment the airship finally comes to rest at the end of the flight, and is secured on the mast;

(h) When an aircraft carries two or more pilots as members of the operating crew, one of them shall, before the flight commences, be designated by the operator as the aircraft PIC, according to operational requirements, who may delegate the conduct of the flight to another suitably qualified pilot. All flying carried out as PIC is entered in the logbook as ‘PIC’. A pilot flying as ‘PICUS’ or ‘SPIC’ enters flying time as ‘PIC’ but all such entries are to be certified by the PIC or FI in the ‘Remarks’ column of the logbook.

(i) Notes on recording of flight time:
 (1) column 1: enter the date (dd/mm/yy) on which the flight commences;
 (2) column 2 or 3: enter the place of departure and destination either in full or the internationally recognised three or four letter designator. All times should be in UTC;
 (3) column 5: indicate whether the operation was SP or MP, and for SP operation whether SE or ME;
Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DATE (dd/mm/yy)</td>
<td>DEPARTURE</td>
<td>ARRIVAL</td>
<td>AIRCRAFT</td>
<td>SINGLE PILOT TIME</td>
<td>MULTI-PILOT TIME</td>
<td>TOTAL TIME OF FLIGHT</td>
<td>NAME(S) PIC</td>
</tr>
<tr>
<td></td>
<td>PLACE</td>
<td>TIME</td>
<td>PLACE</td>
<td>TIME</td>
<td>MAKE, MODEL, VARIANT</td>
<td>REGISTRATION</td>
<td>SE</td>
<td>ME</td>
</tr>
<tr>
<td>1</td>
<td>08/04/12</td>
<td>LFAC</td>
<td>1025</td>
<td>EGBJ</td>
<td>1240</td>
<td>PA34-250</td>
<td>G-SENE</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>09/04/12</td>
<td>EGBJ</td>
<td>1810</td>
<td>EGBJ</td>
<td>1930</td>
<td>C152</td>
<td>G-NONE</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>11/04/12</td>
<td>LGW</td>
<td>1645</td>
<td>LAX</td>
<td>0225</td>
<td>B747-400</td>
<td>G-ABCD</td>
<td>9</td>
</tr>
</tbody>
</table>
(4) column 6: total time of flight may be entered in hours and
minutes or decimal notation as desired;

(5) column 7: enter the name(s) of PIC or SELF as appropriate;

(6) column 8: indicate the number of landings as pilot flying by
day or night;

(7) column 9: enter flight time undertaken at night or under
instrument flight rules if applicable;

(8) column 10: pilot function time:
 (i) enter flight time as PIC, SPIC and PICUS as PIC;
 (ii) all time recorded as SPIC or PICUS is countersigned by
the aircraft PIC/FI in the ‘remarks’ (column 12);
 (iii) instructor time should be recorded as appropriate and
also entered as PIC.

(9) column 11: FSTD:
 (i) for any FSTD enter the type of aircraft and qualification
number of the device. For other flight training devices
enter either FNPT I or FNPT II as appropriate;
 (ii) total time of session includes all exercises carried out in
the device, including pre- and after-flight checks;
 (iii) enter the type of exercise performed in the ‘remarks’
(column 12), for example operator proficiency check,
revalidation.

(10) column 12: the ‘remarks’ column may be used to record
details of the flight at the holder’s discretion. The following
entries, however, should always be made:
 (i) instrument flight time undertaken as part of the training
for a licence or rating;
 (ii) details of all skill tests and proficiency checks;
 (iii) signature of PIC if the pilot is recording flight time as
SPIC or PICUS;
 (iv) signature of instructor if flight is part of an SEP or TMG
class rating revalidation.

(j) When each page is completed, accumulated flight time or hours
should be entered in the appropriate columns and certified by the
pilot in the ‘remarks’ column.
Example:

<table>
<thead>
<tr>
<th>NIGHT</th>
<th>OPERATIONAL CONDITION TIME</th>
<th>PILOT FUNCTION TIME</th>
<th>FSTD SESSION</th>
<th>REMARKS AND ENDORSEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>PILOT FUNCTION TIME</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO-PILOT</td>
<td>DUAL</td>
<td>INSTRUCTOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DATE (dd/mm/yy)</td>
<td>TYPE</td>
<td>TOTAL TIME OF SESSION</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 15</td>
<td>2 15</td>
<td>1 20</td>
<td>Night rating training</td>
</tr>
<tr>
<td>10/04/12</td>
<td>B747-400 (Q1234)</td>
<td>4 10</td>
<td>Revalidation proficiency check</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>9 40</td>
<td>9 40</td>
<td>PIC(S): signature of NAME(S) PIC</td>
</tr>
</tbody>
</table>
AMC1 FCL.055 Language proficiency

GENERAL

(a) The language proficiency assessment should be designed to reflect a range of tasks undertaken by pilots but with specific focus on language rather than operational procedures.

(b) The assessment should determine the applicant’s ability to:

(1) communicate effectively using standard R/T phraseology;
(2) deliver and understand messages in plain language in both usual and unusual situations that necessitate departure from standard R/T phraseology.

ASSESSMENT

(c) The assessment may be subdivided into three elements, as follows:

(1) listening: assessment of comprehension;
(2) speaking: assessment of pronunciation, fluency, structure and vocabulary;
(3) interaction.

(d) The three elements mentioned above may be combined and they can be covered by using a wide variety of means or technologies.

(e) Where appropriate, some or all of these elements may be achieved through the use of the R/T testing arrangements.

(f) When the elements of the testing are assessed separately, the final assessment should be consolidated in the language proficiency endorsement issued by the competent authority.

(g) The assessment may be conducted during one of the several existing checking or training activities, such as licence issue or rating issue and revalidation, line training, operator line checks or proficiency checks.

(h) The competent authority may use its own resources in developing or conducting the language proficiency assessment, or may delegate this task to language assessment bodies.

(i) The competent authority should establish an appeal procedure for applicants.

(j) The holder of a licence should receive a statement containing the level and validity of the language endorsements.

(k) Where the assessment method for the English language established by the competent authority is equivalent to that established for the assessment of use of the English language in accordance with AMC2 FCL.055, the same assessment may be used for both purposes.
BASIC ASSESSMENT REQUIREMENTS

(l) The aim of the assessment is to determine the ability of an applicant for a pilot licence or a licence holder to speak and understand the language used for R/T communications.

(1) The assessment should determine the ability of the applicant to use both:
 (i) standard R/T phraseology;
 (ii) plain language, in situations when standardised phraseology cannot serve an intended transmission.

(2) The assessment should include:
 (i) voice-only or face-to-face situations;
 (ii) common, concrete and work-related topics for pilots.

(3) The applicants should demonstrate their linguistic ability in dealing with an unexpected turn of events, and in solving apparent misunderstandings.

(4) The assessment should determine the applicant’s speaking and listening abilities. Indirect assessments, of grammatical knowledge, reading and writing, are not appropriate.

(5) The assessment should determine the language skills of the applicant in the following areas:
 (i) pronunciation:
 (A) the extent to which the pronunciation, stress, rhythm and intonation are influenced by the applicant’s first language or national variations;
 (B) how much they interfere with ease of understanding.
 (ii) structure:
 (A) the ability of the applicant to use both basic and complex grammatical structures;
 (B) the extent to which the applicant’s errors interfere with the meaning.
 (iii) vocabulary:
 (A) the range and accuracy of the vocabulary used;
 (B) the ability of the applicant to paraphrase successfully when lacking vocabulary.
 (iv) fluency:
 (A) tempo;
 (B) hesitancy;
 (C) rehearsed versus spontaneous speech;
 (D) use of discourse markers and connectors.
 (v) comprehension:
 (A) on common, concrete and work-related topics;
 (B) when confronted with a linguistic or situational complication or an unexpected turn of events.
Note: the accent or variety of accents used in the test material should be sufficiently intelligible for an international community of users.

(vi) interactions:

(A) quality of response (immediate, appropriate, and informative);

(B) the ability to initiate and maintain exchanges:

(a) on common, concrete and work-related topics;

(b) when dealing with an unexpected turn of events.

(C) the ability to deal with apparent misunderstandings by checking, confirming or clarifying.

Note: the assessment of the language skills in the areas mentioned above is conducted using the rating scale in AMC2 FCL.055.

(6) When the assessment is not conducted in a face-to-face situation, it should use appropriate technologies for the assessment of the applicant’s abilities in listening and speaking, and for enabling interactions (for example: simulated pilot or controller communication).

ASSESSORS

(m) It is essential that the persons responsible for language proficiency assessment ("assessors") are suitably trained and qualified. They should be either aviation specialists (for example current or former flight crew members or air traffic controllers), or language specialists with additional aviation-related training. An alternative approach would be to form an assessment team consisting of an operational expert and a language expert.

(1) The assessors should be trained on the specific requirements of the assessment.

(2) The assessors should not test applicants to whom they have given language training.

CRITERIA FOR THE ACCEPTABILITY OF LANGUAGE ASSESSMENT BODIES

(n) To ensure an impartial assessment process, the language assessment should be independent of the language training.

(1) To be accepted, the language assessment bodies should demonstrate:

(i) appropriate management and staffing;

(ii) quality system established and maintained to ensure compliance with, and adequacy of, assessment requirements, standards and procedures.

(2) The quality system established by a language assessment body should address the following:

(i) management;

(ii) policy and strategy;

(iii) processes;
(iv) the relevant provisions of ICAO or Part-FCL, standards and assessment procedures;
(v) organisational structure;
(vi) responsibility for the development, establishment and management of the quality system;
(vii) documentation;
(viii) quality assurance programme;
(ix) human resources and training (initial and recurrent);
(x) assessment requirements;
(xi) customer satisfaction.

(3) The assessment documentation and records should be kept for a period of time determined by the competent authority and made available to this competent authority, on request.

(4) The assessment documentation should include at least the following:

(i) assessment objectives;
(ii) assessment layout, time scale, technologies used, assessment samples, voice samples;
(iii) assessment criteria and standards (at least for the levels 4, 5 and 6 of the rating scale mentioned in AMC2 FCL.055);
(iv) documentation demonstrating the assessment validity, relevance and reliability;
(v) assessment procedures and responsibilities:
 (A) preparation of individual assessment;
 (B) administration: location(s), identity check and invigilation, assessment discipline, confidentiality or security;
 (C) reporting and documentation provided to the competent authority or to the applicant, including sample certificate;
 (D) retention of documents and records.

Note: refer to the ‘Manual on the Implementation of ICAO Language Proficiency Requirements’ (ICAO Doc 9835) for further guidance.
AMC2 FCL.055 Language proficiency

RATING SCALE

The following table describes the different levels of language proficiency:

<table>
<thead>
<tr>
<th>LEVEL</th>
<th>PRONUNCIATION</th>
<th>STRUCTURE</th>
<th>VOCABULARY</th>
<th>FLUENCY</th>
<th>COMPREHENSION</th>
<th>INTERACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>Pronunciation, stress, rhythm, and intonation, though possibly influenced by the first language or regional variation, almost never interfere with ease of understanding.</td>
<td>Both basic and complex grammatical structures and sentence patterns are consistently well controlled.</td>
<td>Vocabulary range and accuracy are sufficient to communicate effectively on a wide variety of familiar and unfamiliar topics. Vocabulary is idiomatic, nuanced and sensitive to register.</td>
<td>Able to speak at length with a natural, effortless flow. Varies speech flow for stylistic effect, for example to emphasise a point. Uses appropriate discourse markers and connectors spontaneously.</td>
<td>Comprehension is consistently accurate in nearly all contexts and includes comprehension of linguistic and cultural subtleties.</td>
<td>Interacts with ease in nearly all situations. Is sensitive to verbal and non-verbal cues, and responds to them appropriately.</td>
</tr>
<tr>
<td>(Level 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended</td>
<td>Pronunciation, stress, rhythm, and basic grammatical structures and</td>
<td></td>
<td>Vocabulary range and accuracy are</td>
<td>Able to speak at length with relative</td>
<td>Comprehension is accurate on</td>
<td>Responses are immediate,</td>
</tr>
<tr>
<td>(Level 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>PRONUNCIATION</td>
<td>STRUCTURE</td>
<td>VOCABULARY</td>
<td>FLUENCY</td>
<td>COMPREHENSION</td>
<td>INTERACTIONS</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Assumes a dialect or accent intelligible to the aeronautical community</td>
<td>Relevant grammatical structures and sentence patterns are determined by language functions appropriate to the task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intonation, though influenced by the first language or regional variation, rarely interfere with ease of understanding.</td>
<td>sentence patterns are consistently well controlled. Complex structures are attempted but with errors which sometimes interfere with meaning.</td>
<td>sufficient to communicate effectively on common, concrete, and work-related topics. Paraphrases consistently and successfully. Vocabulary is sometimes idiomatic.</td>
<td>ease on familiar topics, but may not vary speech flow as a stylistic device. Can make use of appropriate discourse markers or connectors.</td>
<td>common, concrete, and work-related topics and mostly accurate when the speaker is confronted with a linguistic or situational complication or an unexpected turn of events. Is able to comprehend a range of speech varieties (dialect or accent) or registers.</td>
<td>appropriate, and informative. Manages the speaker or listener relationship effectively.</td>
</tr>
<tr>
<td>Operational</td>
<td>Pronunciation, stress, rhythm, and intonation are influenced by the first language or regional variation but only sometimes</td>
<td>Basic grammatical structures and sentence patterns are used creatively and are usually well controlled. Errors may occur,</td>
<td>Vocabulary range and accuracy are usually sufficient to communicate effectively on common, concrete, and work-related</td>
<td>Produces stretches of language at an appropriate tempo. There may be occasional loss of fluency on transition from</td>
<td>Comprehension is mostly accurate on common, concrete, and work-related topics when the accent or variety used is sufficiently</td>
<td>Responses are usually immediate, appropriate, and informative. Initiates and maintains exchanges even</td>
</tr>
<tr>
<td>(Level 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEVEL</td>
<td>PRONUNCIATION</td>
<td>STRUCTURE</td>
<td>VOCABULARY</td>
<td>FLUENCY</td>
<td>COMPREHENSION</td>
<td>INTERACTIONS</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pre-Operational (Level 3)</td>
<td>Pronunciation, stress, rhythm, and intonation are influenced by the first language or regional variation and frequently interfere with ease of understanding.</td>
<td>Basic grammatical structures and sentence patterns associated with predictable situations are not always well controlled. Errors frequently interfere with understanding.</td>
<td>Vocabulary range and accuracy are often sufficient to communicate effectively on common, concrete, and work-related topics but range is limited and the topics. Can often paraphrase successfully when lacking vocabulary particularly in unusual or unexpected circumstances.</td>
<td>Interactions are sometimes immediate, appropriate, and informative. Productions are often accurate on common, concrete, and work-related topics when the accent or variety used is sufficiently intelligible for an international community of users. When the speaker is confronted with a linguistic or situational complication or an unexpected turn of events, comprehension may be slower or require clarification strategies.</td>
<td>When dealing with an unexpected turn of events. Deals adequately with apparent misunderstandings by checking, confirming, or clarifying.</td>
<td></td>
</tr>
</tbody>
</table>

Interactions:

- Assumptions of dialect or accent intelligible to the aeronautical community.
- Relevant grammatical structures and sentence patterns are determined by language functions appropriate to the task.
- Rehearsed or formulaic speech to spontaneous interaction, but this does not prevent effective communication. Can make limited use of discourse markers and connectors. Fillers are not distracting.
- Vocabulary range and accuracy are often sufficient to communicate effectively on common, concrete, and work-related topics but range is limited and the topics. Can often paraphrase successfully when lacking vocabulary particularly in unusual or unexpected circumstances.
- Comprehension is often accurate on common, concrete, and work-related topics when the accent or variety used is sufficiently intelligible for an international community of users.
- Responses are sometimes immediate, appropriate, and informative. Can initiate and maintain exchanges with reasonable ease on familiar
<table>
<thead>
<tr>
<th>LEVEL</th>
<th>PRONUNCIATION</th>
<th>STRUCTURE</th>
<th>VOCABULARY</th>
<th>FLUENCY</th>
<th>COMPREHENSION</th>
<th>INTERACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary (Level 2)</td>
<td>Pronunciation, stress, rhythm, and intonation are heavily influenced by the first language or regional variation and usually interfere with ease of understanding.</td>
<td>Shows only limited control of few simple memorised grammatical structures and sentence patterns.</td>
<td>Limited vocabulary range consisting only of isolated words and memorised phrases.</td>
<td>Can produce very short, isolated, memorised utterances with frequent pausing and a distracting use of fillers to search for expressions and articulate less familiar words.</td>
<td>Comprehension is limited to isolated, memorised phrases when they are carefully and slowly articulated.</td>
<td>Response time is slow, and often inappropriate. Interaction is limited to simple routine exchanges.</td>
</tr>
<tr>
<td>Pre-Elementary</td>
<td>Performs at a level below the elementary level.</td>
</tr>
<tr>
<td>LEVEL</td>
<td>PRONUNCIATION</td>
<td>STRUCTURE</td>
<td>VOCABULARY</td>
<td>FLUENCY</td>
<td>COMPREHENSION</td>
<td>INTERACTIONS</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Assumes a dialect or accent intelligible to the aeronautical community</td>
<td>Relevant grammatical structures and sentence patterns are determined by language functions appropriate to the task</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Level 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: operational Level (Level 4) is the minimum required proficiency level for R/T communication.

Levels 1 through 3 describe pre-elementary, elementary and pre-operational levels of language proficiency respectively, all of which describe a level below the language proficiency requirement.

Levels 5 and 6 describe extended and expert levels at levels of proficiency more advanced than the minimum required standard.
AMC3 FCL.055 Language proficiency

SPECIFIC REQUIREMENTS FOR HOLDERS OF AN IR
USE OF ENGLISH LANGUAGE

(a) The requirement of FCL.055(d) includes the ability to use the English language for the following purposes:

(1) flight: R/T relevant to all phases of flight, including emergency situations.

(2) ground: all information relevant to the accomplishment of a flight:
 (i) be able to read and demonstrate an understanding of technical manuals written in English, for example an operations manual, a helicopter flight manual, etc.;
 (ii) pre-flight planning, weather information collection, NOTAMs, ATC flight plan, etc.;
 (iii) use of all aeronautical en-route, departure and approach charts and associated documents written in English.

(3) communication: be able to communicate with other crew members in English during all phases of flight, including flight preparation.

(b) Alternatively, the items in (a) above may be demonstrated:

(1) by having passed a specific examination given by the competent authority after having undertaken a course of training enabling the applicant to meet all the objectives listed in (a) above; or

(2) the item in (a)(1) above is considered to be fulfilled, if the applicant has passed an IR, MPL or ATPL skill test and proficiency check during which the two-way R/T communication is performed in English;

(3) the item in (a)(2) above is considered to be fulfilled if the applicant has graduated from an IR, MPL or ATPL course given in English or if he or she has passed the theoretical IR or ATPL examination in English;

(4) the item in (a)(3) above is considered to be fulfilled, if the applicant for or the holder of an IR has graduated from an MCC course given in English and is holding a certificate of satisfactory completion of that course or if the applicant has passed a MP skill test and proficiency check for the issue of a class or type rating during which the two-way R/T communication and the communication with other crew members are performed in English.

(c) Where the examination methods referred to above are equivalent to those established for the language proficiency requirements in accordance with AMC1 FCL.055, the examination may be used to issue a language proficiency endorsement.
AMC1 FCL.060(b)(1) Recent experience

When a pilot needs to carry out one or more flights with an instructor or an examiner to comply with the requirement of FCL.060(b)(1) before the pilot can carry passengers, the instructor or examiner on board those flights will not be considered as a passenger.
GM1 FCL.060(b)(1) Recent experience

AEROPLANES, HELICOPTERS, POWERED-LIFT, AIRSHIPS AND SAILPLANES

If a pilot or a PIC is operating under the supervision of an instructor to comply with the required three take-offs, approaches and landings, no passengers may be on board.
AMC1 FCL.060(b)(5) Recent experience

NON-COMPLEX HELICOPTERS

Grouping of non-complex helicopters with similar handling and operational characteristics:
(a) Group 1: Bell 206/206L, Bell 407;
(b) Group 2: Hughes 369, MD 500N, MD 520N, MD 600;
(c) Group 3: SA 341/342, EC 120;
(d) Group 4: SA 313/318, SA 315/316/319, AS 350, EC 130;
(e) Group 5: all types listed in AMC1 FCL.740.H (a)(3) and R 22 and R 44.
SUBPART B — LIGHT AIRCRAFT PILOT LICENCE — LAPL

AMC1 FCL.115; FCL.120

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE LAPL

(a) The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated with the licence and the activity. The theoretical knowledge instruction provided by the ATO should include a certain element of formal classroom work but may also include other methods of delivery for example interactive video, slide or tape presentation, computer-based training and other media distance learning courses. The training organisation responsible for the training has to check if all the appropriate elements of the training course of theoretical knowledge instruction have been completed to a satisfactory standard before recommending the applicant for the examination.

(b) The following tables contain the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the LAPL(B) and LAPL(S). The syllabi for the theoretical knowledge instruction and examination for the PPL(A) and PPL(H) in AMC1 FCL.210 and FCL.215 should be used for the LAPL(A) and the LAPL(H), respectively.

I. COMMON SUBJECTS

[FOR LAPL(S) AND LAPL(B)]

<table>
<thead>
<tr>
<th>1.</th>
<th>AIR LAW AND ATC PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>International law: conventions, agreements and organisations</td>
</tr>
<tr>
<td>1.2.</td>
<td>Airworthiness of aircraft</td>
</tr>
<tr>
<td>1.3.</td>
<td>Aircraft nationality and registration marks</td>
</tr>
<tr>
<td>1.4.</td>
<td>Personnel licensing</td>
</tr>
<tr>
<td>1.5.</td>
<td>Rules of the air</td>
</tr>
<tr>
<td>1.6.</td>
<td>Procedures for air navigation: aircraft operations</td>
</tr>
<tr>
<td>1.7.</td>
<td>Air traffic regulations: airspace structure</td>
</tr>
<tr>
<td>1.8.</td>
<td>ATS and air traffic management</td>
</tr>
<tr>
<td>1.9.</td>
<td>AIS</td>
</tr>
<tr>
<td>1.10.</td>
<td>Aerodromes, external take-off sites</td>
</tr>
<tr>
<td>1.11.</td>
<td>Search and rescue</td>
</tr>
<tr>
<td>1.12.</td>
<td>Security</td>
</tr>
<tr>
<td>1.13.</td>
<td>Accident reporting</td>
</tr>
<tr>
<td>1.14.</td>
<td>National law</td>
</tr>
</tbody>
</table>

2. HUMAN PERFORMANCE

<p>| 2.1. | Human factors: basic concepts |
| 2.2. | Basic aviation physiology and health maintenance |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>METEOROLOGY</td>
</tr>
<tr>
<td>3.1.</td>
<td>The atmosphere</td>
</tr>
<tr>
<td>3.2.</td>
<td>Wind</td>
</tr>
<tr>
<td>3.3.</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>3.4.</td>
<td>Clouds and fog</td>
</tr>
<tr>
<td>3.5.</td>
<td>Precipitation</td>
</tr>
<tr>
<td>3.6.</td>
<td>Air masses and fronts</td>
</tr>
<tr>
<td>3.7</td>
<td>Pressure systems</td>
</tr>
<tr>
<td>3.8.</td>
<td>Climatology</td>
</tr>
<tr>
<td>3.9.</td>
<td>Flight hazards</td>
</tr>
<tr>
<td>3.10.</td>
<td>Meteorological information</td>
</tr>
</tbody>
</table>

4.	**COMMUNICATIONS**
4.1.	VFR communications
4.2.	Definitions
4.3.	General operating procedures
4.4.	Relevant weather information terms (VFR)
4.5.	Action required to be taken in case of communication failure
4.6.	Distress and urgency procedures
4.7.	General principles of VHF propagation and allocation of frequencies

II. ADDITIONAL SUBJECTS FOR EACH CATEGORY

II.A. SAILPLANES

5.	**PRINCIPLES OF FLIGHT - SAILPLANE**
5.1.	Aerodynamics (airflow)
5.2.	Flight mechanics
5.3.	Stability
5.4.	Control
5.5.	Limitations (load factor and manoeuvres)
5.6.	Stalling and spinning

<p>| 6. | OPERATIONAL PROCEDURES - SAILPLANE |
| 6.1. | General requirements |
| 6.2. | Launch methods |
| 6.3. | Soaring techniques |
| 6.4. | Circuits and landing |
| 6.5. | Outlanding |</p>
<table>
<thead>
<tr>
<th>6.6.</th>
<th>Special operational procedures and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7.</td>
<td>Emergency procedures</td>
</tr>
</tbody>
</table>

7. FLIGHT PERFORMANCE AND PLANNING - SAILPLANE

<table>
<thead>
<tr>
<th>7.1.</th>
<th>Verifying mass and balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.</td>
<td>Speed polar of sailplanes or cruising speed</td>
</tr>
<tr>
<td>7.3.</td>
<td>Flight planning and task setting</td>
</tr>
<tr>
<td>7.4.</td>
<td>ICAO flight plan (ATS flight plan)</td>
</tr>
<tr>
<td>7.5.</td>
<td>Flight monitoring and in-flight re-planning</td>
</tr>
</tbody>
</table>

8. AIRCRAFT GENERAL KNOWLEDGE, AIRFRAME AND SYSTEMS AND EMERGENCY EQUIPMENT – SAILPLANE

<table>
<thead>
<tr>
<th>8.1.</th>
<th>Airframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.</td>
<td>System design, loads and stresses</td>
</tr>
<tr>
<td>8.3.</td>
<td>Landing gear, wheels, tyres and brakes</td>
</tr>
<tr>
<td>8.4.</td>
<td>Mass and balance</td>
</tr>
<tr>
<td>8.5.</td>
<td>Flight controls</td>
</tr>
<tr>
<td>8.6.</td>
<td>Instruments</td>
</tr>
<tr>
<td>8.7.</td>
<td>Manuals and documents</td>
</tr>
<tr>
<td>8.8.</td>
<td>Airworthiness and maintenance</td>
</tr>
</tbody>
</table>

9. NAVIGATION – SAILPLANE

<table>
<thead>
<tr>
<th>9.1.</th>
<th>Basics of navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.</td>
<td>Magnetism and compasses</td>
</tr>
<tr>
<td>9.3.</td>
<td>Charts</td>
</tr>
<tr>
<td>9.4.</td>
<td>Dead reckoning navigation</td>
</tr>
<tr>
<td>9.5.</td>
<td>In-flight navigation</td>
</tr>
<tr>
<td>9.6.</td>
<td>Global navigation satellite systems</td>
</tr>
</tbody>
</table>

II.B. BALLOONS

5. PRINCIPLES OF FLIGHT – BALLOON

<table>
<thead>
<tr>
<th>5.1.</th>
<th>Principles of flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.</td>
<td>Aerostatics</td>
</tr>
<tr>
<td>5.3.</td>
<td>Loading limitations</td>
</tr>
<tr>
<td>5.4.</td>
<td>Operational limitations</td>
</tr>
</tbody>
</table>

6. OPERATIONAL PROCEDURES – BALLOON

<table>
<thead>
<tr>
<th>6.1.</th>
<th>General requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.</td>
<td>Special operational procedures and hazards (general aspects)</td>
</tr>
<tr>
<td>6.3.</td>
<td>Emergency procedures</td>
</tr>
</tbody>
</table>

7. FLIGHT PERFORMANCE AND PLANNING – BALLOON
7.1. Mass
7.1.1. Purpose of mass considerations
7.1.2. Loading
7.2. Performance
7.2.1. Performance: general
7.3. Flight planning and flight monitoring
7.3.1. Flight planning: general
7.3.2. Fuel planning
7.3.3. Pre-flight preparation
7.3.4. ICAO flight plan (ATS flight plan)
7.3.5. Flight monitoring and in-flight re-planning

8. **AIRCRAFT GENERAL KNOWLEDGE, ENVELOPE AND SYSTEMS AND EMERGENCY EQUIPMENT – BALLOON**
8.1. System design, loads, stresses and maintenance
8.2. Envelope
8.3. Burner (hot-air balloon and hot-air airship)
8.4. Fuel cylinders (hot-air balloon or hot-air airship)
8.5. Basket or gondola
8.6. Lifting gas (gas balloon)
8.7. Burning gas (hot-air balloon or hot-air airship)
8.8. Ballast (gas balloon)
8.9. Engine (hot-air airship only)
8.10. Instruments
8.11. Emergency equipment

9. **NAVIGATION – BALLOON**
9.1. General navigation
9.2. Basics of navigation
9.3. Magnetism and compasses
9.4. Charts
9.5. Dead reckoning navigation
9.6. In-flight navigation
9.7. GNSS
AMC1 FCL.120; FCL.125

THEORETICAL KNOWLEDGE EXAMINATION AND SKILL TEST FOR THE LAPL

(a) Theoretical knowledge examination
 (1) The examinations should be in written form and should comprise a total of 120 multiple-choice questions covering all the subjects.
 (2) For the subject ‘communication’ practical classroom testing may be conducted.
 (3) The competent authority should inform applicants of the language(s) in which the examinations will be conducted.

(b) Skill test
 Further training may be required following any failed skill test or part thereof. There should be no limit to the number of skill tests that may be attempted.

(c) Conduct of the test
 (1) If the applicant chooses to terminate a skill test for reasons considered inadequate by the FE, the applicant should retake the entire skill test. If the test is terminated for reasons considered adequate by the FE, only those sections not completed should be tested in a further flight.
 (2) Any manoeuvre or procedure of the test may be repeated once by the applicant. The FE may stop the test at any stage if it is considered that the applicant’s demonstration of flying skill requires a complete retest.
 (3) An applicant should be required to fly the aircraft from a position where the PIC functions can be performed and to carry out the test as if there is no other crew member. Responsibility for the flight should be allocated in accordance with national regulations.
AMC1 FCL.125 LAPL — Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL(A)

(a) The route to be flown for the skill test should be chosen by the FE. The route should end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should have a duration of at least 30 minutes which allows the pilot to demonstrate his/her ability to complete a route with at least two identified waypoints and may, as agreed between applicant and FE, be flown as a separate test.

(b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the flight manual or the authorised checklist for the aeroplane or TMG on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the aeroplane or TMG used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:

(1) operate the aeroplane or TMG within its limitations;
(2) complete all manoeuvres with smoothness and accuracy;
(3) exercise good judgment and airmanship;
(4) apply aeronautical knowledge;
(5) maintain control of the aeroplane or TMG at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

(d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the aeroplane or TMG used:

(1) height:
 normal flight ± 150 ft

(2) speed:
 (i) take-off and approach +15/-5 knots
 (ii) all other flight regimes ± 15 knots
CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(A):

<table>
<thead>
<tr>
<th>SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of checklist, airmanship, control of aeroplane or TMG by external visual reference, anti/de-icing procedures, etc. apply in all sections.</td>
</tr>
<tr>
<td>a Pre-flight documentation, NOTAM and weather briefing</td>
</tr>
<tr>
<td>b Mass and balance and performance calculation</td>
</tr>
<tr>
<td>c Aeroplane or TMG inspection and servicing</td>
</tr>
<tr>
<td>d Engine starting and after starting procedures</td>
</tr>
<tr>
<td>e Taxiing and aerodrome procedures, pre-take-off procedures</td>
</tr>
<tr>
<td>f Take-off and after take-off checks</td>
</tr>
<tr>
<td>g Aerodrome departure procedures</td>
</tr>
<tr>
<td>h ATC liaison: compliance</td>
</tr>
</tbody>
</table>
SECTION 2 GENERAL AIRWORK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ATC liaison</td>
</tr>
<tr>
<td>b</td>
<td>Straight and level flight, with speed changes</td>
</tr>
</tbody>
</table>
| c | Climbing:
 i. best rate of climb;
 ii. climbing turns;
 iii. levelling off. |
| d | Medium (30° bank) turns, look-out procedures and collision avoidance |
| e | Steep (45 ° bank) turns |
| f | Flight at critically low air speed with and without flaps |
| g | Stalling:
 i. clean stall and recover with power;
 ii. approach to stall descending turn with bank angle 20 °, approach configuration;
 iii. approach to stall in landing configuration. |
| h | Descending:
 i. with and without power;
 ii. descending turns (steep gliding turns);
 iii. levelling off. |

SECTION 3 EN-ROUTE PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Flight plan, dead reckoning and map reading</td>
</tr>
<tr>
<td>b</td>
<td>Maintenance of altitude, heading and speed</td>
</tr>
<tr>
<td>c</td>
<td>Orientation, airspace structure, timing and revision of ETAs, log keeping</td>
</tr>
<tr>
<td>d</td>
<td>Diversion to alternate aerodrome (planning and implementation)</td>
</tr>
<tr>
<td>e</td>
<td>Flight management (checks, fuel systems, carburettor icing, etc.)</td>
</tr>
<tr>
<td>f</td>
<td>ATC liaison: compliance</td>
</tr>
</tbody>
</table>
SECTION 4 APPROACH AND LANDING PROCEDURES

<table>
<thead>
<tr>
<th></th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Aerodrome arrival procedures</td>
</tr>
<tr>
<td>b</td>
<td>Collision avoidance (look-out procedures)</td>
</tr>
<tr>
<td>c</td>
<td>Precision landing (short field landing) and crosswind, if suitable conditions available</td>
</tr>
<tr>
<td>d</td>
<td>Flapless landing (if applicable)</td>
</tr>
<tr>
<td>e</td>
<td>Approach to landing with idle power</td>
</tr>
<tr>
<td>f</td>
<td>Touch and go</td>
</tr>
<tr>
<td>g</td>
<td>Go-around from low height</td>
</tr>
<tr>
<td>h</td>
<td>ATC liaison</td>
</tr>
<tr>
<td>i</td>
<td>Actions after flight</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with Sections 1 through 4

<table>
<thead>
<tr>
<th></th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Simulated engine failure after take-off</td>
</tr>
<tr>
<td>b</td>
<td>* Simulated forced landing</td>
</tr>
<tr>
<td>c</td>
<td>* Simulated precautionary landing</td>
</tr>
<tr>
<td>d</td>
<td>Simulated emergencies</td>
</tr>
<tr>
<td>e</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>

* These items may be combined, at the discretion of the FE.
AMC2 FCL.125 LAPL — Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL(H)

(a) The area and route to be flown for the skill test should be chosen by the FE. The route should end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should consist of at least two legs, each leg of a minimum duration of 10 minutes. The skill test may be conducted in two flights.

(b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the flight manual or the authorised checklist or pilot operating handbook for the helicopter on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the helicopter used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:
 (1) operate the helicopter within its limitations;
 (2) complete all manoeuvres with smoothness and accuracy;
 (3) exercise good judgment and airmanship;
 (4) apply aeronautical knowledge;
 (5) maintain control of the helicopter at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

(d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the helicopter used:
 (1) height:
 (i) normal forward flight ± 150 ft
 (ii) with simulated major emergency ± 200 ft
 (iii) hovering IGE flight ± 2 ft
 (2) speed:
 (i) take-off approach +15 knots /-10 knots
 (ii) all other flight regimes ± 15 knots
 (3) round drift:
 (i) take-off hover IGE ± 3 ft
 (ii) landing no sideways or backwards movement
CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(H):

<table>
<thead>
<tr>
<th>SECTION 1 PRE-FLIGHT OR POST-FLIGHT CHECKS AND PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of checklist, airmanship, control of helicopter by external visual reference, anti/de-icing procedures, etc. apply in all sections.</td>
</tr>
<tr>
<td>a Helicopter knowledge (for example technical log, fuel, mass and balance, performance), flight planning, NOTAM, and weather briefing</td>
</tr>
<tr>
<td>b Pre-flight inspection or action, location of parts and purpose</td>
</tr>
<tr>
<td>c Cockpit inspection, starting procedure</td>
</tr>
<tr>
<td>d Communication and navigation equipment checks, selecting and setting frequencies</td>
</tr>
<tr>
<td>e Pre-take-off procedure and ATC liaison</td>
</tr>
<tr>
<td>f Parking, shutdown and post-flight procedure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 2 HOVER MANOEUVRES, ADVANCED HANDLING AND CONFINED AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Take-off and landing (lift off and touch down)</td>
</tr>
<tr>
<td>b Taxi and hover taxi</td>
</tr>
<tr>
<td>c Stationary hover with head, cross and tail wind</td>
</tr>
<tr>
<td>d Stationary hover turns, 360° left and right (spot turns)</td>
</tr>
<tr>
<td>e Forward, sideways and backwards hover manoeuvring</td>
</tr>
<tr>
<td>f Simulated engine failure from the hover</td>
</tr>
<tr>
<td>g Quick stops into and downwind</td>
</tr>
<tr>
<td>h Sloping ground or unprepared sites landings and take-offs</td>
</tr>
<tr>
<td>i Take-offs (various profiles)</td>
</tr>
<tr>
<td>j Crosswind and downwind take-off (if practicable)</td>
</tr>
<tr>
<td>k Take-off at maximum take-off mass (actual or simulated)</td>
</tr>
<tr>
<td>l Approaches (various profiles)</td>
</tr>
<tr>
<td>m Limited power take-off and landing</td>
</tr>
<tr>
<td>n Autorotations (FE to select two items from the following: basic, range, low speed, and 360° turns)</td>
</tr>
<tr>
<td>o Autorotative landing</td>
</tr>
<tr>
<td>p Practice forced landing with power recovery</td>
</tr>
<tr>
<td>q Power checks, reconnaissance technique, approach and departure technique</td>
</tr>
</tbody>
</table>
SECTION 3 NAVIGATION AND EN-ROUTE PROCEDURES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Navigation and orientation at various altitudes or heights and map reading</td>
</tr>
<tr>
<td>b</td>
<td>Altitude or height, speed, heading control, observation of airspace and altimeter setting</td>
</tr>
<tr>
<td>c</td>
<td>Monitoring of flight progress, flight-log, fuel usage, endurance, ETA, assessment of track error, re-establishment of correct track and instrument monitoring</td>
</tr>
<tr>
<td>d</td>
<td>Observation of weather conditions and diversion planning</td>
</tr>
<tr>
<td>e</td>
<td>Collision avoidance (look-out procedures)</td>
</tr>
<tr>
<td>f</td>
<td>ATC liaison with due observance of regulations</td>
</tr>
</tbody>
</table>

SECTION 4 FLIGHT PROCEDURES AND MANOEUVRES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Level flight, control of heading, altitude or height and speed</td>
</tr>
<tr>
<td>b</td>
<td>Climbing and descending turns to specified headings</td>
</tr>
<tr>
<td>c</td>
<td>Level turns with up to 30 ° bank, 180 ° to 360 ° left and right</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES (SIMULATED WHERE APPROPRIATE)

Note: The FE selects 4 items from the following:

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Engine malfunctions, including governor failure, carburettor or engine icing and oil system, as appropriate</td>
</tr>
<tr>
<td>b</td>
<td>Fuel system malfunction</td>
</tr>
<tr>
<td>c</td>
<td>Electrical system malfunction</td>
</tr>
<tr>
<td>d</td>
<td>Hydraulic system malfunction, including approach and landing without hydraulics, as applicable</td>
</tr>
<tr>
<td>e</td>
<td>Main rotor or anti-torque system malfunction (FFS or discussion only)</td>
</tr>
<tr>
<td>f</td>
<td>Fire drills, including smoke control and removal, as applicable</td>
</tr>
<tr>
<td>g</td>
<td>Other abnormal and emergency procedures as outlined in appropriate flight manual</td>
</tr>
</tbody>
</table>
CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL(S) AND OF AN SPL

(a) An applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.

(b) The applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the sailplane on which the test is being taken.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:

1. operate the sailplane within its limitations;
2. complete all manoeuvres with smoothness and accuracy;
3. exercise good judgment and airmanship;
4. apply aeronautical knowledge;
5. maintain control of the sailplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(S) and of an SPL:

<table>
<thead>
<tr>
<th>SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of checklist, airmanship (control of sailplane by external visual reference), look-out. Apply in all sections.</td>
</tr>
<tr>
<td>a Pre-flight sailplane (daily) inspection, documentation, NOTAM and weather briefing</td>
</tr>
<tr>
<td>b Verifying in-limits mass and balance and performance calculation</td>
</tr>
<tr>
<td>c Sailplane servicing compliance</td>
</tr>
<tr>
<td>d Pre-take-off checks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 2 LAUNCH METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note: at least for one of the three launch methods all the mentioned items are fully exercised during the skill test</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTION 2 (A) WINCH OR CAR LAUNCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Signals before and during launch, including messages to winch driver</td>
</tr>
</tbody>
</table>
SECTION 2 (B) AEROTOW LAUNCH

- **a.** Signals before and during launch, including signals to or communications with tow plane pilot for any problems
- **b.** Initial roll and take-off climb
- **c.** Launch abandonment (simulation only or ‘talk-through’)
- **d.** Correct positioning during straight flight and turns
- **e.** Out of position and recovery
- **f.** Correct release from tow
- **g.** Look-out and airmanship through whole launch phase

SECTION 2 (C) SELF-LAUNCH

(powered sailplanes only)

- **a.** ATC compliance (if applicable)
- **b.** Aerodrome departure procedures
- **c.** Initial roll and take-off climb
- **d.** Look-out and airmanship during the whole take-off
- **e.** Simulated engine failure after take-off
- **f.** Engine shut down and stowage

SECTION 3 GENERAL AIRWORK

- **a.** Maintain straight flight: attitude and speed control
- **b.** Coordinated medium (30 ° bank) turns, look-out procedures and collision avoidance
- **c.** Turning on to selected headings visually and with use of compass
- **d.** Flight at high angle of attack (critically low air speed)
- **e.** Clean stall and recovery
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Spin avoidance and recovery</td>
</tr>
<tr>
<td>g</td>
<td>Steep (45 ° bank) turns, look-out procedures and collision avoidance</td>
</tr>
<tr>
<td>h</td>
<td>Local area navigation and awareness</td>
</tr>
</tbody>
</table>

SECTION 4 CIRCUIT, APPROACH AND LANDING

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Aerodrome circuit joining procedure</td>
</tr>
<tr>
<td>b</td>
<td>Collision avoidance: look-out procedures</td>
</tr>
<tr>
<td>c</td>
<td>Pre-landing checks</td>
</tr>
<tr>
<td>d</td>
<td>Circuit, approach control and landing</td>
</tr>
<tr>
<td>e</td>
<td>Precision landing (simulation of out-landing and short field)</td>
</tr>
<tr>
<td>f</td>
<td>Crosswind landing if suitable conditions available</td>
</tr>
</tbody>
</table>
AMC2 FCL.125; FCL.235

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A LAPL(B) AND A BPL

(a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be over flown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.

(b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the balloon used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:
 (1) operate the balloon within its limitations;
 (2) complete all manoeuvres with smoothness and accuracy
 (3) exercise good judgment and airmanship;
 (4) apply aeronautical knowledge;
 (5) maintain control of the balloon at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this paragraph should be used for the skill test for the issue of a LAPL(B) (hot-air balloon) and a BPL (hot-air balloon):

<table>
<thead>
<tr>
<th>SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.</td>
</tr>
<tr>
<td>a Pre-flight documentation, flight planning, NOTAM and weather briefing</td>
</tr>
<tr>
<td>b Balloon inspection and servicing</td>
</tr>
<tr>
<td>c Load calculation</td>
</tr>
<tr>
<td>d Crowd control, crew and passenger briefings</td>
</tr>
<tr>
<td>e Assembly and layout</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
</tbody>
</table>

SECTION 2 GENERAL AIRWORK

a	Climb to level flight
b	Level flight
c	Descent to level flight
d	Operating at low level
e	ATC compliance (if applicable)

SECTION 3 EN-ROUTE PROCEDURES

a	Dead reckoning and map reading
b	Marking positions and time
c	Orientation and airspace structure
d	Maintenance of altitude
e	Fuel management
f	Communication with retrieve crew
g	ATC compliance

SECTION 4 APPROACH AND LANDING PROCEDURES

a	Approach from low level, missed approach and fly on
b	Approach from high level, missed approach and fly on
c	Pre-landing checks
d	Passenger pre-landing briefing
e	Selection of landing field
f	Landing, dragging and deflation
g	ATC compliance (if applicable)
h Actions after flight

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

a Simulated fire on the ground and in the air
b Simulated pilot light and burner failures
c Other abnormal and emergency procedures as outlined in the appropriate flight manual.
d Oral questions

e The skill test contents and sections set out in this paragraph should be used for the skill test for the issue of a LAPL(B) (gas balloon) and a BPL (gas balloon):

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

a Pre-flight documentation, flight planning, NOTAM and weather briefing
b Balloon inspection and servicing
c Load calculation
d Crowd control, crew and passenger briefings
e Assembly and layout
f Inflation and pre-take-off procedures
g Take-off
h ATC compliance (if applicable)

SECTION 2 GENERAL AIRWORK

a Climb to level flight
b Level flight
c Descent to level flight
d Operating at low level
e ATC compliance (if applicable)
SECTION 3 EN-ROUTE PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Dead reckoning and map reading</td>
</tr>
<tr>
<td>b</td>
<td>Marking positions and time</td>
</tr>
<tr>
<td>c</td>
<td>Orientation and airspace structure</td>
</tr>
<tr>
<td>d</td>
<td>Maintenance of altitude</td>
</tr>
<tr>
<td>e</td>
<td>Ballast management</td>
</tr>
<tr>
<td>f</td>
<td>Communication with retrieve crew</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance</td>
</tr>
</tbody>
</table>

SECTION 4 APPROACH AND LANDING PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Approach from low level, missed approach and fly on</td>
</tr>
<tr>
<td>b</td>
<td>Approach from high level, missed approach and fly on</td>
</tr>
<tr>
<td>c</td>
<td>Pre-landing checks</td>
</tr>
<tr>
<td>d</td>
<td>Passenger pre-landing briefing</td>
</tr>
<tr>
<td>e</td>
<td>Selection of landing field</td>
</tr>
<tr>
<td>f</td>
<td>Landing, dragging and deflation</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance (if applicable)</td>
</tr>
<tr>
<td>h</td>
<td>Actions after flight</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Simulated closed appendix during take-off and climb</td>
</tr>
<tr>
<td>b</td>
<td>Simulated parachute or valve failure</td>
</tr>
<tr>
<td>c</td>
<td>Other abnormal and emergency procedures as outlined in the appropriate flight manual</td>
</tr>
<tr>
<td>d</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>
AMC1 FCL.110.A LAPL(A) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE LAPL (A)

(a) Entry to training
Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction

(1) The LAPL (A) flight instruction syllabus should take into account the principles of threat and error management and also cover:
 (i) pre-flight operations, including mass and balance determination, aircraft inspection and servicing;
 (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 (iii) control of the aircraft by external visual reference;
 (iv) flight at critically low air speeds, recognition of, and recovery from, incipient and full stalls;
 (v) flight at critically high air speeds, recognition of, and recovery from, spiral dive;
 (vi) normal and crosswind take-offs and landings;
 (vii) maximum performance (short field and obstacle clearance) take-offs, short-field landings;
 (viii) cross-country flying using visual reference, dead reckoning and radio navigation aids;
 (ix) emergency operations, including simulated aeroplane equipment malfunctions;
 (x) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures and communication procedures.

(2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.

(c) Syllabus of flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 (i) the applicant’s progress and ability;
 (ii) the weather conditions affecting the flight;
 (iii) the flight time available;
 (iv) instructional technique considerations;
 (v) the local operating environment;
 (vi) applicability of the exercises to the aeroplane or TMG type.
(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1a: Familiarisation with the aeroplane or TMG:
 (A) characteristics of the aeroplane or TMG;
 (B) cockpit layout;
 (C) systems;
 (D) checklists, drills and controls.

(ii) Exercise 1b: Emergency drills:
 (A) action if fire on the ground and in the air;
 (B) engine cabin and electrical system fire;
 (C) systems failure;
 (D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
 (A) flight authorisation and aeroplane or TMG acceptance;
 (B) serviceability documents;
 (C) equipment required, maps, etc.;
 (D) external checks;
 (E) internal checks;
 (F) harness, seat or rudder panel adjustments;
 (G) starting and warm-up checks;
 (H) power checks;
 (I) running down system checks and switching off the engine;
 (J) parking, security and picketing (for example tie down);
 (K) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Air experience: flight exercise.

(v) Exercise 4: Effects of controls:
 (A) primary effects when laterally level and when banked;
 (B) further effects of aileron and rudder;
 (C) effects of:
 (a) air speed;
 (b) slipstream;
 (c) power;
 (d) trimming controls;
 (e) flaps;
 (f) other controls, as applicable.
 (D) operation of:
 (a) mixture control;
(b) carburettor heat;
(c) cabin heating or ventilation.

(vi) Exercise 5a: Taxiing:
(A) pre-taxi checks;
(B) starting, control of speed and stopping;
(C) engine handling;
(D) control of direction and turning;
(E) turning in confined spaces;
(F) parking area procedure and precautions;
(G) effects of wind and use of flying controls;
(H) effects of ground surface;
(I) freedom of rudder movement;
(J) marshalling signals;
(K) instrument checks;
(L) air traffic control procedures.

(vii) Exercise 5b: Emergencies: brake and steering failure.

(viii) Exercise 6: Straight and level:
(A) at normal cruising power, attaining and maintaining straight and level flight;
(B) flight at critically high air speeds;
(C) demonstration of inherent stability;
(D) control in pitch, including use of trim;
(E) lateral level, direction and balance, trim;
(F) at selected air speeds (use of power);
(G) during speed and configuration changes;
(H) use of instruments for precision.

(ix) Exercise 7: Climbing:
(A) entry, maintaining the normal and max rate climb, levelling off;
(B) levelling off at selected altitudes;
(C) en-route climb (cruise climb);
(D) climbing with flap down;
(E) recovery to normal climb;
(F) maximum angle of climb;
(G) use of instruments for precision.

(x) Exercise 8: Descending:
(A) entry, maintaining and levelling off;
(B) levelling off at selected altitudes;
(C) glide, powered and cruise descent (including effect of power and air speed);

(D) side slipping (on suitable types);

(E) use of instruments for precision flight.

(xi) Exercise 9: Turning:

(A) entry and maintaining medium level turns;

(B) resuming straight flight;

(C) faults in the turn (in correct pitch, bank and balance);

(D) climbing turns;

(E) descending turns;

(F) slipping turns (for suitable types);

(G) turns onto selected headings, use of gyro heading indicator and compass;

(H) use of instruments for precision.

(xii) Exercise 10a: Slow flight:

Note: the objective is to improve the student’s ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the aeroplane or TMG in balance while returning to normal air speed.

(A) safety checks;

(B) introduction to slow flight;

(C) controlled flight down to critically slow air speed;

(D) application of full power with correct attitude and balance to achieve normal climb speed.

(xiii) Exercise 10b: Stalling:

(A) safety checks;

(B) symptoms;

(C) recognition;

(D) clean stall and recovery without power and with power;

(E) recovery when a wing drops;

(F) approach to stall in the approach and in the landing configurations, with and without power and recovery at the incipient stage.

(xiv) Exercise 11: Spin avoidance:

(A) safety checks;

(B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);

(C) instructor induced distractions during the stall.

(xv) Exercise 12: Take-off and climb to downwind position:

(A) pre-take-off checks;

(B) into wind take-off;
(C) safeguarding the nose wheel (if applicable);
(D) crosswind take-off;
(E) drills during and after take-off;
(F) short take-off and soft field procedure or techniques including performance calculations;
(G) noise abatement procedures.

(xvi) Exercise 13: Circuit, approach and landing:
(A) circuit procedures, downwind and base leg;
(B) powered approach and landing;
(C) safeguarding the nose wheel (if applicable);
(D) effect of wind on approach and touchdown speeds and use of flaps;
(E) crosswind approach and landing;
(F) glide approach and landing;
(G) short landing and soft field procedures or techniques;
(H) flapless approach and landing;
(I) wheel landing (tail wheel aeroplanes);
(J) missed approach and go-around;
(K) noise abatement procedures.

(xvii) Exercise 12/13: Emergencies:
(A) abandoned take-off;
(B) engine failure after take-off;
(C) mislanding and go-around;
(D) missed approach.

Note: in the interests of safety, it will be necessary for pilots trained on nose wheel aeroplanes or TMGs to undergo dual conversion training before flying tail wheel aeroplanes or TMGs, and vice versa.

(xviii) Exercise 14: First solo:
(A) instructor’s briefing including limitations;
(B) use of required equipment;
(C) observation of flight and de-briefing by instructor.

Note: during flights immediately following the solo circuit consolidation the following should be revised:
(A) procedures for leaving and rejoining the circuit;
(B) the local area, restrictions, map reading;
(C) use of radio aids for homing;
(D) turns using magnetic compass, compass errors.

(xix) Exercise 15: Advanced turning:
(A) steep turns (45 °), level and descending;
(B) stalling in the turn and recovery;
(C) recoveries from unusual attitudes, including spiral dives.

(xx) Exercise 16: Forced landing without power:
 (A) forced landing procedure;
 (B) choice of landing area, provision for change of plan;
 (C) gliding distance;
 (D) descent plan;
 (E) key positions;
 (F) engine cooling;
 (G) engine failure checks;
 (H) use of radio;
 (I) base leg;
 (J) final approach;
 (K) landing;
 (L) actions after landing.

(xxi) Exercise 17: Precautionary landing:
 (A) full procedure away from aerodrome to break-off height;
 (B) occasions necessitating a precautionary landing;
 (C) in-flight conditions;
 (D) landing area selection:
 (a) normal aerodrome;
 (b) disused aerodrome;
 (c) ordinary field.
 (E) circuit and approach;
 (F) actions after landing.

(xxii) Exercise 18a: Navigation:
 (A) flight planning:
 (a) weather forecast and actuals;
 (b) map selection and preparation:
 (1) choice of route;
 (2) airspace structure;
 (3) safety altitudes.
 (c) calculations:
 (1) magnetic heading(s) and time(s) en-route;
 (2) fuel consumption;
 (3) mass and balance;
 (4) mass and performance.
 (d) flight information:
 (1) NOTAMs, etc.;
(2) radio frequencies;
(3) selection of alternate aerodromes.
(e) aeroplane or TMG documentation;
(f) notification of the flight:
 (1) pre-flight administrative procedures;
 (2) flight plan form.

(B) departure:
(a) organisation of cockpit workload;
(b) departure procedures:
 (1) altimeter settings;
 (2) ATC liaison in regulated airspace;
 (3) setting heading procedure;
 (4) noting of ETAs.
(c) maintenance of altitude and heading;
(d) revisions of ETA and heading;
(e) log keeping;
(f) use of radio;
(g) minimum weather conditions for continuation of flight;
(h) in-flight decisions;
(i) transiting controlled or regulated airspace;
(j) diversion procedures;
(k) uncertainty of position procedure;
(l) lost procedure.

(C) arrival and aerodrome joining procedure:
(a) ATC liaison in regulated airspace;
(b) altimeter setting;
(c) entering the traffic pattern;
(d) circuit procedures;
(e) parking;
(f) security of aeroplane or TMG;
(g) refuelling;
(h) closing of flight plan, if appropriate;
(i) post-flight administrative procedures.

(xxiii) Exercise 18b: Navigation problems at lower levels and in reduced visibility:
(A) actions before descending;
(B) hazards (for example obstacles, and terrain);
(C) difficulties of map reading;
(D) effects of wind and turbulence;
(E) vertical situational awareness (avoidance of controlled flight into terrain);
(F) avoidance of noise sensitive areas;
(G) joining the circuit;
(H) bad weather circuit and landing.

(xxiv) Exercise 18c: Radio navigation (basics):
(A) use of GNSS or VOR/ADF:
 (a) selection of waypoints or stations;
 (b) to or from indications and orientation;
 (c) error messages.
(B) use of VHF/DF:
 (a) availability, AIP and frequencies;
 (b) R/T procedures and ATC liaison;
 (c) obtaining a QDM and homing.
(C) use of en-route or terminal radar:
 (a) availability and AIP;
 (b) procedures and ATC liaison;
 (c) pilot’s responsibilities;
 (d) secondary surveillance radar:
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.

(xxv) Exercise 19: Stopping and restarting the engine (in the case of TMGs only):
(A) engine cooling;
(B) switching-off procedure;
(C) restarting of the engine.
AMC2 FCL.110.A LAPL(A) — Experience requirements and crediting

CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.A(c) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL(A), in accordance with AMC1 FCL.110.A.
GM1 FCL.135.A; FCL.135.H

DIFFERENCES AND FAMILIARISATION TRAINING

(a) Differences training requires the acquisition of additional knowledge and training on an appropriate training device or the aircraft.

(b) Familiarisation training requires the acquisition of additional knowledge.
AMC1 FCL.110.H LAPL(H) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE LAPL(H)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction

(1) The LAPL(H) flight instruction syllabus should take into account the principles of threat and error management and also cover:

(i) pre-flight operations, including mass and balance determination, helicopter inspection and servicing;

(ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;

(iii) control of the helicopter by external visual reference;

(iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;

(v) emergency procedures, basic autorotations, simulated engine failure and ground resonance recovery if relevant to type;

(vi) sideways and backwards flight and turns on the spot;

(vii) incipient vortex ring recognition and recovery;

(viii) touchdown autorotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;

(ix) steep turns;

(x) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;

(xi) limited power and confined area operations including selection of and operations to and from unprepared sites;

(xii) cross-country flying by using visual reference, dead reckoning and, where available and radio navigation aids;

(xiii) operations to and from aerodromes; compliance with air traffic services procedures and communication procedures.

(2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.

(c) Syllabus of flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(i) the applicant’s progress and ability;

(ii) the weather conditions affecting the flight;
(iii) the flight time available;
(iv) instructional technique considerations;
(v) the local operating environment;
(vi) applicability of the exercises to the helicopter type.

(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1a: Familiarisation with the helicopter:
 (A) characteristics of the helicopter, external features;
 (B) cockpit layout;
 (C) systems;
 (D) checklists, procedures, controls.

(ii) Exercise 1b: Emergency procedures:
 (A) action if fire on the ground and in the air;
 (B) engine, cabin and electrical system fire;
 (C) systems failures;
 (D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
 (A) flight authorisation and helicopter acceptance;
 (B) serviceability documents;
 (C) equipment required, maps, etc.;
 (D) external checks;
 (E) internal checks;
 (F) seat, harness and flight controls adjustments;
 (G) starting and warm-up checks clutch engagement and starting rotors;
 (H) power checks;
 (I) running down system checks and switching off the engine;
 (J) parking, security and picketing;
 (K) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Air experience:
 (A) to introduce the student to rotary wing flight;
 (B) flight exercise.

(v) Exercise 4: Effects of controls:
 (A) function of flight controls, primary and secondary effect;
 (B) effect of air speed;
 (C) effect of power changes (torque);
 (D) effect of yaw (sideslip);
(E) effect of disc loading (bank and flare);
(F) effect on controls of selecting hydraulics on/off;
(G) effect of control friction;
(H) instruments;
(I) use of carburettor heat or anti-icing control.

(vi) Exercise 5: Power and attitude changes:
(A) relationship between cyclic control position, disc attitude, fuselage attitude and air speed;
(B) flapback;
(C) power required diagram in relation to air speed;
(D) power and air speed changes in level flight;
(E) use of instruments for precision;
(F) engine and air speed limitations.

(vii) Exercise 6a: Straight and level:
(A) at normal cruising power, attaining and maintaining straight and level flight;
(B) control in pitch, including use of control friction or trim;
(C) maintaining direction and balance, (ball or yawstring use);
(D) setting power for selected air speeds and speed changes;
(E) use of instruments for precision.

(viii) Exercise 6b: Climbing:
(A) optimum climb speed, best angle or rate of climb from power required diagram;
(B) initiation, maintaining the normal and maximum rate of climb, levelling off;
(C) levelling off at selected altitudes or heights;
(D) use of instruments for precision.

(ix) Exercise 6c: Descending:
(A) optimum descent speed and best angle or rate of descent from power required diagram;
(B) initiation, maintaining and levelling off;
(C) levelling off at selected altitudes or heights;
(D) descent (including effect of power and air speed);
(E) use of instruments for precision.

(x) Exercise 6d: Turning:
(A) initiation and maintaining medium level turns;
(B) resuming straight flight;
(C) altitude, bank and coordination;
(D) climbing and descending turns and effect on rate of climb or descent;
(E) turns onto selected headings, use of gyro heading indicator and compass;

(F) use of instruments for precision.

(xi) Exercise 7: Basic autorotation:
(A) safety checks, verbal warning and look-out;
(B) entry, development and characteristics;
(C) control of air speed and RRPM, rotor and engine limitations;
(D) effect of AUM, IAS, disc loading, G-forces and density altitude
(E) re-engagement and go-around procedures (throttle override or ERPM control);
(F) vortex condition during recovery;
(G) gentle and medium turns in autorotation;
(H) demonstration of variable flare simulated engine off landing.

(xii) Exercise 8a: Hovering:
(A) demonstrate hover IGE, importance of wind effect and attitude, ground cushion, stability in the hover, effects of over controlling;
(B) student holding cyclic stick only;
(C) student handling collective lever (and throttle) only;
(D) student handling collective lever, (throttle) and pedals;
(E) student handling all controls;
(F) demonstration of ground effect;
(G) demonstration of wind effect;
(H) demonstrate gentle forward running touchdown;
(I) specific hazards, for example snow, dust and litter.

(xiii) Exercise 8b: Hover taxiing and spot turns:
(A) revise hovering;
(B) precise ground speed and height control;
(C) effect of wind direction on helicopter attitude and control margin;
(D) control and coordination during spot turns;
(E) carefully introduce gentle forward running touchdown.

(xiv) Exercise 8c: Hovering and taxiing emergencies:
(A) revise hovering and gentle forward running touchdown, explain (demonstrate where applicable) effect of hydraulics failure in the hover;
(B) demonstrate simulated engine failure in the hover and hover taxi.
(C) demonstrate dangers of mishandling and over-pitching.

(xv) Exercise 9: Take-off and landing
(A) pre-take-off checks or drills;
(B) look-out;
(C) lifting to hover;
(D) after take-off checks;
(E) danger of horizontal movement near ground;
(F) danger of mishandling and overpitching;
(G) landing (without sideways or backwards movement);
(H) after landing checks or drills;
(I) take-off and landing crosswind and downwind.

(xvi) Exercise 10: Transitions from hover to climb and approach to hover:
(A) look-out;
(B) revise take-off and landing;
(C) ground effect, translational lift and its effects;
(D) flapback and its effects;
(E) effect of wind speed and direction during transitions from or to the hover;
(F) the constant angle approach;
(G) demonstration of variable flare simulated engine off landing.

(xvii) Exercise 11a: Circuit, approach and landing:
(A) revise transitions from hover to climb and approach to hover;
(B) circuit procedures, downwind and base leg;
(C) approach and landing with power;
(D) pre-landing checks;
(E) effect of wind on approach and IGE hover
(F) crosswind approach and landing;
(G) go-around;
(H) noise abatement procedures.

(viii) Exercise 11b: Steep and limited power approaches and landings:
(A) revise the constant angle approach;
(B) the steep approach (explain danger of high sink rate and low air speed);
(C) limited power approach (explain danger of high speed at touch down);
(D) use of the ground effect;
(E) variable flare simulated engine off landing.

(xix) Exercise 11c: Emergency procedures:
(A) abandoned take-off;
(B) missed approach and go-around;
(C) hydraulic off landing (if applicable);
(D) tail rotor control or tail rotor drive failure (briefing only);
(E) simulated emergencies in the circuit to include:
(F) hydraulics failure;
(G) simulated engine failure on take-off, crosswind, downwind and base leg;
(H) governor failure.

(xx) Exercise 12: First solo:
(A) instructor’s briefing, observation of flight and debriefing;
(B) warn of change of attitude from reduced and laterally displaced weight;
(C) warn of low tail, low skid or wheel during hover and landing;
(D) warn of dangers of loss of RRPM and overpitching;
(E) pre-take-off checks;
(F) into wind take-off;
(G) procedures during and after take-off;
(H) normal circuit, approaches and landings;
(I) action if an emergency.

(xxii) Exercise 13: Sideways and backwards hover manoeuvring:
(A) manoeuvring sideways flight heading into wind;
(B) manoeuvring backwards flight heading into wind;
(C) combination of sideways and backwards manoeuvring;
(D) manoeuvring sideways and backwards, heading out of wind;
(E) stability and weather cocking;
(F) recovery from backwards manoeuvring, (pitch nose down);
(G) groundspeed limitations for sideways and backwards manoeuvring.

(xxii) Exercise 14: Spot turns:
(A) revise hovering into wind and downwind;
(B) turn on spot through 360°:
 (a) around pilots position;
 (b) around tail rotor;
 (c) around helicopter geometric centre;
 (d) square and safe visibility clearing turn.
(C) rotor RPM control, torque effect, cyclic limiting stops due to CG position and wind speed and direction.

(xxiii) Exercise 15: Hover OGE and vortex ring:
(A) establishing hover OGE;
(B) drift, height or power control;
(C) demonstration of incipient stage of vortex ring, recognition and recovery (from a safe altitude);

(D) loss of tail rotor effectiveness.

(xxiv) Exercise 16: Simulated EOL:

(A) the effect of weight, disc loading, density attitude and RRPM decay;

(B) revise basic autorotation entry;

(C) optimum use of cyclic and collective to control speed or RRPM;

(D) variable flare simulated EOL;

(E) demonstrate constant attitude simulated EOL;

(F) demonstrate simulated EOL from hover or hover taxi;

(G) demonstrate simulated EOL from transition and low level.

(xxv) Exercise 17: Advanced autorotation:

(A) over a selected point at various height and speed;

(B) revise basic autorotation: note ground distance covered;

(C) range autorotation;

(D) low speed autorotation;

(E) constant attitude autorotation (terminate at safe altitude);

(F) ‘S’ turns;

(G) turns through 180° and 360°;

(H) effects on angles of descent, IAS, RRPM and effect of AUM.

(xxvi) Exercise 18: Practice forced landings:

(A) procedure and choice of the forced landing area;

(B) forced landing checks and crash action;

(C) re-engagement and go-around procedures.

(xxvii) Exercise 19: Steep turns:

(A) steep (level) turns (30° bank);

(B) maximum rate turns (45° bank if possible);

(C) steep autorotative turns;

(D) faults in the turn: balance, attitude, bank and coordination;

(E) RRPM control and disc loading;

(F) vibration and control feedback;

(G) effect of wind at low level.

(xxviii) Exercise 20: Transitions:

(A) revise ground effect, translational lift and flapback;

(B) maintaining constant height, (20–30 ft AGL):

(C) transition from hover to minimum 50 knots IAS and back to hover;

(D) demonstrate effect of wind.
(xxix) Exercise 21: Quick stops:

(A) use of power and controls;
(B) effect of wind;
(C) quick stops into wind;
(D) quick stops from crosswind and downwind terminating into wind;
(E) danger of vortex ring;
(F) danger of high disc loading.

(xxx) Exercise 22a: Navigation:

(A) Flight planning:
 (a) weather forecast and actuals;
 (b) map selection and preparation and use:
 (1) choice of route;
 (2) controlled airspace, danger and prohibited areas;
 (3) safety altitudes and noise abatement considerations.
 (c) calculations:
 (1) magnetic heading(s) and time(s) en-route;
 (2) fuel consumption;
 (3) mass and balance.
 (d) flight information:
 (1) NOTAMs, etc.;
 (2) radio frequencies;
 (3) selection of alternate landing sites.
 (e) helicopter documentation;
 (f) notification of the flight:
 (1) pre-flight administrative procedures;
 (2) flight plan form (where appropriate).

(B) Departure:
 (a) organisation of cockpit workload;
 (b) departure procedures:
 (1) altimeter settings;
 (2) ATC liaison in regulated airspace;
 (3) setting heading procedure;
 (4) noting of ETAs.
 (c) maintenance of height or altitude and heading;
 (d) revisions of ETA and heading:
 (1) 10° line, double track, track error and closing angle;
(2) 1 in 60 rule;
(3) amending an ETA.
(e) log keeping;
(f) use of radio;
(g) minimum weather conditions for continuation of flight;
(h) in-flight decisions;
(i) transiting controlled or regulated airspace;
(j) uncertainty of position procedure;
(k) lost procedure.
(C) Arrival and aerodrome joining procedure:
(a) ATC liaison in regulated airspace;
(b) altimeter setting;
(c) entering the traffic pattern;
(d) circuit procedures;
(e) parking;
(f) security of helicopter;
(g) refuelling;
(h) closing of flight plan, (if appropriate);
(i) post-flight administrative procedures.

(xxxi) Exercise 22b: Navigation problems at low heights and in reduced visibility:
(A) actions before descending;
(B) hazards (for example obstacles and other aircraft);
(C) difficulties of map reading;
(D) effects of wind and turbulence;
(E) avoidance of noise sensitive areas;
(F) joining the circuit;
(G) bad weather circuit and landing;
(H) appropriate procedures and choice of landing area for precautionary landings.

(xxxii) Exercise 22c: Radio navigation (basics):
(A) Use of GNNS or VOR/NDB:
 (a) selection of waypoints;
 (b) to or from indications or orientation;
 (c) error messages.
(B) Use of VHF/DF:
 (a) availability, AIP and frequencies;
 (b) R/T procedures and ATC liaison;
 (c) obtaining a QDM and homing.
(C) Use of en-route or terminal radar:
 (a) availability and AIP;
 (b) procedures and ATC liaison;
 (c) pilot's responsibilities;
 (d) secondary surveillance radar:
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.

(xxxiii) Exercise 23: Advanced take-off, landings and transitions:
 (A) landing and take-off out of wind (performance reduction);
 (B) ground effect, translational lift and directional stability variation when out of wind;
 (C) downwind transitions;
 (D) vertical take-off over obstacles;
 (E) reconnaissance of landing site;
 (F) running landing;
 (G) zero speed landing;
 (H) crosswind and downwind landings;
 (I) steep approach;
 (J) go-around.

(xxxiv) Exercise 24: Sloping ground:
 (A) limitations and assessing slope angle;
 (B) wind and slope relationship: blade and control stops;
 (C) effect of CG when on slope;
 (D) ground effect on slope and power required;
 (E) right skid up slope;
 (F) left skid up slope;
 (G) nose up slope;
 (H) avoidance of dynamic roll over, dangers soft ground and sideways movement on touchdown;
 (I) danger of striking main or tail rotor by harsh control movement near ground.

(xxxv) Exercise 25: Limited power:
 (A) take-off power check;
 (B) vertical take-off over obstacles;
 (C) in-flight power check;
 (D) running landing;
 (E) zero speed landing;
 (F) approach to low hover;
(G) approach to hover;
(H) approach to hover OGE;
(I) steep approach;
(J) go-around.

(xxxvi) Exercise 26: Confined areas:

(A) landing capability and performance assessment;
(B) locating landing site and assessing wind speed and direction;
(C) reconnaissance of landing site;
(D) select markers;
(E) select direction and type of approach;
(F) circuit;
(G) approach to committed point and go-around;
(H) approach;
(I) clearing turn;
(J) landing;
(K) power check and performance assessment in and OGE;
(L) normal take-off to best angle of climb speed;
(M) vertical take-off from hover.
AMC2 FCL.110.H LAPL(H) — Experience requirements and crediting

CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.H(b) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL(H), in accordance with AMC1 FCL.110.H.
AMC1 FCL.110.S LAPL(S) — Experience requirements and crediting

CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.S(c) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL(S), in accordance with AMC1 FCL.110.S and FCL.210.S.
FLIGHT INSTRUCTION FOR THE LAPL(S) AND THE SPL

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction

(1) The LAPL (S) and SPL flight instruction syllabus should take into account the principles of threat and error management and also cover:

(i) pre-flight operations, including verifying mass and balance, aircraft inspection and servicing, airspace and weather briefing;
(ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
(iii) control of the aircraft by external visual reference;
(iv) flight at high angle of attack (critically low air speeds), recognition of, and recovery from, incipient and full stalls and spins;
(v) flight at critically high air speeds, recognition of, and recovery from spiral dive;
(vi) normal and crosswind take-offs in respect with the different launch methods;
(vii) normal and crosswind landings;
(viii) short field landings and outlandings: field selection, circuit and landing hazards and precautions;
(ix) cross-country flying using visual reference, dead reckoning and available navigation aids;
(x) soaring techniques as appropriate to site conditions;
(xi) emergency actions;
(xii) compliance with air traffic services procedures and communication procedures.

(2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.

(c) Syllabus of flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(i) the applicant’s progress and ability;
(ii) the weather conditions affecting the flight;
(iii) the flight time available;
(iv) instructional technique considerations;

(2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.
(v) the local operating environment;
(vi) applicability of the exercises to the sailplane type.

(2) At the discretion of the instructors some of the exercises may be combined and some other exercises may be done in several flights.

(3) At least the exercises 1 to 12 have to be completed before the first solo flight.

(4) Each of the exercises involves the need for the applicant to be aware of the needs for good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1: Familiarisation with the sailplane:
 (A) characteristics of the sailplane;
 (B) cockpit layout: instruments and equipment;
 (C) light controls: stick, pedals, airbrakes, flaps and trim;
 (D) cable release and undercarriage;
 (E) checklists, drills and controls.

(ii) Exercise 2: Procedures if emergencies:
 (A) use of safety equipment (parachute);
 (B) action if system failures;
 (C) bail-out procedures.

(iii) Exercise 3: Preparation for flight:
 (A) pre-flight briefings;
 (B) required documents on board;
 (C) equipment required for the intended flight;
 (D) ground handling, movements, tow out, parking and security;
 (E) pre-flight external and internal checks;
 (F) verifying in-limits mass and balance;
 (G) harness, seat or rudder panel adjustments;
 (H) passenger handling;
 (I) pre-launch checks.

(iv) Exercise 4: Initial air experience:
 (A) area familiarisation;
 (B) look-out procedures.

(v) Exercise 5: Effects of controls:
 (A) look-out procedures;
 (B) use of visual references;
 (C) primary effects when laterally level and when banked;
 (D) reference attitude and effect of elevator;
 (E) relationship between attitude and speed;
 (F) effects of:
(a) flaps (if available);
(b) airbrakes.

(vi) Exercise 6: Coordinated rolling to and from moderate angles of bank:
(A) look-out procedures;
(B) further effects of aileron (adverse yaw) and rudder (roll);
(C) coordination;
(D) rolling to and from moderate angles of bank and return to straight flight.

(vii) Exercise 7: Straight flying:
(A) look-out procedures;
(B) maintaining straight flight;
(C) flight at critically high air speeds;
(D) demonstration of inherent pitch stability;
(E) control in pitch, including use of trim;
(F) lateral level, direction and balance and trim;
(G) air speed: instrument monitoring and control.

(viii) Exercise 8: Turning:
(A) look-out procedures;
(B) demonstration and correction of adverse yaw;
(C) entry to turn (medium level turns);
(D) stabilising turns;
(E) exiting turns;
(F) faults in the turn (slipping and skidding);
(G) turns on to selected headings and use of compass;
(H) use of instruments (ball indicator or slip string) for precision.

(ix) Exercise 9a: Slow flight:
Note: the objective is to improve the student’s ability to recognise inadvertent flight at critically low speeds (high angle of attack) and to provide practice in maintaining the sailplane in balance while returning to normal attitude (speed).
(A) safety checks;
(B) introduction to characteristics of slow flight;
(C) controlled flight down to critically high angle of attack (slow air speed).

(x) Exercise 9b: Stalling:
(A) safety checks;
(B) pre-stall symptoms, recognition and recovery;
(C) stall symptoms, recognition and recovery;
(D) recovery when a wing drops;
(E) approach to stall in the approach and in the landing configurations;
(F) recognition and recovery from accelerated stalls.

(xi) Exercise 10: Spin recognition and spin avoidance:
(A) safety checks;
(B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);
(C) entry into fully developed spins (if suitable training aircraft available);
(D) recognition of full spins (if suitable training aircraft available);
(E) standard spin recovery (if suitable training aircraft available);
(F) instructor induced distractions during the spin entry (if suitable training aircraft available).

Note: consideration of manoeuvre limitations and the need to refer to the sailplane manual and mass and balance calculations. If no suitable training aircraft is available to demonstrate the fully developed spin, all the aspects related to these training items have to be covered by specific theoretical instruction.

(xii) Exercise 11: Take-off or launch methods:

At least one launch method must be taught containing all the subjects below.

(xiii) Exercise 11a: Winch launch:
(A) signals or communication before and during launch;
(B) use of the launching equipment;
(C) pre-take-off checks;
(D) into wind take-off;
(E) crosswind take-off;
(F) optimum profile of winch launch and limitations;
(G) release procedures;
(H) launch failure procedures.

(xiv) Exercise 11b: Aero tow:
(A) signals or communication before and during launch;
(B) use of the launch equipment;
(C) pre-take-off checks;
(D) into wind take-off;
(E) crosswind take-off;
(F) on tow: straight flight, turning and slip stream;
(G) out of position in tow and recovery;
(H) descending on tow (towing aircraft and sailplane);
(I) release procedures;
(J) launch failure and abandonment.

(xv) Exercise 11c: Self-launch:

(A) engine extending and retraction procedures;
(B) engine starting and safety precautions;
(C) pre-take-off checks;
(D) noise abatement procedures;
(E) checks during and after take-off;
(F) into wind take-off;
(G) crosswind take-off;
(H) power failures and procedures;
(I) abandoned take-off;
(J) maximum performance (short field and obstacle clearance) take-off;
(K) short take-off and soft field procedure or techniques and performance calculations.

(xvi) Exercise 11d: Car launch:

(A) signals before and during launch;
(B) use of the launch equipment;
(C) pre-take-off checks;
(D) into wind take-off;
(E) crosswind take-off;
(F) optimum launch profile and limitations;
(G) release procedures;
(H) launch failure procedures.

(xvii) Exercise 11e: Bungee launch:

(A) signals before and during launch;
(B) use of the launch equipment;
(C) pre-take-off checks;
(D) into wind take-off.

(xviii) Exercise 12: Circuit, approach and landing:

(A) procedures for rejoining the circuit;
(B) collision avoidance, look-out techniques and procedures;
(C) pre-landing checks: circuit procedures, downwind and base leg;
(D) effect of wind on approach and touchdown speeds;
(E) use of flaps (if applicable);
(F) visualisation of an aiming point;
(G) approach control and use of airbrakes;
(H) normal and crosswind approach and landing;
(I) short landing procedures or techniques.

(xix) Exercise 13: First solo:
 (A) instructor’s briefing including limitations;
 (B) awareness of local area and restrictions;
 (C) use of required equipment;
 (D) observation of flight and debriefing by instructor.

(xx) Exercise 14: Advanced turning:
 (A) steep turns (45°);
 (B) stalling and spin avoidance in the turn and recovery;
 (C) recoveries from unusual attitudes, including spiral dives.

(xxi) Exercise 15: Soaring techniques:
 At least one of the three soaring techniques must be taught containing all subjects below.

(xxii) Exercise 15a: Thermalling:
 (A) look-out procedures;
 (B) detection and recognition of thermals;
 (C) use of audio soaring instruments;
 (D) joining a thermal and giving way;
 (E) flying in close proximity to other sailplanes;
 (F) centring in thermals;
 (G) leaving thermals.

(xxiii) Exercise 15b: Ridge flying:
 (A) look-out procedures;
 (B) practical application of ridge flying rules;
 (C) optimisation of flight path;
 (D) speed control.

(xxiv) Exercise 15C: Wave flying:
 (A) look-out procedures;
 (B) wave access techniques;
 (C) speed limitations with increasing height;
 (D) use of oxygen.

(xxv) Exercise 16: Out-landings:
 (A) gliding range;
 (B) restart procedures (only for self-launching and self-sustaining sailplanes);
 (C) selection of landing area;
 (D) circuit judgement and key positions;
 (E) circuit and approach procedures;
 (F) actions after landing.
(xxvi) Exercise 17: Cross-country flying:

If the required cross-country flight will be conducted as a solo cross-country flight, all the subjects below must be taught before.

(xxvii) Exercise 17a: Flight planning:

(A) weather forecast and actuals;
(B) NOTAMs and airspace considerations;
(C) map selection and preparation;
(D) route planning;
(E) radio frequencies (if applicable);
(F) pre-flight administrative procedure;
(G) flight plan where required;
(H) mass and performance;
(I) alternate aerodromes and landing areas;
(J) safety altitudes.

(xxviii) Exercise 17b: In-flight navigation:

(A) maintaining track and re-routing considerations;
(B) use of radio and phraseology (if applicable);
(C) in-flight planning;
(D) procedures for transiting regulated airspace or ATC liaison where required;
(E) uncertainty of position procedure;
(F) lost procedure;
(G) use of additional equipment where required;
(H) joining, arrival and circuit procedures at remote aerodrome.

(xix) Exercise 17c: Cross-country techniques:

(A) look-out procedures;
(B) maximising potential cross-country performance;
(C) risk reduction and threat reaction.
AMC1 FCL.135.S; FCL.205.S(a)

EXTENSION OF PRIVILEGES TO TMG: LAPL(S) AND SPL

(a) The aim of the flight training is to qualify LAPL(S) or SPL holders to exercise the privileges of the licence on a TMG.

(b) The ATO should issue a certificate of satisfactory completion of the training.

(c) Theoretical knowledge

The theoretical knowledge syllabus should cover the revision or explanation of:

(1) Principles of flight:
 (i) operating limitations (addition TMG);
 (ii) propellers;
 (iii) flight mechanics.

(2) Operational procedures for TMG:
 (i) special operational procedures and hazards;
 (ii) emergency procedures.

(3) Flight performance and planning:
 (i) mass and balance considerations;
 (ii) loading;
 (iii) CG calculation;
 (iv) load and trim sheet;
 (v) performance of TMGs;
 (vi) flight planning for VFR flights;
 (vii) fuel planning;
 (viii) pre-flight preparation;
 (ix) ICAO flight plan;
 (x) flight monitoring and in-flight re-planning.

(4) Aircraft general knowledge:
 (i) system designs, loads, stresses, maintenance;
 (ii) airframe;
 (iii) landing gear, wheels, tyres, brakes;
 (iv) fuel system;
 (v) electrics;
 (vi) piston engines;
 (vii) propellers;
 (viii) instrument and indication systems.
(5) Navigation:
 (i) dead reckoning navigation (addition powered flying elements);
 (ii) in-flight navigation (addition powered flying elements);
 (iii) basic radio propagation theory;
 (iv) radio aids (basics);
 (v) radar (basics);
 (vi) GNSS.

(d) Flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed.

(2) The flying exercises should cover the revision or explanation of the following exercises:

(i) Exercise 1: Familiarisation with the TMG:
 (A) characteristics of the TMG;
 (B) cockpit layout;
 (C) systems;
 (D) checklists, drills and controls.

(ii) Exercise 1e: Emergency drills:
 (A) action if fire on the ground and in the air;
 (B) engine cabin and electrical system fire;
 (C) systems failure;
 (D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
 (A) serviceability documents;
 (B) equipment required, maps, etc.;
 (C) external checks;
 (D) internal checks;
 (E) harness and seat or rudder panel adjustments;
 (F) starting and warm-up checks;
 (G) power checks;
 (H) running down system checks and switching off the engine;
 (I) parking, security and picketing (for example tie down);
 (J) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Taxiing:
 (A) pre-taxi checks;
 (B) starting, control of speed and stopping;
(C) engine handling;
(D) control of direction and turning;
(E) turning in confined spaces;
(F) parking area procedure and precautions;
(G) effects of wind and use of flying controls;
(H) effects of ground surface;
(I) freedom of rudder movement;
(J) marshalling signals;
(K) instrument checks;
(L) air traffic control procedures (if applicable).

(v) Exercise 3e: Emergencies: brake and steering failure.

(vi) Exercise 4: Straight and level:
 (A) at normal cruising power, attaining and maintaining straight and level flight;
 (B) flight at critically high air speeds;
 (C) demonstration of inherent stability;
 (D) control in pitch, including use of trim;
 (E) lateral level, direction and balance and trim;
 (F) at selected air speeds (use of power);
 (G) during speed and configuration changes;
 (H) use of instruments for precision.

(vii) Exercise 5: Climbing:
 (A) entry, maintaining the normal and max rate climb and levelling off;
 (B) levelling off at selected altitudes;
 (C) en-route climb (cruise climb);
 (D) climbing with flap down;
 (E) recovery to normal climb;
 (F) maximum angle of climb;
 (G) use of instruments for precision.

(viii) Exercise 6: Descending:
 (A) entry, maintaining and levelling off;
 (B) levelling off at selected altitudes;
 (C) glide, powered and cruise descent (including effect of power and air speed);
 (D) side slipping (on suitable types);
 (E) use of instruments for precision flight.

(ix) Exercise 7: Turning:
 (A) entry and maintaining medium level turns;
(B) resuming straight flight;
(C) faults in the turn (incorrect pitch, bank and balance);
(D) climbing turns;
(E) descending turns;
(F) slipping turns (on suitable types);
(G) turns onto selected headings, use of gyro heading indicator or compass;
(H) use of instruments for precision.

(x) Exercise 8a: Slow flight:
Note: the objective is to improve the pilot’s ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the TMG in balance while returning to normal air speed.

(A) safety checks;
(B) introduction to slow flight;
(C) controlled flight down to critically slow air speed;
(D) application of full power with correct attitude and balance to achieve normal climb speed.

(xi) Exercise 8b: Stalling:

(A) airmanship;
(B) safety checks;
(C) symptoms;
(D) recognition;
(E) clean stall and recovery without power and with power;
(F) recovery when a wing drops;
(G) approach to stall in the approach and in the landing configurations, with and without power, recovery at the incipient stage.

(xii) Exercise 9: Take-off and climb to downwind position:

(A) pre-take-off checks;
(B) into wind take-off;
(C) safeguarding the nose wheel (if applicable);
(D) crosswind take-off;
(E) drills during and after take-off;
(F) short take-off and soft field procedure or techniques including performance calculations;
(G) noise abatement procedures.

(xiii) Exercise 10: Circuit, approach and landing:

(A) circuit procedures, downwind and base leg;
(B) powered approach and landing;
(C) safeguarding the nose wheel (if applicable);
(D) effect of wind on approach and touchdown speeds;
(E) use of airbrakes, flaps, slats or spoilers;
(F) crosswind approach and landing;
(G) glide approach and landing (engine stopped);
(H) short landing and soft field procedures or techniques;
(I) flapless approach and landing (if applicable);
(J) wheel landing (tail wheel aeroplanes);
(K) missed approach and go-around;
(L) noise abatement procedures.

(xiv) Exercise 9/10e: Emergencies:
(A) abandoned take-off;
(B) engine failure after take-off;
(C) mislanding and go-around;
(D) missed approach.

Note: in the interests of safety it will be necessary for pilots trained on nose wheel TMGs to undergo dual conversion training before flying tail wheel TMGs, and vice versa.

(xv) Exercise 11: Advanced turning:
(A) steep turns (45 °), level and descending;
(B) stalling in the turn and recovery;
(C) recoveries from unusual attitudes, including spiral dives.

(xvi) Exercise 12: Stopping and restarting the engine:
(A) engine cooling procedures;
(B) switching off procedure in-flight;
(C) sailplane operating procedures;
(D) restarting procedure.

(xvii) Exercise 13: Forced landing without power:
(A) forced landing procedure;
(B) choice of landing area, provision for change of plan;
(C) gliding distance;
(D) descent plan;
(E) key positions;
(F) engine failure checks;
(G) use of radio;
(H) base leg;
(I) final approach;
(J) landing;
(K) actions after landing.

(xviii) Exercise 14: Precautionary landing:
(A) full procedure away from aerodrome to break-off height;
(B) occasions necessitating;
(C) in-flight conditions;
(D) landing area selection:
 (a) normal aerodrome;
 (b) disused aerodrome;
 (c) ordinary field.
(E) circuit and approach;
(F) actions after landing.
(xix) Exercise 15a: Navigation

(A) Flight planning
 (a) weather forecast and actuals;
 (b) map selection and preparation:
 (1) choice of route;
 (2) airspace structure;
 (3) safety altitudes.
 (c) calculations:
 (1) magnetic heading(s) and time(s) en-route;
 (2) fuel consumption;
 (3) mass and balance;
 (4) mass and performance.
 (d) flight information:
 (1) NOTAMs, etc.;
 (2) radio frequencies;
 (3) selection of alternate aerodromes.
 (e) TMG documentation;
 (f) notification of the flight:
 (1) pre-flight administrative procedures;
 (2) flight plan form.

(B) Departure:
 (a) organisation of cockpit workload;
 (b) departure procedures:
 (1) altimeter settings;
 (2) ATC liaison in regulated airspace;
 (3) setting heading procedure;
 (4) noting of ETAs.

(C) En-route:
 (a) maintenance of altitude and heading;
 (b) revisions of ETA and heading;
(c) log keeping;
(d) use of radio or compliance with ATC procedures;
(e) minimum weather conditions for continuation of flight;
(f) in-flight decisions;
(g) transiting controlled or regulated airspace;
(h) diversion procedures;
(i) uncertainty of position procedure;
(j) lost procedure.

(D) Arrival, aerodrome joining procedure:
(a) ATC liaison in regulated airspace;
(b) altimeter setting;
(c) entering the traffic pattern;
(d) circuit procedures;
(e) parking;
(f) security of TMG;
(g) refuelling;
(h) closing of flight plan, if appropriate;
(i) post-flight administrative procedures.

(xx) Exercise 15b: Navigation problems at lower levels and in reduced visibility:

(A) actions before descending;
(B) hazards (for example obstacles and terrain);
(C) difficulties of map reading;
(D) effects of wind and turbulence;
(E) vertical situational awareness (avoidance of controlled flight into terrain);
(F) avoidance of noise sensitive areas;
(G) joining the circuit;
(H) bad weather circuit and landing.

(xxii) Exercise 15c: Radio navigation (basics):

(A) Use of GNSS or VOR/NDB:
 (a) selection of waypoints;
 (b) to or from indications or orientation;
 (c) error messages.
(B) Use of VHF/DF:
 (a) availability, AIP and frequencies;
 (b) R/T procedures and ATC liaison;
 (c) obtaining a QDM and homing.
(C) Use of en-route or terminal radar:
(a) availability and AIP;
(b) procedures and ATC liaison;
(c) pilot’s responsibilities;
(d) secondary surveillance radar;
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.
AMC1 FCL.110.B LAPL(B) — Experience requirements and crediting

CREDITING: PRE-ENTRY FLIGHT TEST

The pre-entry flight test referred to in FCL.110.B(b) should cover the total content of the syllabus of flight instruction for the issuance of the LAPL(B), in accordance with AMC1 FCL.110.B and FCL.210.B.
Annex to ED Decision 2011/016/R

AMC1 FCL.110.B; FCL.210.B

FLIGHT INSTRUCTION FOR THE LAPL(B) AND FLIGHT INSTRUCTION FOR THE BPL

(a) Entry to training
Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction

(1) The LAPL(B) or BPL flight instruction syllabus should take into account the principles of threat and error management and also cover:
 (i) pre-flight operations, including load calculations, balloon inspection and servicing;
 (ii) crew and passenger briefings;
 (iii) inflation and crowd control;
 (iv) control of the balloon by external visual reference;
 (v) take-off in different wind conditions;
 (vi) approach from low and high level;
 (vii) landings in different surface wind conditions;
 (viii) cross-country flying using visual reference and dead reckoning;
 (ix) emergency operations, including simulated balloon equipment malfunctions;
 (x) compliance with air traffic services procedures and communication procedures;
 (xi) avoidance of nature protection areas, landowner relations.

(2) Before allowing the applicant to undertake his/her first solo flight, the FI should ensure that the applicant can operate the required systems and equipment.

(c) Syllabus of flight instruction (hot-air balloon)

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 (i) the applicant’s progress and ability;
 (ii) the weather conditions affecting the flight;
 (iii) the flight time available;
 (iv) instructional technique considerations;
 (v) the local operating environment;
 (vi) applicability of the exercises to the balloon type.

(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
 (i) Exercise 1: Familiarisation with the balloon:
(A) characteristics of the balloon;
(B) the components or systems;
(C) re-fuelling of the cylinders;
(D) instruments and equipment;
(E) use of checklist(s) and procedures.

(ii) Exercise 2: Preparation for flight:
(A) documentation and equipment;
(B) weather forecast and actuals;
(C) flight planning:
 (a) NOTAMs
 (b) airspace structure;
 (c) sensitive areas (for example nature protection areas);
 (d) expected track and distance;
 (e) pre-flight picture;
 (f) possible landing fields.
(D) launch field:
 (a) permission;
 (b) field selection;
 (c) behaviour;
 (d) adjacent fields.
(E) load calculations.

(iii) Exercise 3: Crew and passenger briefing:
(A) clothing;
(B) crew briefing;
(C) passenger briefing.

(iv) Exercise 4: Assembly and layout:
(A) crowd control;
(B) rigging envelope, basket and burner;
(C) burner test;
(D) use of restraint line;
(E) pre-inflation checks.

(v) Exercise 5: Inflation:
(A) crowd control;
(B) cold inflation;
(C) use of the inflation fan;
(D) hot inflation.

(vi) Exercise 6: Take-off in different wind conditions:
(A) pre take-off checks and briefings;
(B) heating for controlled climb;
(C) ‘hands off and hands on’ procedure for ground crew;
(D) assessment of lift;
(E) use of quick release;
(F) assessment of wind and obstacles;
(G) take-off in wind without shelter obstacles;
(H) preparation for false lift.

(vii) Exercise 7: Climb to level flight:
(A) climbing with a predetermined rate of climb;
(B) look-out procedures;
(C) effect on envelope temperature;
(D) maximum rate of climb according to manufacturer’s flight manual;
(E) levelling off at selected altitude.

(viii) Exercise 8: Level flight:
(A) maintaining level flight by:
 (a) use of instruments only;
 (b) use of visual references only;
 (c) all available means.
 (B) use of parachute and turning vents (if applicable).

(ix) Exercise 9: Descent to level flight:
(A) descent with a predetermined rate of descent;
(B) fast descent;
(C) look-out procedures;
(D) maximum rate of descent according to manufacturer’s flight manual;
(E) use of parachute;
(F) parachute stall;
(G) cold descent;
(H) levelling off at selected altitude.

(x) Exercise 10: Emergencies – systems:
(A) pilot light failure;
(B) burner failure, valve leaks, flame out and re-light;
(C) gas leaks;
(D) envelope over temperature;
(E) envelope damage in-flight;
(F) parachute or rapid deflation system failure.

(xi) Exercise 10B: Other emergencies:
(A) fire extinguisher;
(B) fire on ground;
(C) fire in the air;
(D) contact with electrical power lines;
(E) obstacle avoidance;
(F) escape drills, location and use of emergency equipment.

(xii) Exercise 11: Navigation:
(A) maps selection;
(B) plotting expected track;
(C) marking positions and time;
(D) calculation of distance, speed and fuel consumption;
(E) ceiling limitations (ATC, weather and envelope temperature);
(F) planning ahead;
(G) monitoring of weather development and acting so;
(H) monitoring of fuel consumption and envelope temperature;
(I) ATC liaison (if applicable);
(J) communication with retrieve crew;
(K) use of GNSS (if applicable).

(xiii) Exercise 12: Fuel management:
(A) cylinder arrangement and burner systems;
(B) pilot light supply (vapour or liquid);
(C) use of master cylinders (if applicable);
(D) fuel requirement and expected fuel consumption;
(E) fuel state and pressure;
(F) fuel reserves;
(G) cylinder contents gauge and change procedure;
(H) use of cylinder manifolds.

(xiv) Exercise 13: Approach from low level:
(A) pre-landing checks;
(B) passenger pre-landing briefing;
(C) selection of field;
(D) use of burner and parachute;
(E) look-out procedures;
(F) missed approach and fly on.

(xv) Exercise 14: Approach from high level:
(A) pre-landing checks;
(B) passenger pre-landing briefing;
(C) selection of field;
(D) rate of descent;
(E) use of burner and parachute;
(F) look-out procedures;
(G) missed approach and fly on.

(xvi) Exercise 15: Operating at low level:
(A) use of burner, whisper burner and parachute;
(B) look-out procedures;
(C) avoidance of low level obstacles;
(D) avoidance of protection areas;
(E) landowner relations.

(xvii) Exercise 16: Landing in different wind conditions:
(A) pre-landing checks;
(B) passenger pre-landing briefing;
(C) selection of field;
(D) turbulences (in the case of landings with high wind speed only);
(E) use of burner and pilot lights;
(F) use of parachute and turning vents (if applicable);
(G) look-out procedures;
(H) dragging and deflation;
(I) landowner relations;
(J) airmanship.

(xviii) Exercise 17: First solo:
(A) supervised flight preparation;
(B) instructor’s briefing, observation of flight and de-briefing.

(d) Syllabus of flight instruction (gas balloon)

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
(i) the applicant’s progress and ability;
(ii) the weather conditions affecting the flight;
(iii) the flight time available;
(iv) instructional technique considerations;
(v) the local operating environment;
(vi) applicability of the exercises to the balloon type.

(2) Each of the exercises involves the need for the pilot-under-training to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.
(i) Exercise 1: Familiarisation with the balloon:
(A) characteristics of the balloon;
(B) the components or systems;
(C) instruments and equipment;
(D) use of checklist(s) and procedures.

(ii) Exercise 2: Preparation for flight:
(A) documentation and equipment
(B) weather forecast and actuals;
(C) flight planning:
 (a) NOTAMs;
 (b) airspace structure;
 (c) sensitive areas (for example nature protection areas);
 (d) expected track and distance;
 (e) pre-flight picture;
 (f) possible landing fields.
(D) launch field:
 (a) permission;
 (b) behaviour;
 (c) adjacent fields.
(E) load calculations.

(iii) Exercise 3: Crew and passenger briefing:
(A) clothing;
(B) crew briefings;
(C) passenger briefing.

(iv) Exercise 4: Assembly and layout:
(A) crowd control;
(B) rigging envelope and basket (balloon with net);
(C) rigging envelope and basket (netless balloon);
(D) ballast check.

(v) Exercise 5: Inflation:
(A) crowd control;
(B) inflation procedure according to manufacturer’s flight manual;
(C) avoiding electrostatic discharge.

(vi) Exercise 6: Take-off in different wind conditions:
(A) pre take-off checks and briefings;
(B) prepare for controlled climb;
(C) ‘hands off and hands on’ procedure for ground crew;
(D) assessment of wind and obstacles;
(E) preparation for false lift.

(vii) Exercise 7: Climb to level flight:
(A) climb with a predetermined rate of climb;
(B) look-out procedures;
(C) maximum rate of climb according to manufacturer’s flight manual;
(D) levelling off at selected altitude.

(viii) Exercise 8: Level flight:
(A) maintaining level flight by:
 (a) use of instruments only;
 (b) use of visual references only;
 (c) all available means.
(B) use of parachute or valve.

(ix) Exercise 9: Descent to level flight:
(A) descent with a predetermined rate of descent;
(B) fast descent;
(C) look-out procedures;
(D) maximum rate of descent according to manufacturer’s flight manual;
(E) use of parachute or valve;
(F) levelling off at selected altitude.

(x) Exercise 10: Emergencies:
(A) closed appendix during take-off and climb;
(B) envelope damage in-flight;
(C) parachute or valve failure;
(D) contact with electrical power lines;
(E) obstacle avoidance;
(F) escape drills, location and use of emergency equipment.

(xi) Exercise 11: Navigation:
(A) map selection;
(B) plotting expected track;
(C) marking positions and time;
(D) calculation of distance, speed and ballast consumption;
(E) ceiling limitations (ATC, weather and ballast);
(F) planning ahead;
(G) monitoring of weather development and acting so;
(H) monitoring of ballast consumption;
(I) ATC liaison (if applicable);
(J) communication with retrieve crew;
(K) use of GNSS (if applicable).

(xii) Exercise 12: Ballast management:
(A) minimum ballast;
(B) arrangement and securing of ballast;
(C) ballast requirement and expected ballast consumption;
(D) ballast reserves.

(xiii) Exercise 13: Approach from low level:
(A) pre-landing checks;
(B) passenger pre-landing checks;
(C) selection of field;
(D) use of ballast and parachute or valve;
(E) use of trail rope (if applicable);
(F) look-out procedures;
(G) missed approach and fly on.

(xiv) Exercise 14: Approach from high level:
(A) pre-landing checks;
(B) passenger pre-landing checks;
(C) selection of field;
(D) rate of descent;
(E) use of ballast and parachute or valve;
(F) use of trail rope (if applicable);
(G) look-out procedures;
(H) missed approach and fly on.

(xv) Exercise 15: Operating at low level:
(A) use of ballast and parachute or valve;
(B) look-out procedures;
(C) avoidance of low level obstacle;
(D) avoidance of protection areas;
(E) landowner relations.

(xvi) Exercise 16: Landing in different wind conditions:
(A) pre-landing checks;
(B) passenger pre-landing briefing;
(C) selection of field;
(D) turbulences (in the case of landings with high wind speed only);
(E) use of ballast and parachute or valve;
(F) look-out procedures;
(G) use of rip panel;
(H) dragging;
(I) deflation;
(J) avoiding electrostatic discharge;
(K) Landowner relations.

(xvii) Exercise 17: First solo:

Note: The exercises 1 to 16 have to be completed and the student must have achieved a safe and competent level before the first solo flight takes place.

(A) Supervised flight preparation;

(B) Instructor's briefing, observation of flight and de-briefing.
AMC1 FCL.130.B; FCL.220.B

FLIGHT INSTRUCTION FOR THE EXTENSION OF PRIVILEGES TO TETHERED FLIGHTS

(a) The aim of the flight instruction is to qualify LAPL(B) or BPL holders to perform tethered flights.
(b) The flying exercise should cover the following training items:
 (1) ground preparations;
 (2) weather suitability;
 (3) tether points:
 (i) upwind;
 (ii) downwind.
 (4) tether ropes (three point system);
 (5) maximum all-up-weight limitation;
 (6) crowd control;
 (7) pre take-off checks and briefings;
 (8) heating for controlled lift off;
 (9) ‘hands off and hands on’ procedure for ground crew;
 (10) assessment of lift;
 (11) assessment of wind and obstacles;
 (12) take-off and controlled climb (at least up to 60 ft – 20m).
AMC1 FCL.135.B; FCL.225.B

THEORETICAL KNOWLEDGE INSTRUCTION FOR THE EXTENSION TO ANOTHER BALLOON CLASS: LAPL(B) AND BPL

(a) The aim of the flight instruction is to qualify LAPL(B) or BPL holders to exercise the privileges on a different class of balloons.

(b) The following classes are recognised:
 (1) hot-air balloons;
 (2) gas balloons;
 (3) hot-air airships.

(c) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.

(d) Theoretical knowledge
 The theoretical knowledge syllabus should cover the revision or explanation of:
 (1) principles of flight:
 (i) operating limitations;
 (ii) loading limitations.
 (2) operational procedures:
 (i) special operational procedures and hazards;
 (ii) emergency procedures.
 (3) flight performance and planning:
 (i) mass considerations;
 (ii) loading;
 (iii) performance (hot-air balloon, gas balloon or hot-air airship);
 (iv) flight planning;
 (v) fuel planning;
 (vi) flight monitoring.
 (4) aircraft general knowledge:
 (i) system designs, loads, stresses and maintenance;
 (ii) envelope;
 (iii) burner (only extension to hot-air balloon or airship);
 (iv) fuel cylinders (except gas balloon);
 (v) basket or gondola;
 (vi) lifting or burning gas;
 (vii) ballast (only gas balloon);
 (viii) engine (only hot-air airship);
 (ix) instruments and indication systems;
 (x) emergency equipment.
AMC2 FCL.135.B; FCL.225.B

FLIGHT INSTRUCTION FOR THE EXTENSION TO ANOTHER BALLOON CLASS: LAPL(B) AND BPL

(a) This additional syllabus of flight instruction should be used for the extension of privileges for LAPL(B) and BPL - hot-air balloon to hot-air airship.

(b) The prerequisite for the extension of privileges to hot-air airships is a valid BPL or LAPL for hot-air balloons because a hot-air airship with a failed engine must be handled in a similar manner as a hot-air balloon. The conversion training has to concentrate therefore on the added complication of the engine, its controls and the different operating limitations of a hot-air airship.

1. The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed.

2. The flying exercises should cover the revision or explanation of the following exercises:

 (i) Exercise 1: Familiarisation with the hot-air airship:
 (A) characteristics of the hot-air airship;
 (B) the components or systems;
 (C) instruments and equipment;
 (D) use of checklist(s) and procedures.

 (ii) Exercise 2: Preparation for flight:
 (A) documentation and equipment;
 (B) weather forecast and actuals;
 (C) flight planning:
 (a) NOTAMs;
 (b) airspace structure;
 (c) sensitive areas;
 (d) expected track and distance;
 (e) pre-flight picture;
 (f) possible landing fields.
 (D) launch field:
 (a) permission;
 (b) behaviour;
 (c) field selection;
 (d) adjacent fields.
 (E) load and fuel calculations.

 (iii) Exercise 3: Crew and passenger briefing:
 (A) clothing;
(B) crew briefing;
(C) passenger briefing.

(iv) Exercise 4: Assembly and layout:
(A) crowd control;
(B) rigging envelope, gondola, burner and engine;
(C) burner test;
(D) pre-inflation checks.

(v) Exercise 5: Inflation:
(A) crowd control;
(B) cold inflation:
 (a) use of restraint line;
 (b) use of the inflation fan.
(C) hot inflation.

(vi) Exercise 6: Engine:
(A) identification of main parts and controls;
(B) familiarisation with operation and checking of the engine;
(C) engine checks before take-off.

(vii) Exercise 7: Pressurisation:
(A) pressurisation fan operation;
(B) super pressure and balance between pressure and temperature;
(C) pressure limitations.

(viii) Exercise 8: Take-off:
(A) before take-off checks and briefings;
(B) heating for controlled climb;
(C) procedure for ground crew;
(D) assessment of wind and obstacles.

(ix) Exercise 9: Climb to level flight:
(A) climbing with a predetermined rate of climb;
(B) effect on envelope temperature and pressure;
(C) maximum rate of climb according to manufacturer’s flight manual;
(D) level off at selected altitude.

(x) Exercise 10: Level flight:
(A) maintaining level flight by:
 (a) use of instruments only;
 (b) use of visual references only;
 (c) all available means.
(B) maintaining level flight at different air speeds by taking aerodynamic lift into account.

(xi) Exercise 11: Descent to level flight:
(A) descent with a predetermined rate of descent;
(B) maximum rate of descent according to manufacturer’s flight manual;
(C) levelling off at selected altitude.

(xii) Exercise 12: Emergencies - systems:
(A) engine failure;
(B) pressurisation failure;
(C) rudder failure;
(D) pilot light failure;
(E) burner failure, valve leaks, flame out and re-light;
(F) gas leaks;
(G) envelope over temperature;
(H) envelope damage in-flight.

(xiii) Exercise 12B: Other emergencies:
(A) fire extinguishers;
(B) fire on ground;
(C) fire in the air;
(D) contact with electrical power lines;
(E) obstacle avoidance;
(F) escape drills, location and use of emergency equipment.

(xiv) Exercise 13: Navigation:
(A) map selection and preparation;
(B) plotting and steering expected track;
(C) marking positions and time;
(D) calculation of distance, speed and fuel consumption;
(E) ceiling limitations (ATC, weather and envelope temperature);
(F) planning ahead;
(G) monitoring of weather development and acting so;
(H) monitoring of fuel and envelope temperature or pressure;
(I) ATC liaison (if applicable);
(J) communication with ground crew;
(K) use of GNSS (if applicable).

(xv) Exercise 14: Fuel management:
(A) engine arrangement and tank system;
(B) cylinder arrangement and burner systems;
(C) pilot light supply (vapour or liquid);
(D) fuel requirement and expected fuel consumption for engine and burner;
(E) fuel state and pressure;
(F) fuel reserves;
(G) cylinder and petrol tank contents gauge.

(xvi) Exercise 15: Approach and go-around:
(A) pre-landing checks;
(B) selection of field into wind;
(C) use of burner and engine;
(D) look-out procedures;
(E) missed approach and go-around.

(xvii) Exercise 16: Approach with simulated engine failure:
(A) pre-landing checks;
(B) selection of field;
(C) use of burner;
(D) look-out procedures;
(E) missed approach and go-around.

(xviii) Exercise 17: Operating at low level:
(A) use of burner and engine;
(B) look-out procedures;
(C) avoidance of low level obstacles;
(D) avoidance of sensitive areas (nature protection areas) or landowner relations.

(xix) Exercise 18: Steering:
(A) assessment of wind;
(B) correcting for wind to steer a given course.

(xx) Exercise 19: Final landing:
(A) pre-landing checks;
(B) use of burner and engine;
(C) look-out;
(D) deflation;
(E) landowner relations.
AMC3 FCL.135.B; FCL.225.B

CONTENTS OF THE SKILL TEST FOR THE EXTENSION OF A LAPL(B) OR A BPL TO ANOTHER BALLOON CLASS (HOT-AIR AIRSHIP)

(a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be overflown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.

(b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the hot-air airship used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:

1. operate the hot-air airship within its limitations;
2. complete all manoeuvres with smoothness and accuracy;
3. exercise good judgment and airmanship;
4. apply aeronautical knowledge;
5. maintain control of the airship at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a LAPL(B) and BPL hot-air airship extension.
SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of hot-air airship by external visual reference, look-out procedures, etc. apply in all sections.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Pre-flight documentation, flight planning, NOTAM and weather briefing</td>
</tr>
<tr>
<td>b</td>
<td>Hot-air airship inspection and servicing</td>
</tr>
<tr>
<td>c</td>
<td>Load calculation</td>
</tr>
<tr>
<td>d</td>
<td>Crowd control, crew and passenger briefings</td>
</tr>
<tr>
<td>e</td>
<td>Assembly and layout</td>
</tr>
<tr>
<td>f</td>
<td>Inflation and pre-take-off procedures</td>
</tr>
<tr>
<td>g</td>
<td>Take-off</td>
</tr>
<tr>
<td>h</td>
<td>ATC compliance (if applicable)</td>
</tr>
</tbody>
</table>

SECTION 2 GENERAL AIRWORK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Climb to level flight</td>
</tr>
<tr>
<td>b</td>
<td>Level flight</td>
</tr>
<tr>
<td>c</td>
<td>Descent to level flight</td>
</tr>
<tr>
<td>d</td>
<td>Operating at low level</td>
</tr>
<tr>
<td>e</td>
<td>ATC compliance (if applicable)</td>
</tr>
</tbody>
</table>

SECTION 3 EN-ROUTE PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Dead reckoning and map reading</td>
</tr>
<tr>
<td>b</td>
<td>Marking positions and time</td>
</tr>
<tr>
<td>c</td>
<td>Orientation and airspace structure</td>
</tr>
<tr>
<td>d</td>
<td>Plotting and steering expected track</td>
</tr>
<tr>
<td>e</td>
<td>Maintenance of altitude</td>
</tr>
<tr>
<td>f</td>
<td>Fuel management</td>
</tr>
<tr>
<td>g</td>
<td>Communication with ground crew</td>
</tr>
<tr>
<td>h</td>
<td>ATC compliance (if applicable)</td>
</tr>
</tbody>
</table>
SECTION 4 APPROACH AND LANDING PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Approach, missed approach and go-around</td>
</tr>
<tr>
<td>b</td>
<td>Pre-landing checks</td>
</tr>
<tr>
<td>c</td>
<td>Selection of landing field</td>
</tr>
<tr>
<td>d</td>
<td>Landing and deflation</td>
</tr>
<tr>
<td>e</td>
<td>ATC compliance (if applicable)</td>
</tr>
<tr>
<td>f</td>
<td>Actions after flight</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with Sections 1 through 4

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Simulated fire on the ground and in the air</td>
</tr>
<tr>
<td>b</td>
<td>Simulated pilot light-, burner- and engine-failure</td>
</tr>
<tr>
<td>c</td>
<td>Approach with simulated engine failure, missed approach and go-around</td>
</tr>
<tr>
<td>d</td>
<td>Other abnormal and emergency procedures as outlined in the appropriate flight manual</td>
</tr>
<tr>
<td>e</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>
SUBPART C — PRIVATE PILOT LICENCE (PPL), SAILPLANE PILOT LICENCE (SPL) and BALLOON PILOT LICENCE (BPL)

AMC1 FCL.210; FCL.215

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE PPL(A) AND PPL(H)

The following tables contain the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the PPL(A) and PPL(H). The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated to the licence and the activity. An approved course shall comprise at least 100 hours of theoretical knowledge instruction. This theoretical knowledge instruction provided by the ATO should include a certain element of formal classroom work but may include also such facilities as interactive video, slide or tape presentation, computer-based training and other media distance learning courses. The training organisation responsible for the training has to check if all the appropriate elements of the training course of theoretical knowledge instruction have been completed to a satisfactory standard before recommending the applicant for the examination.

The applicable items for each licence are marked with ‘x’. An ‘x’ on the main title of a subject means that all the sub-divisions are applicable.

<table>
<thead>
<tr>
<th>1.</th>
<th>AIR LAW AND ATC PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>International law: conventions, agreements and organisations</td>
<td></td>
</tr>
<tr>
<td>The Convention on international civil aviation (Chicago)</td>
<td></td>
</tr>
<tr>
<td>Doc. 7300/6</td>
<td></td>
</tr>
<tr>
<td>Part I Air Navigation: relevant parts of the following chapters:</td>
<td></td>
</tr>
<tr>
<td>(a) general principles and application of the convention;</td>
<td>x</td>
</tr>
<tr>
<td>(b) flight over territory of Contracting States;</td>
<td>x</td>
</tr>
<tr>
<td>(c) nationality of aircraft;</td>
<td></td>
</tr>
<tr>
<td>(d) measures to facilitate air navigation;</td>
<td></td>
</tr>
<tr>
<td>(e) conditions to be fulfilled on aircraft;</td>
<td></td>
</tr>
<tr>
<td>(f) international standards and recommended practices;</td>
<td></td>
</tr>
<tr>
<td>(g) validity of endorsed certificates and licences;</td>
<td></td>
</tr>
<tr>
<td>(h) notification of differences.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL Bridge course</td>
<td>PPL Bridge course</td>
</tr>
</tbody>
</table>

Page 115 of 562
<table>
<thead>
<tr>
<th>Annex to ED Decision 2011/016/R</th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>Part II The International Civil Aviation Organisation (ICAO): objectives and composition</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 8: Airworthiness of aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreword and definitions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Certificate of airworthiness</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 7: Aircraft nationality and registration marks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foreword and definitions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Common- and registration marks</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Certificate of registration and aircraft nationality</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 1: Personnel licensing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Relevant parts of Annex 1 connected to Part-FCL and Part-Medical</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 2: Rules of the air</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Essential definitions, applicability of the rules of the air, general rules (except water operations), visual flight rules, signals and interception of civil aircraft</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Procedures for air navigation: aircraft operations doc. 8168-ops/611, volume 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altimeter setting procedures (including IACO doc. 7030 – regional supplementary procedures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic requirements (except tables), procedures applicable to operators and pilots (except tables)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Secondary surveillance radar transponder operating procedures (including ICAO Doc. 7030 – regional supplementary procedures)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation of transponders</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Phraseology</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 11: Doc. 4444 air traffic management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>General provisions for air traffic services</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Visual separation in the vicinity of aerodromes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex 15: Aeronautical information service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction, essential definitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIP, NOTAM, AIRAC and AIC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 14, volume 1 and 2: Aerodromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
</tr>
<tr>
<td>Aerodrome data: conditions of the movement area and related facilities</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual aids for navigation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) indicators and signalling devices;</td>
</tr>
<tr>
<td>(b) markings;</td>
</tr>
<tr>
<td>(c) lights;</td>
</tr>
<tr>
<td>(d) signs;</td>
</tr>
<tr>
<td>(e) markers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual aids for denoting obstacles:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) marking of objects;</td>
</tr>
<tr>
<td>(b) lighting of objects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visual aids for denoting restricted use of areas</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Emergency and other services:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) rescue and fire fighting;</td>
</tr>
<tr>
<td>(b) apron management service.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex 12: Search and rescue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential definitions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating procedures:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) procedures for PIC at the scene of an accident;</td>
</tr>
<tr>
<td>(b) procedures for PIC intercepting a distress transmission;</td>
</tr>
<tr>
<td>(c) search and rescue signals.</td>
</tr>
<tr>
<td>Annexe to ED Decision 2011/016/R</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Search and rescue signals:</td>
</tr>
<tr>
<td>(a) signals with surface craft;</td>
</tr>
<tr>
<td>(b) ground or air visual signal code;</td>
</tr>
<tr>
<td>(c) air or ground signals.</td>
</tr>
</tbody>
</table>

Annex 17: Security

| General: aims and objectives | x | x |

Annex 13: Aircraft accident investigation

| Essential definitions | x | x |
| Applicability | x | x |

National law

| National law and differences to relevant ICAO Annexes and relevant EU regulations. | x | x |
2. HUMAN PERFORMANCE

Human factors: basic concepts

Human factors in aviation

- Becoming a competent pilot

Basic aviation physiology and health maintenance

- The atmosphere:
 - (a) composition;
 - (b) gas laws.

Respiratory and circulatory systems:

- (a) oxygen requirement of tissues;
- (b) functional anatomy;
- (c) main forms of hypoxia (hypoxic and anaemic):
 - (1) sources, effects and countermeasures of carbon monoxide;
 - (2) counter measures and hypoxia;
 - (3) symptoms of hypoxia.
- (d) hyperventilation;
- (e) the effects of accelerations on the circulatory system;
- (f) hypertension and coronary heart disease.

Man and environment

- Central, peripheral and autonomic nervous systems

Vision:

- (a) functional anatomy;
- (b) visual field, foveal and peripheral vision;
- (c) binocular and monocular vision;
- (d) monocular vision cues;
- (e) night vision;
- (f) visual scanning and detection techniques and importance of 'look-out';
- (g) defective vision.

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Annex to ED Decision 2011/016/R</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Aeroplane</td>
<td></td>
</tr>
<tr>
<td>Helicopter</td>
<td></td>
</tr>
<tr>
<td>PPL</td>
<td>Bridge</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
</tbody>
</table>

Hearing:
- (a) descriptive and functional anatomy;
- (b) flight related hazards to hearing;
- (c) hearing loss.

<table>
<thead>
<tr>
<th>Equilibrium:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) functional anatomy;</td>
</tr>
<tr>
<td>(b) motion and acceleration;</td>
</tr>
<tr>
<td>(c) motion sickness.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration of sensory inputs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) spatial disorientation: forms, recognition and avoidance;</td>
</tr>
</tbody>
</table>

Health and hygiene

<table>
<thead>
<tr>
<th>Personal hygiene: personal fitness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body rhythm and sleep:</td>
</tr>
<tr>
<td>(a) rhythm disturbances;</td>
</tr>
<tr>
<td>(b) symptoms, effects and management.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem areas for pilots:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) common minor ailments including cold, influenza and gastro-intestinal upset;</td>
</tr>
<tr>
<td>(b) entrapped gases and barotrauma, (scuba diving);</td>
</tr>
<tr>
<td>(c) obesity;</td>
</tr>
<tr>
<td>(d) food hygiene;</td>
</tr>
<tr>
<td>(e) infectious diseases;</td>
</tr>
<tr>
<td>(f) nutrition;</td>
</tr>
<tr>
<td>(g) various toxic gases and materials.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intoxication:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) prescribed medication;</td>
</tr>
<tr>
<td>(b) tobacco;</td>
</tr>
<tr>
<td>(c) alcohol and drugs;</td>
</tr>
</tbody>
</table>
(d) caffeine;
(e) self-medication.

Basic aviation psychology

Human information processing

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attention and vigilance:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) selectivity of attention;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) divided attention.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perception:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(A) perceptual illusions;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B) subjectivity of perception;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C) processes of perception.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) sensory memory;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) working or short term memory;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) long term memory to include motor memory (skills).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Human error and reliability

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability of human behaviour</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Error generation: social environment (group, organisation)</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Decision making

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decision-making concepts:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) structure (phases);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) limits;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) risk assessment;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) practical application.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avoiding and managing errors: cockpit management

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety awareness:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) risk area awareness;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) situational awareness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication: verbal and non-verbal communication</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Human behaviour

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personality and attitudes:</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) development;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annex to ED Decision 2011/016/R

Aeroplane Helicopter

<table>
<thead>
<tr>
<th>PPL Bridge course</th>
<th>PPL Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b) environmental influences.</td>
<td></td>
</tr>
<tr>
<td>Identification of hazardous attitudes (error proneness)</td>
<td>x</td>
</tr>
</tbody>
</table>

Human overload and underload

<table>
<thead>
<tr>
<th>Arousal</th>
<th>Stress:</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) definition(s);</td>
<td>(b) anxiety and stress;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) effects of stress.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue and stress management:</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(a) types, causes and symptoms of fatigue;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) effects of fatigue;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) coping strategies;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) management techniques;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) health and fitness programmes;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. METEOROLOGY

The atmosphere

Composition, extent and vertical division

<table>
<thead>
<tr>
<th>Structure of the atmosphere</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Troposphere</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Air temperature

<table>
<thead>
<tr>
<th>Definition and units</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical distribution of temperature</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Transfer of heat</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Lapse rates, stability and instability</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Development of inversions and types of inversions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Temperature near the earth’s surface, surface effects, diurnal and seasonal variation, effect of clouds and effect of wind</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Atmospheric pressure

| Barometric pressure and isobars | x | x |
Pressure variation with height
- Reduction of pressure to mean sea level
- Relationship between surface pressure centres and pressure centres aloft

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Air density
- Relationship between pressure, temperature and density

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

ICAO standard atmosphere

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Altimetry
- Terminology and definitions
- Altimeter and altimeter settings
- Calculations
- Effect of accelerated airflow due to topography

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

Wind
Definition and measurement of wind
- Definition and measurement

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Primary cause of wind
- Primary cause of wind, pressure gradient, coriolis force and gradient wind
- Variation of wind in the friction layer
- Effects of convergence and divergence

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Communications
VFR Communications
Definitions
- Meanings and significance of associated terms
- ATS abbreviations
- Q-code groups commonly used in RTF air-ground communications
- Categories of messages

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>

4. **COMMUNICATIONS**

VFR COMMUNICATIONS

Definitions
- Meanings and significance of associated terms
- ATS abbreviations
- Q-code groups commonly used in RTF air-ground communications
- Categories of messages

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
5. **PRINCIPLES OF FLIGHT**

5.1. **PRINCIPLES OF FLIGHT: AEROPLANE**

Subsonic aerodynamics

Basics concepts, laws and definitions

Laws and definitions: x x
Annex to ED Decision 2011/016/R

Aeroplane Helicopter

<table>
<thead>
<tr>
<th>Basics about airflow:</th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) streamline;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) two-dimensional airflow;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) three-dimensional airflow.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerodynamic forces on surfaces:</th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) resulting airforce;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) lift;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) drag;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) angle of attack.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shape of an aerofoil section:</th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) thickness to chord ratio;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) chord line;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) camber line;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) camber;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) angle of attack.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The wing shape:</th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) aspect ratio;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) root chord;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) tip chord;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) tapered wings;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) wing planform.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The two-dimensional airflow about an aerofoil

<table>
<thead>
<tr>
<th>Streamline pattern</th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagnation point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centre of pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence of angle of attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow separation at high angles of attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The lift – α graph

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The coefficients

<table>
<thead>
<tr>
<th>The lift coefficient C_l: the lift formula</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>The drag coefficient C_d: the drag formula</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

The three-dimensional airflow round a wing and a fuselage

<table>
<thead>
<tr>
<th>Streamline pattern:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) span-wise flow and causes;</td>
</tr>
<tr>
<td>(b) tip vortices and angle of attack;</td>
</tr>
<tr>
<td>(c) upwash and downwash due to tip vortices;</td>
</tr>
<tr>
<td>(d) wake turbulence behind an aeroplane (causes, distribution and duration of the phenomenon).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Induced drag:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) influence of tip vortices on the angle of attack;</td>
</tr>
<tr>
<td>(b) the induced local α;</td>
</tr>
<tr>
<td>(c) influence of induced angle of attack on the direction of the lift vector;</td>
</tr>
<tr>
<td>(d) induced drag and angle of attack.</td>
</tr>
</tbody>
</table>

Drag

<table>
<thead>
<tr>
<th>The parasite drag:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) pressure drag;</td>
</tr>
<tr>
<td>(b) interference drag;</td>
</tr>
<tr>
<td>(c) friction drag.</td>
</tr>
</tbody>
</table>

The parasite drag and speed	x	x
The induced drag and speed	x	x
The total drag	x	x

The ground effect

| Effect on take off and landing characteristics of an aeroplane | x | x |

The stall

| Flow separation at increasing angles of attack: |
| (a) the boundary layer: |
| (1) laminar layer; | x | x |
(2) turbulent layer;
(3) transition.
(b) separation point;
(c) influence of angle of attack;
(d) influence on:
 (1) pressure distribution;
 (2) location of centre of pressure;
 (3) C_L;
 (4) C_D;
 (5) pitch moments.
(e) buffet;
(f) use of controls.

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stall speed:</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) in the lift formula;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 1g stall speed;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) influence of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) the centre of gravity;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) power setting;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) altitude (IAS);</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) wing loading;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| (5) load factor n:
 (i) definition; | | | | |
| (ii) turns; | | | | |
| (iii) forces. | | | | |

The initial stall in span-wise direction:		Bridge course
(a) influence of planform;	x	x
(b) geometric twist (wash out);		Bridge course
(c) use of ailerons.		Bridge course

Stall warning:		Bridge course
(a) importance of stall warning;	x	x
(b) speed margin;		Bridge course
(c) buffet;		Bridge course
(d) stall strip;		Bridge course
(e) flapper switch;		Bridge course
(f) recovery from stall.		Bridge course
Special phenomena of stall:
- (a) the power-on stall;
- (b) climbing and descending turns;
- (c) t-tailed aeroplane;
- (d) avoidance of spins:
 - (1) spin development;
 - (2) spin recognition;
 - (3) spin recovery.
- (e) ice (in stagnation point and on surface):
 - (1) absence of stall warning;
 - (2) abnormal behaviour of the aircraft during stall.

C\(_L\) augmentation

<table>
<thead>
<tr>
<th>Trailing edge flaps and the reasons for use in take-off and landing</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) influence on C(_L) - (\alpha)-graph;</td>
</tr>
<tr>
<td>(b) different types of flaps;</td>
</tr>
<tr>
<td>(c) flap asymmetry;</td>
</tr>
<tr>
<td>(d) influence on pitch movement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leading edge devices and the reasons for use in take-off and landing</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
</tr>
</tbody>
</table>

The boundary layer

<table>
<thead>
<tr>
<th>Different types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) laminar;</td>
</tr>
<tr>
<td>(b) turbulent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ice and other contamination:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) ice in stagnation point;</td>
</tr>
<tr>
<td>(b) ice on the surface (frost, snow and clear ice);</td>
</tr>
<tr>
<td>(c) rain;</td>
</tr>
<tr>
<td>(d) contamination of the leading edge;</td>
</tr>
<tr>
<td>(e) effects on stall;</td>
</tr>
<tr>
<td>(f) effects on loss of controllability;</td>
</tr>
<tr>
<td>(g) effects on control surface moment;</td>
</tr>
<tr>
<td>(h) influence on high lift devices during take-off, landing and low speeds.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>x</th>
<th>x</th>
<th>x</th>
</tr>
</thead>
</table>
Stability

Condition of equilibrium in steady horizontal flight

Precondition for static stability
Equilibrium:
(a) lift and weight;
(b) drag and thrust.

Methods of achieving balance

- Wing and empennage (tail and canard)
- Control surfaces
- Ballast or weight trim

Static and dynamic longitudinal stability

Basics and definitions:
(a) static stability, positive, neutral and negative;
(b) precondition for dynamic stability;
(c) dynamic stability, positive, neutral and negative.

Location of centre of gravity:
(a) aft limit and minimum stability margin;
(b) forward position;
(c) effects on static and dynamic stability.

Dynamic lateral or directional stability

Spiral dive and corrective actions

Control

General

Basics, the three planes and three axis
Angle of attack change

Pitch control

- Elevator
- Downwash effects
- Location of centre of gravity

Yaw control

- Pedal or rudder

Roll control

<table>
<thead>
<tr>
<th></th>
<th>PPL</th>
<th>Bridge course</th>
<th>PPL</th>
<th>Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condition of equilibrium in steady horizontal flight</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Precondition for static stability</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Equilibrium:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) lift and weight;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) drag and thrust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods of achieving balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wing and empennage (tail and canard)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Control surfaces</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Ballast or weight trim</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Static and dynamic longitudinal stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics and definitions:</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) static stability, positive, neutral and negative;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) precondition for dynamic stability;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) dynamic stability, positive, neutral and negative.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location of centre of gravity:</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) aft limit and minimum stability margin;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) forward position;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) effects on static and dynamic stability.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic lateral or directional stability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spiral dive and corrective actions</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics, the three planes and three axis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Angle of attack change</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Pitch control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevator</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Downwash effects</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Location of centre of gravity</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Yaw control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedal or rudder</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Roll control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annex to ED Decision 2011/016/R</td>
<td>Aeroplane</td>
<td>Helicopter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>-----------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPL Bridge course</td>
<td>PPL Bridge course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ailerons: function in different phases of flight</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adverse yaw</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Means to avoid adverse yaw:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) frise ailerons;</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) differential ailerons deflection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Means to reduce control forces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerodynamic balance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) balance tab and anti-balance tab;</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) servo tab.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass balance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasons to balance: means</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimming</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reasons to trim</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trim tabs</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating limitations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flutter</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{fe}</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{no}, V_{ne}</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manoeuvring envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manoeuvring load diagram:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) load factor;</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) accelerated stall speed;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) V_a;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) manoeuvring limit load factor or certification category.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contribution of mass</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gust envelope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gust load diagram</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factors contributing to gust loads</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propellers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion of engine torque to thrust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meaning of pitch</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade twist</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effects of ice on propeller</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine failure or engine stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windmilling drag</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moments due to propeller operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torque reaction</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric slipstream effect</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymmetric blade effect</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight mechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forces acting on an aeroplane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight horizontal steady flight</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight steady climb</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight steady descent</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight steady glide</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steady coordinated turn:</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) bank angle;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) load factor;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) turn radius;</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) rate one turn.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2. PRINCIPLES OF FLIGHT: HELICOPTER

Subsonic aerodynamics

Basic concepts, laws and definitions | x | x |
Conversion of units | x | x |
Definitions and basic concepts about air: | x | x |
(a) the atmosphere and International Standard Atmosphere;		
(b) density;		
(c) influence of pressure and temperature on density.		
Newton’s laws:		
(a) Newton’s second law: Momentum equation;	x	x
(b) Newton’s third law: action and reaction.		
Basic concepts about airflow:
<p>| (a) steady airflow and unsteady airflow; | x | x |
| (b) Bernoulli’s equation; | | |
| (c) static pressure, dynamic pressure, total pressure and stagnation point; | | |</p>
<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>(d) TAS and IAS; (e) two-dimensional airflow and three-dimensional airflow; (f) viscosity and boundary layer.</td>
<td>x</td>
</tr>
<tr>
<td>Two-dimensional airflow</td>
<td></td>
</tr>
<tr>
<td>Aerofoil section geometry: (a) aerofoil section; (b) chord line, thickness and thickness to chord ratio of a section; (c) camber line and camber; (d) symmetrical and asymmetrical aerofoil sections.</td>
<td>x</td>
</tr>
<tr>
<td>Aerodynamic forces on aerofoil elements: (a) angle of attack; (b) pressure distribution; (c) lift and lift coefficient (d) relation lift coefficient: angle of attack; (e) profile drag and drag coefficient; (f) relation drag coefficient: angle of attack; (g) resulting force, centre of pressure and pitching moment.</td>
<td>x</td>
</tr>
<tr>
<td>Stall: (a) boundary layer and reasons for stalling; (b) variation of lift and drag as a function of angle of attack; (c) displacement of the centre of pressure and pitching moment.</td>
<td>x</td>
</tr>
<tr>
<td>Disturbances due to profile contamination: (a) ice contamination; (b) ice on the surface (frost, snow and clear ice).</td>
<td>x</td>
</tr>
<tr>
<td>The three-dimensional airflow round a wing and a fuselage</td>
<td>x</td>
</tr>
<tr>
<td>The wing: (a) planform, rectangular and tapered wings; (b) wing twist.</td>
<td>x</td>
</tr>
<tr>
<td>Airflow pattern and influence on lift:</td>
<td>x</td>
</tr>
<tr>
<td>Aeroplane</td>
<td>Helicopter</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
</tbody>
</table>
| (a) span wise flow on upper and lower surface;
(b) tip vortices;
(c) span-wise lift distribution. | | |
| Induced drag: causes and vortices | x | x |
| The airflow round a fuselage:
(a) components of a fuselage;
(b) parasite drag;
(c) variation with speed. | x | x |
| **Transonic aerodynamics and compressibility effects** | |
| Airflow velocities | x | x |
| Airflow speeds:
(a) speed of sound;
(b) subsonic, high subsonic and supersonic flows. | x | x |
| Shock waves:
(a) compressibility and shock waves;
(b) the reasons for their formation at upstream high subsonic airflow;
(c) their effect on lift and drag. | x | x |
| Influence of wing planform: sweep-angle | x | x |
| **Rotorcraft types** | x | x |
| Rotorcraft | x | x |
| Rotorcraft types:
(a) autogyro;
(b) helicopter. | x | x |
| Helicopters | x | x |
| Helicopters configurations: the single main rotor helicopter | x | x |
| The helicopter, characteristics and associated terminology:
(a) general lay-out, fuselage, engine and gearbox;
(b) tail rotor, fenestron and NOTAR;
(c) engines (reciprocating and turbo shaft engines);
(d) power transmission; | x | x |
(e) rotor shaft axis, rotor hub and rotor blades;
(f) rotor disc and rotor disc area;
(g) teetering rotor (two blades) and rotors with more than two blades;

(h) skids and wheels;
(i) helicopter axes and fuselage centre line;

(j) roll axis, pitch axis and normal or yaw axis;
(k) gross mass, gross weight and disc loading.

Main rotor aerodynamics

Airflow through the rotor discs and round the blades:
(a) circumferential velocity of the blade sections;
(b) induced airflow, through the disc and downstream;
(c) downward fuselage drag;
(d) equilibrium of rotor thrust, weight and fuselage drag;
(e) rotor disc induced power;
(f) relative airflow to the blade;
(g) pitch angle and angle of attack of a blade section;
(h) lift and profile drag on the blade element;
(i) resulting lift and thrust on the blade and rotor thrust;
(j) collective pitch angle changes and necessity of blade feathering;
(k) required total main rotor-torque and rotor-power;
(l) influence of the air density.

Anti-torque force and tail rotor:
(a) force of tail rotor as a function of main rotor-torque;
(b) anti-torque rotor power;
(c) necessity of blade feathering of tail rotor blades and yaw pedals.
Aeroplane Helicopter

<table>
<thead>
<tr>
<th></th>
<th>PPL Bridge course</th>
<th>Helicopter PPL Bridge course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum hover altitude OGE:</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(a) total power required and power available;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) maximum hover altitude as a function of pressure altitude and OAT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertical climb</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>Relative airflow and angles of attack:</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(a) climb velocity V_C, induced and relative velocity and angle of attack;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) collective pitch angle and blade feathering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power and vertical speed:</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(a) induced power, climb power and profile power;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) total main rotor power and main rotor torque;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) tail rotor power;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) total power requirement in vertical flight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward flight</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>Airflow and forces in uniform inflow distribution:</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(a) assumption of uniform inflow distribution on rotor disc;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) advancing blade (90°) and retreating blade (270°);</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) airflow velocity relative to the blade sections, area of reverse flow;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) lift on the advancing and retreating blades at constant pitch angles;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) necessity of cyclic pitch changes;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) compressibility effects on the advancing blade tip and speed limitations;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) high angle of attack on the retreating blade, blade stall and speed limitations;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) thrust on rotor disc and tilt of thrust vector;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) vertical component of the thrust vector and gross weight equilibrium;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(j) horizontal component of the thrust vector and drag equilibrium.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The flare (power flight):</td>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>Aeroplane</td>
<td>Helicopter</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>PPL</td>
<td>Bridge course</td>
<td>PPL</td>
</tr>
<tr>
<td>(a) thrust reversal and increase in rotor thrust;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) increase of rotor RPM on non governed rotor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power and maximum speed:</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(a) induced power as a function of helicopter speed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) rotor profile power as a function of helicopter speed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) fuselage drag and parasite power as a function of forward speed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) tail rotor power and power ancillary equipment;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) total power requirement as a function of forward speed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) influence of helicopter mass, air density and drag of additional external equipment;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) translational lift and influence on power required.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hover and forward flight in ground effect</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Airflow in ground effect and downwash: rotor power decrease as a function of rotor height above the ground at constant helicopter mass</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Vertical descent</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Vertical descent, power on:</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(a) airflow through the rotor, low and moderate descent speeds;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) vortex ring state, settling with power and consequences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autorotation:</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>(a) collective lever position after failure;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) up flow through the rotor, auto-rotation and anti-autorotation rings;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) tail rotor thrust and yaw control;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) control of rotor RPM with collective lever;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) landing after increase of rotor thrust by pulling collective and reduction in vertical speed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward flight: Autorotation</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
Airflow through the rotor disc:
- (a) descent speed and up flow through the disc;
- (b) the flare, increase in rotor thrust, reduction of vertical speed and ground speed.

Flight and landing:
- (a) turning;
- (b) flare;
- (c) autorotative landing;
- (d) height or velocity avoidance graph and dead man’s curve.

Main rotor mechanics

Flapping of the blade in hover

Forces and stresses on the blade:
- (a) centrifugal force on the blade and attachments;
- (b) limits of rotor RPM;
- (c) lift on the blade and bending stresses on a rigid attachment;
- (d) the flapping hinge of the articulated rotor and flapping hinge offset;
- (e) the flapping of the hinge less rotor and flexible element.

Coning angle in hover:
- (a) lift and centrifugal force in hover and blade weight negligible
- (b) flapping, tip path plane and disc area.

Flapping angles of the blade in forward flight

Forces on the blade in forward flight without cyclic feathering:
- (a) aerodynamic forces on the advancing and retreating blades without cyclic feathering;
- (b) periodic forces and stresses, fatigue and flapping hinge;
- (c) phase lag between the force and the flapping angle (about 90°);
- (d) flapping motion of the hinged blades and tilting of the cone and flap back of rotor.

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Aeroplane</td>
<td>Helicopter</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>(e) rotor disc attitude and thrust vector tilt.</td>
<td>x x</td>
</tr>
<tr>
<td>Cyclic pitch (feathering) in helicopter mode, forward flight:</td>
<td></td>
</tr>
<tr>
<td>(a) necessity of forward rotor disc tilt and thrust vector tilt;</td>
<td></td>
</tr>
<tr>
<td>(b) flapping and tip path plane, virtual rotation axis or no flapping axis and plane of rotation;</td>
<td></td>
</tr>
<tr>
<td>(c) shaft axis and hub plane;</td>
<td></td>
</tr>
<tr>
<td>(d) cyclic pitch change (feathering) and rotor thrust vector tilt;</td>
<td></td>
</tr>
<tr>
<td>(e) collective pitch change, collective lever, swash plate, pitch link and pitch horn;</td>
<td></td>
</tr>
<tr>
<td>(f) cyclic stick, rotating swash plate and pitch link movement and phase angle.</td>
<td></td>
</tr>
<tr>
<td>Blade lag motion</td>
<td>x x</td>
</tr>
<tr>
<td>Forces on the blade in the disc plane (tip path plane) in forward flight:</td>
<td>x x</td>
</tr>
<tr>
<td>(a) forces due to the Coriolis effect because of the flapping;</td>
<td></td>
</tr>
<tr>
<td>(b) alternating stresses and the need of the drag or lag hinge.</td>
<td></td>
</tr>
<tr>
<td>The drag or lag hinge:</td>
<td>x x</td>
</tr>
<tr>
<td>(a) the drag hinge in the fully articulated rotor;</td>
<td></td>
</tr>
<tr>
<td>(b) the lag flexure in the hinge less rotor;</td>
<td></td>
</tr>
<tr>
<td>(c) drag dampers.</td>
<td></td>
</tr>
<tr>
<td>Ground resonance:</td>
<td></td>
</tr>
<tr>
<td>(a) blade lag motion and movement of the centre of gravity of the blades and the rotor;</td>
<td>x x</td>
</tr>
<tr>
<td>(b) oscillating force on the fuselage;</td>
<td></td>
</tr>
<tr>
<td>(c) fuselage, undercarriage and resonance.</td>
<td></td>
</tr>
<tr>
<td>Rotor systems</td>
<td>x x</td>
</tr>
<tr>
<td>See-saw or teetering rotor</td>
<td>x x</td>
</tr>
<tr>
<td>Fully articulated rotor:</td>
<td>x x</td>
</tr>
<tr>
<td>(a) three hinges arrangement;</td>
<td></td>
</tr>
<tr>
<td>(b) bearings and elastomeric hinges.</td>
<td></td>
</tr>
<tr>
<td>Hinge less rotor and bearing less rotor</td>
<td>x x</td>
</tr>
<tr>
<td>Blade sailing:</td>
<td>Helicopter</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>(a) low rotor RPM and effect of adverse wind;</td>
<td>x</td>
</tr>
<tr>
<td>(b) minimising the danger;</td>
<td>x</td>
</tr>
<tr>
<td>(c) droop stops.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vibrations due to main rotor:</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) origins of the vibrations: in plane and vertical;</td>
<td>x</td>
</tr>
<tr>
<td>(b) blade tracking and balancing.</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tail rotors</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional tail rotor</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotor description:</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) two-blades tail rotors with teetering hinge;</td>
<td>x</td>
</tr>
<tr>
<td>(b) rotors with more than two blades;</td>
<td>x</td>
</tr>
<tr>
<td>(c) feathering bearings and flapping hinges;</td>
<td>x</td>
</tr>
<tr>
<td>(d) dangers to people and to the tail rotor,</td>
<td>x</td>
</tr>
<tr>
<td>rotor height and safety.</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerodynamics:</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) induced airflow and tail rotor thrust;</td>
<td>x</td>
</tr>
<tr>
<td>(b) thrust control by feathering, tail rotor</td>
<td>x</td>
</tr>
<tr>
<td>drift and roll;</td>
<td>x</td>
</tr>
<tr>
<td>(c) effect of tail rotor failure and vortex ring.</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The fenestron: technical lay-out</th>
<th>Helicopter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>The NOTAR: technical lay-out</th>
<th>Helicopter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Vibrations: high frequency vibrations due to the tail rotors</th>
<th>Helicopter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Equilibrium, stability and control</th>
<th>Helicopter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Equilibrium and helicopter attitudes</th>
<th>Helicopter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Hover:</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) forces and equilibrium conditions;</td>
<td>x</td>
</tr>
<tr>
<td>(b) helicopter pitching moment and pitch angle;</td>
<td>x</td>
</tr>
<tr>
<td>(c) helicopter rolling moment and roll angle.</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forward flight:</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) forces and equilibrium conditions;</td>
<td>x</td>
</tr>
<tr>
<td>(b) helicopter moments and angles;</td>
<td>x</td>
</tr>
<tr>
<td>Helicopter performances</td>
<td>Engine performances</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Helicopter performances</td>
<td>Engine performances</td>
</tr>
<tr>
<td>Helicopter performances</td>
<td></td>
</tr>
<tr>
<td>(a) fully articulated rotor;</td>
<td>(a) fully articulated rotor;</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
<tr>
<td>(c) effect of speed on fuselage attitude.</td>
<td>(c) effect of speed on fuselage attitude.</td>
</tr>
<tr>
<td>x x</td>
<td>x x</td>
</tr>
</tbody>
</table>
OPERATIONAL PROCEDURES

General

Operation of aircraft: ICAO Annex 6, General requirements

| Definitions | x | x | x | x |
| Applicability | x | x | x | x |

Special operational procedures and hazards (general aspects)

| x | x | x | x |

Noise abatement

| Noise abatement procedures | x | x | x | x |

| Influence of the flight procedure (departure, cruise and approach) | x | x | x | x |

| Runway incursion awareness (meaning of surface markings and signals) | x | x | x | x |

Fire or smoke

| Carburettor fire | x | x | x | x |

| Engine fire | x | x | x | x |

| Fire in the cabin and cockpit, (choice of extinguishing agents according to fire classification and use of the extinguishers) | x | x | x | x |

| Smoke in the cockpit and (effects and action to be taken) and smoke in the cockpit and cabin (effects and actions taken) | x | x | x | x |

Windshear and microburst

| Effects and recognition during departure and approach | x | x | x | x |

| Actions to avoid and actions taken during encounter | x | x | x | x |

Wake turbulence

| Cause | x | x | x | x |

| List of relevant parameters | x | x | x | x |

| Actions taken when crossing traffic, during take-off and landing | x | x | x | x |

Emergency and precautionary landings

| Definition | x | x | x | x |

| Cause | x | x | x | x |

<p>| Passenger information | x | x | x | x |</p>
<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>Evacuation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Action after landing</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Contaminated runways</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinds of contamination</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Estimated surface friction and friction coefficient</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Rotor downwash</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation influence by meteorological conditions (helicopter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White out, sand or dust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong winds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mountain environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emergency procedures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influence by technical problems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire in cabin, cockpit or engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tail, rotor or directional control failure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground resonance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blade stall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settling with power (vortex ring)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overpitch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overspeed: rotor or engine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic rollover</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mast bumping</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. FLIGHT PERFORMANCE AND PLANNING

7.1. MASS AND BALANCE: AEROPLANES OR HELICOPTERS

<table>
<thead>
<tr>
<th>Purpose of mass and balance considerations</th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance in regard to structural limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Aeroplane</td>
<td>Helicopter</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>PPL</td>
<td>Bridge course</td>
<td>PPL</td>
</tr>
<tr>
<td>Importance in regard to performance limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CG limitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importance in regard to stability and controllability</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Importance in regard to performance</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Loading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terminology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass terms</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Load terms (including fuel terms)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mass limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Performance limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Baggage compartment limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mass calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum masses for take-off and landing</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Use of standard masses for passengers, baggage and crew</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fundamentals of CG calculations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of centre of gravity</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Conditions of equilibrium (balance of forces and balance of moments)</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Basic calculations of CG</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Mass and balance details of aircraft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents of mass and balance documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Datum and moment arm</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CG position as distance from datum</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Extraction of basic mass and balance data from aircraft documentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEM</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>CG position or moment at BEM</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Deviations from standard configuration</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Determination of CG position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aeroplane</td>
<td>Helicopter</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>Arithmetic method</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Graphic method</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Load and trim sheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General considerations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Load sheet and CG envelope for light aeroplanes and for helicopters</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

7.2. **PERFORMANCE: AEROPLANES**

Introduction

- Performance classes: x x
- Stages of flight: x x
- Effect of aeroplane mass, wind, altitude, runway slope and runway conditions: x x
- Gradients: x x

SE aeroplanes

- Definitions of terms and speeds: x x

Take-off and landing performance

- Use of aeroplane flight manual data: x x

Climb and cruise performance

- Use of aeroplane flight data: x x
- Effect of density altitude and aeroplane mass: x x
- Endurance and the effects of the different recommended power or thrust settings: x x
- Still air range with various power or thrust settings: x x

7.3. **FLIGHT PLANNING AND FLIGHT MONITORING**

Flight planning for VFR flights

VFR navigation plan

- Routes, airfields, heights and altitudes from VFR charts: x x x x x
- Courses and distances from VFR charts: x x x x x
- Aerodrome charts and aerodrome directory: x x x x x
- Communications and radio navigation planning data: x x x x
Annex to ED Decision 2011/016/R

Aeroplane Helicopter

<table>
<thead>
<tr>
<th>Completion of navigation plan</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-flight calculation of fuel required</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculation of extra fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion of the fuel section of the navigation plan (fuel log) and calculation of total fuel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-flight preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIP and NOTAM briefing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground facilities and services</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Departure, destination and alternate aerodromes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airway routings and airspace structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meteorological briefing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction and analysis of relevant data from meteorological documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAO flight plan (ATS flight plan)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual flight plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Format of flight plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion of the flight plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submission of the flight plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight monitoring and in-flight re-planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring of track and time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-flight fuel management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-flight re-planning in case of deviation from planned data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.4. PERFORMANCE: HELICOPTERS

General

Introduction

Stages of flight | | | | |

Effect on performance of atmospheric, airport or heliport and helicopter conditions | | | | |
<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL Bridge course</td>
<td>PPL Bridge course</td>
</tr>
<tr>
<td>Applicability of airworthiness requirements</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Definitions and terminology</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Performance: SE helicopters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitions of terms</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>(a) masses;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) velocities: v_x, v_y;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) velocity of best range and of maximum endurance;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) power limitations;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) altitudes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Take-off, cruise and landing performance</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Use and interpretation of diagrams and tables:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) Take-off:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) take-off run and distance available;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) take-off and initial climb;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) effects of mass, wind and density altitude;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) effects of ground surface and gradient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Landing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) effects of mass, wind, density altitude and approach speed;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) effects of ground surface and gradient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) In-flight:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) relationship between power required and power available;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) performance diagram;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) effects of configuration, mass, temperature and altitude;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) reduction of performance during climbing turns;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) autorotation;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) adverse effects (icing, rain and condition of the airframe).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8. AIRCRAFT GENERAL KNOWLEDGE

8.1. AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT

<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL Bridge course</td>
<td>PPL Bridge course</td>
</tr>
<tr>
<td>System design, loads, stresses, maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loads and combination loadings applied to an aircraft’s structure</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Airframe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wings, tail surfaces and control surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and constructions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural components and materials</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Stresses</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Fuselage, doors, floor, wind-screen and windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and constructions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural components and materials</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Stresses</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Flight and control surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design and constructions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural components and materials</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Stresses and aero elastic vibrations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Structural limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydraulics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydromechanics: basic principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydraulic systems</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Hydraulic fluids: types and characteristics, limitations</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>System components: design, operation, degraded modes of operation, indications and warnings</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Landing gear, wheels, tyres and brakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landing gear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types and materials</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
Nose wheel steering: design and operation
- [x] Aeroplane PPL
- [x] Helicopter PPL
- [x] Aeroplane Bridge course
- [x] Helicopter Bridge course

Brakes
- **Types and materials**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **System components: design, operation, indications and warnings**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course

Wheels and tyres
- **Types and operational limitations**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course

Helicopter equipments
- [x] Aeroplane PPL
- [x] Helicopter PPL
- [x] Aeroplane Bridge course
- [x] Helicopter Bridge course

Flight controls
- **Mechanical or powered**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **Control systems and mechanical**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **System components: design, operation, indications and warnings, degraded modes of operation and jamming**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course

Secondary flight controls
- **System components: design, operation, degraded modes of operation, indications and warnings**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL

Anti-icing systems
- **Types and operation (pitot and windshield)**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course

Fuel system
- **Piston engine**
 - **System components: design, operation, degraded modes of operation, indications and warnings**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course

Turbine engine
- **System components: design, operation, degraded modes of operation, indications and warnings**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL

Electrics
- **Electrics: general and definitions**
- **Direct current: voltage, current, resistance, conductivity, Ohm’s law, power and work**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **Alternating current: voltage, current, amplitude, phase, frequency and resistance**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **Circuits: series and parallel**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
- **Magnetic field: effects in an electrical circuit**
 - [x] Aeroplane PPL
 - [x] Helicopter PPL
 - [x] Aeroplane Bridge course
 - [x] Helicopter Bridge course
<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPL Bridge course</td>
<td>PPL Bridge course</td>
</tr>
<tr>
<td>Batteries</td>
<td></td>
</tr>
<tr>
<td>Types, characteristics and limitations</td>
<td>X</td>
</tr>
<tr>
<td>Battery chargers, characteristics and limitations</td>
<td>X</td>
</tr>
<tr>
<td>Static electricity: general</td>
<td></td>
</tr>
<tr>
<td>Basic principles</td>
<td>X</td>
</tr>
<tr>
<td>Static dischargers</td>
<td>X</td>
</tr>
<tr>
<td>Protection against interference</td>
<td>X</td>
</tr>
<tr>
<td>Lightning effects</td>
<td>X</td>
</tr>
<tr>
<td>Generation: production, distribution and use</td>
<td></td>
</tr>
<tr>
<td>DC generation: types, design, operation, degraded modes of operation, indications and warnings</td>
<td>X</td>
</tr>
<tr>
<td>AC generation: types, design, operation, degraded modes of operation, indications and warnings</td>
<td>X</td>
</tr>
<tr>
<td>Electric components</td>
<td></td>
</tr>
<tr>
<td>Basic elements: basic principles of switches, circuit-breakers and relays</td>
<td>X</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>General:</td>
<td></td>
</tr>
<tr>
<td>(a) bus bar, common earth and priority; (b) AC and DC comparison.</td>
<td>X</td>
</tr>
<tr>
<td>Piston engines</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Types of internal combustion engine: basic principles and definitions</td>
<td>X</td>
</tr>
<tr>
<td>Engine: design, operation, components and materials</td>
<td>X</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
</tr>
<tr>
<td>Types, grades, characteristics and limitations</td>
<td>X</td>
</tr>
<tr>
<td>Alternate fuel: characteristics and limitations</td>
<td>X</td>
</tr>
<tr>
<td>Carburettor or injection system</td>
<td></td>
</tr>
<tr>
<td>Carburettor: design, operation, degraded modes of operation, indications and warnings</td>
<td>X</td>
</tr>
<tr>
<td>Injection: design, operation, degraded modes of operation, indications and warnings</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Aeroplane</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>PPL Bridge course</td>
</tr>
<tr>
<td>Icing</td>
<td>x</td>
</tr>
<tr>
<td>Air cooling systems</td>
<td></td>
</tr>
<tr>
<td>Design, operation, degraded modes of operation, indications and warnings</td>
<td>x</td>
</tr>
<tr>
<td>Lubrication systems</td>
<td></td>
</tr>
<tr>
<td>Lubricants: types, characteristics and limitations</td>
<td>x</td>
</tr>
<tr>
<td>Design, operation, degraded modes of operation, indications and warnings</td>
<td>x</td>
</tr>
<tr>
<td>Ignition circuits</td>
<td></td>
</tr>
<tr>
<td>Design, operation, degraded modes of operation</td>
<td>x</td>
</tr>
<tr>
<td>Mixture</td>
<td></td>
</tr>
<tr>
<td>Definition, characteristic mixtures, control instruments, associated control levers and indications</td>
<td>x</td>
</tr>
<tr>
<td>Propellers</td>
<td></td>
</tr>
<tr>
<td>Definitions and general:</td>
<td>x</td>
</tr>
<tr>
<td>(a) aerodynamic parameters;</td>
<td></td>
</tr>
<tr>
<td>(b) types;</td>
<td></td>
</tr>
<tr>
<td>(c) operating modes.</td>
<td></td>
</tr>
<tr>
<td>Constant speed propeller: design, operation and system components</td>
<td>x</td>
</tr>
<tr>
<td>Propeller handling: associated control levers, degraded modes of operation, indications and warnings</td>
<td>x</td>
</tr>
<tr>
<td>Performance and engine handling</td>
<td></td>
</tr>
<tr>
<td>Performance: influence of engine parameters, influence of atmospheric conditions, limitations and power augmentation systems</td>
<td>x</td>
</tr>
<tr>
<td>Engine handling: power and mixture settings during various flight phases and operational limitations</td>
<td>x</td>
</tr>
<tr>
<td>Turbine engines</td>
<td></td>
</tr>
<tr>
<td>Definitions</td>
<td>x</td>
</tr>
<tr>
<td>Coupled turbine engine: design, operation, components and materials</td>
<td>x</td>
</tr>
<tr>
<td>Free turbine engine: design, operation, components and materials</td>
<td>x</td>
</tr>
<tr>
<td>Fuel</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Types, characteristics and limitations</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Main engine components</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor: (a) types, design, operation, components and materials; (b) stresses and limitations; (c) stall, surge and means of prevention.</td>
<td>x</td>
</tr>
<tr>
<td>Combustion chamber: (a) types, design, operation, components and materials; (b) stresses and limitations; (c) emission problems.</td>
<td>x</td>
</tr>
<tr>
<td>Turbine: (a) types, design, operation, components and materials; (b) stresses, creep and limitations.</td>
<td>x</td>
</tr>
<tr>
<td>Exhaust: (a) design, operation and materials; (b) noise reduction.</td>
<td>x</td>
</tr>
<tr>
<td>Fuel control units: types, operation and sensors</td>
<td>x</td>
</tr>
<tr>
<td>Helicopter air intake: different types, design, operation, materials and optional equipments</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional components and systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Helicopter additional components and systems: lubrication system, ignition circuit, starter, accessory gearbox, free wheel units: design, operation and components</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance aspects</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque, performance aspects, engine handling and limitations: (a) engine ratings; (b) engine performance and limitations; (c) engine handling.</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protection and detection systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire detection systems</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Aeroplane</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>PPL</td>
</tr>
<tr>
<td>Miscellaneous systems</td>
<td></td>
</tr>
<tr>
<td>Rotor design</td>
<td></td>
</tr>
<tr>
<td>Rotor heads</td>
<td></td>
</tr>
<tr>
<td>Main rotor</td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td></td>
</tr>
<tr>
<td>Structural components and materials, stresses and structural limitations</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
</tr>
<tr>
<td>Tail rotor</td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td></td>
</tr>
<tr>
<td>Structural components and materials, stresses and structural limitations</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td>Main gear box</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation and limitations</td>
<td></td>
</tr>
<tr>
<td>Rotor brake</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation and limitations</td>
<td></td>
</tr>
<tr>
<td>Auxiliary systems</td>
<td></td>
</tr>
<tr>
<td>Drive shaft and associated installation</td>
<td></td>
</tr>
<tr>
<td>Intermediate and tail gear box</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation and limitations</td>
<td></td>
</tr>
<tr>
<td>Blades</td>
<td></td>
</tr>
<tr>
<td>Main rotor blade</td>
<td></td>
</tr>
<tr>
<td>Design and construction</td>
<td></td>
</tr>
<tr>
<td>Structural components and materials</td>
<td></td>
</tr>
<tr>
<td>Stresses</td>
<td></td>
</tr>
<tr>
<td>Structural limitations</td>
<td></td>
</tr>
<tr>
<td>Adjustment</td>
<td></td>
</tr>
<tr>
<td>Tip shape</td>
<td></td>
</tr>
<tr>
<td>Tail rotor blade</td>
<td></td>
</tr>
</tbody>
</table>
8.2. INSTRUMENTATION

Instrument and indication systems

<table>
<thead>
<tr>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure gauge</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Temperature sensing</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Fuel gauge</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Flow meter</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Position transmitter</td>
<td></td>
</tr>
<tr>
<td>Different types, design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Torque meter</td>
<td></td>
</tr>
<tr>
<td>Design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Tachometer</td>
<td></td>
</tr>
<tr>
<td>Design, operation, characteristics and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Measurement of aerodynamic parameters</td>
<td></td>
</tr>
<tr>
<td>Pressure measurement</td>
<td></td>
</tr>
<tr>
<td>Static pressure, dynamic pressure, density and definitions</td>
<td>x</td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Temperature measurement: aeroplane</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Displays</td>
<td>x</td>
</tr>
<tr>
<td>Temperature measurement: helicopter</td>
<td>Aeroplane</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td></td>
</tr>
<tr>
<td>Altimeter</td>
<td></td>
</tr>
<tr>
<td>Standard atmosphere</td>
<td></td>
</tr>
<tr>
<td>The different barometric references (QNH, QFE and 1013.25)</td>
<td></td>
</tr>
<tr>
<td>Height, indicated altitude, true altitude, pressure altitude and density altitude</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td></td>
</tr>
<tr>
<td>Vertical speed indicator</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td></td>
</tr>
<tr>
<td>Air speed indicator</td>
<td></td>
</tr>
<tr>
<td>The different speeds IAS, CAS, TAS: definition, usage and relationships</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td></td>
</tr>
<tr>
<td>Displays</td>
<td></td>
</tr>
<tr>
<td>Magnetism: direct reading compass</td>
<td></td>
</tr>
<tr>
<td>Earth magnetic field</td>
<td></td>
</tr>
<tr>
<td>Direct reading compass</td>
<td></td>
</tr>
<tr>
<td>Design, operation, data processing, accuracy and deviation</td>
<td></td>
</tr>
<tr>
<td>Turning and acceleration errors</td>
<td></td>
</tr>
<tr>
<td>Gyroscopic instruments</td>
<td></td>
</tr>
<tr>
<td>Gyroscope: basic principles</td>
<td></td>
</tr>
<tr>
<td>Definitions and design</td>
<td></td>
</tr>
<tr>
<td>Fundamental properties</td>
<td></td>
</tr>
<tr>
<td>Drifts</td>
<td></td>
</tr>
<tr>
<td>Turn and bank indicator</td>
<td></td>
</tr>
<tr>
<td>Design, operation and errors</td>
<td></td>
</tr>
<tr>
<td>Attitude indicator</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td></td>
</tr>
<tr>
<td>Directional gyroscope</td>
<td></td>
</tr>
<tr>
<td>Aeroplane</td>
<td>Helicopter</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>Design, operation, errors and accuracy</td>
<td>x</td>
</tr>
<tr>
<td>Communication systems</td>
<td></td>
</tr>
<tr>
<td>Transmission modes: VHF, HF and SATCOM</td>
<td>x</td>
</tr>
<tr>
<td>Principles, bandwidth, operational limitations and use</td>
<td>x</td>
</tr>
<tr>
<td>Voice communication</td>
<td></td>
</tr>
<tr>
<td>Definitions, general and applications</td>
<td>x</td>
</tr>
<tr>
<td>Alerting systems and proximity systems</td>
<td></td>
</tr>
<tr>
<td>Flight warning systems</td>
<td></td>
</tr>
<tr>
<td>Design, operation, indications and alarms</td>
<td>x</td>
</tr>
<tr>
<td>Stall warning</td>
<td></td>
</tr>
<tr>
<td>Design, operation, indications and alarms</td>
<td>x</td>
</tr>
<tr>
<td>Radio-altimeter</td>
<td></td>
</tr>
<tr>
<td>Design, operation, errors, accuracy and indications</td>
<td>x</td>
</tr>
<tr>
<td>Rotor or engine over speed alert system</td>
<td></td>
</tr>
<tr>
<td>Design, operation, displays and alarms</td>
<td>x</td>
</tr>
<tr>
<td>Integrated instruments: electronic displays</td>
<td></td>
</tr>
<tr>
<td>Display units</td>
<td></td>
</tr>
<tr>
<td>Design, different technologies and limitations</td>
<td>x</td>
</tr>
</tbody>
</table>

9. NAVIGATION

9.1. GENERAL NAVIGATION

Basics of navigation

The solar system

Seasonal and apparent movements of the sun | x | x |

The earth

Great circle, small circle and rhumb line | x | x |

Latitude and difference of latitude | x | x |

Longitude and difference of longitude | x | x |
<table>
<thead>
<tr>
<th>Annex to ED Decision 2011/016/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroplane</td>
</tr>
<tr>
<td>PPL</td>
</tr>
<tr>
<td>Use of latitude and longitude co-ordinates to locate any specific position</td>
</tr>
<tr>
<td>Time and time conversions</td>
</tr>
<tr>
<td>Apparent time</td>
</tr>
<tr>
<td>UTC</td>
</tr>
<tr>
<td>LMT</td>
</tr>
<tr>
<td>Standard times</td>
</tr>
<tr>
<td>Dateline</td>
</tr>
<tr>
<td>Definition of sunrise, sunset and civil twilight</td>
</tr>
<tr>
<td>Directions</td>
</tr>
<tr>
<td>True north, magnetic north and compass north</td>
</tr>
<tr>
<td>Compass deviation</td>
</tr>
<tr>
<td>Magnetic poles, isogonals, relationship between true and magnetic</td>
</tr>
<tr>
<td>Distance</td>
</tr>
<tr>
<td>Units of distance and height used in navigation: nautical miles, statute miles, kilometres, metres and ft</td>
</tr>
<tr>
<td>Conversion from one unit to another</td>
</tr>
<tr>
<td>Relationship between nautical miles and minutes of latitude and minutes of longitude</td>
</tr>
<tr>
<td>Magnetism and compasses</td>
</tr>
<tr>
<td>General principles</td>
</tr>
<tr>
<td>Terrestrial magnetism</td>
</tr>
<tr>
<td>Resolution of the earth’s total magnetic force into vertical and horizontal components</td>
</tr>
<tr>
<td>Variation-annual change</td>
</tr>
<tr>
<td>Aircraft magnetism</td>
</tr>
<tr>
<td>The resulting magnetic fields</td>
</tr>
<tr>
<td>Keeping magnetic materials clear of the compass</td>
</tr>
<tr>
<td>Charts</td>
</tr>
<tr>
<td>General properties of miscellaneous types of projections</td>
</tr>
<tr>
<td>Direct Mercator</td>
</tr>
<tr>
<td>Lambert conformal conic</td>
</tr>
<tr>
<td>The representation of meridians, parallels, great circles and rhumb lines</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Direct Mercator</td>
</tr>
<tr>
<td>Lambert conformal conic</td>
</tr>
<tr>
<td>The use of current aeronautical charts</td>
</tr>
<tr>
<td>Plotting positions</td>
</tr>
<tr>
<td>Methods of indicating scale and relief (ICAO topographical chart)</td>
</tr>
<tr>
<td>Conventional signs</td>
</tr>
<tr>
<td>Measuring tracks and distances</td>
</tr>
<tr>
<td>Plotting bearings and distances</td>
</tr>
<tr>
<td>DR navigation</td>
</tr>
<tr>
<td>Basis of DR</td>
</tr>
<tr>
<td>Track</td>
</tr>
<tr>
<td>Heading (compass, magnetic and true)</td>
</tr>
<tr>
<td>Wind velocity</td>
</tr>
<tr>
<td>Air speed (IAS, CAS and TAS)</td>
</tr>
<tr>
<td>Groundspeed</td>
</tr>
<tr>
<td>ETA</td>
</tr>
<tr>
<td>Drift and wind correction angle</td>
</tr>
<tr>
<td>DR position fix</td>
</tr>
<tr>
<td>Use of the navigational computer</td>
</tr>
<tr>
<td>Speed</td>
</tr>
<tr>
<td>Time</td>
</tr>
<tr>
<td>Distance</td>
</tr>
<tr>
<td>Fuel consumption</td>
</tr>
<tr>
<td>Conversions</td>
</tr>
<tr>
<td>Air speed</td>
</tr>
<tr>
<td>Wind velocity</td>
</tr>
<tr>
<td>True altitude</td>
</tr>
<tr>
<td>The triangle of velocities</td>
</tr>
<tr>
<td>Heading</td>
</tr>
<tr>
<td>Ground speed</td>
</tr>
<tr>
<td>Wind velocity</td>
</tr>
<tr>
<td>Track and drift angle</td>
</tr>
<tr>
<td>Measurement of DR elements</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Calculation of altitude</td>
</tr>
<tr>
<td>Determination of appropriate speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In-flight navigation</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of visual observations and application to in-flight navigation</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Navigation in cruising flight, use of fixes to revise navigation data</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground speed revision</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Off-track corrections</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Calculation of wind speed and direction</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>ETA revisions</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Flight log</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

9.2. RADIO NAVIGATION

Basic radio propagation theory

Antennas
- Characteristics | x | x |

Wave propagation
- Propagation with the frequency bands | x | x |

Radio aids

Ground DF
- Principles | x | x |
- Presentation and interpretation | x | x |
- Coverage | x | x |
- Range | x | x |
- Errors and accuracy | x | x |
- Factors affecting range and accuracy | x | x |

NDB/ADF
- Principles | x | x |
- Presentation and interpretation | x | x |
- Coverage | x | x |
- Range | x | x |
- Errors and accuracy | x | x |
- Factors affecting range and accuracy | x | x |

VOR
<table>
<thead>
<tr>
<th></th>
<th>Aeroplane</th>
<th>Helicopter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPL</td>
<td>Bridge course</td>
</tr>
<tr>
<td>Principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Presentation and interpretation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Coverage</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Range</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Errors and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Factors affecting range and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>DME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Presentation and interpretation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Coverage</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Range</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Errors and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Factors affecting range and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ground radar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Presentation and interpretation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Coverage</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Range</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Errors and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Factors affecting range and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Secondary surveillance radar and transponder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Presentation and interpretation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Modes and codes</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>GNSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS, GLONASS OR GALILEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Operation</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Errors and accuracy</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Factors affecting accuracy</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
AMC2 FCL.210; FCL.215

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE PPL(AS)

The following table contains the syllabi for the courses of theoretical knowledge, as well as for the theoretical knowledge examinations for the PPL(As). The training and examination should cover aspects related to non-technical skills in an integrated manner, taking into account the particular risks associated to the licence and the activity.

<table>
<thead>
<tr>
<th>PPL</th>
<th>1. AIR LAW AND ATC PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>International law: conventions, agreements and organisations</td>
</tr>
<tr>
<td></td>
<td>Airworthiness of aircraft</td>
</tr>
<tr>
<td></td>
<td>Aircraft nationality and registration marks</td>
</tr>
<tr>
<td></td>
<td>Personnel licensing</td>
</tr>
<tr>
<td></td>
<td>Rules of the air</td>
</tr>
<tr>
<td></td>
<td>Procedures for air navigation services: aircraft operations</td>
</tr>
<tr>
<td></td>
<td>Air traffic services and air traffic management</td>
</tr>
<tr>
<td></td>
<td>Aeronautical information service</td>
</tr>
<tr>
<td></td>
<td>Aerodromes</td>
</tr>
<tr>
<td></td>
<td>Search and rescue</td>
</tr>
<tr>
<td></td>
<td>Security</td>
</tr>
<tr>
<td></td>
<td>Aircraft accident and incident investigation</td>
</tr>
<tr>
<td></td>
<td>National law</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPL</th>
<th>2. HUMAN PERFORMANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Human factors: basic concepts</td>
</tr>
<tr>
<td></td>
<td>Basic aviation physiology and health maintenance</td>
</tr>
<tr>
<td></td>
<td>Basic aviation psychology</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPL</th>
<th>3. METEOROLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The atmosphere</td>
</tr>
<tr>
<td></td>
<td>Wind</td>
</tr>
<tr>
<td></td>
<td>Thermodynamics</td>
</tr>
<tr>
<td></td>
<td>Clouds and fog</td>
</tr>
<tr>
<td>Precipitation</td>
<td>x</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>Air masses and fronts</td>
<td>x</td>
</tr>
<tr>
<td>Pressure systems</td>
<td>x</td>
</tr>
<tr>
<td>Climatology</td>
<td>x</td>
</tr>
<tr>
<td>Flight hazards</td>
<td>x</td>
</tr>
<tr>
<td>Meteorological information</td>
<td>x</td>
</tr>
</tbody>
</table>

4. COMMUNICATIONS

VFR COMMUNICATIONS

<table>
<thead>
<tr>
<th>Definitions</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>General operating procedures</td>
<td>x</td>
</tr>
<tr>
<td>Relevant weather information terms (VFR)</td>
<td>x</td>
</tr>
<tr>
<td>Action required to be taken in case of communication failure</td>
<td>x</td>
</tr>
<tr>
<td>Distress and urgency procedures</td>
<td>x</td>
</tr>
<tr>
<td>General principles of VHF propagation and allocation of frequencies</td>
<td>x</td>
</tr>
</tbody>
</table>

5. PRINCIPLES OF FLIGHT

<table>
<thead>
<tr>
<th>Basics of aerostatics</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of subsonic aerodynamics</td>
<td>x</td>
</tr>
<tr>
<td>Aerodynamics of airships</td>
<td>x</td>
</tr>
<tr>
<td>Stability</td>
<td>x</td>
</tr>
<tr>
<td>Controllability</td>
<td>x</td>
</tr>
<tr>
<td>Limitations</td>
<td>x</td>
</tr>
<tr>
<td>Propellers</td>
<td>x</td>
</tr>
<tr>
<td>Basics of airship flight mechanics</td>
<td>x</td>
</tr>
</tbody>
</table>

6. OPERATIONAL PROCEDURES

<table>
<thead>
<tr>
<th>General requirements</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Special operational procedures and hazards (general aspects)</td>
<td>x</td>
</tr>
<tr>
<td>Emergency procedures</td>
<td>x</td>
</tr>
</tbody>
</table>
7. FLIGHT PERFORMANCE AND PLANNING

7.1 MASS AND BALANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose of mass and balance considerations</td>
<td>x</td>
</tr>
<tr>
<td>Loading</td>
<td>x</td>
</tr>
<tr>
<td>Fundamentals of CG calculations</td>
<td>x</td>
</tr>
<tr>
<td>Mass and balance details of aircraft</td>
<td>x</td>
</tr>
<tr>
<td>Determination of CG position</td>
<td>x</td>
</tr>
<tr>
<td>Passenger, cargo and ballast handling</td>
<td>x</td>
</tr>
</tbody>
</table>

7.2 PERFORMANCE

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airworthiness requirements</td>
<td>x</td>
</tr>
<tr>
<td>Basics of airship performance</td>
<td>x</td>
</tr>
<tr>
<td>Definitions and terms</td>
<td>x</td>
</tr>
<tr>
<td>Stages of flight</td>
<td>x</td>
</tr>
<tr>
<td>Use of flight manual</td>
<td>x</td>
</tr>
</tbody>
</table>

7.3 FLIGHT PLANNING AND FLIGHT MONITORING

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight planning for VFR flights</td>
<td>x</td>
</tr>
<tr>
<td>Fuel planning</td>
<td>x</td>
</tr>
<tr>
<td>Pre-flight preparation</td>
<td>x</td>
</tr>
<tr>
<td>ATS flight plan</td>
<td>x</td>
</tr>
<tr>
<td>Flight monitoring and in-flight re-planning</td>
<td>x</td>
</tr>
</tbody>
</table>

8. AIRCRAFT GENERAL KNOWLEDGE

8.1 ENVELOPE, AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design, materials, loads and stresses</td>
<td>x</td>
</tr>
<tr>
<td>Envelope and airbags</td>
<td>x</td>
</tr>
<tr>
<td>Framework</td>
<td>x</td>
</tr>
<tr>
<td>Gondola</td>
<td>x</td>
</tr>
<tr>
<td>Flight controls</td>
<td>x</td>
</tr>
<tr>
<td>Landing gear</td>
<td>x</td>
</tr>
<tr>
<td>Hydraulics and pneumatics</td>
<td>x</td>
</tr>
<tr>
<td>Heating and air conditioning</td>
<td>x</td>
</tr>
<tr>
<td>Fuel system</td>
<td>x</td>
</tr>
<tr>
<td>Piston engines (propellers)</td>
<td>x</td>
</tr>
<tr>
<td>Turbine engines (basics)</td>
<td>x</td>
</tr>
</tbody>
</table>
8.2 INSTRUMENTATION

<table>
<thead>
<tr>
<th>Category</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors and instruments</td>
<td>X</td>
</tr>
<tr>
<td>Measurement of air data and gas parameters</td>
<td>X</td>
</tr>
<tr>
<td>Magnetism: direct reading compass and flux valve</td>
<td>X</td>
</tr>
<tr>
<td>Gyroscopic instruments</td>
<td>X</td>
</tr>
<tr>
<td>Communication systems</td>
<td>X</td>
</tr>
<tr>
<td>Alerting systems</td>
<td>X</td>
</tr>
<tr>
<td>Integrated instruments: electronic displays</td>
<td>X</td>
</tr>
<tr>
<td>Flight management system (general basics)</td>
<td>X</td>
</tr>
<tr>
<td>Digital circuits and computers</td>
<td>X</td>
</tr>
</tbody>
</table>

9. NAVIGATION

9.1. GENERAL NAVIGATION

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of navigation</td>
<td>X</td>
</tr>
<tr>
<td>Magnetism and compasses</td>
<td>X</td>
</tr>
<tr>
<td>Charts</td>
<td>X</td>
</tr>
<tr>
<td>DR navigation</td>
<td>X</td>
</tr>
<tr>
<td>In-flight navigation</td>
<td>X</td>
</tr>
</tbody>
</table>

9.2. RADIO NAVIGATION

<table>
<thead>
<tr>
<th>Topic</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic radio propagation theory</td>
<td>X</td>
</tr>
<tr>
<td>Radio aids</td>
<td>X</td>
</tr>
<tr>
<td>Radar</td>
<td>X</td>
</tr>
<tr>
<td>GNSS</td>
<td>X</td>
</tr>
</tbody>
</table>
AMC3 FCL.210; FCL.215

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE BPL AND SPL

The syllabi for the theoretical knowledge instruction and examination for the LAPL(B) and LAPL(S) in AMC1 FCL.115 and FCL.120 should be used for the BPL and SPL, respectively.
AMC1 FCL.215; FCL.235

THEORETICAL KNOWLEDGE EXAMINATION AND SKILL TEST FOR THE PPL

(a) Theoretical knowledge examination
 (1) The examinations should comprise a total of 120 multiple-choice questions covering all the subjects.
 (2) Communication practical classroom testing may be conducted.
 (3) The period of 18 months mentioned in FCL.025(b)(2) should be counted from the end of the calendar month when the applicant first attempted an examination.

(b) Skill test
 Further training may be required following any failed skill test or part thereof. There should be no limit to the number of skill tests that may be attempted.

(c) Conduct of the test
 (1) If the applicant chooses to terminate a skill test for reasons considered inadequate by the FE, the applicant should retake the entire skill test. If the test is terminated for reasons considered adequate by the FE, only those sections not completed should be tested in a further flight.
 (2) Any manoeuvre or procedure of the test may be repeated once by the applicant. The FE may stop the test at any stage if it is considered that the applicant's demonstration of flying skill requires a complete retest.
 (3) An applicant should be required to fly the aircraft from a position where the PIC functions can be performed and to carry out the test as if there is no other crew member. Responsibility for the flight should be allocated in accordance with national regulations.
AMC1 FCL.235 Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A PPL(A)

(a) The route to be flown for the navigation test should be chosen by the FE. The route may end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test should have a duration that allows the pilot to demonstrate his/her ability to complete a route with at least three identified waypoints and may, as agreed between the applicant and FE, be flown as a separate test.

(b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the authorised checklist for the aeroplane on which the test is being taken. During pre-flight preparation for the test the applicant should be required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the aeroplane used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:

(1) operate the aeroplane within its limitations;
(2) complete all manoeuvres with smoothness and accuracy;
(3) exercise good judgment and airmanship;
(4) apply aeronautical knowledge;
(5) maintain control of the aeroplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

(d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the aeroplane used:

(1) height:
 (i) normal flight ± 150 ft
 (ii) with simulated engine failure ± 200 ft (if ME aeroplane is used)

(2) heading or tracking of radio aids:
 (i) normal flight ± 10 °
 (ii) with simulated engine failure ± 15 ° (if ME aeroplane is used)

(3) speed:
 (i) take-off and approach +15/−5 knots
 (ii) all other flight regimes ± 15 knots
CONTENT OF THE SKILL TEST

(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL(A) on SE and ME aeroplanes or on TMGs.

<table>
<thead>
<tr>
<th>SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of checklist, airmanship, control of aeroplane by external visual reference, anti/de-icing procedures, etc. apply in all sections.</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>d</td>
</tr>
<tr>
<td>e</td>
</tr>
<tr>
<td>f</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>h</td>
</tr>
</tbody>
</table>
SECTION 2 GENERAL AIRWORK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>ATC compliance and R/T procedures</td>
</tr>
<tr>
<td>b</td>
<td>Straight and level flight, with speed changes</td>
</tr>
</tbody>
</table>
| c | Climbing:
 i. best rate of climb;
 ii. climbing turns;
 iii. levelling off. |
| d |Medium (30 ° bank) turns |
| e |Steep (45 ° bank) turns (including recognition and recovery from a spiral dive) |
| f | Flight at critically low air speed with and without flaps |
| g | Stalling:
 i. clean stall and recover with power;
 ii. approach to stall descending turn with bank angle 20°, approach configuration;
 iii. approach to stall in landing configuration. |
| h | Descending:
 i. with and without power;
 ii. descending turns (steep gliding turns);
 iii. levelling off. |

SECTION 3 EN-ROUTE PROCEDURES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Flight plan, dead reckoning and map reading</td>
</tr>
<tr>
<td>b</td>
<td>Maintenance of altitude, heading and speed</td>
</tr>
<tr>
<td>c</td>
<td>Orientation, timing and revision of ETAs and log keeping</td>
</tr>
<tr>
<td>d</td>
<td>Diversion to alternate aerodrome (planning and implementation)</td>
</tr>
<tr>
<td>e</td>
<td>Use of radio navigation aids</td>
</tr>
<tr>
<td>f</td>
<td>Basic instrument flying check (180 ° turn in simulated IMC)</td>
</tr>
<tr>
<td>g</td>
<td>Flight management (checks, fuel systems and carburettor icing, etc.)</td>
</tr>
<tr>
<td>h</td>
<td>ATC compliance and R/T procedures</td>
</tr>
</tbody>
</table>
SECTION 4 APPROACH AND LANDING PROCEDURES

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Aerodrome arrival procedures</td>
</tr>
<tr>
<td>b</td>
<td>* Precision landing (short field landing), crosswind, if suitable conditions available</td>
</tr>
<tr>
<td>c</td>
<td>* Flapless landing</td>
</tr>
<tr>
<td>d</td>
<td>* Approach to landing with idle power (SE only)</td>
</tr>
<tr>
<td>e</td>
<td>Touch and go</td>
</tr>
<tr>
<td>f</td>
<td>Go-around from low height</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance and R/T procedures</td>
</tr>
<tr>
<td>h</td>
<td>Actions after flight</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Simulated engine failure after take-off (SE only)</td>
</tr>
<tr>
<td>b</td>
<td>* Simulated forced landing (SE only)</td>
</tr>
<tr>
<td>c</td>
<td>Simulated precautionary landing (SE only)</td>
</tr>
<tr>
<td>d</td>
<td>Simulated emergencies</td>
</tr>
<tr>
<td>e</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>
SECTION 6 SIMULATED ASYMMETRIC FLIGHT AND RELEVANT CLASS OR TYPE ITEMS

This section may be combined with sections 1 through 5

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Simulated engine failure during take-off (at a safe altitude unless carried out in an FFS)</td>
</tr>
<tr>
<td>b</td>
<td>Asymmetric approach and go-around</td>
</tr>
<tr>
<td>c</td>
<td>Asymmetric approach and full stop landing</td>
</tr>
<tr>
<td>d</td>
<td>Engine shutdown and restart</td>
</tr>
<tr>
<td>e</td>
<td>ATC compliance, R/T procedures or airmanship</td>
</tr>
<tr>
<td>f</td>
<td>As determined by the FE: any relevant items of the class or type rating skill test to include, if applicable:</td>
</tr>
<tr>
<td></td>
<td>i. aeroplane systems including handling of auto pilot;</td>
</tr>
<tr>
<td></td>
<td>ii. operation of pressurisation system;</td>
</tr>
<tr>
<td></td>
<td>iii. use of de-icing and anti-icing system.</td>
</tr>
<tr>
<td>g</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>

* These items may be combined, at the discretion of the FE.
AMC2 FCL.235 Skill test

CONTENTS OF THE SKILL TEST FOR THE ISSUE OF A PPL(H)

(a) The area and route to be flown should be chosen by the FE and all low level and hover work should be at an adequate aerodrome or site. Routes used for section 3 may end at the aerodrome of departure or at another aerodrome. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The navigation section of the test, as set out in this AMC should consist of at least three legs, each leg of a minimum duration of 10 minutes. The skill test may be conducted in two flights.

(b) An applicant should indicate to the FE the checks and duties carried out, including the identification of radio facilities. Checks should be completed in accordance with the authorised checklist or pilot operating handbook for the helicopter on which the test is being taken. During pre-flight preparation for the test the applicant is required to determine power settings and speeds. Performance data for take-off, approach and landing should be calculated by the applicant in compliance with the operations manual or flight manual for the helicopter used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:

(1) operate the helicopter within its limitations;
(2) complete all manoeuvres with smoothness and accuracy;
(3) exercise good judgement and airmanship;
(4) apply aeronautical knowledge;
(5) maintain control of the helicopter at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

(d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the helicopter used.

(1) height:
 (i) normal forward flight ± 150 ft
 (ii) with simulated major emergency ± 200 ft
 (iii) hovering IGE flight ± 2 ft

(2) heading or tracking of radio aids:
 (i) normal flight ± 10 °
 (ii) with simulated major emergency ± 15 °

(3) speed:
 (i) take-off approach – 10 knots/+15 knots
(ii) all other flight regimes
± 15 knots

(4) ground drift:
(i) take-off hover IGE
± 3 ft
(ii) landing
no sideways or backwards movement

CONTENT OF THE SKILL TEST
(e) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL(H) on SE or ME helicopters.

SECTION 1 PRE-FLIGHT OR POST-FLIGHT CHECKS AND PROCEDURES
Use of checklist, airmanship, control of helicopter by external visual reference, anti-icing procedures, etc. apply in all sections

a	Helicopter knowledge, (for example technical log, fuel, mass and balance, performance), flight planning, NOTAM and weather briefing
b	Pre-flight inspection or action, location of parts and purpose
c	Cockpit inspection and starting procedure
d	Communication and navigation equipment checks, selecting and setting frequencies
e	Pre-take-off procedure, R/T procedure and ATC compliance
f	Parking, shutdown and post-flight procedure

SECTION 2 HOVER MANOEUVRES, ADVANCED HANDLING AND CONFINED AREAS

<p>| a | Take-off and landing (lift-off and touch down) |
| b | Taxi and hover taxi |
| c | Stationary hover with head, cross or tail wind |
| d | Stationary hover turns, 360 ° left and right (spot turns) |
| e | Forward, sideways and backwards hover manoeuvring |
| f | Simulated engine failure from the hover |
| g | Quick stops into and downwind |</p>
<table>
<thead>
<tr>
<th>h</th>
<th>Sloping ground or unprepared sites landings and take-offs</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Take-offs (various profiles)</td>
</tr>
<tr>
<td>j</td>
<td>Crosswind and downwind take-off (if practicable)</td>
</tr>
<tr>
<td>k</td>
<td>Take-off at maximum take-off mass (actual or simulated)</td>
</tr>
<tr>
<td>l</td>
<td>Approaches (various profiles)</td>
</tr>
<tr>
<td>m</td>
<td>Limited power take-off and landing</td>
</tr>
<tr>
<td>n</td>
<td>Autorotations, (FE to select two items from: basic, range, low speed and 360 ° turns)</td>
</tr>
<tr>
<td>o</td>
<td>Autorotative landing</td>
</tr>
<tr>
<td>p</td>
<td>Practice forced landing with power recovery</td>
</tr>
<tr>
<td>q</td>
<td>Power checks, reconnaissance technique, approach and departure technique</td>
</tr>
</tbody>
</table>

SECTION 3 NAVIGATION - EN ROUTE PROCEDURES

<table>
<thead>
<tr>
<th>a</th>
<th>Navigation and orientation at various altitudes or heights and map reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Altitude or height, speed, heading control, observation of airspace and altimeter setting</td>
</tr>
<tr>
<td>c</td>
<td>Monitoring of flight progress, flight log, fuel usage, endurance, ETA, assessment of track error and re-establishment of correct track and instrument monitoring</td>
</tr>
<tr>
<td>d</td>
<td>Observation of weather conditions and diversion planning</td>
</tr>
<tr>
<td>e</td>
<td>Use of navigation aids (where available)</td>
</tr>
<tr>
<td>f</td>
<td>ATC liaison with due observance of regulations, etc.</td>
</tr>
</tbody>
</table>

SECTION 4 FLIGHT PROCEDURES AND MANOEUVRES

<table>
<thead>
<tr>
<th>a</th>
<th>Level flight, control of heading, altitude or height and speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Climbing and descending turns to specified headings</td>
</tr>
<tr>
<td>c</td>
<td>Level turns with up to 30 ° bank, 180 ° to 360 ° left and right</td>
</tr>
<tr>
<td>d</td>
<td>Level turns 180 ° left and right by sole reference to instruments</td>
</tr>
</tbody>
</table>
SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES (SIMULATED WHERE APPROPRIATE)

Note (1) Where the test is conducted on an ME helicopter, a simulated engine failure drill, including an SE approach and landing should be included in the test.

Note (2) The FE should select four items from the following:

<table>
<thead>
<tr>
<th></th>
<th>Engine malfunctions, including governor failure, carburettor or engine icing and oil system, as appropriate</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Fuel system malfunction</td>
</tr>
<tr>
<td>c</td>
<td>Electrical system malfunction</td>
</tr>
<tr>
<td>d</td>
<td>Hydraulic system malfunction, including approach and landing without hydraulics, as applicable</td>
</tr>
<tr>
<td>e</td>
<td>Main rotor or anti-torque system malfunction (FFS or discussion only)</td>
</tr>
<tr>
<td>f</td>
<td>Fire drills, including smoke control and removal, as applicable</td>
</tr>
<tr>
<td>g</td>
<td>Other abnormal and emergency procedures as outlined in an appropriate flight manual and with reference to Appendix 9 C to Part-FCL, sections 3 and 4, including for ME helicopters:</td>
</tr>
<tr>
<td></td>
<td>(a) Simulated engine failure at take-off:</td>
</tr>
<tr>
<td></td>
<td>(1) rejected take-off at or before TDP or safe forced landing at or before DPATO;</td>
</tr>
<tr>
<td></td>
<td>(2) shortly after TDP or DPATO.</td>
</tr>
<tr>
<td></td>
<td>(b) Landing with simulated engine failure:</td>
</tr>
<tr>
<td></td>
<td>(1) landing or go-around following engine failure before LDP or DPBL;</td>
</tr>
<tr>
<td></td>
<td>(2) following engine failure after LDP or safe forced landing after DPBL.</td>
</tr>
</tbody>
</table>
AMC3 FCL.235 Skill test

CONTENT OF THE SKILL TEST FOR THE ISSUE OF THE PPL(AS)

(a) The area and route to be flown is chosen by the FE. Routes used for section 3 may end at the aerodrome of departure or at another aerodrome and one destination should be a controlled aerodrome. The skill test may be conducted in two flights. The total duration of the flight(s) should be at least 60 minutes.

(b) The applicant should demonstrate the ability to:
 (1) operate the airship within its limitations;
 (2) complete all manoeuvres with smoothness and accuracy;
 (3) exercise good judgement and airmanship;
 (4) apply aeronautical knowledge;
 (5) maintain control of the airship at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

FLIGHT TEST TOLERANCES

(c) The following limits should apply, corrected to make allowance for turbulent conditions and the handling qualities and performance of the airship used.
 (1) height:
 (i) normal flight ±200 ft
 (ii) simulated major emergency ±300 ft
 (2) tracking on radio aids: ±15 °
 (3) heading:
 (i) normal flight ±15 °
 (ii) simulated major emergency ±20 °

CONTENT OF THE TEST

(d) The skill test contents and sections set out in this AMC should be used for the skill test for the issue of a PPL(As).

(e) Items in sections 5 and 6 may be performed in an FNPT (As) or a FS (As).

SECTION 1 PRE-FLIGHT OPERATIONS AND DEPARTURE

Use of airship checklists, airmanship, control of airship by external visual reference, anti-icing procedures, and principles of threat and error management, etc. apply in all sections
Section 1: Pre-flight Preparations

1. Pre-flight, including:
 - Flight planning, documentation, mass and balance, NOTAM and weather briefing
2. Airship inspection and servicing
3. Off-mast procedure, ground manoeuvring and take-off
4. Performance considerations and trim
5. Aerodrome and traffic pattern operations
6. Departure procedure, altimeter setting, collision avoidance (look-out)
7. ATC compliance and R/T procedures

Section 2: General Airwork

1. Control of the airship by external visual reference, including straight and level, climb, descent and look-out
2. Flight close to pressure height
3. Turns
4. Steep descents and climbs
5. Flight by reference solely to instruments, including:
 - Level flight, control of heading, altitude and air speed;
 - Climbing and descending turns;
 - Recoveries from unusual attitudes.
6. ATC compliance and R/T procedures

Section 3: En-route Procedures

1. Flight plan, dead reckoning and map reading
2. Maintenance of altitude, heading and speed and collision avoidance (look-out procedures)
3. Orientation, timing and revision of ETAs and log keeping
4. Observation of weather conditions and diversion to alternate aerodrome (planning and implementation)
5. Use of radio navigation aids
6. Flight management (checks, fuel systems, etc.)
7. ATC compliance and R/T procedures

Section 4: Approach and Landing Procedures

1. Aerodrome arrival procedures, altimeter setting, checks and look-out
SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

a	Simulated engine failure after take-off (at a safe altitude) and fire drill
b	Equipment malfunctions
c	Forced landing (simulated)
d	ATC compliance and R/T procedures
e	Oral questions

SECTION 6 RELEVANT TYPE ITEMS

This section may be combined with sections 1 through 5

a	Simulated engine failure during take-off (at a safe altitude unless carried out in a FFS)
b	Approach and go-around with failed engine(s)
c	Approach and full stop landing with failed engine(s)
d	Malfunctions in the envelope pressure system
e	ATC compliance, R/T procedures and airmanship
f	As determined by the FE: any relevant items of the type rating skill test to include, if applicable:
i. Airship systems;	
ii. Operation of envelope pressure system.	
g	Oral questions
AMC1 FCL.210.A PPL(A) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE PPL(A)

(a) Entry to training
Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction
(1) The PPL(A) flight instruction syllabus takes into account the principles of threat and error management and also covers:
 (i) pre-flight operations, including mass and balance determination, aircraft inspection and servicing;
 (ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;
 (iii) control of the aircraft by external visual reference;
 (iv) flight at critically low air speeds, recognition of, and recovery from, incipient and full stalls;
 (v) flight at critically high air speeds, recognition of, and recovery from, spiral dive;
 (vi) normal and crosswind take-offs and landings;
 (vii) maximum performance (short field and obstacle clearance) take-offs, short-field landings;
 (viii) flight by reference solely to instruments, including the completion of a level 180° turn;
 (ix) cross-country flying using visual reference, dead reckoning and radio navigation aids;
 (x) emergency operations, including simulated aeroplane equipment malfunctions;
 (xi) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures, communication procedures and phraseology.

(2) Before allowing the applicant for a PPL(A) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.

(c) Syllabus of flight instruction
(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:
 (i) the applicant’s progress and ability;
 (ii) the weather conditions affecting the flight;
 (iii) the flight time available;
 (iv) instructional technique considerations;
(v) the local operating environment;
(vi) applicability of the exercises to the aeroplane.

(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1a: Familiarisation with the aeroplane:
 (A) characteristics of the aeroplane;
 (B) cockpit layout;
 (C) systems;
 (D) checklists, drills and controls.

(ii) Exercise 1b: Emergency drills:
 (A) action if fire on the ground and in the air;
 (B) engine cabin and electrical system fire;
 (C) systems failure;
 (D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
 (A) flight authorisation and aeroplane acceptance;
 (B) serviceability documents;
 (C) equipment required, maps, etc.;
 (D) external checks;
 (E) internal checks;
 (F) harness, seat or rudder panel adjustments;
 (G) starting and warm-up checks;
 (H) power checks;
 (I) running down system checks and switching off the engine;
 (J) parking, security and picketing (for example tie down);
 (K) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Air experience: flight exercise.

(v) Exercise 4: Effects of controls:
 (A) primary effects when laterally level and when banked;
 (B) further effects of aileron and rudder;
 (C) effects of:
 (a) air speed;
 (b) slipstream;
 (c) power;
 (d) trimming controls;
 (e) flaps;
 (f) other controls, as applicable.
(D) operation of:
 (a) mixture control;
 (b) carburettor heat;
 (c) cabin heating or ventilation.

(vi) Exercise 5a: Taxiing:
 (A) pre-taxi checks;
 (B) starting, control of speed and stopping;
 (C) engine handling;
 (D) control of direction and turning;
 (E) turning in confined spaces;
 (F) parking area procedure and precautions;
 (G) effects of wind and use of flying controls;
 (H) effects of ground surface;
 (I) freedom of rudder movement;
 (J) marshalling signals;
 (K) instrument checks;
 (L) air traffic control procedures.

(vii) Exercise 5b: Emergencies: brake and steering failure.

(viii) Exercise 6: Straight and level:
 (A) at normal cruising power, attaining and maintaining straight and level flight;
 (B) flight at critically high air speeds;
 (C) demonstration of inherent stability;
 (D) control in pitch, including use of trim;
 (E) lateral level, direction and balance and trim;
 (F) at selected air speeds (use of power);
 (G) during speed and configuration changes;
 (H) use of instruments for precision.

(ix) Exercise 7: Climbing:
 (A) entry, maintaining the normal and max rate climb and levelling off;
 (B) levelling off at selected altitudes;
 (C) en-route climb (cruise climb);
 (D) climbing with flap down;
 (E) recovery to normal climb;
 (F) maximum angle of climb;
 (G) use of instruments for precision.

(x) Exercise 8: Descending:
 (A) entry, maintaining and levelling off;
(B) levelling off at selected altitudes;
(C) glide, powered and cruise descent (including effect of power and air speed);
(D) side slipping (on suitable types);
(E) use of instruments for precision flight.

(xi) Exercise 9: Turning:
(A) entry and maintaining medium level turns;
(B) resuming straight flight;
(C) faults in the turn (for example in correct pitch, bank and balance);
(D) climbing turns;
(E) descending turns;
(F) faults in the turns (slipping and skidding on suitable types);
(G) turns onto selected headings, use of gyro heading indicator and compass;
(H) use of instruments for precision.

(xii) Exercise 10a: Slow flight:
Note: the objective is to improve the student’s ability to recognise inadvertent flight at critically low speeds and provide practice in maintaining the aeroplane in balance while returning to normal air speed.

(A) safety checks;
(B) introduction to slow flight;
(C) controlled flight down to critically slow air speed;
(D) application of full power with correct attitude and balance to achieve normal climb speed.

(xiii) Exercise 10b: Stalling:

(A) safety checks;
(B) symptoms;
(C) recognition;
(D) clean stall and recovery without power and with power;
(E) recovery when a wing drops;
(F) approach to stall in the approach and in the landing configurations, with and without power and recovery at the incipient stage.

(xiv) Exercise 11: Spin avoidance:

(A) safety checks;
(B) stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45 °);
(C) instructor induced distractions during the stall.

Note 1: at least two hours of stall awareness and spin avoidance flight training should be completed during the course.
Note 2: consideration of manoeuvre limitations and the need to refer to the aeroplane manual and mass and balance calculations.

(xv) Exercise 12: Take-off and climb to downwind position:
 (A) pre-take-off checks;
 (B) into wind take-off;
 (C) safeguarding the nose wheel;
 (D) crosswind take-off;
 (E) drills during and after take-off;
 (F) short take-off and soft field procedure/techniques including performance calculations;
 (G) noise abatement procedures.

(xvi) Exercise 13: Circuit, approach and landing:
 (A) circuit procedures, downwind and base leg;
 (B) powered approach and landing;
 (C) safeguarding the nose wheel;
 (D) effect of wind on approach and touchdown speeds and use of flaps;
 (E) crosswind approach and landing;
 (F) glide approach and landing;
 (G) short landing and soft field procedures or techniques;
 (H) flapless approach and landing;
 (I) wheel landing (tail wheel aeroplanes);
 (J) missed approach and go-around;
 (K) noise abatement procedures.

(xvii) Exercise 12/13: Emergencies:
 (A) abandoned take-off;
 (B) engine failure after take-off;
 (C) mislanding and go-around;
 (D) missed approach.

Note: in the interests of safety it will be necessary for pilots trained on nose wheel aeroplanes to undergo dual conversion training before flying tail wheel aeroplanes, and vice-versa.

(xviii) Exercise 14: First solo:
 (A) instructor’s briefing, observation of flight and de-briefing;

Note: during flights immediately following the solo circuit consolidation the following should be revised:
 (B) procedures for leaving and rejoining the circuit;
 (C) the local area, restrictions, map reading;
 (D) use of radio aids for homing;
 (E) turns using magnetic compass, compass errors.
(xix) Exercise 15: Advanced turning:
 (A) steep turns (45 °), level and descending;
 (B) stalling in the turn and recovery;
 (C) recoveries from unusual attitudes, including spiral dives.

(xx) Exercise 16: Forced landing without power:
 (A) forced landing procedure;
 (B) choice of landing area, provision for change of plan;
 (C) gliding distance;
 (D) descent plan;
 (E) key positions;
 (F) engine cooling;
 (G) engine failure checks;
 (H) use of radio;
 (I) base leg;
 (J) final approach;
 (K) landing;
 (L) actions after landing.

(xxi) Exercise 17: Precautionary landing:
 (A) full procedure away from aerodrome to break-off height;
 (B) occasions necessitating;
 (C) in-flight conditions;
 (D) landing area selection:
 (a) normal aerodrome;
 (b) disused aerodrome;
 (c) ordinary field.
 (E) circuit and approach;
 (F) actions after landing.

(xxii) Exercise 18a: Navigation:
 (A) flight planning:
 (a) weather forecast and actuals;
 (b) map selection and preparation:
 (1) choice of route;
 (2) controlled airspace;
 (3) danger, prohibited and restricted areas;
 (4) safety altitudes.
 (c) calculations:
 (1) magnetic heading(s) and time(s) en-route;
 (2) fuel consumption;
(3) mass and balance;
(4) mass and performance.

(d) flight information:
(1) NOTAMs etc.;
(2) radio frequencies;
(3) selection of alternate aerodromes.

(e) aeroplane documentation;

(f) notification of the flight:
(1) pre-flight administrative procedures;
(2) flight plan form.

(B) departure:

(a) organisation of cockpit workload;
(b) departure procedures:
(1) altimeter settings;
(2) ATC liaison in controlled or regulated airspace;
(3) setting heading procedure;
(4) noting of ETAs.

(c) maintenance of altitude and heading;

(d) revisions of ETA and heading;

(e) log keeping;

(f) use of radio;

(g) use of nav aids;

(h) minimum weather conditions for continuation of flight;

(i) in-flight decisions;

(j) transiting controlled or regulated airspace;

(k) diversion procedures;

(l) uncertainty of position procedure;

(m) lost procedure.

(C) arrival and aerodrome joining procedure:

(a) ATC liaison in controlled or regulated airspace;

(b) altimeter setting;

(c) entering the traffic pattern;

(d) circuit procedures;

(e) parking;

(f) security of aeroplane;

(g) refuelling;

(h) closing of flight plan, if appropriate;

(i) post-flight administrative procedures.
(xxiii) Exercise 18b: Navigation problems at lower levels and in reduced visibility:
 (A) actions before descending;
 (B) hazards (for example obstacles and terrain);
 (C) difficulties of map reading;
 (D) effects of wind and turbulence;
 (E) vertical situational awareness (avoidance of controlled flight into terrain);
 (F) avoidance of noise sensitive areas;
 (G) joining the circuit;
 (H) bad weather circuit and landing.

(xxiv) Exercise 18c: Radio navigation:
 (A) use of GNSS:
 (a) selection of waypoints;
 (b) to or from indications and orientation;
 (c) error messages.
 (B) use of VHF omni range:
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) OBS;
 (d) to or from indications and orientation;
 (e) CDI;
 (f) determination of radial;
 (g) intercepting and maintaining a radial;
 (h) VOR passage;
 (i) obtaining a fix from two VORs.
 (C) use of ADF equipment: NDBs:
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) orientation relative to the beacon;
 (d) homing.
 (D) use of VHF/DF:
 (a) availability, AIP, frequencies;
 (b) R/T procedures and ATC liaison;
 (c) obtaining a QDM and homing.
 (E) use of en-route or terminal radar:
 (a) availability and AIP;
 (b) procedures and ATC liaison;
 (c) pilot’s responsibilities;
(d) secondary surveillance radar:
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.

(F) use of DME:
 (a) station selection and identification;
 (b) modes of operation: distance, groundspeed and time
to run.

(xxv) Exercise 19: Basic instrument flight:
 (A) physiological sensations;
 (B) instrument appreciation; attitude instrument flight;
 (C) instrument limitations;
 (D) basic manoeuvres:
 (a) straight and level at various air speeds and
customations;
 (b) climbing and descending;
 (c) standard rate turns, climbing and descending, onto
selected headings;
 (d) recoveries from climbing and descending turns.

(d) BITD
 (1) A BITD may be used for flight training for:
 (i) flight by reference solely to instruments;
 (ii) navigation using radio navigation aids;
 (iii) basic instrument flight.
 (2) The use of the BITD should be subject to the following:
 (i) the training should be complemented by exercises on an
aeroplane;
 (ii) the record of the parameters of the flight must be available;
 (iii) A FI(A) or STI(A) should conduct the instruction.
AMC1 FCL.210.H PPL(H) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE PPL(H)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Ground instruction

Enhanced ground instruction in weather interpretation, planning and route assessment, decision making on encountering DVE including reversing course or conducting a precautionary landing.

(c) Flight instruction

(1) The PPL(H) flight instruction syllabus should take into account the principles of threat and error management and cover:

(i) pre-flight operations, including mass and balance determination, helicopter inspection and servicing;

(ii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;

(iii) control of the helicopter by external visual reference;

(iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;

(v) emergency procedures, basic autorotations, simulated engine failure, ground resonance recovery if relevant to type;

(vi) sideways and backwards flight, turns on the spot;

(vii) incipient vortex ring recognition and recovery;

(viii) touchdown autorotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;

(ix) steep turns;

(x) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;

(xi) limited power and confined area operations, including selection of and operations to and from unprepared sites;

(xii) flight by sole reference to basic flight instruments, including completion of a level 180 ° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud (this training may be conducted by an FI(H));

(xiii) cross-country flying by using visual reference, DR, GNNS and, where available, radio navigation aids; simulation of deteriorating weather conditions and actions to divert or conduct precautionary landing;

(xiv) operations to, from and transiting controlled aerodromes; compliance with air traffic services procedures, communication procedures and phraseology.
(2) Before allowing the applicant for a PPL(H) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.

(3) Wherever possible, flight simulation should be used to demonstrate to student pilots the effects of flight into DVE and to enhance their understanding and need for avoidance of this potentially fatal flight regime.

(d) Syllabus of flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(i) the applicant’s progress and ability;
(ii) the weather conditions affecting the flight;
(iii) the flight time available;
(iv) instructional technique considerations;
(v) the local operating environment;
(vi) applicability of the exercises to the helicopter.

(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1a: Familiarisation with the helicopter:
 (A) characteristics of the helicopter, external features;
 (B) cockpit layout;
 (C) systems;
 (D) checklists, procedures and controls.

(ii) Exercise 1b: Emergency procedures:
 (A) action if fire on the ground and in the air;
 (B) engine, cabin and electrical system fire;
 (C) systems failures;
 (D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
 (A) flight authorisation and helicopter acceptance;
 (B) serviceability documents;
 (C) equipment required, maps, etc.;
 (D) external checks;
 (E) internal checks;
 (F) seat, harness and flight controls adjustments;
 (G) starting and warm-up checks clutch engagement and starting rotors;
 (H) power checks;
(I) running down system checks and switching off the engine;
(J) parking, security and picketing;
(K) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Air experience:
 (A) to introduce the student to rotary wing flight;
 (B) flight exercise.

(v) Exercise 4: Effects of controls:
 (A) function of flight controls, primary and secondary effect;
 (B) effects of:
 (a) air speed;
 (b) power changes (torque);
 (c) yaw (sideslip);
 (d) disc loading (bank and flare);
 (e) controls of selecting hydraulics on/off;
 (f) control friction.
 (C) instruments;
 (D) use of carburettor heat or anti-icing control.

(vi) Exercise 5: Power and attitude changes:
 (A) relationship between cyclic control position, disc attitude, fuselage attitude and air speed;
 (B) flapback;
 (C) power required diagram in relation to air speed;
 (D) power and air speed changes in level flight;
 (E) use of instruments for precision;
 (F) engine and air speed limitations.

(vii) Exercise 6: Straight and level:
 (A) at normal cruising power, attaining and maintaining straight and level flight;
 (B) control in pitch, including use of control friction or trim;
 (C) maintaining direction and balance, (ball or yawstring use);
 (D) setting power for selected air speeds and speed changes;
 (E) use of instruments for precision.

(viii) Exercise 7: Climbing:
 (A) optimum climb speed, best angle or rate of climb from power required diagram;
 (B) initiation, maintaining the normal and maximum rate of climb, levelling off;
 (C) levelling off at selected altitudes or heights;
 (D) use of instruments for precision.
(ix) Exercise 8: Descending:
(A) optimum descent speed, best angle or rate of descent from power required diagram;
(B) initiation, maintaining and levelling off;
(C) levelling off at selected altitudes or heights;
(D) descent (including effect of power and air speed);
(E) use of instruments for precision.

(x) Exercise 9: Turning:
(A) initiation and maintaining medium level turns;
(B) resuming straight flight;
(C) altitude, bank and co-ordination;
(D) climbing and descending turns and effect on rate of climb or descent;
(E) turns onto selected headings, use of gyro heading indicator and compass;
(F) use of instruments for precision.

(xi) Exercise 10: Basic autorotation:
(A) safety checks, verbal warning and look-out;
(B) entry, development and characteristics;
(C) control of air speed and RRPM, rotor and engine limitations;
(D) effect of AUM, IAS, disc loading, G forces and density altitude;
(E) re-engagement and go-around procedures (throttle over-ride or ERPM control);
(F) vortex condition during recovery;
(G) gentle and medium turns in autorotation;
(H) demonstration of variable flare simulated engine off landing.

(xii) Exercise 11a: Hovering:
(A) demonstrate hover IGE, importance of wind effect and attitude, ground cushion, stability in the hover and effects of over controlling;
(B) student holding cyclic stick only;
(C) student handling collective lever (and throttle) only;
(D) student handling collective lever, (throttle) and pedals;
(E) student handling all controls;
(F) demonstration of ground effect;
(G) demonstration of wind effect;
(H) demonstrate gentle forward running touchdown;
(I) specific hazards for example snow, dust and litter.

(xiii) Exercise 11b: Hover taxiing and spot turns:
(A) revise hovering;
(B) precise ground speed and height control;
(C) effect of wind direction on helicopter attitude and control margin;
(D) control and co-ordination during spot turns;
(E) carefully introduce gentle forward running touchdown.

(xiv) Exercise 11c: Hovering and taxiing emergencies:
(A) revise hovering and gentle forward running touchdown, explain (demonstrate where applicable) effect of hydraulics failure in the hover;
(B) demonstrate simulated engine failure in the hover and hover taxi;
(C) demonstrate dangers of mishandling and over-pitching.

(xv) Exercise 12: Take-off and landing:
(A) pre-take-off checks or drills;
(B) look-out;
(C) lifting to hover;
(D) after take-off checks;
(E) danger of horizontal movement near ground;
(F) danger of mishandling and overpitching;
(G) landing (without sideways or backwards movement);
(H) after landing checks or drills;
(I) take-off and landing crosswind and downwind.

(xvi) Exercise 13: Transitions from hover to climb and approach to hover:
(A) look-out;
(B) revise take-off and landing;
(C) ground effect, translational lift and its effects;
(D) flapback and its effects;
(E) effect of wind speed and direction during transitions from or to the hover;
(F) the constant angle approach;
(G) demonstration of variable flare simulated engine off landing.

(xvii) Exercise 14a: Circuit, approach and landing:
(A) revise transitions from hover to climb and approach to hover;
(B) circuit procedures, downwind and base leg;
(C) approach and landing with power;
(D) pre-landing checks;
(E) effect of wind on approach and IGE hover;
(F) crosswind approach and landing;
(G) go-around;
(H) noise abatement procedures.

(xviii) Exercise 14b: Steep and limited power approaches and landings:
(A) revise the constant angle approach;
(B) the steep approach (explain danger of high sink rate and low air speed)
(C) limited power approach (explain danger of high speed at touch down);
(D) use of the ground effect;
(E) variable flare simulated engine off landing.

(xix) Exercise 14c: Emergency procedures:
(A) abandoned take-off;
(B) missed approach and go-around;
(C) hydraulic off landing (if applicable);
(D) tail rotor control or tail rotor drive failure (briefing only)
(E) simulated emergencies in the circuit to include:
 (a) hydraulics failure;
 (b) simulated engine failure on take-off, crosswind, downwind and base leg;
 (c) governor failure.

(xx) Exercise 15: First solo:
(A) instructor’s briefing, observation of flight and debriefing;
(B) warn of change of attitude from reduced and laterally displaced weight;
(C) warn of low tail, low skid or wheel during hover, landing;
(D) warn of dangers of loss of RRPM and overpitching;
(E) pre-take-off checks;
(F) into wind take-off;
(G) procedures during and after take-off;
(H) normal circuit, approaches and landings;
(I) action if an emergency.

(xxii) Exercise 16: Sideways and backwards hover manoeuvring:
(A) manoeuvring sideways flight heading into wind;
(B) manoeuvring backwards flight heading into wind;
(C) combination of sideways and backwards manoeuvring;
(D) manoeuvring sideways and backwards and heading out of wind;
(E) stability and weather cocking;
(F) recovery from backwards manoeuvring (pitch nose down);
(G) limitations for sideways and backwards manoeuvring.
(xxii) Exercise 17: Spot turns:
 (A) revise hovering into wind and downwind;
 (B) turn on spot through 360°:
 (a) around pilots position;
 (b) around tail rotor;
 (c) around helicopter geometric centre;
 (d) square and safe visibility clearing turn.
 (C) rotor RPM control, torque effect, cyclic limiting stops due to CG position and wind speed and direction.

(xxiii) Exercise 18: Hover OGE and vortex ring:
 (A) establishing hover OGE;
 (B) drift, height or power control;
 (C) demonstration of incipient stage of vortex ring, recognition and recovery (from a safe altitude);
 (D) loss of tail rotor effectiveness.

(xxiv) Exercise 19: Simulated EOL:
 (A) the effect of weight, disc loading, density attitude and RRPM decay;
 (B) revise basic autorotation entry;
 (C) optimum use of cyclic and collective to control speed or RRPM;
 (D) variable flare simulated EOL;
 (E) demonstrate constant attitude simulated EOL;
 (F) demonstrate simulated EOL from hover or hover taxi;
 (G) demonstrate simulated EOL from transition and low level.

(xxv) Exercise 20: Advanced autorotation:
 (A) over a selected point at various height and speed;
 (B) revise basic autorotation: note ground distance covered;
 (C) range autorotation;
 (D) low speed autorotation;
 (E) constant attitude autorotation (terminate at safe altitude);
 (F) ‘S’ turns;
 (G) turns through 180° and 360°;
 (H) effects on angles of descent, IAS, RRPM and effect of AUM.

(xxvi) Exercise 21: Practice forced landings:
 (A) procedure and choice of the forced landing area;
 (B) forced landing checks and crash action;
 (C) re-engagement and go-around procedures.

(xxvii) Exercise 22: Steep turns:
 (A) steep (level) turns (30° bank);
(B) maximum rate turns (45° bank if possible);
(C) steep autorotative turns;
(D) faults in the turn: balance, attitude, bank and co-ordination;
(E) RRPM control and disc loading;
(F) vibration and control feedback;
(G) effect of wind at low level.

(xxviii) Exercise 23: Transitions:
(A) revise ground effect, translational lift and flapback;
(B) maintaining constant height, (20-30 ft AGL);
(C) transition from hover to minimum 50 knots IAS and back to hover;
(D) demonstrate effect of wind.

(xxix) Exercise 24: Quick stops:
(A) use of power and controls;
(B) effect of wind;
(C) quick stops into wind;
(D) quick stops from crosswind and downwind terminating into wind;
(E) danger of vortex ring;
(F) danger of high disc loading.

(XXX) Exercise 25a: Navigation:
(A) flight planning:
 (a) weather forecast and actuals;
 (b) map selection and preparation and use;
 (1) choice of route:
 (2) controlled airspace, danger and prohibited areas;
 (3) safety altitudes and noise abatement considerations.
 (c) calculations:
 (1) magnetic heading(s) and time(s) en-route;
 (2) fuel consumption;
 (3) mass and balance.
 (d) flight information:
 (1) NOTAMs, etc.;
 (2) radio frequencies;
 (3) selection of alternate landing sites.
 (e) helicopter documentation;
 (f) notification of the flight:
 (1) pre-flight administrative procedures;
(2) flight plan form (where appropriate).

(B) departure:
 (a) organisation of cockpit workload;
 (b) departure procedures:
 (1) altimeter settings;
 (2) ATC liaison in controlled or regulated airspace;
 (3) setting heading procedure;
 (4) noting of ETAs.
 (c) maintenance of height or altitude and heading;
 (d) revisions of ETA and heading:
 (1) 10 ° line, double track and track error and closing angle;
 (2) 1 in 60 rule;
 (3) amending an ETA.
 (e) log keeping;
 (f) use of radio;
 (g) use of navaids (if fitted);
 (h) minimum weather conditions for continuation of flight;
 (i) in-flight decisions;
 (j) transiting controlled or regulated airspace;
 (k) uncertainty of position procedure;
 (l) lost procedure.

(C) arrival and aerodrome joining procedure:
 (a) ATC liaison in controlled or regulated airspace;
 (b) altimeter setting;
 (c) entering the traffic pattern;
 (d) circuit procedures.
 (e) parking;
 (f) security of helicopter;
 (g) refuelling;
 (h) closing of flight plan (if appropriate);
 (i) post-flight administrative procedures.

(xxxi) Exercise 25b: Navigation problems at low heights and in reduced visibility:
 (A) actions before descending;
 (B) hazards (for example obstacles and other aircraft);
 (C) difficulties of map reading;
 (D) effects of wind and turbulence;
 (E) avoidance of noise sensitive areas;
(F) actions in the event of encountering DVE;
(G) decision to divert or conduct precautionary landing;
(H) bad weather circuit and landing;
(I) appropriate procedures and choice of landing area;
(J) precautionary landing.

(xxxii) Exercise 25c: Radio navigation:

(A) use of GNSS:
 (a) selection of waypoints;
 (b) to or from indications and orientation;
 (c) error messages;
 (d) hazards of over-reliance on the use of GNSS in the continuation of flight in DVE.

(B) use of VHF omni range:
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) OBS;
 (d) to or from indications and orientation;
 (e) CDI;
 (f) determination of radial;
 (g) intercepting and maintaining a radial;
 (h) VOR passage;
 (i) obtaining a fix from two VORs.

(C) use of ADF equipment: NDBs:
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) orientation relative to the beacon;
 (d) homing.

(D) use of VHF/DF:
 (a) availability, AIP and frequencies;
 (b) RTF procedures and ATC liaison;
 (c) obtaining a QDM and homing.

(E) use of en-route or terminal radar:
 (a) availability and AIP;
 (b) procedures and ATC liaison;
 (c) pilots responsibilities;
 (d) secondary surveillance radar (if transponder fitted):
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.
(F) use of DME:
 (a) station selection and identification;
 (b) modes of operation: distance, groundspeed and time to run.

(xxxiii) Exercise 26: Advanced take-off, landings and transitions:
 (A) landing and take-off out of wind (performance reduction);
 (B) ground effect, translational lift and directional stability variation when out of wind;
 (C) downwind transitions;
 (D) vertical take-off over obstacles;
 (E) running take-off;
 (F) cushion creep take-off;
 (G) reconnaissance of landing site;
 (H) running landing;
 (I) zero speed landing;
 (J) crosswind and downwind landings;
 (K) steep approach;
 (L) go-around.

(xxxiv) Exercise 27: Sloping ground:
 (A) limitations and assessing slope angle;
 (B) wind and slope relationship: blade and control stops;
 (C) effect of CG when on slope;
 (D) ground effect on slope and power required;
 (E) right skid up slope;
 (F) left skid up slope;
 (G) nose up slope;
 (H) avoidance of dynamic roll over, dangers of soft ground and sideways movement on touchdown;
 (I) danger of striking main or tail rotor by harsh control movement near ground.

(xxxv) Exercise 28: Limited power:
 (A) take-off power check;
 (B) vertical take-off over obstacles;
 (C) in-flight power check;
 (D) running landing;
 (E) zero speed landing;
 (F) approach to low hover;
 (G) approach to hover;
 (H) approach to hover OGE;
 (I) steep approach;
(J) go-around.

(xxxvi) Exercise 29: Confined areas:

(A) landing capability and performance assessment;
(B) locating landing site and assessing wind speed and direction;
(C) reconnaissance of landing site;
(D) select markers;
(E) select direction and type of approach;
(F) circuit;
(G) approach to committed point and go-around;
(H) approach;
(I) clearing turn;
(J) landing;
(K) power check and performance assessment in and out of ground effect;
(L) normal take-off to best angle of climb speed;
(M) vertical take-off from hover.

(xxxvii) Exercise 30: Basic instrument flight:

(A) physiological sensations;
(B) instrument appreciation:
 (a) attitude instrument flight;
 (b) instrument scan.
(C) instrument limitations;
(D) basic manoeuvres:
 (a) straight and level at various air speeds and configurations;
 (b) climbing and descending;
 (c) standard rate turns, climbing and descending, onto selected headings.
(E) recoveries from climbing and descending turns;
(F) recoveries from unusual attitudes.

(xxxviii) Exercise 31a: Night flying (if night rating required):

(A) pre-flight inspection using torch, pan lights, etc.;
(B) take-off (no sideways or backwards manoeuvring);
(C) hover taxi (higher and slower than by day);
(D) transition to climb;
(E) level flight;
(F) approach and transition to hover;
(G) landing;
(H) autorotation;
(I) practice forced landing (with flares if appropriate: simulated);

(J) night emergencies (for example failure of lights, etc.).

(xxxix) Exercise 31b: Night cross-country (if night rating required):

(A) navigation principles as for day cross-country;

(B) map marking (highlighting built-up areas with thicker lines, etc.).
AMC1 FCL.210.As PPL(As) — Experience requirements and crediting

FLIGHT INSTRUCTION FOR THE PPL(AS)

(a) Entry to training

Before being accepted for training an applicant should be informed that the appropriate medical certificate must be obtained before solo flying is permitted.

(b) Flight instruction

(1) The PPL(As) flight instruction syllabus should take into account the principles of threat and error management and cover:

(i) pre-flight operations, including mass and balance determination, airship inspection and servicing;

(ii) ground manoeuvring, masting and unmasting procedures;

(iii) aerodrome and traffic pattern operations, collision avoidance precautions and procedures;

(iv) control of the airship by external visual reference;

(v) take-offs and landings;

(vi) flight by reference solely to instruments, including the completion of a level 180 ° turn;

(vii) cross-country flying using visual reference, dead reckoning and radio navigation aids;

(viii) emergency operations, including simulated airship equipment malfunctions;

(ix) operations to, from and transiting controlled aerodromes, compliance with air traffic services procedures, communication procedures and phraseology.

(2) Before allowing the applicant for a PPL(As) to undertake his/her first solo flight, the FI should ensure that the applicant can use R/T communication.

(c) Syllabus of flight instruction

(1) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(i) the applicant’s progress and ability;

(ii) the weather conditions affecting the flight;

(iii) the flight time available;

(iv) instructional technique considerations;

(v) the local operating environment;

(vi) applicability of the exercises to the airship.

(2) Each of the exercises involves the need for the applicant to be aware of the needs of good airmanship and look-out, which should be emphasised at all times.

(i) Exercise 1a: Familiarisation with the airship:
(A) characteristics of the airship;
(B) cockpit layout;
(C) systems;
(D) checklists, drills and controls.

(ii) Exercise 1b: Emergency drills:
(A) action if fire on the ground and in the air;
(B) engine cabin and electrical system fire;
(C) systems failure;
(D) escape drills, location and use of emergency equipment and exits.

(iii) Exercise 2: Preparation for and action after flight:
(A) flight authorisation and airship acceptance;
(B) serviceability documents;
(C) equipment required, maps, etc.;
(D) mass and balance;
(E) external checks;
(F) ground crew briefing;
(G) internal checks;
(H) harness, seat or rudder panel adjustments;
(I) starting and warm-up checks;
(J) power checks;
(K) running down system checks and switching off the engine;
(L) parking, security and masting;
(M) completion of authorisation sheet and serviceability documents.

(iv) Exercise 3: Air experience: flight exercise.

(v) Exercise 4: Effects of controls:
(A) primary effects;
(B) further effects;
(C) effects of:
 (a) air speed;
 (b) power;
 (c) trimming controls;
 (d) other controls, as applicable.
(D) operation of:
 (a) mixture control;
 (b) carburettor heat;
 (c) cabin heating or ventilation.

(vi) Exercise 5: Ground manoeuvring:
(A) pre-taxi checks;
(B) starting, control of speed and stopping;
(C) engine handling;
(D) masting procedures;
(E) control of direction and turning;
(F) effects of wind;
(G) effects of ground surface;
(H) marshalling signals;
(I) instrument checks;
(J) air traffic control procedures;
(K) emergencies.

(vii) Exercise 6a: Take-off procedures:
 (A) pre-take-off checks;
 (B) take-off with different static heaviness;
 (C) drills during and after take-off;
 (D) noise abatement procedures.

(viii) Exercise 6b: Emergencies:
 (A) abandoned take-off;
 (B) engine failure after take-off;
 (C) malfunctions of thrust vector control;
 (D) aerodynamic control failures;
 (E) electrical and system failures.

(ix) Exercise 7: Climbing:
 (A) entry, maintaining the normal and max rate climb and levelling off;
 (B) levelling off at selected altitudes;
 (C) maximum angle of climb;
 (D) maximum rate of climb.

(x) Exercise 8: Straight and level:
 (A) attaining and maintaining straight and level flight;
 (B) flight at or close to pressure height;
 (C) control in pitch, including use of trim;
 (D) at selected air speeds (use of power);
 (E) during speed changes;
 (F) use of instruments for precision.

(xi) Exercise 9: Descending:
 (A) entry, maintaining and levelling off;
 (B) levelling off at selected altitudes;
 (C) maximum rate of descent;
(D) maximum angle of descent;
(E) use of instruments for precision flight.

(xii) Exercise 10: Turning:
(A) entry and maintaining level turns;
(B) resuming straight flight;
(C) faults in the turn;
(D) climbing turns;
(E) descending turns;
(F) turns onto selected headings, use of gyro heading indicator and compass;
(G) use of instruments for precision.

(xiii) Exercise 11: Hovering: hovering manoeuvres (as applicable);

(xiv) Exercise 12a: Approach and landing:
(A) effect of wind on approach and touchdown speeds;
(B) landing with different static heaviness;
(C) missed approach and go-around procedures;
(D) noise abatement procedures.

(xv) Exercise 12b: Emergencies:
(A) aborted approach or go-around;
(B) malfunction of thrust vector control;
(C) envelope emergencies;
(D) fire emergencies;
(E) aerodynamic control failures;
(F) electrical and system failures.

(xvi) Exercise 13: Precautionary landing:
(A) occasions necessitating;
(B) in-flight conditions;
(C) landing area selection;
(D) circuit and approach;
(E) actions after landing;

(xvii) Exercise 14a: Navigation:
(A) flight planning:
 (a) weather forecast and actuals;
 (b) map selection and preparation:
 (1) choice of route;
 (2) airspace structure;
 (3) sensitive areas;
 (4) safety altitudes.
 (c) calculations:
(1) magnetic heading(s) and time(s) en-route;
(2) fuel consumption;
(3) mass and balance;
(4) performance.

(d) flight information:
 (1) NOTAMs etc.;
 (2) radio frequencies;
 (3) selection of alternate aerodromes.

(e) airship documentation;

(f) notification of the flight:
 (1) pre-flight administrative procedures;
 (2) flight plan form.

(B) departure:
 (a) organisation of cockpit workload;
 (b) departure procedures:
 (1) altimeter settings;
 (2) ATC liaison in controlled or regulated airspace;
 (3) setting heading procedure;
 (4) noting of ETAs.
 (c) maintenance of altitude and heading;
 (d) revisions of ETA and heading;
 (e) log keeping;
 (f) use of radio;
 (g) use of nav aids;
 (h) minimum weather conditions for continuation of flight;
 (i) in-flight decisions;
 (j) transiting controlled or regulated airspace;
 (k) diversion procedures;
 (l) uncertainty of position procedure;
 (m) lost procedure.

(C) arrival, aerodrome joining procedure:
 (a) ATC liaison in controlled or regulated airspace;
 (b) altimeter setting;
 (c) entering the traffic pattern;
 (d) circuit procedures;
 (e) parking or on masting;
 (f) security of airship;
 (g) refuelling;
(h) closing of flight plan, if appropriate;
(i) post-flight administrative procedures.

(xviii) Exercise 14b: Navigation problems at lower levels and in reduced visibility:
(A) actions before descending;
(B) hazards (for example obstacles, and terrain);
(C) difficulties of map reading;
(D) effects of winds, turbulence and precipitation;
(E) vertical situational awareness;
(F) avoidance of noise sensitive areas;
(G) joining the circuit;
(H) bad weather circuit and landing.

(xix) Exercise 14c: Radio navigation:
(A) use of GNSS
 (a) selection of waypoints;
 (b) to or from indications and orientation;
 (c) error messages.
(B) use of VHF omni range (if applicable):
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) OBS;
 (d) to or from indications and orientation;
 (e) CDI;
 (f) determination of radial;
 (g) intercepting and maintaining a radial;
 (h) VOR passage;
 (i) obtaining a fix from two VORs.
(C) use of ADF equipment: NDBs (if applicable):
 (a) availability, AIP and frequencies;
 (b) selection and identification;
 (c) orientation relative to the beacon;
 (d) homing.
(D) use of VHF/DF:
 (a) availability, AIP and frequencies;
 (b) R/T procedures and ATC liaison;
 (c) obtaining a QDM and homing.
(E) use of en-route or terminal radar:
 (a) availability and AIP;
 (b) procedures and ATC liaison;
(c) pilot's responsibilities;
(d) secondary surveillance radar:
 (1) transponders;
 (2) code selection;
 (3) interrogation and reply.
(F) use of DME (if applicable);
 (a) station selection and identification;
 (b) modes of operation: distance, groundspeed and time to run.
(xx) Exercise 15: Basic instrument flight:
 (A) physiological sensations;
 (B) instrument appreciation: attitude instrument flight;
 (C) instrument limitations;
 (D) basic manoeuvres:
 (a) straight and level;
 (b) climbing and descending;
 (c) turns, climbing and descending, onto selected headings;
 (d) recoveries from climbing and descending turns.

(d) BITD
 (1) A BITD may be used for flight training for:
 (i) flight by reference solely to instruments;
 (ii) navigation using radio navigation aids;
 (iii) basic instrument flight.
 (2) The use of the BITD should be subject to the following:
 (i) the training should be complemented by exercises on an airship;
 (ii) the record of the parameters of the flight must be available; and an FI(As) should conduct the instruction.
AMC1 FCL.205.S(b) SPL — Privileges and conditions

CONTENTS OF THE PROFICIENCY CHECK FOR THE EXTENSION OF SPL PRIVILEGES TO EXERCISE COMMERCIAL PRIVILEGES ON A SAILPLANE

(a) The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board.

(b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the authorised checklist for the sailplane on which the test is being taken.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:
 (1) operate the sailplane within its limitations;
 (2) complete all manoeuvres with smoothness and accuracy;
 (3) exercise good judgment and airmanship;
 (4) apply aeronautical knowledge;
 (5) maintain control of the sailplane at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

CONTENT OF THE SKILL TEST

(d) The applicant should demonstrate his/her skill in at least the winch or aerotow method of launching.

SECTION 1 PRE-FLIGHT OPERATIONS AND TAKE-OFF

Use of checklist, airmanship, control of sailplane by external visual reference, look-out procedures, etc. apply in all sections.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Pre-flight sailplane (daily) inspection, documentation, NOTAM and weather briefing</td>
</tr>
<tr>
<td>b</td>
<td>Verifying in-limits mass and balance and performance calculation</td>
</tr>
<tr>
<td>c</td>
<td>Passenger briefing</td>
</tr>
<tr>
<td>d</td>
<td>Sailplane servicing compliance</td>
</tr>
<tr>
<td>e</td>
<td>Pre-take-off checks</td>
</tr>
</tbody>
</table>

SECTION 2 LAUNCH METHOD

Note: at least for one of the three launch methods all the mentioned items are fully exercised during the skill test.

SECTION 2 (a) WINCH OR CAR LAUNCH

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Signals before and during launch, including messages to winch driver</td>
</tr>
<tr>
<td>b</td>
<td>Initial roll and take-off climb</td>
</tr>
<tr>
<td>c</td>
<td>Adequate profile of winch launch</td>
</tr>
</tbody>
</table>
Launch failures (simulated)

Situational awareness

SECTION 2 (b) AEROTOW LAUNCH

- **a** Signals before and during launch, including signals to or communications with tow plane pilot for any problems
- **b** Initial roll and take-off climb
- **c** Launch abandonment (simulation only or ‘talk-through’)
- **d** Correct positioning during straight flight and turns
- **e** Out of position and recovery
- **f** Correct release from tow
- **g** Lookout and airmanship through whole launch phase

SECTION 2 (c) SELF LAUNCH (TMGs excluded)

- **a** ATC compliance
- **b** Aerodrome departure procedures
- **c** Initial roll and take-off climb
- **d** Simulated engine failure after take-off
- **e** Engine shut down and stowage
- **f** Lookout and airmanship through whole launch phase

SECTION 3 GENERAL AIRWORK

- **a** Maintain straight flight: attitude and speed control
- **b** Steep (45 ° bank) turns, look-out procedures and collision avoidance
- **c** Turning on to selected headings visually and with use of compass
- **d** Flight at high angle of attack (critically low air speed)
- **e** Clean stall and recovery
- **f** Spin avoidance and recovery
- **g** Local area navigation and awareness

SECTION 4 CIRCUIT, APPROACH AND LANDING

- **a** Aerodrome circuit joining procedure
- **b** Collision avoidance: look-out procedures
- **c** Pre-landing checks
- **d** Circuit, approach control and landing
- **e** Precision landing (simulation of out-landing: short field)
- **f** Cross wind landing if suitable conditions available
AMC1 FCL.205.B(b) BPL — Privileges and conditions

CONTENTS OF THE PROFICIENCY CHECK FOR EXTENSION OF BPL PRIVILEGES TO EXERCISE COMMERCIAL PRIVILEGES ON A BALLOON

(a) The take-off site should be chosen by the applicant depending on the actual meteorological conditions, the area which has to be overflown and the possible options for suitable landing sites. The applicant should be responsible for the flight planning and should ensure that all equipment and documentation for the execution of the flight are on board. The proficiency check may be conducted in two flights. The total duration of the flight(s) should be at least 60 minutes.

(b) An applicant should indicate to the FE the checks and duties carried out. Checks should be completed in accordance with the flight manual or the authorised checklist for the balloon on which the test is being taken. During pre-flight preparation for the test the applicant should be required to perform crew and passenger briefings and demonstrate crowd control. The load calculation should be performed by the applicant in compliance with the operations manual or flight manual for the balloon used.

FLIGHT TEST TOLERANCE

(c) The applicant should demonstrate the ability to:
 (1) operate the balloon within its limitations;
 (2) complete all manoeuvres with smoothness and accuracy;
 (3) exercise good judgment and airmanship;
 (4) apply aeronautical knowledge;
 (5) maintain control of the balloon at all times in such a manner that the successful outcome of a procedure or manoeuvre is never seriously in doubt.

(d) The following limits are for general guidance. The FE should make allowance for turbulent conditions and the handling qualities and performance of the hot-air balloon used:

<table>
<thead>
<tr>
<th>Height</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>normal flight</td>
<td>± 100 ft</td>
</tr>
<tr>
<td>with simulated emergency</td>
<td>± 150 ft</td>
</tr>
</tbody>
</table>

CONTENT OF THE SKILL TEST

(e) The contents and sections of the proficiency check set out in this AMC should be used for the extension of BPL privileges to exercise commercial privileges on a hot-air balloon.

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.
<table>
<thead>
<tr>
<th></th>
<th>Pre-flight documentation, flight planning, NOTAM and weather briefing</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Balloon inspection and servicing</td>
</tr>
<tr>
<td>c</td>
<td>Load calculation</td>
</tr>
<tr>
<td>d</td>
<td>Crowd control and crew briefing</td>
</tr>
<tr>
<td>e</td>
<td>Passenger briefing</td>
</tr>
<tr>
<td>f</td>
<td>Assembly and layout</td>
</tr>
<tr>
<td>g</td>
<td>Inflation and pre-take-off procedures</td>
</tr>
<tr>
<td>h</td>
<td>Take-off</td>
</tr>
<tr>
<td>i</td>
<td>ATC compliance</td>
</tr>
</tbody>
</table>

SECTION 2 GENERAL AIRWORK

<table>
<thead>
<tr>
<th></th>
<th>Climb to level flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Level flight</td>
</tr>
<tr>
<td>c</td>
<td>Descent to level flight</td>
</tr>
<tr>
<td>d</td>
<td>Operating at low level</td>
</tr>
<tr>
<td>e</td>
<td>ATC compliance</td>
</tr>
</tbody>
</table>

SECTION 3 EN-ROUTE PROCEDURES

<table>
<thead>
<tr>
<th></th>
<th>Dead reckoning and map reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Marking positions and time</td>
</tr>
<tr>
<td>c</td>
<td>Orientation, airspace structure</td>
</tr>
<tr>
<td>d</td>
<td>Maintenance of altitude</td>
</tr>
<tr>
<td>e</td>
<td>Fuel management</td>
</tr>
<tr>
<td>f</td>
<td>Communication with retrieve crew</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance or R/T communication</td>
</tr>
</tbody>
</table>

SECTION 4 APPROACH AND LANDING PROCEDURES

<table>
<thead>
<tr>
<th></th>
<th>Approach from low level and missed approach and fly on</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Approach from high level and missed approach and fly on</td>
</tr>
<tr>
<td>c</td>
<td>Passenger pre-landing briefing</td>
</tr>
<tr>
<td>d</td>
<td>Pre-landing checks</td>
</tr>
</tbody>
</table>
Annex to ED Decision 2011/016/R

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 6

a Simulated fire on the ground and in the air
b Simulated pilot light and burner failures
c Simulated passenger health problems
d Other abnormal and emergency procedures as outlined in the appropriate flight manual
e Oral questions

(f) The contents and sections of the proficiency check set out in this AMC should be used for the extension of BPL privileges to exercise commercial privileges on a gas balloon.

SECTION 1 PRE-FLIGHT OPERATIONS, INFLATION AND TAKE-OFF

Use of checklist, airmanship, control of balloon by external visual reference, look-out procedures, etc. apply in all sections.

a Pre-flight documentation, flight planning and NOTAM and weather briefing
b Balloon inspection and servicing
c Load calculation
d Crowd control and crew briefings
e Passenger briefing
f Assembly and layout
g Inflation and pre-take-off procedures
h Take-off
i ATC liaison: compliance

SECTION 2 GENERAL AIRWORK

a Climb to level flight
<table>
<thead>
<tr>
<th>b</th>
<th>Level flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Descent to level flight</td>
</tr>
<tr>
<td>d</td>
<td>Operating at low level</td>
</tr>
<tr>
<td>e</td>
<td>ATC liaison: compliance</td>
</tr>
</tbody>
</table>

SECTION 3 EN-ROUTE PROCEDURES

<table>
<thead>
<tr>
<th>a</th>
<th>Dead reckoning and map reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Marking positions and time</td>
</tr>
<tr>
<td>c</td>
<td>Orientation, airspace structure</td>
</tr>
<tr>
<td>d</td>
<td>Maintenance of altitude</td>
</tr>
<tr>
<td>e</td>
<td>Ballast management</td>
</tr>
<tr>
<td>f</td>
<td>Communication with retrieve crew</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance or R/T communication</td>
</tr>
</tbody>
</table>

SECTION 4 APPROACH AND LANDING PROCEDURES

<table>
<thead>
<tr>
<th>a</th>
<th>Approach from low level and missed approach and fly on</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Approach from high level and missed approach and fly on</td>
</tr>
<tr>
<td>c</td>
<td>Passenger pre-landing briefing</td>
</tr>
<tr>
<td>d</td>
<td>Pre-landing checks</td>
</tr>
<tr>
<td>e</td>
<td>Selection of landing field</td>
</tr>
<tr>
<td>f</td>
<td>Landing, dragging and deflation</td>
</tr>
<tr>
<td>g</td>
<td>ATC compliance or R/T communication</td>
</tr>
<tr>
<td>h</td>
<td>Actions after flight</td>
</tr>
</tbody>
</table>

SECTION 5 ABNORMAL AND EMERGENCY PROCEDURES

This section may be combined with sections 1 through 4

<table>
<thead>
<tr>
<th>a</th>
<th>Simulated closed appendix during take-off and climb</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Simulated parachute or valve failure</td>
</tr>
<tr>
<td>c</td>
<td>Simulated passenger health problems</td>
</tr>
<tr>
<td>d</td>
<td>Other abnormal and emergency procedures as outlined in the appropriate flight manual</td>
</tr>
<tr>
<td>e</td>
<td>Oral questions</td>
</tr>
</tbody>
</table>
AMC1 FCL.225.B BPL — Extension of privileges to another balloon class or group

(a) The aim of the flight training is to qualify BPL holders to exercise the privileges on a different class or group of balloons.

(b) The following classes should be recognised:
 (1) hot-air balloons;
 (2) gas balloons;
 (3) hot-air airships.

(c) The following groups should be recognised:
 (1) group A:
 (i) hot-air balloons and hot-air airships with a maximum envelope capacity of 3 400m³;
 (ii) gas balloons with a maximum envelope capacity of 1 260m³.
 (2) group B:
 (i) hot-air balloons and hot-air airship with an envelope capacity between 3 401m³ and 6 000m³;
 (ii) gas balloons with an envelope capacity of more than 1 260m³.
 (3) group C:
 hot-air balloons and hot-air airship with an envelope capacity between 6 001m³ and 10 500m³.
 (4) group D:
 hot-air balloons and hot-air airships with an envelope capacity of more than 10 500m³.

(d) An extension to group B is also valid for group A. The extension for the group C is also valid for the groups A and B. An extension to group D will include the privilege for the other three groups.

(e) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.
Annex to ED Decision 2011/016/R

SUBPART D — COMMERCIAL PILOT LICENCE — CPL

AMC1 FCL.310; FCL.515 (b); FCL.615 (b)

SYLLABUS OF THEORETICAL KNOWLEDGE FOR THE ATPL, CPL AND IR

The following tables contain the detailed theoretical knowledge syllabus for the ATPL, CPL and IR.

Aspects related to non-technical skills shall be included in an integrated manner, taking into account the particular risks associated to the licence and the activity.

The applicable items for each licence or rating are marked with ‘x’. An ‘x’ on the main title of a subject means that all the sub-divisions are applicable.

(a) **Aeroplanes and helicopters**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Aeroplane ATPL</th>
<th>Helicopter ATPL / IR</th>
<th>Aeroplane CPL</th>
<th>Helicopter CPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>010 00 00 00</td>
<td>AIR LAW AND ATC PROCEDURES</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>010 01 00 00</td>
<td>INTERNATIONAL LAW: CONVENTIONS, AGREEMENTS AND ORGANISATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 02 00 00</td>
<td>AIRWORTHINESS OF AIRCRAFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 03 00 00</td>
<td>AIRCRAFT NATIONALITY AND REGISTRATION MARKS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 04 00 00</td>
<td>PERSONNEL LICENSING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 05 00 00</td>
<td>RULES OF THE AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 06 00 00</td>
<td>PROCEDURES FOR AIR NAVIGATION SERVICES: AIRCRAFT OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 07 00 00</td>
<td>AIR TRAFFIC SERVICES AND AIR TRAFFIC MANAGEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 08 00 00</td>
<td>AERONAUTICAL INFORMATION SERVICE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 09 00 00</td>
<td>AERODROMES OR HELIPORTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 10 00 00</td>
<td>FACILITATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 11 00 00</td>
<td>SEARCH AND RESCUE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 12 00 00</td>
<td>SECURITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 13 00 00</td>
<td>AIRCRAFT ACCIDENT AND INCIDENT INVESTIGATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 00 00 00</td>
<td>AIRCRAFT GENERAL KNOWLEDGE: AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>021 01 00 00</td>
<td>SYSTEM DESIGN, LOADS, STRESSES AND MAINTENANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Aeroplane</td>
<td>Helicopter</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>021 02 00 00</td>
<td>AIRFRAME</td>
<td>ATPL</td>
<td>ATPL</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>021 03 00 00</td>
<td>HYDRAULICS</td>
<td>CPL</td>
<td>ATPL /IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 04 00 00</td>
<td>LANDING GEAR, WHEELS, TYRES AND BRAKES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 05 00 00</td>
<td>FLIGHT CONTROLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 06 00 00</td>
<td>PNEUMATICS: PRESSURISATION AND AIR CONDITIONING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 07 00 00</td>
<td>ANTI AND DE-ICING SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 08 00 00</td>
<td>FUEL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 09 00 00</td>
<td>ELECTRICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 10 00 00</td>
<td>PISTON ENGINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 11 00 00</td>
<td>TURBINE ENGINES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 12 00 00</td>
<td>PROTECTION AND DETECTION SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 13 00 00</td>
<td>OXYGEN SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 14 00 00</td>
<td>HELICOPTER: MISCELLANEOUS SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 15 00 00</td>
<td>HELICOPTER: ROTOR HEADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 16 00 00</td>
<td>HELICOPTER: TRANSMISSION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>021 17 00 00</td>
<td>HELICOPTER: BLADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 00 00 00</td>
<td>AIRCRAFT GENERAL KNOWLEDGE: INSTRUMENTATION</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>022 01 00 00</td>
<td>SENSORS AND INSTRUMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 02 00 00</td>
<td>MEASUREMENT OF AIR DATA PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 03 00 00</td>
<td>MAGNETISM: DIRECT READING COMPASS AND FLUX VALVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 04 00 00</td>
<td>GYROSCOPIC INSTRUMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 05 00 00</td>
<td>INERTIAL NAVIGATION AND REFERENCE SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 06 00 00</td>
<td>AEROPLANE: AUTOMATIC FLIGHT CONTROL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 07 00 00</td>
<td>HELICOPTER: AUTOMATIC FLIGHT CONTROL SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 08 00 00</td>
<td>TRIMS, YAW DAMPER AND FLIGHT ENVELOPE PROTECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 09 00 00</td>
<td>AUTOTHROTTLE: AUTOMATIC THRUST CONTROL SYSTEM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 10 00 00</td>
<td>COMMUNICATION SYSTEMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 11 00 00</td>
<td>FMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Aeroplane</td>
<td>Helicopter</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>022 12 00 00</td>
<td>ALERTING SYSTEMS AND PROXIMITY SYSTEMS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 13 00 00</td>
<td>INTEGRATED INSTRUMENTS: ELECTRONIC DISPLAYS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 14 00 00</td>
<td>MAINTENANCE, MONITORING AND RECORDING SYSTEMS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>022 15 00 00</td>
<td>DIGITAL CIRCUITS AND COMPUTERS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>030 00 00 00</td>
<td>FLIGHT PERFORMANCE AND PLANNING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 00 00 00</td>
<td>MASS AND BALANCE: AEROPLANES OR HELICOPTERS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 01 00 00</td>
<td>PURPOSE OF MASS AND BALANCE CONSIDERATIONS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 02 00 00</td>
<td>LOADING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 03 00 00</td>
<td>FUNDAMENTALS OF CG CALCULATIONS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 04 00 00</td>
<td>MASS AND BALANCE DETAILS OF AIRCRAFT</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 05 00 00</td>
<td>DETERMINATION OF CG POSITION</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>031 06 00 00</td>
<td>CARGO HANDLING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 00 00 00</td>
<td>PERFORMANCE: AEROPLANES</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 01 00 00</td>
<td>GENERAL</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 02 00 00</td>
<td>PERFORMANCE CLASS B: SE AEROPLANES</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 03 00 00</td>
<td>PERFORMANCE CLASS B: ME AEROPLANES</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>032 04 00 00</td>
<td>PERFORMANCE CLASS A: AEROPLANES CERTIFICATED UNDER CS-25 ONLY</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 00 00 00</td>
<td>FLIGHT PLANNING AND FLIGHT MONITORING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 01 00 00</td>
<td>FLIGHT PLANNING FOR VFR FLIGHTS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 02 00 00</td>
<td>FLIGHT PLANNING FOR IFR FLIGHTS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 03 00 00</td>
<td>FUEL PLANNING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 04 00 00</td>
<td>PRE-FLIGHT PREPARATION</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 05 00 00</td>
<td>ATS FLIGHT PLAN</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>033 06 00 00</td>
<td>FLIGHT MONITORING AND IN-FLIGHT RE-PLANNING</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>034 00 00 00</td>
<td>PERFORMANCE: HELICOPTERS</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>034 01 00 00</td>
<td>GENERAL</td>
<td>ATPL</td>
<td>CPL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Aeroplane</td>
<td>Helicopter</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>034 02 00 00</td>
<td>PERFORMANCE CLASS 3 SE HELICOPTERS ONLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034 03 00 00</td>
<td>PERFORMANCE CLASS 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>034 04 00 00</td>
<td>PERFORMANCE CLASS 1 HELICOPTERS CERTIFICATED UNDER CS 29 ONLY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040 00 00 00</td>
<td>HUMAN PERFORMANCE</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>040 01 00 00</td>
<td>HUMAN FACTORS: BASIC CONCEPTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040 02 00 00</td>
<td>BASIC AVIATION PHYSIOLOGY AND HEALTH MAINTENANCE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>040 03 00 00</td>
<td>BASIC AVIATION PSYCHOLOGY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>050 00 00 00</td>
<td>METEOROLOGY</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 01 00 00</td>
<td>THE ATMOSPHERE</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 02 00 00</td>
<td>WIND</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 03 00 00</td>
<td>THERMODYNAMICS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 04 00 00</td>
<td>CLOUDS AND FOG</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 05 00 00</td>
<td>PRECIPITATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 06 00 00</td>
<td>AIR MASSES AND FRONTS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 07 00 00</td>
<td>PRESSURE SYSTEMS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 08 00 00</td>
<td>CLIMATOLOGY</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 09 00 00</td>
<td>FLIGHT HAZARDS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>050 10 00 00</td>
<td>METEOROLOGICAL INFORMATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>060 00 00 00</td>
<td>NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 00 00 00</td>
<td>GENERAL NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 01 00 00</td>
<td>BASICS OF NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 02 00 00</td>
<td>MAGNETISM AND COMPASSES</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 03 00 00</td>
<td>CHARTS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 04 00 00</td>
<td>DEAD RECKONING NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>061 05 00 00</td>
<td>IN-FLIGHT NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 00 00 00</td>
<td>RADIO NAVIGATION</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 01 00 00</td>
<td>BASIC RADIO PROPAGATION THEORY</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 02 00 00</td>
<td>RADIO AIDS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 03 00 00</td>
<td>RADAR</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 04 00 00</td>
<td>INTENTIONALLY LEFT BLANK</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>062 05 00 00</td>
<td>AREA NAVIGATION SYSTEMS AND RNAV OR FMS</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
<td>Aeroplane</td>
<td>Helicopter</td>
<td>IR</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-----------</td>
<td>------------</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>062 06 00 00</td>
<td>GNSS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>070 00 00 00</td>
<td>OPERATIONAL PROCEDURES</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>071 01 00 00</td>
<td>GENERAL REQUIREMENTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071 02 00 00</td>
<td>SPECIAL OPERATIONAL PROCEDURES AND HAZARDS (GENERAL ASPECTS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>071 03 00 00</td>
<td>HELICOPTER EMERGENCY PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>080 00 00 00</td>
<td>PRINCIPLES OF FLIGHT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>081 00 00 00</td>
<td>PRINCIPLES OF FLIGHT: AEROPLANE</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 01 00 00</td>
<td>SUBSONIC AERODYNAMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 02 00 00</td>
<td>HIGH SPEED AERODYNAMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 03 00 00</td>
<td>INTENTIONALLY LEFT BLANK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 04 00 00</td>
<td>STABILITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 05 00 00</td>
<td>CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 06 00 00</td>
<td>LIMITATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 07 00 00</td>
<td>PROPELLERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>081 08 00 00</td>
<td>FLIGHT MECHANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 00 00 00</td>
<td>PRINCIPLES OF FLIGHT: HELICOPTER</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>082 01 00 00</td>
<td>SUBSONIC AERODYNAMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 02 00 00</td>
<td>TRANSONIC AERODYNAMICS AND COMPRESSIBILITY EFFECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 03 00 00</td>
<td>ROTORCRAFT TYPES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 04 00 00</td>
<td>MAIN ROTOR AERODYNAMICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 05 00 00</td>
<td>MAIN ROTOR MECHANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 06 00 00</td>
<td>TAIL ROTORS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 07 00 00</td>
<td>EQUILIBRIUM, STABILITY AND CONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>082 08 00 00</td>
<td>HELICOPTER FLIGHT MECHANICS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>090 00 00 00</td>
<td>COMMUNICATIONS</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>091 00 00 00</td>
<td>VFR COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>091 01 00 00</td>
<td>DEFINITIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>091 02 00 00</td>
<td>GENERAL OPERATING PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>091 03 00 00</td>
<td>RELEVANT WEATHER INFORMATION TERMS (VFR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>091 04 00 00</td>
<td>ACTION REQUIRED TO BE TAKEN IN CASE OF COMMUNICATION FAILURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aeroplane ATPL</td>
<td>Aeroplane CPL</td>
<td>Helicopter ATPL</td>
<td>Helicopter CPL</td>
<td>IR</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>091 05 00 00</td>
<td>DISTRESS AND URGENCY PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>091 06 00 00</td>
<td>GENERAL PRINCIPLES OF VHF PROPAGATION AND ALLOCATION OF FREQUENCIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 00 00 00</td>
<td>IFR COMMUNICATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 01 00 00</td>
<td>DEFINITIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 02 00 00</td>
<td>GENERAL OPERATING PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 03 00 00</td>
<td>ACTION REQUIRED TO BE TAKEN IN CASE OF COMMUNICATION FAILURE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 04 00 00</td>
<td>DISTRESS AND URGENCY PROCEDURES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 05 00 00</td>
<td>RELEVANT WEATHER INFORMATION TERMS (IFR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 06 00 00</td>
<td>GENERAL PRINCIPLES OF VHF PROPAGATION AND ALLOCATION OF FREQUENCIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>092 07 00 00</td>
<td>MORSE CODE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(b) Airships

<table>
<thead>
<tr>
<th></th>
<th>AIR LAW AND ATC PROCEDURES</th>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INTERNATIONAL LAW: CONVENTIONS, AGREEMENTS AND ORGANISATIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRWORTHINESS OF AIRCRAFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRCRAFT NATIONALITY AND REGISTRATION MARKS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PERSONNEL LICENSING</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RULES OF THE AIR</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PROCEDURES FOR AIR NAVIGATION SERVICES: AIRCRAFT OPERATIONS</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIR TRAFFIC SERVICES AND AIR TRAFFIC MANAGEMENT</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AERONAUTICAL INFORMATION SERVICE</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AERODROMES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FACILITATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEARCH AND RESCUE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SECURITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AIRCRAFT ACCIDENT AND INCIDENT INVESTIGATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. AIRSHIP GENERAL KNOWLEDGE: ENVELOPE, AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT

<table>
<thead>
<tr>
<th></th>
<th>AIRSHIP GENERAL KNOWLEDGE: ENVELOPE, AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT</th>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DESIGN, MATERIALS, LOADS AND STRESSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVELOPE AND AIRBAGS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FRAMEWORK</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GONDOLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FLIGHT CONTROLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LANDING GEAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HYDRAULICS AND PNEUMATICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HEATING AND AIR CONDITIONING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FUEL SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PISTON ENGINES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TURBINE ENGINES (BASICS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELECTRICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIRE PROTECTION AND DETECTION SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINTENANCE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. AIRSHIP GENERAL KNOWLEDGE: INSTRUMENTATION

<table>
<thead>
<tr>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- SENSORS AND INSTRUMENTS
- MEASUREMENT OF AIR DATA AND GAS PARAMETERS
- MAGNETISM: DIRECT READING COMPASS AND FLUX VALVE
- GYROSCOPIC INSTRUMENTS
- COMMUNICATION SYSTEMS
- ALERTING SYSTEMS
- INTEGRATED INSTRUMENTS: ELECTRONIC DISPLAYS
- FLIGHT MANAGEMENT SYSTEM (GENERAL BASICS)
- DIGITAL CIRCUITS AND COMPUTERS

4. FLIGHT PERFORMANCE AND PLANNING

<table>
<thead>
<tr>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.1. MASS AND BALANCE: AIRSHIPS

- PURPOSE OF MASS AND BALANCE CONSIDERATIONS
- LOADING
- FUNDAMENTALS OF CG CALCULATIONS
- MASS AND BALANCE DETAILS OF AIRCRAFT
- DETERMINATION OF CG POSITION
- PASSENGER, CARGO AND BALLAST HANDLING

4.2. FLIGHT PLANNING AND FLIGHT MONITORING

- FLIGHT PLANNING FOR VFR FLIGHTS
- FLIGHT PLANNING FOR IFR FLIGHTS
- FUEL PLANNING
- PRE-FLIGHT PREPARATION
- ATS FLIGHT PLAN
- FLIGHT MONITORING AND IN-FLIGHT RE-PLANNING

4.3. PERFORMANCE: AIRSHIPS

- AIRWORTHINESS REQUIREMENTS
- BASICS OF AIRSHIP PERFORMANCE
- DEFINITIONS AND TERMS
- STAGES OF FLIGHT
- USE OF FLIGHT MANUAL

5. HUMAN PERFORMANCE

<table>
<thead>
<tr>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- HUMAN FACTORS: BASIC CONCEPTS
- BASIC AVIATION PHYSIOLOGY AND HEALTH MAINTENANCE
<table>
<thead>
<tr>
<th>Annex to ED Decision 2011/016/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. METEOROLOGY</td>
</tr>
<tr>
<td>THE ATMOSPHERE</td>
</tr>
<tr>
<td>WIND</td>
</tr>
<tr>
<td>THERMODYNAMICS</td>
</tr>
<tr>
<td>CLOUDS AND FOG</td>
</tr>
<tr>
<td>PRECIPITATION</td>
</tr>
<tr>
<td>AIR MASSES AND FRONTS</td>
</tr>
<tr>
<td>PRESSURE SYSTEMS</td>
</tr>
<tr>
<td>CLIMATOLOGY</td>
</tr>
<tr>
<td>FLIGHT HAZARDS</td>
</tr>
<tr>
<td>METEOROLOGICAL INFORMATION</td>
</tr>
<tr>
<td>7. NAVIGATION</td>
</tr>
<tr>
<td>7.1. GENERAL NAVIGATION</td>
</tr>
<tr>
<td>BASICS OF NAVIGATION</td>
</tr>
<tr>
<td>MAGNETISM AND COMPASSES</td>
</tr>
<tr>
<td>CHARTS</td>
</tr>
<tr>
<td>DR NAVIGATION</td>
</tr>
<tr>
<td>IN-FLIGHT NAVIGATION</td>
</tr>
<tr>
<td>7.2. RADIO NAVIGATION</td>
</tr>
<tr>
<td>BASIC RADIO PROPAGATION THEORY</td>
</tr>
<tr>
<td>RADIO AIDS</td>
</tr>
<tr>
<td>RADAR</td>
</tr>
<tr>
<td>INTENTIONALLY LEFT BLANK</td>
</tr>
<tr>
<td>AREA NAVIGATION SYSTEMS AND RNAV/FMS</td>
</tr>
<tr>
<td>GNSS</td>
</tr>
<tr>
<td>8. OPERATIONAL PROCEDURES AIRSHIP</td>
</tr>
<tr>
<td>GENERAL REQUIREMENTS</td>
</tr>
<tr>
<td>SPECIAL OPERATIONAL PROCEDURES AND HAZARDS (GENERAL ASPECTS)</td>
</tr>
<tr>
<td>EMERGENCY PROCEDURES</td>
</tr>
<tr>
<td>9. PRINCIPLES OF FLIGHT</td>
</tr>
<tr>
<td>9.1. PRINCIPLES OF FLIGHT: AIRSHIPS</td>
</tr>
<tr>
<td>BASICS OF AEROSTATICS</td>
</tr>
<tr>
<td>BASICS OF SUBSONIC AERODYNAMICS</td>
</tr>
<tr>
<td>AERODYNAMICS OF AIRSHIPS</td>
</tr>
</tbody>
</table>
10. COMMUNICATIONS

10.1. VFR COMMUNICATIONS

<table>
<thead>
<tr>
<th>Definition</th>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>General Operating Procedures</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Relevant Weather Information Terms (VFR)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Action Required to be Taken in Case of Communication Failure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Distress and Urgency Procedures</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

10.2. IFR COMMUNICATIONS

<table>
<thead>
<tr>
<th>Definition</th>
<th>CPL</th>
<th>IR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>General Operating Procedures</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Action Required to be Taken in Case of Communication Failure</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Distress and Urgency Procedures</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Relevant Weather Information Terms (IFR)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>General Principles of VHF Propagation and Allocation of Frequencies</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Morse Code</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
SUBPART F — AIRLINE TRANSPORT PILOT LICENCE — ATPL

AMC1 FCL.510.A (b)(1) ATPL(A) — Prerequisites, experience and crediting

Equivalent requirements for CS-25 and CS-23 commuter category are the JAR/FAR-25 transport category, JAR/FAR-23 commuter category, or BCAR or AIR 2051.
AMC1 FCL.520.A; FCL.520.H

ATPL SKILL TEST

The ATPL skill test may serve at the same time as a skill test for the issue of the licence and a proficiency check for the revalidation of the type rating for the aircraft used in the test and may be combined with the skill test for the issue of a MP type rating.
SUBPART G — INSTRUMENT RATING — IR

AMC1 FCL.625(c) IR — Validity, revalidation and renewal

RENEWAL OF INSTRUMENT RATING: REFRESHER TRAINING

(a) Paragraph (b)(1) of FCL.740 determines that if the instrument rating has lapsed, the applicant shall go through refresher training at an ATO, to reach the level of proficiency needed to pass the instrument element of the skill test prescribed in Appendix 9 to Part-FCL. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:

1. the experience of the applicant. To determine this, the ATO should evaluate the pilot's log book, and, if necessary, conduct a test in an FSTD.

2. the amount of time lapsed since the expiry of the validity period of the rating. The amount of training needed to reach the desired level of proficiency should increase with the time lapsed. In some cases, after evaluating the pilot, and when the time lapsed is very limited (less than 3 months), the ATO may even determine that no further refresher training is necessary. The following may be taken as guidance when determining the needs of the applicant:

 (i) expiry for a period shorter than 3 months: no supplementary requirements;

 (ii) expiry for longer than 3 months but shorter than 1 year: a minimum of one training session;

 (iii) expiry for longer than 1 year but shorter than 7 years: a minimum of three training sessions;

 (iv) expiry for longer than 7 years: the applicant should undergo the full training course for the issue of the IR.

(b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme, which should be based on the initial training for the issue of instrument ratings and focus on the aspects where the applicant has shown the greatest needs.

(c) After successful completion of the training, the ATO should give a certificate to the applicant, to be submitted to the competent authority when applying for the renewal.
SUBPART H — CLASS AND TYPE RATINGS

GM1 FCL.700 Circumstances in which class or type ratings are required

LIST OF CLASS OR TYPE RATINGS

The following tables contain lists of aeroplanes or TMG that are included in class ratings.

(a) Class ratings (aeroplane): SP and SEP or MEP aeroplane (land or sea):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Aeroplanes</th>
<th>Licence Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All manufacturers</td>
<td>SEP (land)</td>
<td>(D) SEP (land)</td>
</tr>
<tr>
<td></td>
<td>SEP (land) with variable pitch propellers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with retractable undercarriage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with turbo or super charged engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with cabin pressurisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with tail wheels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with EFIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (land) with SLPC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (sea)</td>
<td>(D) SEP (sea)</td>
</tr>
<tr>
<td></td>
<td>SEP (sea) with variable pitch propellers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (sea) with turbo or super charged engines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (sea) with cabin pressurisation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (sea) with EFIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEP (sea) with SLPC</td>
<td></td>
</tr>
<tr>
<td>All manufacturers</td>
<td>MEP (land)</td>
<td>(D) MEP (land)</td>
</tr>
<tr>
<td></td>
<td>MEP (sea)</td>
<td>(D) MEP (sea)</td>
</tr>
</tbody>
</table>
(b) Class ratings (aeroplane): SP and SEP TMG (land):

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Aeroplanes</th>
<th>Licence Endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>All manufacturers</td>
<td>All TMGs having an integrally mounted, non-retractable engine and a non-retractable propeller</td>
<td>TMG</td>
</tr>
</tbody>
</table>

(c) Additional class and type rating lists and endorsement lists are published by the Agency.

(d) Whenever (D) is indicated in one of the lists mentioned in paragraphs (a) to (c), it indicates that differences training in accordance with FCL.710 is required.
GM1 FCL.710 Class and type ratings — variants

Differences and familiarisation training

(a) Differences training requires the acquisition of additional knowledge and training on an appropriate training device or the aircraft.

(b) Familiarisation training requires the acquisition of additional knowledge.
AMC1 FCL.725(a) Requirements for the issue of class and type ratings

SYLLABUS OF THEORETICAL KNOWLEDGE FOR CLASS OR TYPE RATINGS

I. SE AND ME AEROPLANES

(a) Detailed listing for aeroplane structure and equipment, normal operation of systems and malfunctions:

1. dimensions: minimum required runway width for 180 ° turn.

2. engine including auxiliary power unit:
 - type of engine or engines;
 - in general, function of the following systems or components:
 - engine;
 - auxiliary power unit;
 - oil system;
 - fuel system;
 - ignition system;
 - starting system;
 - fire warning and extinguishing system;
 - generators and generator drives;
 - power indication;
 - reverse thrust;
 - water injection.
 - on piston or turbine-propeller engines additionally:
 - propeller system;
 - feathering system.
 - engine controls (including starter), engine instruments and indications in the cockpit, their function, interrelation and interpretation;
 - engine operation, including APU, during engine start, start and engine malfunctions, procedures for normal operation in the correct sequence.

3. fuel system:
 - location of the fuel tanks, fuel pumps, fuel lines to the engines, tank capacities, valves and measuring;
 - location of the following systems:
 - filtering;
 - heating;
 - fuelling and defueling;
 - dumping;
 - venting.
 - in the cockpit:
(A) the monitors and indicators of the fuel system;
(B) quantity and flow indication, interpretation.

(iv) procedures:
(A) fuel procedures distribution into the various tanks;
(B) fuel supply, temperature control and fuel dumping.

(4) pressurisation and air conditioning:
(i) components of the system and protection devices;
(ii) cockpit monitors and indicators;
(iii) interpretation about the operational condition;
(iv) normal operation of the system during start, cruise, approach and landing, air conditioning airflow and temperature control.

(5) ice and rain protection, windshield wipers and rain repellent:
(i) ice protected components of the aeroplane including engines, heat sources, controls and indications;
(ii) operation of the anti-icing or de-icing system during take-off, climb, cruise and descent, conditions requiring the use of the protection systems;
(iii) controls and indications of the windshield wipers and rain repellent systems operation.

(6) hydraulic system:
(i) components of the hydraulic system(s), quantities and system pressure, hydraulically actuated components associated to the respective hydraulic system;
(ii) controls, monitors and indicators in the cockpit, function and interrelation and interpretation of indications.

(7) landing gear:
(i) main components of the:
(A) main landing gear;
(B) nose gear;
(C) gear steering;
(D) wheel brake system, including anti-skid.
(ii) gear retraction and extension (including changes in trim and drag caused by gear operation);
(iii) required tyre pressure, or location of the relevant placard;
(iv) controls and indicators including warning indicators in the cockpit in relation to the retraction or extension condition of the landing gear and brakes;
(v) components of the emergency extension system.

(8) flight controls and high lift devices:
(i) (A) aileron system;
 (B) elevator system;
 (C) rudder system;
(D) trim system;
(E) spoiler system;
(F) lift devices;
(G) stall warning system;
(H) take-off configuration warning system.

(ii) flight control system from the cockpit controls to the flight control or surfaces;

(iii) controls, monitors and indicators including warning indicators of the systems mentioned under (8) (i), interrelation and dependencies.

(9) electrical power supply:

(i) number, power, voltage, frequency and location of the main power system (AC or DC), auxiliary power system location and external power system;

(ii) location of the controls, monitors and indicators in the cockpit;

(iii) flight instruments, communication and navigation systems, main and back-up power sources;

(iv) location of vital circuit breakers;

(v) generator operation and monitoring procedures of the electrical power supply.

(10) flight instruments, communication, radar and navigation equipment, autoflight and flight data recorders:

(i) visible antennae;

(ii) controls and instruments of the following equipment in the cockpit during normal operation:

(A) flight instruments;

(B) flight management systems;

(C) radar equipment, including radio altimeter;

(D) communication and navigation systems;

(E) autopilot;

(F) flight data recorder, cockpit voice recorder and data-link communication recording function;

(G) TAWS;

(H) collision avoidance system;

(I) warning systems.

(11) cockpit, cabin and cargo compartment:

(i) operation of the exterior, cockpit, cabin and cargo compartment lighting and the emergency lighting;

(ii) operation of the cabin and cargo doors, stairs, windows and emergency exits;

(iii) main components of the oxygen system and their location, oxygen masks and operation of the oxygen systems for the crew
and passengers, required amount of oxygen by means of a table or diagram.

(12) emergency equipment operation and correct application of the following emergency equipment in the aeroplane:

(i) portable fire extinguisher;

(ii) first-aid kits;

(iii) portable oxygen equipment;

(iv) emergency ropes;

(v) life-jacket;

(vi) life rafts;

(vii) emergency transmitters;

(viii) crash axes;

(ix) megaphones;

(x) emergency signals.

(13) pneumatic system:

(i) components of the pneumatic system, pressure source and actuated components;

(ii) controls, monitors and indicators in the cockpit and function of the system;

(iii) vacuum system.

(b) Limitations:

(1) general limitations:

(i) certification of the aeroplane, category of operation, noise certification and maximum and minimum performance data for all flight profiles, conditions and aircraft systems:

(A) maximum tail and crosswind-components at take-off and landing;

(B) maximum speeds for flap extension \(v_{lo}\);

(C) at various flap settings \(v_{le}\);

(D) for landing gear operation \(v_{lo}, M_{lo}\);

(E) for extended landing gear \(v_{le}, M_{le}\);

(F) for maximum rudder deflection \(v_{a}, M_{a}\);

(G) for tyres;

(H) one propeller feathered.

(ii) (A) minimum control speed air \(v_{mca}\);

(B) minimum control speed ground \(v_{mcg}\);

(C) stall speed under various conditions \(v_{so}, v_{s1}\);

(D) maximum speed \(v_{ne}, M_{ne}\);

(E) maximum speed for normal operation \(v_{mo}, M_{mo}\);

(F) altitude and temperature limitations;

(G) stick shaker activation.
(iii) (A) maximum airport pressure altitude, runway slope;
 (B) maximum taxi mass;
 (C) maximum take-off mass;
 (D) maximum lift off mass;
 (E) maximum landing mass;
 (F) zero fuel mass;
 (G) maximum dumping speed v_{dco}, M_{dco}, v_{dce}, M_{dce};
 (H) maximum load factor during operation;
 (I) certificated range of centre of gravity.

(2) engine limitations:

 (i) operating data of the engines:
 (A) time limits and maximum temperatures;
 (B) minimum RPMs and temperatures;
 (C) torque;
 (D) maximum power for take-off and go-around on pressure altitude or flight altitude and temperature;
 (E) piston engines: certified range of mixture;
 (F) minimum and maximum oil temperature and pressure;
 (G) maximum starter time and required cooling;
 (H) time between two start attempts for engines and auxiliary power unit;
 (I) for propeller: maximum RPM of propeller triggering of automatic feathering device.

 (ii) certified oil grades.

(3) systems limitations:

 (i) operating data of the following systems:
 (A) pressurisation, air conditioning maximum pressures;
 (B) electrical power supply, maximum load of main power system (AC or DC);
 (C) maximum time of power supply by battery in case of emergency;
 (D) mach trim system and yaw damper speed limits;
 (E) autopilot limitations of various modes;
 (F) ice protection;
 (G) speed and temperature limits of window heat;
 (H) temperature limits of engine and wing anti-ice.

 (ii) fuel system: certified fuel specifications, minimum and maximum pressures and temperature of the fuel.

(4) minimum equipment list.

(c) Performance, flight planning and monitoring:
(1) performance calculation about speeds, gradients, masses in all conditions for take-off, en-route, approach and landing according to the documentation available (for example for take-off \(v_1\), \(v_{nber}\), \(v_r\), \(v_{lof}\), \(v_2\), take-off distance, maximum take-off mass and the required stop distance) on the following factors:

(i) accelerate or stop distance;
(ii) take-off run and distance available (TORA, TODA);
(iii) ground temperature, pressure altitude, slope, wind;
(iv) maximum load and maximum mass (for example ZFM);
(v) minimum climb gradient after engine failure;
(vi) influence of snow, slush, moisture and standing water on the runway;
(vii) possible single or dual engine failure during cruise flight;
(viii) use of anti-icing systems;
(ix) failure of water injection system or antiskid system;
(x) speeds at reduced thrust, \(v_1\), \(v_{1red}\), \(v_{nber}\), \(v_{mur}\), \(v_r\), \(v_{lof}\), \(v_2\);
(xi) safe approach speed \(v_{ref}\), on \(v_{mca}\) and turbulent conditions;
(xii) effects of excessive approach speed and abnormal glideslope on the landing distance;
(xiii) minimum climb gradient during approach and landing;
(xiv) limiting values for a go-around with minimum fuel;
(xv) maximum allowable landing mass and the landing distance for the destination and alternate aerodrome on the following factors:

- available landing distance;
- ground temperature, pressure altitude, runway slope and wind;
- fuel consumption to destination or alternate aerodrome;
- influence of moisture on the runway, snow, slush and standing water;
- failure of the water injection system or the anti skid system;
- influence of thrust reverser and spoilers.

(2) flight planning for normal and abnormal conditions:

(i) optimum or maximum flight level;
(ii) minimum required flight altitude;
(iii) drift down procedure after an engine failure during cruise flight;
(iv) power setting of the engines during climb, cruise and holding under various circumstances, as well as the most economic cruising flight level;
(v) calculation of a short range or long range flight plan;
(vi) optimum and maximum flight level and power setting of the engines after engine failure.

(3) flight monitoring.
(d) Load and balance and servicing:

(1) Load and balance:
 (i) load and trim sheet on the maximum masses for take-off and landing;
 (ii) centre of gravity limits;
 (iii) influence of fuel consumption on the centre of gravity;
 (iv) lashing points, load clamping, maximum ground load.

(2) Servicing on ground, servicing connections for:
 (i) fuel;
 (ii) oil;
 (iii) water;
 (iv) hydraulic;
 (v) oxygen;
 (vi) nitrogen;
 (vii) conditioned air;
 (viii) electric power;
 (ix) start air;
 (x) toilet and safety regulations.

(e) Emergency procedures:

(1) Recognition of the situation as well as immediate memory actions in correct sequence and for those conditions recognised as emergencies by the manufacturer and competent authority for certification:
 (i) engine failure during take-off before and after \(V_1 \), as well as in-flight;
 (ii) malfunctions of the propeller system;
 (iii) engine overheat, engine fire on ground and in-flight;
 (iv) wheel well fire;
 (v) electrical smoke or fire;
 (vi) rapid decompression and emergency descent;
 (vii) air-conditioning overheat, anti-ice system overheat;
 (viii) fuel pump failure;
 (ix) fuel freezing overheat;
 (x) electric power failure;
 (xi) equipment cooling failure;
 (xii) flight instrument failure;
 (xiii) partial or total hydraulic failure;
 (xiv) failures at the lift devices and flight controls including boosters;
 (xv) cargo compartment smoke or fire.

(2) Actions according to the approved abnormal and emergency checklist:
 (i) engine restart in-flight;
(ii) landing gear emergency extension;
(iii) application of the emergency brake system;
(iv) emergency extension of lift devices;
(v) fuel dumping;
(vi) emergency descent.

(f) Special requirements for extension of a type rating for instrument approaches down to decision heights of less than 200 ft (60 m):

(1) airborne and ground equipment:
 (i) technical requirements;
 (ii) operational requirements;
 (iii) operational reliability;
 (iv) fail operational;
 (v) fail passive;
 (vi) equipment reliability;
 (vii) operating procedures;
 (viii) preparatory measures;
 (ix) operational downgrading;
 (x) communications.

(2) procedures and limitations:
 (i) operational procedures;
 (ii) crew coordination.

(g) Special requirements for ‘glass cockpit’ aeroplanes with EFIS

Additional learning objectives:

(1) general rules of aeroplanes computer hardware and software design;
(2) logic of all crew information and alerting systems and their limitations;
(3) interaction of the different aeroplane computer systems, their limitations, the possibilities of computer fault recognition and the actions to be performed on computer failures;
(4) normal procedures including all crew coordination duties;
(5) aeroplane operation with different computer degradations (basic flying).

(h) Flight management systems.
II. SE AND ME HELICOPTERS

(a) Detailed listing for helicopters structure, transmissions, rotors and equipment, normal and abnormal operation of systems:

(1) dimensions.

(2) engine including aux. power unit, rotor and transmissions; if an initial type rating for a turbine engine helicopter is applied for, the applicant should have received turbine engine instruction:

(i) type of engine or engines;

(ii) in general, the function of the following systems or components:
 (A) engine;
 (B) auxiliary power unit;
 (C) oil system;
 (D) fuel system;
 (E) ignition system;
 (F) starting system;
 (G) fire warning and extinguishing system;
 (H) generators and generator drive;
 (I) power indication;
 (J) water or methanol injection.

(iii) engine controls (including starter), engine instruments and indications in the cockpit, their function and interrelation and interpretation;

(iv) engine operation, including APU, during engine start and engine malfunctions, procedures for normal operation in the correct sequence;

(v) transmission system:
 (A) lubrication;
 (B) generators and generator drives;
 (C) freewheeling units;
 (D) hydraulic drives;
 (E) indication and warning systems.

(vi) type of rotor systems: indication and warning systems.

(3) fuel system:

(i) location of the fuel tanks, fuel pumps, fuel lines to the engines tank capacities, valves and measuring;

(ii) the following systems:
 (A) filtering;
 (B) fuelling and defuelling heatings;
 (C) dumping;
 (D) transferring;
(E) venting.

(iii) in the cockpit: the monitors and indicators of the fuel system, quantity and flow indication, interpretation;

(iv) fuel procedures distribution into the various tanks fuel supply and fuel dumping.

(4) air conditioning:

(i) components of the system and protection devices;

(ii) cockpit monitors and indicators;

Note: interpretation about the operational condition: normal operation of the system during start, cruise approach and landing, air conditioning airflow and temperature control.

(5) ice and rain protection, windshield wipers and rain repellent:

(i) ice protected components of the helicopter, including engines and rotor systems, heat sources, controls and indications;

(ii) operation of the anti-icing or de-icing system during take-off, climb, cruise and descent, conditions requiring the use of the protection systems;

(iii) controls and indications of the windshield wipers and rain repellent system operation.

(6) hydraulic system:

(i) components of the hydraulic system(s), quantities and system pressure, hydraulically actuated components associated to the respective hydraulic system;

(ii) controls, monitors and indicators in the cockpit, function and interrelation and interpretation of indications.

(7) landing gear, skids fixed and floats:

(i) main components of the:

(A) main landing gear;

(B) nose gear;

(C) tail gear;

(D) gear steering;

(E) wheel brake system.

(ii) gear retraction and extension;

(iii) required tyre pressure, or location of the relevant placard;

(iv) controls and indicators including warning indicators in the cockpit in relation to the retraction or extension condition of the landing gear;

(v) components of the emergency extension system.

(8) flight controls, stab- and autopilot systems: controls, monitors and indicators including warning indicators of the systems, interrelation and dependencies.
(9) electrical power supply:
 (i) number, power, voltage, frequency and if applicable phase and location of the main power system (AC or DC) auxiliary power system location and external power system;
 (ii) location of the controls, monitors and indicators in the cockpit;
 (iii) main and back-up power sources flight instruments, communication and navigation systems, main and back-up power sources;
 (iv) location of vital circuit breakers;
 (v) generator operation and monitoring procedures of the electrical power supply.

(10) flight instruments, communication, radar and navigation equipment, autoflight and flight data recorders:
 (i) antennas;
 (ii) controls and instruments of the following equipment in the cockpit:
 (A) flight instruments (for example air speed indicator, pitot static system, compass system, flight director);
 (B) flight management systems;
 (C) radar equipment (for example weather radar, transponder);
 (D) communication and navigation system (for example HF, VHF, ADF, VOR/DME, ILS, marker beacon) and area navigation systems;
 (E) stabilisation and autopilot system;
 (F) flight data recorder, cockpit voice recorder, data-link communication recording function and radio altimeter;
 (G) collision avoidance system;
 (H) TAWS;
 (I) HUMS.

(11) cockpit, cabin and cargo compartment:
 (i) operation of the exterior, cockpit, cabin and cargo compartment lighting and the emergency lighting;
 (ii) operation of the cabin doors and emergency exits.

(12) emergency equipment:
 (i) operation and correct application of the following mobile emergency equipment in the helicopter:
 (A) portable fire extinguisher;
 (B) first-aid kits;
 (C) portable oxygen equipment;
 (D) emergency ropes;
 (E) life-jacket;
 (F) life rafts;
 (G) emergency transmitters;
(H) crash axes;
(I) megaphones;
(J) emergency signals;
(K) torches.

(ii) operation and correct application of the fixed emergency equipment in the helicopter: emergency floats.

(b) Limitations:
(1) general limitations, according to the helicopter flight manual;
(2) minimum equipment list.

(c) Performance, flight planning and monitoring:
(1) performance calculation about speeds, gradients, masses in all conditions for take-off, en-route, approach and landing:
 (i) take-off:
 (A) hover performance in and out of ground effect;
 (B) all approved profiles, cat A and B;
 (C) HV diagram;
 (D) take-off and rejected take-off distance;
 (E) take-off decision point (TDP) or (DPATO);
 (F) calculation of first and second segment distances;
 (G) climb performance.
 (ii) en-route:
 (A) air speed indicator correction;
 (B) service ceiling;
 (C) optimum or economic cruising altitude;
 (D) max endurance;
 (E) max range;
 (F) cruise climb performance.
 (iii) landing:
 (A) hovering in and out of ground effect;
 (B) landing distance;
 (C) landing decision point (LDP) or (DPBL).
 (iv) knowledge or calculation of: v_{lo}, v_{le}, v_{nor}, v_{s}, v_{y}, v_{toss}, v_{ne},
 v_{max}, v_{range}, v_{mini}.

(2) flight planning for normal and abnormal conditions:
 (i) optimum or maximum flight level;
 (ii) minimum required flight altitude;
 (iii) drift down procedure after an engine failure during cruise flight;
 (iv) power setting of the engines during climb, cruise and holding under various circumstances as well as at the most economic cruising flight level;
(v) optimum and maximum flight level and power setting after an engine failure.

(3) effect of optional equipment on performance.

(d) Load, balance and servicing:

(1) load and balance:
 (i) load and trim sheet on the maximum masses for take-off and landing;
 (ii) centre of gravity limits;
 (iii) influence of the fuel consumption on the centre of gravity;
 (iv) lashing points, load clamping, max ground load.

(2) servicing on the ground, servicing connections for:
 (i) fuel;
 (ii) oil, etc.;
 (iii) and safety regulations for servicing.

(e) Emergency procedures.

(f) Special requirements for extension of a type rating for instrument approaches down to a decision height of less than 200 ft (60 m):

(1) airborne and ground equipment:
 (i) technical requirements;
 (ii) operational requirements;
 (iii) operational reliability;
 (iv) fail operational;
 (v) fail passive;
 (vi) equipment reliability;
 (vii) operating procedures;
 (viii) preparatory measures;
 (ix) operational downgrading;
 (x) communication.

(2) procedures and limitations:
 (i) operational procedures;
 (ii) crew co-ordination.

(g) Special requirements for helicopters with EFIS.

(h) Optional equipment.
III. AIRSHIPS

(a) Detailed listing for airship structure and equipment, normal operation of systems and malfunctions:
 (1) dimensions;
 (2) structure and envelope:
 (i) internal structure;
 (ii) envelope;
 (iii) pressure system;
 (iv) gondola;
 (v) empennage.
 (3) flight controls;
 (4) systems:
 (i) hydraulic;
 (ii) pneumatic.
 (5) landing gear;
 (6) fuel system;
 (7) fire warning and extinguishing system;
 (8) emergency equipment;
 (9) electrical systems;
 (10) avionics, radio navigation and communication equipment;
 (11) instrumentation;
 (12) engines and propellers;
 (13) heating, ventilation and air-condition;
 (14) operational procedures during start, cruise, approach and landing:
 (i) normal operations;
 (ii) abnormal operations.

(b) Limitations:
 (1) general limitations:
 (i) certification of the airship, category of operation, noise certification and maximum and minimum performance data for all flight profiles, conditions and aircraft systems;
 (ii) speeds;
 (iii) altitudes.
 (2) engine limitations;
 (3) systems limitations;
 (4) minimum equipment list.

(c) Performance and flight planning:
 (1) performance calculation;
(2) flight planning.

(d) Load and balance and servicing:
 (1) load and balance;
 (2) servicing.

(e) Emergency procedures:
 (1) recognition of emergency situations;
 (2) actions according to the approved abnormal and emergency checklist.
AMC2 FCL.725(a) Requirements for the issue of class and type ratings

TRAINING COURSE

FLIGHT INSTRUCTION FOR TYPE RATINGS: HELICOPTERS

(a) The amount of flight instruction depends on:

 (i) complexity of the helicopter type, handling characteristics, level of technology;

 (ii) category of helicopter (SEP or SE turbine helicopter, ME turbine and MP helicopter);

 (iii) previous experience of the applicant;

 (iv) the availability of FSTDs.

(b) **FSTDs**

 The level of qualification and the complexity of the type will determine the amount of practical training that may be accomplished in FSTDs, including completion of the skill test. Before undertaking the skill test, a student should demonstrate competency in the skill test items during the practical training.

(c) **Initial issue**

 The flight instruction (excluding skill test) should comprise:

<table>
<thead>
<tr>
<th>Helicopter types</th>
<th>In helicopter</th>
<th>In helicopter and FSTD associated trainingCredits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP (H)</td>
<td>5 hrs</td>
<td>Using FFS C/D: At least 2 hrs helicopter and at least 6 hrs total Using FTD 2/3: At least 4 hrs helicopter and at least 6 hrs total</td>
</tr>
<tr>
<td>SET(H) under 3175 kg MTOM</td>
<td>5 hrs</td>
<td>Using FFS C/D: At least 2 hrs helicopter and at least 6 hrs total Using FTD 2/3: At least 4 hrs helicopter and at least 6 hrs total</td>
</tr>
<tr>
<td>SET(H) at or over 3175 kg MTOM</td>
<td>8 hrs</td>
<td>Using FFS C/D: At least 2 hrs helicopter and at least 10 hrs total Using FTD 2/3: At least 4 hrs helicopter and at least 10 hrs total</td>
</tr>
<tr>
<td>SPH MET (H) CS and FAR 27 and 29</td>
<td>8 hrs</td>
<td>Using FFS C/D: At least 2 hrs helicopter and at least 10 hrs total Using FTD 2/3: At least 4 hrs helicopter and at least 10 hrs total</td>
</tr>
<tr>
<td>MPH</td>
<td>10 hrs</td>
<td>Using FFS C/D: At least 2 hrs helicopter, and at least 12 hrs total Using FTD 2/3: At least 4 hrs helicopter, and at least 12 hrs total</td>
</tr>
</tbody>
</table>
(d) Additional types

The flight instruction (excluding skill test) should comprise:

<table>
<thead>
<tr>
<th>Helicopter types</th>
<th>In helicopter</th>
<th>In helicopter and FSTD associated training Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP(H) to SEP(H) within AMC1 FCL.740.H (a)(3)</td>
<td>2 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 3 hrs total}) Using FTD 2/3: At least 1 hr (\text{helicopter and at least 4 hrs total})</td>
</tr>
<tr>
<td>SEP(H) to SEP(H) not included in AMC1 FCL.740.H (a)(3)</td>
<td>5 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 6 hrs total}) Using FTD 2/3: At least 2 hr (\text{helicopter and at least 7 hrs total})</td>
</tr>
<tr>
<td>SET(H) to SET(H)</td>
<td>2 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 3 hrs total}) Using FTD 2/3: At least 1 hr (\text{helicopter and at least 4 hrs total})</td>
</tr>
<tr>
<td>SE difference training</td>
<td>1 hr</td>
<td>N/A</td>
</tr>
<tr>
<td>MET(H) to MET(H)</td>
<td>3 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 4 hrs total}) Using FTD 2/3: At least 2 hr (\text{helicopter and at least 5 hrs total})</td>
</tr>
<tr>
<td>ME difference training</td>
<td>1 hrs</td>
<td>N/A</td>
</tr>
<tr>
<td>MPH to MPH</td>
<td>5 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 6 hrs total}) Using FTD 2/3: At least 2 hr (\text{helicopter and at least 7 hrs total})</td>
</tr>
<tr>
<td>Extend privileges on the same type rating from SPH to MPH (except for initial MP issue), or from MPH to SPH</td>
<td>2 hrs</td>
<td>Using FFS C/D: At least 1 hr (\text{helicopter and at least 3 hrs total})</td>
</tr>
</tbody>
</table>

(e) Holders of an IR(H) wishing to extend the IR(H) to further types should have additionally 2 hours flight training on type by sole reference to instruments according to IFR which may be conducted in an FFS C/D or FTD 2/3. Holders of an SE IR(H) wishing to extend the IR privileges to an ME IR(H) for the first time should complete at least 5 hours training.
AMC1 FCL.740(b)(1) Validity and renewal of class and type ratings

RENEWAL OF CLASS AND TYPE RATINGS: REFRESHER TRAINING

(a) Paragraph (b)(1) of FCL.740 determines that if a class or type rating has lapsed, the applicant shall take refresher training at an ATO. The objective of the training is to reach the level of proficiency necessary to safely operate the relevant type or class of aircraft. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:

1. the experience of the applicant. To determine this, the ATO should evaluate the pilot’s log book, and, if necessary, conduct a test in an FSTD;

2. the complexity of the aircraft;

3. the amount of time lapsed since the expiry of the validity period of the rating. The amount of training needed to reach the desired level of proficiency should increase with the time lapsed. In some cases, after evaluating the pilot, and when the time lapsed is very limited (less than 3 months), the ATO may even determine that no further refresher training is necessary. When determining the needs of the pilot, the following items can be taken into consideration:

 (i) expiry shorter than 3 months: no supplementary requirements;

 (ii) expiry longer than 3 months but shorter than 1 year: a minimum of two training sessions;

 (iii) expiry longer than 1 year but shorter than 3 years: a minimum of three training sessions in which the most important malfunctions in the available systems are covered;

 (iv) expiry longer than 3 years: the applicant should again undergo the training required for the initial issue of the rating or, in case of helicopter, the training required for the ‘additional type issue’, according to other valid ratings held.

(b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme that should be based on the initial training for the issue of the rating and focus on the aspects where the applicant has shown the greatest needs.

(c) After successful completion of the training, the ATO should give a certificate, or other documental evidence that the training has been successfully achieved to the applicant, to be submitted to the competent authority when applying for the renewal. The certificate or documental evidence needs to contain a description of the training programme.
AMC1 FCL.720.A(b)(2)(i) Experience requirements and prerequisites for the issue of class or type ratings — aeroplanes

ADDITIONAL THEORETICAL KNOWLEDGE FOR A CLASS OR TYPE RATING FOR HIGH PERFORMANCE SP AEROPLANES

(a) A number of aeroplanes certificated for SP operation have similar performances, systems and navigation capabilities to those more usually associated with MP types of aeroplanes, and regularly operate within the same airspace. The level of knowledge required to operate safely in this environment is not part of, or not included to the necessary depth of knowledge in the training syllabi for the PPL, CPL or IR(A) but these licence holders may fly as PIC of such aeroplanes. The additional theoretical knowledge required to operate such aeroplanes safely is obtained by completion of a course at an ATO.

(b) The aim of the theoretical knowledge course is to provide the applicant with sufficient knowledge of those aspects of the operation of aeroplanes capable of operating at high speeds and altitudes, and the aircraft systems necessary for such operation.

(c) The course should cover at least the following items of the aeroplane syllabus to the ATPL(A) level:

<table>
<thead>
<tr>
<th>LO number</th>
<th>LO topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>021 00 00 00</td>
<td>AIRCRAFT GENERAL KNOWLEDGE: AIRFRAME AND SYSTEMS, ELECTRICS, POWERPLANT AND EMERGENCY EQUIPMENT</td>
</tr>
<tr>
<td>021 02 02 01 to 021 02 02 03</td>
<td>Alternating current: general Generators AC power distribution</td>
</tr>
<tr>
<td>021 01 08 03</td>
<td>Pressurisation (Air driven systems - piston engines)</td>
</tr>
<tr>
<td>021 01 09 04</td>
<td>Pressurisation (Air driven systems - turbojet and turbo propeller)</td>
</tr>
<tr>
<td>021 03 01 06</td>
<td>Engine performance - piston engines</td>
</tr>
<tr>
<td>021 03 01 07</td>
<td>Power augmentation (turbo or supercharging)</td>
</tr>
<tr>
<td>021 03 01 08</td>
<td>Fuel</td>
</tr>
<tr>
<td>021 03 01 09</td>
<td>Mixture</td>
</tr>
<tr>
<td>021 03 02 00 to 021 03 04 09</td>
<td>Turbine engines</td>
</tr>
<tr>
<td>021 04 05 00</td>
<td>Aircraft oxygen equipment</td>
</tr>
<tr>
<td>032 03 00 00</td>
<td>Performance class B: ME aeroplanes</td>
</tr>
<tr>
<td>032 03 01 00 to 032 03 04 01</td>
<td>Performance of ME aeroplanes not certificated under CS and FAR 25: entire subject</td>
</tr>
<tr>
<td>040 00 00 00</td>
<td>HUMAN PERFORMANCE</td>
</tr>
</tbody>
</table>
(d) Demonstration of acquisition of this knowledge is undertaken by passing an examination set by ATO. A successful pass of this examination results in the issue of a certificate indicating that the course and examination have been completed.

(e) The certificate represents a ‘once only’ qualification and satisfies the requirement for the addition of all future high performance aeroplanes to the holder’s licence. The certificate is valid indefinitely and is to be submitted with the application for the first HPA type or class rating.

(f) A pass in any theoretical knowledge subjects as part of the HPA course will not be credited against meeting future theoretical examination requirements for issue of a CPL(A), IR(A) or ATPL(A).
AMC1 FCL.725.A(b) Theoretical knowledge and flight instruction for the issue of class and type ratings — aeroplanes

CLASS RATING SEA

(a) The theoretical knowledge instruction should be conducted by an instructor having appropriate experience of class rating sea.

(b) Depending on the equipment and systems installed, the instruction should include, but not be limited to, the following content:

(1) theoretical knowledge:

 (i) the aim of the training is to teach:

 (A) the importance of preparation for flight and the safe planning taking into consideration all the factors for manoeuvring the aircraft on the wind, tidal currents, high and low water times and water movements at sea, river estuaries and lakes. In addition, icing conditions, ice covered water and broken ice flows;

 (B) the techniques about the most critical moments at take-off, landing, taxiing and mooring the aircraft;

 (C) the construction methods and characteristics of floats and water rudders and the importance of checking for leaks in the floats;

 (D) the necessary requirements for the compliance of the rules for the avoidance of collisions at sea, in regard to sea charts, buoys and lights and horns.

 (ii) after completing the training, the student should be able to:

 (A) describe the factors that have significance for planning and decision about initiation of seaplane flying and alternative measures for completion of flight;

 (B) describe how the water level is affected by air pressure, wind, tide, regularisations and the flight safety depending on changes in the water level;

 (C) describe the origin of different ice conditions in water areas;

 (D) interpret nautical charts and maps about depths and shoals and risk for water currents, shifts of the wind, turbulence;

 (E) decide what required equipment to bring during seaplane flying according to the operational requirements;

 (F) describe the origin and extension of water waves, swells and water currents and their effect on the aeroplane;

 (G) describe how water and air forces effect the aeroplane on water;

 (H) describe the effect of water resistance on the aeroplanes’ performance on glassy water and during different wave conditions;

 (I) describe the consequences of taxiing with too high engine RPM;
(J) describe the effect of pressure and temperature on performance at take-off and climb from lakes located at higher altitude;

(K) describe the effect of wind, turbulence, and other meteorological conditions of special importance for flight over lakes, islands in mountain areas and other broken ground;

(L) describe the function of the water rudder and its handling, including the effect of lowered water rudder at take-off and landing;

(M) describe the parts of the float installation and their function;

(N) describe the effect of the floats on the aeroplanes’ aerodynamics and performance in water and in air;

(O) describe the consequences of water in the floats and fouling of float bottoms;

(P) describe aviation requirements that apply specifically for the conduct of aircraft activity on water;

(Q) describe requirements about animal, nature and environment protection of significance for flight by seaplane, including flight in national parks;

(R) describe the meaning of navigation buoys;

(S) describe the organisation and working methods of the Sea Rescue Service;

(T) describe the requirements in ICAO Annex 2 as set out in paragraph 3.2.6 ‘Water operation’, including relevant parts of the Convention on the International Regulations for Preventing Collisions at Sea.

(2) practical training:

(i) the aim of the practical training is to learn:

(A) the skills in manoeuvring aeroplanes on water and in mooring the aeroplane;

(B) the skills required for the reconnaissance of landing and mooring areas from the air, including the take-off area;

(C) the skills for assessing the effects of different water depths, shoals, wind, height of waves and swell;

(D) the skills for flying with floats about their effect on performance and flight characteristics;

(E) the skills for flying in broken ground during different wind and turbulence conditions;

(F) the skills for take-off and landing on glassy water, different ° of swell and water current conditions.

(ii) after the training, the student should be able to:

(A) handle the equipment that shall be brought during seaplane flying;
(B) perform pre-flight daily inspection on aeroplane, float installation and special seaplane equipment, including emptying of floats;

(C) sail, taxi and turn the aeroplane at swell with correct handling of the water rudder;

(D) taxi on the step and perform turns;

(E) establish the wind direction with the aeroplane;

(F) take necessary actions if loss of steering ability and person falling overboard;

(G) make land and moor aeroplane at bridge, buoy and beach with the use of appropriate knots to secure the aircraft;

(H) maintain given rate of descent by means of variometer only;

(I) perform take-off and landing on glassy water with and without outer references;

(J) perform take-off and landing under swell;

(K) perform power-off landing;

(L) from the air, reconnaissance of landing, mooring and take-off areas, observing;

(M) wind direction and strength during landing and take-off;

(N) surrounding terrain;

(O) overhead wires and other obstacles above and under water;

(P) congested areas;

(Q) determine wind direction and assess wind strength from water level and when airborne;

(R) state, for the aeroplane type in question;

(a) maximum wave height allowed;

(b) maximum number of ERPM allowed during taxi;

(S) describe how flying with floats affects the performance and flight characteristics of the aeroplane;

(T) take corrective action at critical moments due to wind shear and turbulence;

(U) navigate on the water with reference to buoys markers, obstacles and other traffic on the water.

(c) For the initial issue of class rating sea for SP, SE and ME aeroplanes, the number of multi-choice questions in the written or computer-based examination should at least comprise thirty questions, and may be conducted by the training organisation. The pass mark should be 75 %.
AMC1 FCL.735.A; FCL.735.H; FCL.735.As

MULTI-CREW COOPERATION COURSE

(a) Competency is a combination of knowledge, skills and attitudes required to perform a task to the prescribed standard.

(b) The objectives of MCC training are to develop the technical and non-technical components of the knowledge, skills and attitudes required to operate a multi-crew aircraft.

(c) Training should comprise both theoretical and practical elements and be designed to achieve the following competencies:
<table>
<thead>
<tr>
<th>Competency</th>
<th>Performance indicators</th>
<th>Knowledge</th>
<th>Practical exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>(a) Know what, how much and who to communicate to; (b) Ensure the recipient is ready and able to receive the information; (c) Pass messages and information clearly, accurately, timely and adequately; (d) Check if the other person has the correct understanding when passing important information; (e) Listen actively, patiently and demonstrate understanding when receiving information; (f) Ask relevant and effective questions, and offer suggestions; (g) Use appropriate body language, eye contact and tone; (h) Open and receptive to other people’s view.</td>
<td>(a) Human Factors, TEM and CRM; (b) Application of TEM and CRM principles to training.</td>
<td>In a commercial air transport environment, apply multi-crew procedures, including principles of TEM and CRM to the following: (a) Pre-flight preparation: (1) FMS initialisation; (2) radio and navigation equipment preparation; (3) flight documentation; (4) Computation of take-off performance data. (b) Take-off and climb: (1) before take-off checks; (2) normal take-offs; (3) rejected take-offs; (4) take-offs with abnormal and...</td>
</tr>
<tr>
<td>Competency</td>
<td>Performance indicators</td>
<td>Knowledge</td>
<td>Practical exercises</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Leadership and team working</td>
<td>(a) Friendly, enthusiastic, motivating and considerate of others;</td>
<td></td>
<td>emergency situations included.</td>
</tr>
<tr>
<td></td>
<td>(b) Use initiative, give direction and take responsibility when required;</td>
<td></td>
<td>(c) Cruise: emergency descent.</td>
</tr>
<tr>
<td></td>
<td>(c) Open and honest about thoughts, concerns and intentions;</td>
<td></td>
<td>(d) Descent and approach:</td>
</tr>
<tr>
<td></td>
<td>(d) Give and receive criticism and praise well, and admit mistakes;</td>
<td></td>
<td>(1) instrument flight procedures;</td>
</tr>
<tr>
<td></td>
<td>(e) Confidently do and say what is important to him or her;</td>
<td></td>
<td>(2) holding;</td>
</tr>
<tr>
<td></td>
<td>(f) Demonstrate respect and tolerance towards other people;</td>
<td></td>
<td>(3) precision approach using raw data;</td>
</tr>
<tr>
<td></td>
<td>(g) Involve others in planning and share activities fairly.</td>
<td></td>
<td>(4) precision approach using flight director;</td>
</tr>
<tr>
<td>Situation awareness</td>
<td>(a) Aware of what the aircraft and its systems are doing;</td>
<td></td>
<td>(5) precision approach using autopilot;</td>
</tr>
<tr>
<td></td>
<td>(b) Aware of where the aircraft is and its environment;</td>
<td></td>
<td>(6) one-engine-inoperative approach;</td>
</tr>
<tr>
<td></td>
<td>(c) Keep track of time and fuel;</td>
<td></td>
<td>(7) non-precision and circling approaches;</td>
</tr>
<tr>
<td></td>
<td>(d) Aware of the condition of people involved in the operation including passengers;</td>
<td></td>
<td>(8) computation of approach and landing data;</td>
</tr>
<tr>
<td></td>
<td>(e) Recognise what is likely to happen, plan and stay ahead of the game;</td>
<td></td>
<td>(9) all engines go-around;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10) go-around with one engine inoperative;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11) wind shear during approach.</td>
</tr>
</tbody>
</table>

(e) landing: transition from
<table>
<thead>
<tr>
<th>Competency</th>
<th>Performance indicators</th>
<th>Knowledge</th>
<th>Practical exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) Develop what-if scenarios and make pre-decisions; (g) Identify threats to the safety of the aircraft and of the people.</td>
<td></td>
<td></td>
<td>instrument to visual flight on reaching decision altitude or height or minimum descent altitude or height;</td>
</tr>
<tr>
<td>Workload management</td>
<td>(a) Calm, relaxed, careful and not impulsive;</td>
<td></td>
<td>(f) after landing and post flight procedures;</td>
</tr>
<tr>
<td></td>
<td>(b) Prepare, prioritise and schedule tasks effectively;</td>
<td></td>
<td>(g) selected emergency and abnormal procedures.</td>
</tr>
<tr>
<td></td>
<td>(c) Use time efficiently when carrying out tasks;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Offer and accept assistance, delegate when necessary and ask for help early;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Review and monitor and cross-check actions conscientiously;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f) Follow procedures appropriately and consistently;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(g) Concentrate on one thing at a time, ensure tasks are completed and does not become distracted;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(h) Carry out instructions as directed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem solving and decision making</td>
<td>(a) Identify and verify why things have gone wrong and do not jump to conclusions or make assumptions;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Seek accurate and adequate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Performance indicators</td>
<td>Knowledge</td>
<td>Practical exercises</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
</tbody>
</table>
| | information from appropriate resources;
| | (c) Persevere in working through a problem;
| | (d) Use and agree an appropriate decision making process;
| | (e) Agree essential and desirable criteria and prioritises;
| | (f) Consider as many options as practicable;
| | (g) Make decisions when they need to, reviews and changes if required;
| | (h) Consider risks but do not take unnecessary risks. | |
| **Monitoring and cross-checking** | (a) Monitor and cross-checks all actions;
| | (b) Monitor aircraft trajectory in critical flight phases;
| | (c) Take appropriate actions in response to deviations from the flight path. | (a) SOPs;
| | | (b) Aircraft systems;
| | | (c) Undesired aircraft states. | |
| **Task sharing** | (a) Apply SOPs in both PF and PNF roles;
| | (b) Makes and responds to standard callouts. | (a) PF and PNF roles;
<p>| | | (b) SOPs. | |
| Use of | Utilise checklists appropriately | (a) SOPs; | |</p>
<table>
<thead>
<tr>
<th>Competency</th>
<th>Performance indicators</th>
<th>Knowledge</th>
<th>Practical exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>checklists</td>
<td>according to SOPs.</td>
<td>(b) Checklist philosophy.</td>
<td></td>
</tr>
<tr>
<td>Briefings</td>
<td>Prepare and deliver appropriate briefings.</td>
<td>(a) SOPs;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) Interpretation of FMS data and in-flight documentation.</td>
<td></td>
</tr>
<tr>
<td>Flight management</td>
<td>(a) Maintain a constant awareness of the aircraft automation state;</td>
<td>(a) Understanding of aircraft performance and configuration;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Manage automation to achieve optimum trajectory and minimum workload;</td>
<td>(b) Systems;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Take effective recovery actions from automation anomalies;</td>
<td>(c) SOPs;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(d) Manage aircraft navigation, terrain clearance;</td>
<td>(d) Interpretation of FMS data and in-flight documentation;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e) Manage aircraft fuel state and take appropriate actions.</td>
<td>(e) Minimum terrain clearance;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(F) Fuel management IFR and VFR regulation.</td>
<td></td>
</tr>
<tr>
<td>FMS use</td>
<td>Programme, manage and monitor FMS in accordance with SOPs.</td>
<td>(a) Systems (FMS);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) SOPs;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c) Automation.</td>
<td></td>
</tr>
<tr>
<td>Systems normal operations</td>
<td>Perform and monitor normal systems operation in accordance with SOPs.</td>
<td>(a) Systems;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) SOPs.</td>
<td></td>
</tr>
<tr>
<td>Systems abnormal and emergency</td>
<td>(a) Perform and monitor abnormal systems operation in accordance with SOPs;</td>
<td>(a) Systems;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b) SOPs.</td>
<td></td>
</tr>
<tr>
<td>Competency</td>
<td>Performance indicators</td>
<td>Knowledge</td>
<td>Practical exercises</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>operations</td>
<td>(b) Utilise electronic and paper abnormal checklists in accordance with SOPs.</td>
<td>(c) Emergency and abnormal procedures and checklists;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(d) Recall items.</td>
<td></td>
</tr>
</tbody>
</table>
| Environment, weather and ATC | (a) Communicate effectively with ATC;
(b) Avoid misunderstandings by requesting clarification;
(c) Adhere to ATC instructions;
(d) Construct a mental model of the local ATC and weather environment. | (a) Systems;
(b) SOPs;
(c) ATC environment and phraseology;
(d) Procedures for hazardous weather conditions. | |
CERTIFICATE OF COMPLETION FORM

CERTIFICATE OF COMPLETION OF MCC-TRAINING

<table>
<thead>
<tr>
<th>Applicant’s last name(s):</th>
<th>First name(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of licence:</td>
<td>Number:</td>
</tr>
<tr>
<td></td>
<td>State:</td>
</tr>
<tr>
<td>ME/IR:</td>
<td>OR ME/IR skill test:</td>
</tr>
<tr>
<td>Issued on:</td>
<td>passed on:</td>
</tr>
</tbody>
</table>

Signature of applicant:

The satisfactory completion of MCC-Training according to requirements is certified below:

TRAINING

Multi-crew co-operation training received during period:

<table>
<thead>
<tr>
<th>from:</th>
<th>to:</th>
<th>at:</th>
<th>ATO / operator*</th>
</tr>
</thead>
</table>

Location and date:
Signature of head of ATO or authorised instructor*:

Type and number of licence and state of issue:
Name(s) in capital letters of authorised instructor:

* Delete as appropriate
AMC1 FCL.740.H(a)(3) Revalidation of type ratings — helicopters

Only the following SEP helicopter types can be considered for crediting of the proficiency check. Other SEP helicopters (for example the R22 and R44) should not be given credit for.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Helicopter type and licence endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agusta-Bell</td>
<td>SEP Bell47</td>
</tr>
<tr>
<td>Bell Helicopters</td>
<td>SEP Bell47</td>
</tr>
<tr>
<td>Brantley</td>
<td>SEP Brantley B2</td>
</tr>
<tr>
<td>Breda Nardi</td>
<td>SEP HU269</td>
</tr>
<tr>
<td>Enstrom</td>
<td>SEP ENF28</td>
</tr>
<tr>
<td>Hélicoptères Guimbal</td>
<td>SEP Cabri G2</td>
</tr>
<tr>
<td>Hiller</td>
<td>SEP UH12</td>
</tr>
<tr>
<td>Hughes or Schweizer</td>
<td>SEP HU269</td>
</tr>
<tr>
<td>Westland</td>
<td>SEP Bell47</td>
</tr>
</tbody>
</table>
GM1 FCL.720.PL Experience requirements and prerequisites for the issue of type ratings — powered-lift aircraft

The endorsement of a powered-lift type rating to an aeroplane or helicopter licence does not confer upon its holder the privileges to fly helicopters or aeroplanes, respectively.
SUBPART I — ADDITIONAL RATINGS

AMC1 FCL.800 Aerobatic rating

THEORETICAL KNOWLEDGE AND FLYING TRAINING

(a) The aim of the aerobatic training is to qualify licence holders to perform aerobatic manoeuvres.

(b) The ATO should issue a certificate of satisfactory completion of the instruction to licence endorsement.

(c) Theoretical knowledge
The theoretical knowledge syllabus should cover the revision or explanation of:

1. human factors and body limitation:
 (i) spatial disorientation;
 (ii) airsickness;
 (iii) body stress and G-forces, positive and negative;
 (iv) effects of grey- and blackouts.

2. technical subjects:
 (i) legislation affecting aerobatic flying to include environmental and noise subjects;
 (ii) principles of aerodynamics to include slow flight, stalls and spins, flat and inverted;
 (iii) general airframe and engine limitations (if applicable).

3. limitations applicable to the specific aircraft category (and type):
 (i) air speed limitations (aeroplane, helicopter, TMG and sailplane, as applicable);
 (ii) symmetric load factors (type-related, as applicable);
 (iii) rolling Gs (type-related, as applicable).

4. aerobatic manoeuvres and recovery:
 (i) entry parameters;
 (ii) planning systems and sequencing of manoeuvres;
 (iii) rolling manoeuvres;
 (iv) looping manoeuvres;
 (v) combination manoeuvres;
 (vi) entry and recovery from developed spins, flat, accelerated and inverted.

5. emergency procedures:
 (i) recovery from unusual attitudes;
 (ii) drills to include the use of parachutes (if worn) and aircraft abandonment.
(d) Flying training

The exercises of the aerobatic flying training syllabus should be repeated as necessary until the applicant achieves a safe and competent standard. Having completed the flight training, the student pilot should be able to perform a solo flight containing a sequence of aerobatic manoeuvres. The dual training and the supervised solo training flights should be tailored to the category of aircraft and limited to the permitted manoeuvres of that type of aircraft. The exercises should comprise at least the following practical training items:

1. Confidence manoeuvres and recoveries:
 (i) slow flights and stalls;
 (ii) steep turns;
 (iii) side slips;
 (iv) engine restart in-flight (if applicable);
 (v) spins and recovery;
 (vi) recovery from spiral dives;
 (vii) recovery from unusual attitudes.

2. Aerobatic manoeuvres:
 (i) Chandelle;
 (ii) Lazy Eight;
 (iii) rolls;
 (iv) loops;
 (v) inverted flight;
 (vi) Hammerhead turn;
 (vii) Immelmann.
AMC1 FCL.805 Sailplane towing and banner towing rating

THEORETICAL KNOWLEDGE AND FLYING TRAINING

(a) The aim of the towing instruction is to qualify licence holders to tow banners or sailplanes.

(b) The ATO should issue a certificate of satisfactory completion of the instruction that can be used for licence endorsement.

(c) Theoretical knowledge: towing of sailplanes
 The theoretical knowledge syllabus for towing of sailplanes should cover the revision or explanation of:
 (1) regulations about towing flights;
 (2) equipment for the towing activity;
 (3) sailplane towing techniques, including:
 (i) signals and communication procedures;
 (ii) take-off (normal and crosswind);
 (iii) in-flight launch procedures;
 (iv) descending on tow;
 (v) sailplane release procedure;
 (vi) tow rope release procedure;
 (vii) landing with tow rope connected (if applicable);
 (viii) emergency procedures during tow, including equipment malfunctions;
 (ix) safety procedures;
 (x) flight performance of the applicable aircraft type when towing sailplanes;
 (xi) look-out and collision avoidance;
 (xii) performance data sailplanes, including:
 (A) suitable speeds;
 (B) stall characteristics in turns.

(d) Theoretical knowledge: banner towing
 The theoretical knowledge syllabus for banner towing should cover the revision or explanation of:
 (1) regulations about banner towing;
 (2) equipment for the banner towing activity;
 (3) ground crew coordination;
 (4) pre-flight procedures;
 (5) banner towing techniques, including:
 (i) take-off launch;
 (ii) banner pickup manoeuvres;
 (iii) flying with a banner in tow;
(iv) release procedure;
(v) landing with a banner in tow (if applicable);
(vi) emergency procedures during tow, including equipment malfunctions;
(vii) safety procedures;
(viii) flight performance of the applicable aircraft type when towing a heavy or light banner;
(ix) prevention of stall during towing operations.

(e) Flying training: towing of sailplanes

The exercises of the towing training syllabus for towing sailplanes should be repeated as necessary until the student achieves a safe and competent standard and should comprise at least the following practical training items:

1. take-off procedures (normal and crosswind take-offs);
2. 360° circles on tow with a bank of 30° and more;
3. descending on tow;
4. release procedure of the sailplane;
5. landing with the tow rope connected (if applicable);
6. tow rope release procedure in-flight;
7. emergency procedures (simulation);
8. signals and communication during tow.

(f) Flying training: banner towing

The exercises of the towing training syllabus for banner towing should be repeated as necessary until the student achieves a safe and competent standard and should comprise at least the following practical training items:

1. pickup manoeuvres;
2. towing in-flight techniques;
3. release procedures;
4. flight at critically low air speeds;
5. maximum performance manoeuvres;
6. emergency manoeuvres to include equipment malfunctions (simulated);
7. specific banner towing safety procedures;
8. go-around with the banner connected;
9. loss of engine power with the banner attached (simulated).
AMC1 FCL.810(b) Night rating

PPL(H) NIGHT RATING COURSE

(a) The aim of the course is to qualify PPL(H) holders to exercise the privileges of the licence at night.

(b) The ATO should issue a certificate of satisfactory completion of the instruction that can be used for licence endorsement.

(c) Theoretical knowledge

The theoretical knowledge syllabus should cover the revision or explanation of:

1. night VMC minima;
2. rules about airspace control at night and facilities available;
3. rules about aerodrome ground, runway, landing site and obstruction lighting;
4. aircraft navigation lights and collision avoidance rules;
5. physiological aspects of night vision and orientation;
6. dangers of disorientation at night;
7. dangers of weather deterioration at night;
8. instrument systems or functions and errors;
9. instrument lighting and emergency cockpit lighting systems;
10. map marking for use under cockpit lighting;
11. practical navigation principles;
12. radio navigation principles;
13. planning and use of safety altitude;
14. danger from icing conditions, avoidance and escape manoeuvres.

(d) Flying training

The exercises of the night rating flight syllabus should be repeated as necessary until the student achieves a safe and competent standard:

1. In all cases, exercises 4 to 6 of the night rating flight syllabus should be completed.
2. For exercises 1 to 3, up to 50% of the required flight training may be completed in an FSTD(H). However, all items within each exercise should be conducted in a helicopter in-flight.
3. Items marked (*) should be completed in simulated IMC and may be completed in daylight.
4. The flying exercises should comprise:
 (i) Exercise 1:
 (A) revise basic manoeuvres when flying by sole reference to instruments*;
 (B) explain and demonstrate transition to instrument flight from visual flight*;
(C) explain and revise recovery from unusual attitudes by sole reference to instruments*.

(ii) Exercise 2:
Explain and demonstrate the use of radio navigation aids when flying by sole reference to instruments, to include position finding and tracking*.

(iii) Exercise 3:
Explain and demonstrate the use of radar assistance*.

(iv) Exercise 4:
(A) explain and demonstrate the use and adjustment of landing light;
(B) explain and demonstrate night hovering:
 (a) higher and slower than by day;
 (b) avoidance of unintended sideways or backwards movements.
(C) explain and demonstrate night take-off techniques;
(D) explain and demonstrate night circuit technique;
(E) explain and demonstrate night approaches (constant angle) with or without visual approach aids to:
 (a) heliports;
 (b) illuminated touchdown areas.
(F) practise take-off’s, circuits and approaches;
(G) explain and demonstrate night emergency procedures to include:
 (a) simulated engine failure (to be terminated with power recovery at a safe altitude);
 (b) simulated engine failure, including SE approach and landing (ME only);
 (c) simulated inadvertent entry to IMC (not on base leg or final);
 (d) simulated hydraulic control failure (to include landing);
 (e) internal and external lighting failure;
 (f) other malfunctions and emergency procedures as required by the aircraft flight manual.

(v) Exercise 5:
Solo night circuits.

(vi) Exercise 6:
(A) explain and demonstrate night cross-country techniques;
(B) practise night cross-country dual and as SPIC to a satisfactory standard.
AMC1 FCL.815 Mountain rating

THEORETICAL KNOWLEDGE AND FLYING TRAINING

<table>
<thead>
<tr>
<th>THEORETICAL KNOWLEDGE</th>
<th>SKI</th>
</tr>
</thead>
</table>

1. Equipment

| W.1.1 Personal equipment for the flight | S.1.1 Personal equipment for the flight |
| W.1.2 Aircraft equipment for the flight | S.1.2 Aircraft equipment for the flight |

2. Take-off techniques

W.2.1 Technique for approach and landing on a mountain surface	S.2.1 Technique for approach and landing on a mountain surface
W.2.2 Rolling techniques of the aircraft on various runway profiles	S.2.2 Landing technique on skis
W.2.3 Take-off technique	S.2.3 Rolling techniques of the aircraft on skis about the snow nature
W.2.4 Aircraft and engine performances about altitude	S.2.4 Take-off technique on surfaces covered with snow

3. Rules

W.3.1 Mountain rating	S.3.1 Mountain rating
W.3.2 Overflight rules	S.3.2 Overflight rules
W.3.3 Surfaces classification	S.3.3 Surfaces classification
W.3.4 PIC responsibilities	S.3.4 PIC responsibilities
W.3.5 Responsibilities of the surface manager	S.3.5 Responsibilities of the surface manager
W.3.6 Flight plan	S.3.6 Flight plan
W.3.7 Certification of the ski mounted aeroplanes	

4. Meteorology

W.4.1 Movements of the air mass	S.4.1 Movements of the air mass
W.4.2 Flight consequences	S.4.2 Flight consequences
W.4.3 Relief effect on the movement of the air masses	S.4.3 Relief effect on the movement of the air masses
W.4.4 Altimetry	S.4.4 Altimetry

5. Human Performance and Limitations

W.5.1 The cold	S.5.1 The cold
W.5.2 The food	S.5.2 The food
W.5.3 The hypoxia	S.5.3 The hypoxia
W.5.4 The radiance	S.5.4 The radiance
W.5.5 The thirst	S.5.5 The thirst
W.5.6 The tiredness	S.5.6 The tiredness
W.5.7 Turbulence effects in altitude	S.5.7 Turbulence effects in altitude

6. Navigation

W.6.1 Progress of the flight	S.6.1 Progress of the flight
W.6.2 Dead reckoning	S.6.2 Dead reckoning
W.6.3 The path over the relief	S.6.3 The path over the relief
7. Specific items

- **W.6.4** Progress in the valleys
- **W.6.5** Detection of obstacles (high voltage lines, chairlifts, cables, etc.)

<table>
<thead>
<tr>
<th>Annex</th>
<th>Specific Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.6.4</td>
<td>Progress in the valleys</td>
</tr>
<tr>
<td>W.6.5</td>
<td>Detection of obstacles (high voltage lines, chairlifts, cables, etc.)</td>
</tr>
</tbody>
</table>

8. Survival

- **S.7.1** Knowledge of the snow and assessment of the snow nature in-flight
- **S.7.2** Knowledge of the glacier
- **S.7.3** Life of the glacier
- **S.7.4** Formation of the cracks
- **S.7.5** Snow bridges
- **S.7.6** Avalanches

FLIGHT INSTRUCTION

WHEEL

- **W.I.1** Flight techniques in the valleys
- **W.I.2** Flight over mountain passes and ridges
- **W.I.3** U-turn in narrow valleys
- **W.I.4** Choice of the flight path of aerology
- **W.I.5** Map reading

SKI

- **S.I.1** Flight techniques in the valleys
- **S.I.2** Flight over mountain passes and ridges.
- **S.I.3** U-turn in narrow valleys
- **S.I.4** Choice of the flight path of aerology
- **S.I.5** Map reading

II. Arrival and reconnaissance

- **W.II.1** Choice of the altitude of arrival
- **W.II.2** Choice of the arrival and overflight pattern
- **W.II.3** Choice of the landing pattern
- **W.II.4** Aerology awareness
- **W.II.5** Evaluation of the length of the runway
- **W.II.6** Evaluation of the runway profile (slope and banking)
- **W.II.7** Collision avoidance.
- **W.II.8** Definition of the references for the landing (touchdown point)
- **W.II.9** Determination of the circuit pattern altitude
- **W.II.10** Choice of the final speed depending on the runway profile

- **S.II.1** Choice of the arrival altitude
- **S.II.2** Choice of the arrival and overflight pattern
- **S.II.3** Description of the circuit pattern
- **S.II.4** Aerology awareness
- **S.II.5** Evaluation of the runway length
- **S.II.6** Evaluation of the runway profile (slope and banking)
- **S.II.7** Collision avoidance
- **S.II.8** Definition of the references for the landing (touchdown point)
- **S.II.9** Determination of the circuit pattern altitude
- **S.II.10** Choice of the final speed depending on the runway profile
- **S.II.11** Choice of the take-off axis
- **S.II.12** Choice of the landing axis
- **S.II.13** Choice of the parking area
- **S.II.14** Observation of the obstacles on the ground (cracks, snow bridges, avalanches)
- **S.II.15** Estimation of the snow nature
<table>
<thead>
<tr>
<th>III – Approach and landing</th>
<th>S.II.16 Observation of the way to reach a refuge from the landing area</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.III.1 Landing pattern altitude</td>
<td>S.III.1 Landing pattern altitude</td>
</tr>
<tr>
<td>W.III.2 Precision of flight along the landing path</td>
<td>S.III.2 Precision of flight along the landing path</td>
</tr>
<tr>
<td>W.III.3 Corrections on the landing path (accuracy and effectiveness)</td>
<td>S.III.3 Corrections on the landing path (accuracy and effectiveness)</td>
</tr>
<tr>
<td>W.III.4 Landing (precision of the flare and of the touchdown point)</td>
<td>S.III.4 Landing (precision of the flare and of the touchdown point)</td>
</tr>
<tr>
<td>W.III.5 Taxiing (use of the engine power) on various profiles</td>
<td>S.III.5 Taxi of the aircraft on various snows and various runway profiles</td>
</tr>
<tr>
<td>W.III.6 Parking of the aircraft (depending on the runway profile, the traffic, etc.)</td>
<td>S.III.6 Parking of the aircraft (depending on the snow nature and the profile of the apron)</td>
</tr>
<tr>
<td>W.III.7 Turns on various snow nature and various ground profiles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IV. – Take-off</th>
<th>S.IV.1 Safety checks before take-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.IV.1 Safety checks before take-off</td>
<td>S.IV.1 Safety checks before take-off</td>
</tr>
<tr>
<td>W.IV.2 Lining up on the runway</td>
<td>S.IV.2 Lining up on the runway</td>
</tr>
<tr>
<td>W.IV.3 Control of the runway axis during take-off</td>
<td>S.IV.3 Control of the runway axis during take-off</td>
</tr>
<tr>
<td>W.IV.4 Choice and use of the visual references of the take-off axis</td>
<td>S.IV.4 Choice and use of the visual references of the take-off axis</td>
</tr>
<tr>
<td>W.IV.5 Acceleration depending on the nature of the snow</td>
<td>S.IV.5 Acceleration depending on the nature of the snow</td>
</tr>
<tr>
<td>W.IV.6 Short take-off</td>
<td>S.IV.6 Short take-off</td>
</tr>
<tr>
<td>W.IV.7 Take-off avoiding the skid of the skis</td>
<td>S.IV.7 Take-off avoiding the skid of the skis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V. – Survival</th>
<th>S.V.1 Use of the snowshoes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.V.1 Use of the snowshoes</td>
<td>S.V.2 Use of the markings</td>
</tr>
<tr>
<td>S.V.2 Use of the markings</td>
<td></td>
</tr>
</tbody>
</table>
AMC2 FCL.815 Mountain rating

SKILL TEST AND PROFICIENCY CHECK

The skill test for the issue or the proficiency check for the revalidation or renewal of a mountain rating should contain the following elements:

(a) oral examination

This part should be done before the flight and should cover all the relevant parts of the theoretical knowledge. At least one question for each of the following sections should be asked:

1. specific equipment for a mountain flight (personal and aircraft);
2. rules of the mountain flight.

If the oral examination reveals a lack in theoretical knowledge, the flight test should not be done and the skill test is failed.

(b) practical skill test

During the flight test, two sites different from the departure airport should be used for recognition, approach, landing and take-off. For the mountain rating ski or the extension from wheel to ski, one of the two different sites should be a glacier.
AMC1 FCL.820 Flight test rating

TRAINING COURSE

GENERAL

(a) Competency-based training:

(1) Training courses for the flight test rating should be competency-based. The training programme should follow as much as possible the syllabus outlined below, but may be adapted taking into account the previous experience, skill and theoretical knowledge level of the applicants.

(2) It should also be recognised that the syllabi below assume that suitable flight test experience will be gained subsequent to attendance at the course. Should the applicant be significantly experienced already, then consideration should be made of that experience and it is possible that course content might be reduced in areas where that experience has been obtained.

(3) Furthermore, it should be noted that flight test ratings are specific to both a certain category of aircraft (aeroplanes or helicopters) and to a certain category of flight test (category 1 or 2). Therefore, holders of a flight test rating wishing to extend their privileges to further categories of aircraft or to further categories of flight test (this is only relevant for holders of a category 2 flight test rating since the category one flight test rating includes the privileges for category 2 test flights) should not be requested to undertake the same course as an ‘ab-initio’ applicant. In these cases, the ATO should develop specific ‘bridge courses’ taking into account the same principles mentioned above.

(4) To allow proper consideration of the applicant’s previous experience, a pre-entry assessment of the applicant’s skills should be undertaken by the applicant, on the basis of which the ATO may evaluate the level of the applicant to better tailor the course. Thus, the syllabi listed below should be regarded as a list of individual demonstrable competencies and qualifications rather than a list of mandatory training objectives.

(b) Continuous evaluation

Training courses for the flight test rating should be built on a continuous evaluation model to guarantee that successful completion of the course ensures that the applicant has reached the level of competence (both theoretical and practical) to be issued a flight test rating.

CONTENT OF THE COURSE

(c) In addition, the content of the course should vary taking into account whether the applicant seeks privileges for a category 1 or 2 flight test rating, as well as the relevant category of aircraft, and their level of complexity. To better take these factors into account, training courses for the flight test rating have been divided into two conditions:

(1) condition 1 courses apply to category 1 flight test ratings on:

(i) helicopters certificated in accordance with the standards of CS-27 or CS-29 or equivalent airworthiness codes;

(ii) aeroplanes certificated in accordance with:

(A) the standards of CS-25 or equivalent airworthiness codes; or
(B) the standards of CS-23 or equivalent airworthiness codes, within the commuter category or having an M_D above 0.6 or a maximum ceiling above 25 000 ft.

(2) condition 2 training courses apply to:

(i) category 2 flight test ratings for:

(A) helicopters certificated in accordance with the standards of CS-27 or CS-29 or equivalent airworthiness codes;

(B) aeroplanes certificated in accordance with:

(a) the standards of CS-25 or equivalent airworthiness codes; or

(b) the standards of CS-23 or equivalent airworthiness codes (including those mentioned in (c)(1)(ii)(B)), except for aeroplanes with a maximum take-off mass of less than 2 000 kg.

(ii) category 1 flight tests for aeroplanes certificated in accordance with the standards of CS-23, with a maximum take-off mass of more than 2 000kg, with the exclusion of those mentioned in (c)(1)(ii)(B) (which are subject to condition 1 courses).

AEROPLANES

(d) Condition 1 courses for aeroplanes

(1) These courses should include approximately:

(i) 350 hours of ground training;

(ii) 100 hours of flight test training, during which at least 15 flights should be made without an instructor on board;

(iii) principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.

(2) These courses should include instruction on at least 10 different aeroplane types, of which at least one should be certificated in accordance with CS-25 standards or equivalent airworthiness codes.

(3) During the course the student should be required to develop at least five substantial flight test reports.

(4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.

(5) Syllabus. The following subjects should be covered in the course:

<table>
<thead>
<tr>
<th>CONDITION 1 - AEROPLANES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical knowledge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Flight test techniques and flight training

(a) performance	(1) air speed calibration;
(at least one flight test report should be developed)	(2) climb ME;
	(3) take-off and landing, including turboprop or turbofan OEI.

| (b) engines | Turboprop or turbofan limitations and relight envelope |

(c) handling qualities	(1) flight controls characteristics;
(at least two flight test reports should be developed)	(2) longitudinal handling qualities;
	(3) longitudinal manoeuvre stability;
	(4) take-off and landing MET or ME turbofan, including \(V_{mcq} \) and \(V_{mu} \);
	(5) lateral, directional handling qualities;
	(6) handling qualities evaluation;
	(7) variable stability demo flights including HOFCS;
	(8) stalls;
	(9) spins;
	(10) \(V_{mca} \);

(d) systems	At least three different systems, for example:
(at least one flight test report should be developed)	(1) autopilot or AFCS;
	(2) glass cockpit evaluation;
	(3) radio navigation, instruments qualification and integrated avionics;
	(4) TAWS;
	(5) ACAS.

| (e) high speed certification test |

| (f) final evaluation exercise (a flight test report should be developed) |

(e) **Condition 2 courses for aeroplanes**

1. These courses should include approximately:
 - (i) 150 hours of ground training;
 - (ii) 50 hours of flight test training, during which at least eight flights should be made without an instructor on board.

Principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and
methods applicable to the certification activity, as well as safety assessments should be taught.

(2) These courses should include instruction on at least seven different aeroplane types, of which at least one should be certificated in accordance with CS-25 standards or equivalent airworthiness codes.

(3) During the course the student should be required to develop at least three substantial flight test reports.

(4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.

(5) Syllabus. The following subjects should be covered in the course:
<table>
<thead>
<tr>
<th>CONDITION 2 - AEROPLANES</th>
</tr>
</thead>
</table>
| **Theoretical knowledge** | (a) aerodynamics;
(b) stability and control or handling qualities;
(c) engines and performance;
(d) measurements and flight test instrumentation (including telemetry). |
| **Flight test techniques and flight training** | (a) performance:
(at least one flight test report should be developed)
(1) air speed calibration;
(2) climb ME;
(3) take-off and landing MET or ME turbofan. |
| | (b) handling qualities
(1) flight control characteristics;
(2) longitudinal static, dynamic stability and control or handling qualities;
(3) lateral, directional stability and control or handling qualities;
(4) stalls;
(5) spins. |
| | (c) systems
(at least one flight test report should be developed)
At least three different systems, for example:
(1) autopilot or AFCS;
(2) glass cockpit evaluation;
(3) radio navigation, instruments qualification and integrated avionics;
(4) TAWS;
(5) ACAS. |
| | (d) final evaluation exercise (a) flight test report should be developed) |

HELICOPTERS

(f) Condition 1 courses for helicopters:

(1) These courses should include approximately:

(i) 350 hours of ground training;

(ii) 100 hours of flight test training, during which at least 20 flights should be made without an instructor on board.

Principles of test management and risk and safety managements should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.
(2) These courses should include instruction on at least eight different helicopter types, of which at least one should be certificated in accordance with CS-29 standards or equivalent airworthiness codes.

(3) During the course the student should be required to develop at least five substantial flight test reports.

(4) The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.

(5) Syllabus. The following subjects should be covered in the course:

<table>
<thead>
<tr>
<th>CONDITION 1 - HELICOPTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical knowledge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
<| Flight test techniques and flight training |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) performance: (at least one flight test report should be developed)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(b) engines</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(c) handling qualities (at least one flight test report should be developed)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(d) systems (at least one flight test report should be developed)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
(e) height and velocity envelope and EOL, including relights
(f) category A procedure
(g) vibrations and rotor adjustments
(h) auto rotations
(i) final evaluation exercise (a flight test report should be developed)

(g) Condition 2 courses for helicopters

1. These courses should include approximately:
 (i) 150 hours of ground training;
 (ii) 50 hours of flight test training, during which at least eight flights should be made without an instructor on board.

Principles of test management and risk and safety management should be integrated throughout the course. In addition, principles and methods applicable to the certification activity, as well as safety assessments should be taught.

2. These courses should include instruction on at least four different helicopters types, of which at least one should be certificated in accordance with CS-29 standards or equivalent airworthiness codes.

3. During the course the student should be required to develop at least three substantial flight test reports.

4. The student should be evaluated through examinations on all of the theoretical knowledge subjects, and undertake a final in-flight test upon completion of the syllabus.

5. Syllabus. The following subjects should be covered in the course:

<table>
<thead>
<tr>
<th>CONDITION 2 - HELICOPTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical knowledge</td>
</tr>
<tr>
<td>(a) aerodynamics;</td>
</tr>
<tr>
<td>(b) stability and control or handling qualities;</td>
</tr>
<tr>
<td>(c) engines and performance;</td>
</tr>
<tr>
<td>(d) measurements and flight test instrumentation (including telemetry).</td>
</tr>
<tr>
<td>Flight test techniques and flight training</td>
</tr>
<tr>
<td>(a) performance:</td>
</tr>
<tr>
<td>(at least one flight test report should be developed)</td>
</tr>
<tr>
<td>(1) air speed calibration;</td>
</tr>
<tr>
<td>(2) level flight, climb and descent, vertical and hover performance.</td>
</tr>
<tr>
<td>(b) engines</td>
</tr>
<tr>
<td>(1) digital engines governing;</td>
</tr>
<tr>
<td>(2) turbine or piston engine evaluation.</td>
</tr>
<tr>
<td>(c) handling qualities</td>
</tr>
<tr>
<td>(1) flight control characteristics;</td>
</tr>
<tr>
<td>(2) longitudinal static, dynamic stability and control or</td>
</tr>
<tr>
<td>(d) systems (at least one flight test report should be developed)</td>
</tr>
<tr>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(e) vibration and rotor adjustments</td>
</tr>
<tr>
<td>(f) final evaluation exercise (a flight test report should be developed)</td>
</tr>
</tbody>
</table>
SUBPART J — INSTRUCTORS

GM1 FCL.900 Instructor certificates

GENERAL

(a) Nine instructor categories are recognised:
 (1) FI certificate: aeroplane (FI(A)), helicopter (FI(H)), airship (FI(As)),
 sailplane (FI(S)) and balloon (FI(B));
 (2) TRI certificate: aeroplane (TRI(A)), helicopter (TRI(H)), powered-lift
 aircraft (TRI(PL));
 (3) CRI certificate: aeroplane (CRI(A));
 (4) IRI certificate: aeroplane (IRI(A)), helicopter (IRI(H)) and airship
 (IRI(As));
 (5) SFI certificate: aeroplane (SFI(A)), helicopter (SFI(H)) and
 powered-lift aircraft (SFI(PL));
 (6) MCCI certificate: aeroplanes (MCCI(A)), helicopters (MCCI(H)),
 powered-lift aircraft (MCCI(PL)) and airships (MCCI(As));
 (7) STI certificate: aeroplane (STI(A)) and helicopter (STI(H));
 (8) MI certificate: (MI);
 (9) FTI certificate: (FTI).

(b) For categories (1) to (4) and for (8) and (9) the applicant needs to hold a
 pilot licence. For categories (5) to (7) no licence is needed, only an
 instructor certificate.

(c) A person may hold more than one instructor certificate.

SPECIAL CONDITIONS

(a) When new aircraft are introduced, requirements such as to hold a licence
 and rating equivalent to the one for which instruction is being given, or to
 have adequate flight experience, may not be possible to comply with. In
 this case, to allow for the first instruction courses to be given to
 applicants for licences or ratings for these aircraft, competent authorities
 need the possibility to issue a specific certificate that does not have to
 comply with the requirements established in this Subpart.

(b) The competent authority should only give these certificates to holders of
 other instruction qualifications. As far as possible, preference should be
 given to persons with at least 100 hours of experience in similar types or
 classes of aircraft.

(c) When the new aircraft type introduced in an operator's fleet already
 existed in a Member State, the competent authority should only give the
 specific certificate to an applicant that is qualified as PIC on that aircraft.

(d) The certificate should ideally be limited in validity to the time needed to
 qualify the first instructors for the new aircraft in accordance with this
 Subpart, but in any case it should not exceed the 1 year established in
 the rule.
AMC1 FCL.920 Instructor competencies and assessment

(a) Training should be both theoretical and practical. Practical elements should include the development of specific instructor skills, particularly in the area of teaching and assessing threat and error management and CRM.

(b) The training and assessment of instructors should be made against the following performance standards:

<table>
<thead>
<tr>
<th>Competence</th>
<th>Performance</th>
<th>Knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare resources</td>
<td>(a) ensures adequate facilities; (b) prepares briefing material; (c) manages available tools.</td>
<td>(a) understand objectives; (b) available tools; (c) competency-based training methods.</td>
</tr>
<tr>
<td>Create a climate conducive to learning</td>
<td>(a) establishes credentials, role models appropriate behaviour; (b) clarifies roles; (c) states objectives; (d) ascertains and supports trainees needs.</td>
<td>(a) barriers to learning; (b) learning styles.</td>
</tr>
<tr>
<td>Present knowledge</td>
<td>(a) communicates clearly; (b) creates and sustains realism; (c) looks for training opportunities.</td>
<td>teaching methods.</td>
</tr>
<tr>
<td>Integrate TEM or CRM</td>
<td>makes TEM or CRM links with technical training.</td>
<td>HF, TEM or CRM.</td>
</tr>
<tr>
<td>Manage time to achieve training objectives</td>
<td>allocates time appropriate to achieving competency objective.</td>
<td>syllabus time allocation.</td>
</tr>
<tr>
<td>Facilitate learning</td>
<td>(a) encourages trainee participation; (b) shows motivating, patient, confident and assertive manner; (c) conducts one-to-one coaching; (d) encourages mutual support.</td>
<td>(a) facilitation; (b) how to give constructive feedback; (c) how to encourage trainees to ask questions and seek advice;</td>
</tr>
<tr>
<td>Assesses trainee performance</td>
<td>(a) assesses and encourages trainee self-assessment of performance against competency standards; (b) makes assessment decision and provide clear feedback; (c) observes CRM behaviour.</td>
<td>(a) observation techniques; (b) methods for recording observations.</td>
</tr>
<tr>
<td>Monitor and review progress</td>
<td>(a) compares individual outcomes to defined objectives;</td>
<td>(a) learning styles; (b) strategies for</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex to ED Decision 2011/016/R</th>
</tr>
</thead>
</table>

(b) identifies individual differences in learning rates; (c) applies appropriate corrective action.	**training adaptation to meet individual needs.**
Evaluate training sessions	
(a) elicits feedback from trainees; (b) tracks training session processes against competence criteria; (c) keeps appropriate records.	(a) competency unit and associated elements; (b) performance criteria.
Report outcome	
reports accurately using only observed actions and events.	(a) phase training objectives; (b) individual versus systemic weaknesses.
MPL INSTRUCTOR COURSE

(a) The objectives of the MPL instructors training course are to train applicants to deliver training in accordance with the features of a competency-based approach to training and assessment.

(b) Training should be both theoretical and practical. Practical elements should include the development of specific instructor skills, particularly in the area of teaching and assessing threat and error management and CRM in the multi-crew environment.

(c) The course is intended to adapt instructors to conduct competency-based MPL training. It should cover the items specified below:

THEORETICAL KNOWLEDGE

(d) Integration of operators and organisations providing MPL training:
 (1) reasons for development of the MPL;
 (2) MPL training course objective;
 (3) adoption of harmonised training and procedures;
 (4) feedback process.

(e) The philosophy of a competency-based approach to training: principles of competency-based training.

(f) Regulatory framework, instructor qualifications and competencies:
 (1) source documentation;
 (2) instructor qualifications;
 (3) syllabus structure.

(g) Introduction to Instructional systems design methodologies (see ICAO PANS-TRG Doc):
 (1) analysis;
 (2) design and production;
 (3) evaluation and revision.

(h) Introduction to the MPL training scheme:
 (1) training phases and content;
 (2) training media;
 (3) competency units, elements and performance criteria.

(i) Introduction to human performance limitations, including the principles of threat and error management and appropriate countermeasures developed in CRM:
 (1) definitions;
 (2) appropriate behaviours categories;
 (3) assessment system.
(j) Application of the principles of threat and error management and CRM principles to training:
 (1) application and practical uses;
 (2) assessment methods;
 (3) individual corrective actions;
 (4) debriefing techniques.

(k) The purpose and conduct of assessments and evaluations:
 (1) basis for continuous assessment against a defined competency standard;
 (2) individual assessment;
 (3) collection and analysis of data;
 (4) training system evaluation.

PRACTICAL TRAINING

(l) Practical training may be conducted by interactive group classroom modules, or by the use of training devices. The objective is to enable instructors to:
 (1) identify behaviours based on observable actions in the following areas:
 (i) communications;
 (ii) team working;
 (iii) situation awareness;
 (iv) workload management;
 (v) problem solving and decision making.
 (2) analyse the root causes of undesirable behaviours;
 (3) debrief students using appropriate techniques, in particular:
 (i) use of facilitative techniques;
 (ii) encouragement of student self-analysis.
 (4) agree corrective actions with the students;
 (5) determine achievement of the required competency.
AMC2 FCL.925(d)(1) Additional requirements for instructors for the MPL

RENEWAL OF PRIVILEGES: REFRESHER TRAINING

(a) Paragraph (d) of FCL.925 determines that if the applicant has not complied with the requirements to maintain his/her privileges to conduct competency-based approach training, he or she shall receive refresher training at an ATO to reach the level of competence necessary to pass the assessment of instructor competencies. The amount of refresher training needed should be determined on a case-by-case basis by the ATO, taking into account the following factors:

(1) the experience of the applicant;

(2) the amount of time lapsed since the last time the applicant has conducted training in an MPL course. The amount of training needed to reach the desired level of competence should increase with the time lapsed. In some cases, after evaluating the instructor, and when the time lapsed is very limited, the ATO may even determine that no further refresher training is necessary.

(b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme, which should be based on the MPL instructor course and focus on the aspects where the applicant has shown the greatest needs.
GM1 FCL.925 **Additional requirements for instructors for the MPL**

MPL INSTRUCTORS

The following table summarises the instructor qualifications for each phase of MPL integrated training course:

<table>
<thead>
<tr>
<th>Phase of training</th>
<th>Qualification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line flying under supervision according to operational requirements</td>
<td>Line training captain or TRI(A)</td>
</tr>
<tr>
<td>Phase 4: Advanced base training</td>
<td>TRI(A)</td>
</tr>
<tr>
<td>Phase 4: Advanced skill test</td>
<td>TRE(A)</td>
</tr>
<tr>
<td>Phase 4: Advanced</td>
<td>SFI(A) or TRI(A)</td>
</tr>
<tr>
<td>Phase 3: Intermediate</td>
<td>SFI(A) or TRI(A)</td>
</tr>
<tr>
<td>Phase 2: Basic</td>
<td>(a) FI(A) or IRI(A) and IR(A)/ME/MCC and 1500 hours multi-crew environment and IR(A) instructional privileges, or (b) FI(A) and MCCI(A), or (c) FI(A) and SFI(A), or (d) FI(A) and TRI(A)</td>
</tr>
</tbody>
</table>
| Phase 1: Core flying skills | FI(A) and 500 hours, including 200 hours of instruction
Instructor qualifications and privileges should be in accordance with the training items within the phase.
STI for appropriate exercises conducted in an FNPT or BITD. |
AMC1 FCL.935 Assessment of competence

GENERAL

(a) The format and application form for the assessment of competence are determined by the competent authority.

(b) When an aircraft is used for the assessment, it should meet the requirements for training aircraft.

(c) If an aircraft is used for the test or check, the examiner acts as the PIC, except in circumstances agreed upon by the examiner when another instructor is designated as PIC for the flight.

(d) During the skill test the applicant occupies the seat normally occupied by the instructor (instructors seat if in an FSTD, or pilot seat if in an aircraft), except in the case of balloons. The examiner, another instructor or, for MPA in an FFS, a real crew under instruction, functions as the ‘student’. The applicant is required to explain the relevant exercises and to demonstrate their conduct to the ‘student’, where appropriate. Thereafter, the ‘student’ executes the same manoeuvres (if the ‘student’ is the examiner or another instructor, this can include typical mistakes of inexperienced students). The applicant is expected to correct mistakes orally or, if necessary, by intervening physically.

(e) The assessment of competence should also include additional demonstration exercises, as decided by the examiner and agreed upon with the applicant before the assessment. These additional exercises should be related to the training requirements for the applicable instructor certificate.

(f) All relevant exercises should be completed within a period of 6 months. However, all exercises should, where possible, be completed on the same day. In principle, failure in any exercise requires a retest covering all exercises, with the exception of those that may be retaken separately. The examiner may terminate the assessment at any stage if they consider that a retest is required.
AMC2 FCL.935 Assessment of competence

MCCI, STI AND MI

In the case of the MCCI, STI and MI, the instructor competencies are assessed continuously during the training course.
AMC3 FCL.935 Assessment of competence

CONTENT OF THE ASSESSMENT FOR THE FI

(a) In the case of the FI, the content of the assessment of competence should be the following:

<table>
<thead>
<tr>
<th>SECTION 1 THEORETICAL KNOWLEDGE ORAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Air law</td>
</tr>
<tr>
<td>1.2 Aircraft general knowledge</td>
</tr>
<tr>
<td>1.3 Flight performance and planning</td>
</tr>
<tr>
<td>1.4 Human performance and limitations</td>
</tr>
<tr>
<td>1.5 Meteorology</td>
</tr>
<tr>
<td>1.6 Navigation</td>
</tr>
<tr>
<td>1.7 Operational procedures</td>
</tr>
<tr>
<td>1.8 Principles of flight</td>
</tr>
<tr>
<td>1.9 Training administration</td>
</tr>
</tbody>
</table>

Sections 2 and 3 selected main exercises:

<table>
<thead>
<tr>
<th>SECTION 2 PRE-FLIGHT BRIEFING</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Visual presentation</td>
</tr>
<tr>
<td>2.3 Technical accuracy</td>
</tr>
<tr>
<td>2.4 Clarity of explanation</td>
</tr>
<tr>
<td>2.5 Clarity of speech</td>
</tr>
<tr>
<td>2.6 Instructional technique</td>
</tr>
<tr>
<td>2.7 Use of models and aids</td>
</tr>
<tr>
<td>2.8 Student participation</td>
</tr>
</tbody>
</table>
SECTION 3 FLIGHT

<table>
<thead>
<tr>
<th>3.1</th>
<th>Arrangement of demo</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>Synchronisation of speech with demo</td>
</tr>
<tr>
<td>3.3</td>
<td>Correction of faults</td>
</tr>
<tr>
<td>3.4</td>
<td>Aircraft handling</td>
</tr>
<tr>
<td>3.5</td>
<td>Instructional technique</td>
</tr>
<tr>
<td>3.6</td>
<td>General airmanship and safety</td>
</tr>
<tr>
<td>3.7</td>
<td>Positioning and use of airspace</td>
</tr>
</tbody>
</table>

SECTION 4 ME EXERCISES

<table>
<thead>
<tr>
<th>4.1</th>
<th>Actions following an engine failure shortly after take-off1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>SE approach and go-around1</td>
</tr>
<tr>
<td>4.3</td>
<td>SE approach and landing1</td>
</tr>
</tbody>
</table>

1 These exercises are to be demonstrated at the assessment of competence for FI for ME aircraft.

SECTION 5 POST-FLIGHT DE-BRIEFING

<table>
<thead>
<tr>
<th>5.1</th>
<th>Visual presentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Technical accuracy</td>
</tr>
<tr>
<td>5.3</td>
<td>Clarity of explanation</td>
</tr>
<tr>
<td>5.4</td>
<td>Clarity of speech</td>
</tr>
<tr>
<td>5.5</td>
<td>Instructional technique</td>
</tr>
<tr>
<td>5.6</td>
<td>Use of models and aids</td>
</tr>
<tr>
<td>5.7</td>
<td>Student participation</td>
</tr>
</tbody>
</table>

(b) Section 1, the oral theoretical knowledge examination part of the assessment of competence, is for all FI and is subdivided into two parts:

1. The applicant is required to give a lecture under test conditions to other ‘student(s)’, one of whom will be the examiner. The test lecture is to be selected from items of section 1. The amount of time for
preparation of the test lecture is agreed upon beforehand with the examiner. Appropriate literature may be used by the applicant. The test lecture should not exceed 45 minutes;

(2) The applicant is tested orally by an examiner for knowledge of items of section 1 and the ‘core instructor competencies: teaching and learning’ content given in the instructor courses.

(c) Sections 2, 3 and 5 are for all FIs. These sections comprise exercises to demonstrate the ability to be an FI (for example instructor demonstration exercises) chosen by the examiner from the flight syllabus of the FI training courses. The applicant is required to demonstrate FI abilities, including briefing, flight instruction and de-briefing.

(d) Section 4 comprises additional instructor demonstration exercises for an FI for ME aircraft. This section, if applicable, is done in an ME aircraft, or an FFS or FNPT II simulating an ME aircraft. This section is completed in addition to sections 2, 3 and 5.
AMC4 FCL.935 Assessment of competence

CONTENT OF THE ASSESSMENT FOR THE SFI

The assessment should consist of at least 3 hours of flight instruction related to the duties of an SFI on the applicable FFS or FTD 2/3.
AMC5 FCL.935 Assessment of competence

REPORT FORMS FOR THE INSTRUCTOR CERTIFICATES

(a) Assessment of competence form for the FI, IRI and CRI certificates:

<table>
<thead>
<tr>
<th>APPLICATION AND REPORT FORM FOR THE INSTRUCTOR ASSESSMENT OF COMPETENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Applicants personal particulars:</td>
</tr>
<tr>
<td>Applicant’s last name(s):</td>
</tr>
<tr>
<td>First name(s):</td>
</tr>
<tr>
<td>Date of birth:</td>
</tr>
<tr>
<td>Tel (home):</td>
</tr>
<tr>
<td>Tel (work):</td>
</tr>
<tr>
<td>Address:</td>
</tr>
<tr>
<td>Country:</td>
</tr>
</tbody>
</table>

| **2 Licence details** |
| Licence type: |
| Number: |
| Class ratings included in the licence: Exp. Date: |
| Type ratings included in the licence: |
| 1. |
| 2. |
| 3. |
| 4. |
| 5. |
| Other ratings included in the licence: |
| 1. |
| 2. |
| 3. |
| 4. |
| 5. |

<p>| 3 Pre-course flying experience |</p>
<table>
<thead>
<tr>
<th>Total flying hours</th>
<th>PIC SEP or TMG hours</th>
<th>SEP preceding 6 months</th>
<th>Instrument flight instruction</th>
<th>Cross-country hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **4 Pre-entry flight test** |
| I recommendfor the FI course. |
Name of ATO: Date of flight test:

Name(s) of FI conducting the test (capital letters):

Licence number:

Signature:

5 Declaration by the applicant

I have received a course of training in accordance with the syllabus for the:

<table>
<thead>
<tr>
<th>FI certificate</th>
<th>IRI certificate</th>
<th>CRI certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI(A)/(H)/(As)</td>
<td>IRI(A)/(H)/(As)</td>
<td>CRI(A)</td>
</tr>
</tbody>
</table>

Applicant’s name(s):

Signature:

6 Declaration by the CFI

I certify that .. has satisfactorily completed an approved course of training for the

<table>
<thead>
<tr>
<th>FI certificate</th>
<th>IRI certificate</th>
<th>CRI certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI(A)/(H)/(As)</td>
<td>IRI(A)/(H)/(As)</td>
<td>CRI(A)</td>
</tr>
</tbody>
</table>

in accordance with the relevant syllabus.

Flying hours during the course:

Aircraft or FSTDs used:

Name(s) of CFI:

Signature:

Name of ATO:

7 Flight instructor examiner’s certificate

I have tested the applicant according to to Part-FCL

A. FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT (in case of partial pass):

<table>
<thead>
<tr>
<th>Theoretical oral examination</th>
<th>Skill test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td>Failed</td>
</tr>
<tr>
<td>I recommend further flight or ground training with an instructor before re-test</td>
<td></td>
</tr>
<tr>
<td>I do not consider further flight or theoretical instruction necessary before re-test (tick as applicable)</td>
<td></td>
</tr>
</tbody>
</table>

B. FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT:

FI certificate

IRI certificate

CRI certificate
(tick as applicable)
Name(s) of FIE (capital letters):
Signature:
Licence number:
Date:

(b) Report form for the FI for sailplanes

<table>
<thead>
<tr>
<th>APPLICATION AND REPORT FORM FOR THE FI(S) ASSESSMENT OF COMPETENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Applicants personal particulars:</td>
</tr>
<tr>
<td>Applicant’s last name(s): First name(s):</td>
</tr>
<tr>
<td>Date of birth: Tel (home): Tel (work):</td>
</tr>
<tr>
<td>Address: Country:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Licence Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licence type: Number:</td>
</tr>
<tr>
<td>TMG extension:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Pre-course flying experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total hours PIC hours Sailplane (PIC hours and take-offs) TMG (PIC hours and take-offs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Pre-entry flight test</th>
</tr>
</thead>
<tbody>
<tr>
<td>I recommendfor the FI course.</td>
</tr>
<tr>
<td>Name of ATO: Date of flight test:</td>
</tr>
<tr>
<td>Name(s) of FI conducting the test (capital letters):</td>
</tr>
<tr>
<td>Licence number:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Declaration by the applicant</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have received a course of training in accordance with the syllabus for the:</td>
</tr>
<tr>
<td>FI certificate FI(S)</td>
</tr>
<tr>
<td>Applicant’s name(s): Signature:</td>
</tr>
</tbody>
</table>
6 Declaration by the chief flight instructor

I certify that .. has satisfactorily completed a course of training for the
FI certificate
FI(S)

In accordance with the relevant syllabus.

Flying hours during the course: Take-offs during the course:

Sailplanes, powered sailplanes or TMGs used:

Name(s) of CFI:
Signature:

Name of ATO:

7 Flight instructor examiner’s certificate

I have tested the applicant according to Part-FCL

A. FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT (in case of partial pass):

<table>
<thead>
<tr>
<th>Theoretical oral examination:</th>
<th>Skill test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td>Failed</td>
</tr>
<tr>
<td>I recommend further flight or ground training with an FI before re-test</td>
<td></td>
</tr>
<tr>
<td>I do not consider further flight or theoretical instruction necessary before re-test</td>
<td></td>
</tr>
</tbody>
</table>

B. FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT:

FI certificate
Date:

Name(s) of FIE (capital letters):
Signature:

Licence number: Date:

(c) Report form for the FI for balloons:

APPLICATION AND REPORT FORM FOR THE FI(B) ASSESSMENT OF COMPETENCE

1 Applicants personal particulars:

Applicant’s last name(s): First name(s):
2 Licence Details

<table>
<thead>
<tr>
<th>Licence type:</th>
<th>Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class extensions:</td>
<td>Groups:</td>
</tr>
<tr>
<td>Groups:</td>
<td></td>
</tr>
<tr>
<td>Groups:</td>
<td></td>
</tr>
<tr>
<td>Groups:</td>
<td></td>
</tr>
</tbody>
</table>

3 Pre-course flying experience

<table>
<thead>
<tr>
<th>Total flying hours in different groups</th>
<th>PIC hours</th>
<th>Hot-air balloon</th>
<th>Gas balloon</th>
<th>Hot-air airship</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Pre-entry flight test

I recommend ...for the FI course

<table>
<thead>
<tr>
<th>Name of ATO:</th>
<th>Date of flight test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name(s) of FI conducting the test (capital letters):</td>
<td></td>
</tr>
</tbody>
</table>

| Licence number: | |
| Signature: | |

5 Declaration by the applicant

*I have received a course of training in accordance with the syllabus for the:

<table>
<thead>
<tr>
<th>FI certificate</th>
<th>FI(B)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant’s name(s): (capital letters)</td>
<td>Signature:</td>
<td></td>
</tr>
</tbody>
</table>

6 Declaration by the chief flight instructor

*I certify that ... has satisfactorily completed a course of training for the

<table>
<thead>
<tr>
<th>FI certificate</th>
<th>FI(B)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>in accordance with the relevant syllabus.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flying hours during the course:</th>
<th>Take-offs during the course:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balloons, hot-air airships used:</td>
<td></td>
</tr>
</tbody>
</table>
Name(s) of CFI:
Signature:
Name of ATO:

7 Flight Instructor examiner’s certificate

I have tested the applicant according to Part-FCL

A – FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT

in case of partial pass:

<table>
<thead>
<tr>
<th>Theoretical oral examination:</th>
<th>Skill test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passed</td>
<td>Passed</td>
</tr>
<tr>
<td>Failed</td>
<td>Failed</td>
</tr>
</tbody>
</table>

- I recommend further flight or ground training with an FI before re-test
- I do not consider further flight or theoretical instruction necessary before re-test *(tick as applicable)*

B – FLIGHT INSTRUCTOR EXAMINER’S ASSESSMENT:

FI certificate

Name(s) of FIE (capital letters):

Signature:

Licence number: Date:
AMC1 FCL.930.FI FI — Training course

FI(A), FI(H) AND FI(AS) TRAINING COURSE

GENERAL

(a) The aim of the FI training course is to train aircraft licence holders to the level of competence defined in FCL.920.

(b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the FI task including at least the following:

 (1) refresh the technical knowledge of the student instructor;

 (2) train the student instructor to teach the ground subjects and air exercises;

 (3) ensure that the student instructor’s flying is of a sufficiently high standard;

 (4) teach the student instructor the principles of basic instruction and to apply them at the PPL level.

FLIGHT INSTRUCTION

(c) The remaining 5 hours in FCL.930.FI (b)(3) may be mutual flying (that is, two applicants flying together to practice flight demonstrations).

(d) The skill test is additional to the course training time.

CONTENT

(e) The training course consists of two parts:

 (1) Part 1, theoretical knowledge, including the teaching and learning instruction that should comply with AMC1 FCL.920;

 (2) Part 2, flight instruction.
Part 1

TEACHING AND LEARNING

(a) The course should include at least 125 hours of theoretical knowledge instruction, including at least 25 hours teaching and learning instruction.

CONTENT OF THE TEACHING AND LEARNING INSTRUCTIONS (INSTRUCTIONAL TECHNIQUES):

(b) The learning process:
 (1) motivation;
 (2) perception and understanding;
 (3) memory and its application;
 (4) habits and transfer;
 (5) obstacles to learning;
 (6) incentives to learning;
 (7) learning methods;
 (8) rates of learning.

(c) The teaching process:
 (1) elements of effective teaching;
 (2) planning of instructional activity;
 (3) teaching methods;
 (4) teaching from the ‘known’ to the ‘unknown’;
 (5) use of ‘lesson plans’.

(d) Training philosophies:
 (1) value of a structured (approved) course of training;
 (2) importance of a planned syllabus;
 (3) integration of theoretical knowledge and flight instruction;

(e) Techniques of applied instruction:
 (1) theoretical knowledge: classroom instruction techniques:
 (i) use of training aids;
 (ii) group lectures;
 (iii) individual briefings;
 (iv) student participation or discussion.
 (2) flight: airborne instruction techniques:
 (i) the flight or cockpit environment;
 (ii) techniques of applied instruction;
 (iii) post-flight and in-flight judgement and decision making.

(f) Student evaluation and testing:
 (1) assessment of student performance:
(i) the function of progress tests;
(ii) recall of knowledge;
(iii) translation of knowledge into understanding;
(iv) development of understanding into actions;
(v) the need to evaluate rate of progress.

(2) analysis of student errors:
 (i) establish the reason for errors;
 (ii) tackle major faults first, minor faults second;
 (iii) avoidance of over criticism;
 (iv) the need for clear concise communication.

(g) Training programme development:
 (1) lesson planning;
 (2) preparation;
 (3) explanation and demonstration;
 (4) student participation and practice;
 (5) evaluation.

(h) Human performance and limitations relevant to flight instruction:
 (1) physiological factors:
 (i) psychological factors;
 (ii) human information processing;
 (iii) behavioural attitudes;
 (iv) development of judgement and decision making.
 (2) threat and error management.

(i) Specific hazards involved in simulating systems failures and malfunctions in
 the aircraft during flight:
 (i) importance of 'touch drills';
 (ii) situational awareness;
 (iii) adherence to correct procedures.

(j) Training administration:
 (1) flight or theoretical knowledge instruction records;
 (2) pilot’s personal flying logbook;
 (3) the flight or ground curriculum;
 (4) study material;
 (5) official forms;
 (6) flight manual or equivalent document (for example owner’s manual or
 pilot’s operating handbook);
 (7) flight authorisation papers;
 (8) aircraft documents;
 (9) the private pilot’s licence regulations.
Annex to ED Decision 2011/016/R

A. Aeroplanes

Part 2

AIR EXERCISES

(a) The air exercises are similar to those used for the training of PPL(A) but with additional items designed to cover the needs of an FI.

(b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

1. the applicant's progress and ability;
2. the weather conditions affecting the flight;
3. the flight time available;
4. instructional technique considerations;
5. the local operating environment.

(c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

(d) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include information on how the flight will be conducted, who is to fly the aeroplane and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.

(e) The four basic components of the briefing will be:

1. the aim;
2. principles of flight (briefest reference only);
3. the air exercise(s) (what, and how and by whom);
4. airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.
GENERAL CONSIDERATIONS

(g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(A) level.

(h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(A).

(i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.

(j) If the privileges of the FI(A) certificate are to include instruction for night flying, exercises 19 and 20 of the flight instruction syllabus should be undertaken at night in addition to by day either as part of the course or subsequent to certification issue.

(k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.
SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES

Note: though exercise 11b is not required for the PPL(A) course, it is a requirement for the FI course.

EXERCISE 1: FAMILIARISATION WITH THE AEROPLANE

(a) Long briefing objectives:
 (1) introduction to the aeroplane;
 (2) explanation of the cockpit layout;
 (3) aeroplane and engine systems;
 (4) checklists, drills and controls;
 (5) propeller safety;
 (i) precautions general;
 (ii) precautions before and during hand turning;
 (iii) hand swinging technique for starting (if applicable to type).
 (6) differences when occupying the instructor’s seat;
 (7) emergency drills:
 (i) action if fire in the air and on the ground: engine, cockpit or cabin and electrical fire;
 (ii) system failure as applicable to type;
 (iii) escape drills: location and use of emergency equipment and exits.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT

(a) Long briefing objectives:
 (1) flight authorisation and aeroplane acceptance, including technical log (if applicable) and certificate of maintenance;
 (2) equipment required for flight (maps, etc.);
 (3) external checks;
 (4) internal checks;
 (5) student comfort, harness, seat or rudder pedal adjustment;
 (6) starting and warming up checks;
 (7) power checks;
 (8) running down, system checks and switching off the engine;
 (9) leaving the aeroplane, parking, security and picketing;
(10) completion of authorisation sheet and aeroplane serviceability documents.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 3: AIR EXPERIENCE

(a) Long briefing objectives:
 Note: there is no requirement for a long briefing for this exercise.

(b) Air exercise:
 (1) air experience;
 (2) cockpit layout, ergonomics and controls;
 (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

(a) Long briefing objectives:
 (1) function of primary flying controls: when laterally level and banked;
 (2) further effect of ailerons and rudder;
 (3) effect of inertia;
 (4) effect of air speed;
 (5) effect of slipstream;
 (6) effect of power;
 (7) effect of trimming controls;
 (8) effect of flaps;
 (9) operation of mixture control;
 (10) operation of carburettor heat control;
 (11) operation of cabin heat or ventilation systems;

(b) Air exercise:
 (1) primary effects of flying controls: when laterally level and banked;
 (2) further effects of ailerons and rudder;
 (3) effect of air speed;
 (4) effect of slipstream;
 (5) effect of power;
 (6) effect of trimming controls;
 (7) effect of flaps;
 (8) operation of mixture control;
 (9) operation of carburettor heat control;
 (10) operation of cabin heat or ventilation systems;
 (11) effect of other controls as applicable.
EXERCISE 5: TAXIING

(a) Long briefing objectives:
 (1) pre-taxiing checks;
 (2) starting, control of speed and stopping;
 (3) engine handling;
 (4) control of direction and turning (including manoeuvring in confined spaces);
 (5) parking area procedures and precautions;
 (6) effect of wind and use of flying controls;
 (7) effect of ground surface;
 (8) freedom of Rudder movement;
 (9) marshalling signals;
 (10) instrument checks;
 (11) ATC procedures;
 (12) emergencies: steering failure and brake failure.

(b) Air exercise:
 (1) pre-taxiing checks;
 (2) starting, control of speed and stopping;
 (3) engine handling;
 (4) control of direction and turning;
 (5) turning in confined spaces;
 (6) parking area procedures and precautions;
 (7) effect of wind and use of flying control;
 (8) effect of ground surface;
 (9) freedom of Rudder movement;
 (10) marshalling signals;
 (11) instrument checks;
 (12) ATC procedures;
 (13) emergencies: steering failure and brake failure.

EXERCISE 6: STRAIGHT AND LEVEL FLIGHT

(a) Long briefing objectives:
 (1) the forces;
 (2) longitudinal stability and control in pitch;
 (3) relationship of CG to control in pitch;
 (4) lateral and directional stability (control of lateral level and balance);
(5) attitude and balance control;
(6) trimming;
(7) power settings and air speeds;
(8) drag and power curves;
(9) range and endurance.

(b) Air exercise:
(1) at normal cruising power;
(2) attaining and maintaining straight and level flight;
(3) demonstration of inherent stability;
(4) control in pitch, including use of elevator trim control;
(5) lateral level, direction and balance, use of rudder trim controls as applicable at selected air speeds (use of power):
 (i) effect of drag and use of power (two air speeds for one power setting);
 (ii) straight and level in different aeroplane configurations (flaps and landing gear);
 (iii) use of instruments to achieve precision flight.

EXERCISE 7: CLIMBING

(a) Long briefing objectives:
(1) the forces;
(2) relationship between power or air speed and rate of climb (power curves maximum rate of climb \(v_y\));
(3) effect of mass;
(4) effect of flaps;
(5) engine considerations;
(6) effect of density altitude;
(7) the cruise climb;
(8) maximum angle of climb \(v_x\).

(b) Air exercise:
(1) entry and maintaining the normal maximum rate climb;
(2) levelling off;
(3) levelling off at selected altitudes;
(4) climbing with flaps down;
(5) recovery to normal climb;
(6) en-route climb (cruise climb);
(7) maximum angle of climb;
(8) use of instruments to achieve precision flight.
EXERCISE 8: DESCENDING

(a) Long briefing objectives:
 (1) the forces;
 (2) glide descent: angle, air speed and rate of descent;
 (3) effect of flaps;
 (4) effect of wind;
 (5) effect of mass;
 (6) engine considerations;
 (7) power assisted descent: power or air speed and rate of descent;
 (8) cruise descent;
 (9) sideslip.

(b) Air exercise:
 (1) entry and maintaining the glide;
 (2) levelling off;
 (3) levelling off at selected altitudes;
 (4) descending with flaps down;
 (5) powered descent: cruise descent (including effect of power and air speed);
 (6) side-sliping (on suitable types);
 (7) use of instrument to achieve precision flight.

EXERCISE 9: TURNING

(a) Long briefing objectives:
 (1) the forces;
 (2) use of controls;
 (3) use of power;
 (4) maintenance of attitude and balance;
 (5) medium level turns;
 (6) climbing and descending turns;
 (7) slipping turns;
 (8) turning onto selected headings: use of gyro heading indicator and magnetic compass.

(b) Air exercise:
 (1) entry and maintaining medium level turns;
 (2) resuming straight flight;
 (3) faults in the turn (incorrect pitch, bank and balance);
 (4) climbing turns;
 (5) descending turns;
(6) slipping turns (on suitable types);
(7) turns to selected headings: use of gyro heading indicator and magnetic compass
(8) use of instruments to achieve precision flight;

Note: stall or spin awareness and avoidance training consists of exercises 10a, 10b and 11a.

EXERCISE 10a: SLOW FLIGHT

(a) Long briefing objectives:
 (1) aeroplane handling characteristics during slow flight at:
 (i) v_{s1} & $v_{so} + 10$ knots;
 (ii) v_{s1} & $v_{so} + 5$ knots.
 (2) slow flight during instructor induced distractions;
 (3) effect of overshooting in configurations where application of engine power causes a strong ‘nose-up’ trim change.

(b) Air exercise:
 (1) safety checks;
 (2) introduction to slow flight;
 (3) controlled slow flight in the clean configuration at:
 (i) $v_{s1} + 10$ knots and with flaps down;
 (ii) $v_{so} + 10$ knots;
 (iii) straight and level flight;
 (iv) level turns;
 (v) climbing and descending;
 (vi) climbing and descending turns.
 (4) controlled slow flight in the clean configuration at:
 (i) $v_{s1} + 5$ knots and with flaps down;
 (ii) $v_{so} + 5$ knots;
 (iii) straight and level flight;
 (iv) level turns;
 (v) climbing and descending;
 (vi) climbing and descending turns;
 (vii) descending ‘unbalanced’ turns at low air speed: the need to maintain balanced flight.
 (5) ‘instructor induced distractions’ during flight at low air speed: the need to maintain balanced flight and a safe air speed;
 (6) effect of going around in configurations where application of engine power causes a strong ‘nose up’ trim change.
EXERCISE 10b: STALLING

(a) Long briefing objectives:
 (1) characteristics of the stall;
 (2) angle of attack;
 (3) effectiveness of the controls at the stall;
 (4) factors affecting the stalling speed:
 (i) effect of flaps, slats and slots;
 (ii) effect of power, mass, CG and load factor.
 (5) effects of unbalance at the stall;
 (6) symptoms of the stall;
 (7) stall recognition and recovery;
 (8) stalling and recovery:
 (i) without power;
 (ii) with power on;
 (iii) with flaps down;
 (iv) maximum power climb (straight and turning flight to the point of stall with uncompensated yaw);
 (v) stalling and recovery during manoeuvres involving more than 1 G (accelerated stalls, including secondary stalls and recoveries);
 (vi) recovering from incipient stalls in the landing and other configurations and conditions;
 (vii) recovering at the incipient stage during change of configuration;
 (viii) stalling and recovery at the incipient stage with ‘instructor induced’ distractions.

Note: consideration is to be given to manoeuvre limitations and references to the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) in relation to mass and balance limitations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook), they have to be taken into consideration. These factors are also covered in the next exercise spinning.

(b) Air exercise:
 (1) safety checks;
 (2) symptoms of the stall;
 (3) stall recognition and recovery:
 (i) without power;
 (ii) with power on;
(iii) recovery when a wing drops at the stall;
(iv) stalling with power 'on' and recovery;
(v) stalling with flap 'down' and recovery;
(vi) maximum power climb (straight and turning flight) to the point of stall with uncompensated yaw: effect of unbalance at the stall when climbing power is being used;
(vii) stalling and recovery during manoeuvres involving more than 1 G (accelerated stalls, including secondary stalls and recoveries);
(viii) recoveries from incipient stalls in the landing and other configurations and conditions;
(ix) recoveries at the incipient stage during change of configuration;
(x) instructor induced distractions during stalling.

Note: consideration of manoeuvre limitations and the need to refer to the aeroplane manual and weight (mass) and balance calculations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook), they have to be taken into consideration. These factors are to be covered in the next exercise: spinning.

EXERCISE 11a: SPIN RECOVERY AT THE INCIPIENT STAGE

(a) Long briefing objectives:
 (1) causes, stages, autorotation and characteristics of the spin;
 (2) recognition and recovery at the incipient stage: entered from various flight attitudes;
 (3) aeroplane limitations.

(b) Air exercise:
 (1) aeroplane limitations;
 (2) safety checks;
 (3) recognition at the incipient stage of a spin;
 (4) recoveries from incipient spins entered from various attitudes with the aeroplane in the clean configuration, including instructor induced distractions.

EXERCISE 11b: SPIN RECOVERY AT THE DEVELOPED STAGE

(a) Long briefing objectives:
 (1) spin entry;
 (2) recognition and identification of spin direction;
 (3) spin recovery;
(4) use of controls;
(5) effects of power or flaps (flap restriction applicable to type);
(6) effect of the CG upon spinning characteristics;
(7) spinning from various flight attitudes;
(8) aeroplane limitation;
(9) safety checks.

(b) Air exercise:
(1) aeroplane limitations;
(2) safety checks;
(3) spin entry;
(4) recognition and identification of the spin direction;
(5) spin recovery (reference to flight manual);
(6) use of controls;
(7) effects of power or flaps (restrictions applicable to aeroplane type);
(8) spinning and recovery from various flight attitudes.

EXERCISE 12: TAKE-OFF AND CLimb TO DOWNWIND POSITION

(a) Long briefing objectives:
(1) handling: factors affecting the length of take-off run and initial climb;
(2) correct lift off speed, use of elevators (safeguarding the nose wheel), rudder and power;
(3) effect of wind (including crosswind component);
(4) effect of flaps (including the decision to use and the amount permitted);
(5) effect of ground surface and gradient upon the take-off run;
(6) effect of mass, altitude and temperature on take-off and climb performance;
(7) pre take-off checks;
(8) ATC procedure before take-off;
(9) drills, during and after take-off;
(10) noise abatement procedures;
(11) tail wheel considerations (as applicable);
(12) short or soft field take-off considerations or procedures;
(13) emergencies:
 (i) aborted take-off;
 (ii) engine failure after take-off.
(14) ATC procedures.

(b) Air exercise:
(1) take-off and climb to downwind position;
(2) pre take-off checks;
(3) into wind take-off;
(4) safeguarding the nose wheel;
(5) crosswind take-off;
(6) drills during and after take-off;
(7) short take-off and soft field procedure or techniques (including performance calculations);
(8) noise abatement procedures.

EXERCISE 13: CIRCUIT, APPROACH AND LANDING

(a) Long briefing objectives:
 (1) downwind leg, base leg and approach: position and drills;
 (2) factors affecting the final approach and the landing run;
 (3) effect of mass;
 (4) effects of altitude and temperature;
 (5) effect of wind;
 (6) effect of flap;
 (7) landing;
 (8) effect of ground surface and gradient upon the landing run;
 (9) types of approach and landing:
 (i) powered;
 (ii) crosswind;
 (iii) flapless (at an appropriate stage of the course);
 (iv) glide;
 (v) short field;
 (vi) soft field.
 (10) tail wheel aeroplane considerations (as applicable);
 (11) missed approach;
 (12) engine handling;
 (13) wake turbulence awareness;
 (14) windshear awareness;
 (15) ATC procedures;
 (16) mislanding and go-around;
 (17) special emphasis on look-out.

(b) Air exercise:
 (1) circuit approach and landing;
 (2) circuit procedures: downwind and base leg;
(3) powered approach and landing;
(4) safeguarding the nose wheel;
(5) effect of wind on approach and touchdown speeds and use of flaps;
(6) crosswind approach and landing;
(7) glide approach and landing;
(8) flapless approach and landing (short and soft field);
(9) short field and soft field procedures;
(10) wheel landing (tail wheel aircraft);
(11) missed approach and go-around;
(12) mislanding and go-around;
(13) noise abatement procedures.

EXERCISE 14: FIRST SOLO AND CONSOLIDATION

Note: a summary of points to be covered before sending the student on first solo.

(a) Long briefing objectives:
During the flights immediately following the solo circuit consolidation period the following should be covered:
(1) procedures for leaving and rejoining the circuit;
(2) local area (restrictions, controlled airspace, etc.);
(3) compass turns;
(4) QDM meaning and use.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 15: ADVANCED TURNING

(a) Long briefing objectives:
(1) the forces;
(2) use of power;
(3) effect of load factor:
 (i) structural considerations;
 (ii) increased stalling speed.
(4) physiological effects;
(5) rate and radius of turn;
(6) steep, level, descending and climbing turns;
(7) stalling in the turn and how to avoid it;
(8) spinning from the turn: recovery at the incipient stage;
(9) spiral dive;
(10) unusual attitudes and recoveries.

Note: considerations are to be given to manoeuvre limitations and reference to the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) in relation to mass and balance, and any other restrictions for practice entries to the spin.

(b) Air exercise:
 (1) level, descending and climbing steep turns;
 (2) stalling in the turn;
 (3) spiral dive;
 (4) spinning from the turn;
 (5) recovery from unusual attitudes;
 (6) maximum rate turns.

EXERCISE 16: FORCED LANDING WITHOUT POWER

(a) Long briefing objectives:
 (1) selection of forced landing areas;
 (2) provision for change of plan;
 (3) gliding distance: consideration;
 (4) planning the descent;
 (5) key positions;
 (6) engine failure checks;
 (7) use of radio: R/T 'distress' procedure;
 (8) base leg;
 (9) final approach;
 (10) go-around;
 (11) landing considerations;
 (12) actions after landing: aeroplane security;
 (13) causes of engine failure.

(b) Air exercise:
 (1) forced landing procedures;
 (2) selection of landing area:
 (i) provision for change of plan;
 (ii) gliding distance considerations.
 (3) planning the descent;
 (4) key positions;
 (5) engine failure checks;
 (6) engine cooling precautions;
 (7) use of radio;
 (8) base leg;
(9) final approach;
(10) landing;
(11) actions after landing: when the exercise is conducted at an aerodrome;
(12) aeroplane security.

EXERCISE 17: PRECAUTIONARY LANDING

(a) Long briefing objectives:
(1) occasions when necessary (in-flight conditions);
(2) landing area selection and communication (R/T procedure);
(3) overhead inspection;
(4) simulated approach;
(5) climb away;
(6) landing area selection:
 (i) normal aerodrome;
 (ii) disused aerodrome;
 (iii) ordinary field;
(7) circuit and approach;
(8) actions after landing; aeroplane security.

(b) Air exercise:
(1) occasions when necessary (in-flight conditions):
(2) landing area selection
(3) overhead inspection
(4) simulated approach
(5) climb away
(6) landing area selection:
 (i) normal aerodrome;
 (ii) disused aerodrome;
 (iii) ordinary field;
(7) circuit and approach;
(8) actions after landing; aeroplane security;

EXERCISE 18a: NAVIGATION

(a) Long briefing objectives:
(1) flight planning;
 (i) weather forecast and actual(s);
 (ii) map selection, orientation, preparation and use:
(A) choice of route;
(B) regulated or controlled airspace;
(C) danger, prohibited and restricted areas;
(D) safety altitude.

(iii) calculations:
 (A) magnetic heading(s) and time(s) en-route;
 (B) fuel consumption;
 (C) mass and balance;
 (D) mass and performance.

(iv) flight information:
 (A) NOTAMs etc.;
 (B) noting of required radio frequencies;
 (C) selection of alternate aerodrome(s).

(v) aeroplane documentation.

(vi) notification of the flight:
 (A) pre-flight administration procedures;
 (B) flight plan form (where appropriate).

(2) departure;
 (i) organisation of cockpit workload;
 (ii) departure procedures:
 (A) altimeter settings;
 (B) setting heading procedures;
 (C) noting of ETA(s).
 (iii) en-route map reading: identification of ground features;
 (iv) maintenance of altitudes and headings;
 (v) revisions to ETA and heading, wind effect, drift angle and
groundspeed checks;
 (vi) log keeping;
 (vii) use of radio (including VDF if applicable);
 (viii) minimum weather conditions for continuance of flight;
 (ix) 'in-flight' decisions;
 (x) diversion procedures;
 (xi) operations in regulated or controlled airspace;
 (xii) procedures for entry, transit and departure;
 (xiii) navigation at minimum level;
 (xiv) uncertainty of position procedure, including R/T procedure;
 (xv) lost procedure;
 (xvi) use of radio navaids.

(3) arrival procedures and aerodrome circuit joining procedures:
(i) ATC liaison, R/T procedure, etc.;
(ii) altimeter setting,
(iii) entering the traffic pattern (controlled or uncontrolled aerodromes);
(iv) circuit procedures;
(v) parking procedures;
(vi) security of aircraft;
(vii) refuelling;
(viii) booking in.

(b) Air exercise:

(1) Flight planning:

(i) weather forecast and actual(s);
(ii) map selection and preparation:
 (A) choice of route;
 (B) regulated or controlled airspace;
 (C) danger, prohibited and restricted areas;
 (D) safety altitude.
(iii) calculations:
 (A) magnetic heading(s) and time(s) en-route;
 (B) fuel consumption;
 (C) mass and balance;
 (D) mass and performance.
(iv) flight information:
 (A) NOTAMs etc.;
 (B) noting of required radio frequencies;
 (C) selection of alternate aerodromes.
(v) aircraft documentation;
(vi) notification of the flight:
 (A) flight clearance procedures (as applicable);
 (B) flight plans.

(2) Aerodrome departure;

(i) organisation of cockpit workload;
(ii) departure procedures:
 (A) altimeter settings;
 (B) en-route:
 (C) noting of ETA(s).
(iii) wind effect, drift angle and ground speed checks;
(iv) maintenance of altitudes and headings;
(v) revisions to ETA and heading;
(vi) log keeping;
(vii) use of radio (including VDF if applicable);
(viii) minimum weather conditions for continuance of flight;
(ix) ‘in-flight’ decisions;
(x) diversion procedure;
(xi) operations in regulated or controlled airspace;
(xii) procedures for entry, transit and departure;
(xiii) uncertainty of position procedure;
(xiv) lost procedure;
(xv) use of radio navaids.

(3) arrival procedures and aerodrome joining procedures:
 (i) ATC liaison, R/T procedure etc.;
 (ii) altimeter setting,
 (iii) entering the traffic pattern;
 (iv) circuit procedures;
 (v) parking procedures
 (vi) security of aircraft;
 (vii) refuelling;
 (viii) booking in.

EXERCISE 18b: NAVIGATION AT LOWER LEVELS AND IN REDUCED VISIBILITY

(a) Long briefing objectives:
 (1) general considerations:
 (i) planning requirements before flight in entry or exit lanes;
 (ii) ATC rules, pilot qualifications and aircraft equipment;
 (iii) entry or exit lanes and areas where specific local rules apply.
 (2) low level familiarisation:
 (i) actions before descending;
 (ii) visual impressions and height keeping at low altitude;
 (iii) effects of speed and inertia during turns;
 (iv) effects of wind and turbulence;
 (3) low level operation:
 (i) weather considerations;
 (ii) low cloud and good visibility;
 (iii) low cloud and poor visibility;
 (iv) avoidance of moderate to heavy rain showers;
 (v) effects of precipitation;
(vi) joining a circuit;
(vii) bad weather circuit, approach and landing.

(b) Air exercise:
(1) general considerations: entry or exit lanes and areas where specific local rules apply;
(2) low level familiarisation:
 (i) actions before descending;
 (ii) visual impressions and height keeping at low altitude;
 (iii) effects of speed and inertia during turns;
 (iv) effects of wind and turbulence;
 (v) hazards of operating at low levels;
(3) low level operation:
 (i) weather considerations;
 (ii) low cloud and good visibility;
 (iii) low cloud and poor visibility;
 (iv) avoidance of moderate to heavy rain showers;
 (v) effects of precipitation (forward visibility);
 (vi) joining a circuit;
 (vii) bad weather circuit, approach and landing.

EXERCISE 18c: USE OF RADIO NAVIGATION AIDS UNDER VFR

(a) Long briefing objectives:
(1) use of VOR:
 (i) availability, AIP and frequencies;
 (ii) signal reception range;
 (iii) selection and identification;
 (iv) radials and method of numbering;
 (v) use of OBS;
 (vi) to or from indication and station passage;
 (vii) selection, interception and maintaining a radial;
 (viii) use of two stations to determine position.
(2) use of ADF equipment:
 (i) availability of NDB stations, AIP and frequencies;
 (ii) signal reception range;
 (iii) selection and identification;
 (iv) orientation in relation to NDP;
 (v) homing to an NDP.
(3) use of VHF/DF:
(i) availability. AIP and frequencies;
(ii) R/T procedures;
(iii) obtaining QDMs and QTEs.

(4) use of radar facilities:
 (i) availability and provision of service and AIS;
 (ii) types of service;
 (iii) R/T procedures and use of transponder:
 (A) mode selection;
 (B) emergency codes.

(5) use of distance DME:
 (i) availability and AIP;
 (ii) operating modes;
 (iii) slant range.

(6) use of GNSS (RNAV – SATNAV):
 (i) availability;
 (ii) operating modes;
 (iii) limitations.

(b) Air exercise:

(1) use of VOR:
 (i) availability, AIP and frequencies;
 (ii) selection and identification;
 (iii) use of OBS;
 (iv) to or from indications: orientation;
 (v) use of CDI;
 (vi) determination of radial;
 (vii) intercepting and maintaining a radial;
 (viii) VOR passage;
 (ix) obtaining a fix from two VORs.

(2) use of ADF equipment;
 (i) availability of NDB stations, AIP and frequencies;
 (ii) selection and identification;
 (iii) orientation relative to the beacon;
 (iv) homing.

(3) use of VHF/DF:
 (i) availability, AIP and frequencies;
 (ii) R/T procedures and ATC liaison;
 (iii) obtaining a QDM and homing.

(4) use of en-route or terminal radar:
(i) availability and AIP;
(ii) procedures and ATC liaison;
(iii) pilot’s responsibilities;
(iv) secondary surveillance radar;
(v) transponders;
(vi) code selection;
(vii) interrogation and reply.

(5) use of DME:
 (i) station selection and identification;
 (ii) modes of operation.

(6) use of GNSS (RNAV – SATNAV):
 (i) setting up;
 (ii) operation;
 (iii) interpretation.

EXERCISE 19: BASIC INSTRUMENT FLIGHT

(a) Long briefing objectives:
 (1) flight instruments;
 (i) physiological sensations;
 (ii) instrument appreciation;
 (iii) attitude instrument flight;
 (iv) pitch indications;
 (v) bank indications;
 (vi) different dial presentations;
 (vii) introduction to the use of the attitude indicator;
 (viii) pitch attitude;
 (ix) bank attitude;
 (x) maintenance of heading and balanced flight;
 (xi) instrument limitations (inclusive system failures).

 (2) attitude, power and performance;
 (i) attitude instrument flight:
 (ii) control instruments;
 (iii) performance instruments;
 (iv) effect of changing power and configuration;
 (v) cross-checking the instrument indications;
 (vi) instrument interpretation;
 (vii) direct and indirect indications (performance instruments);
 (viii) instrument lag;
(ix) selective radial scan;

(3) basic flight manoeuvres (full panel);
 (i) straight and level flight at various air speeds and aeroplane configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns onto pre-selected headings:
 (A) level;
 (B) climbing;
 (C) descending.

(b) Air exercise:
 (1) Introduction to instrument flying
 (i) flight instruments;
 (ii) physiological sensations;
 (iii) instrument appreciation;
 (iv) attitude instrument flight;
 (v) pitch attitude;
 (vi) bank attitude;
 (vii) maintenance of heading and balanced flight;
 (2) attitude, power and performance;
 (i) attitude instrument flight;
 (ii) effect of changing power and configuration;
 (iii) cross-checking the instruments;
 (iv) selective radial scan;
 (3) basic flight manoeuvres (full panel);
 (i) straight and level flight at various air speeds and aeroplane configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns onto pre-selected headings:
 (A) level;
 (B) climbing;
 (C) descending.

EXERCISE 20: NIGHT FLYING (if night instructional qualification required)

(a) Long briefing objectives:
 (1) start up procedures;
 (2) local procedures: including ATC liaison;
(3) taxiing:

(i) parking area and taxiway lighting;
(ii) judgement of speed and distances;
(iii) use of taxiway lights;
(iv) avoidance of hazards: obstruction lighting;
(v) instrument checks;
(vi) holding point: lighting procedure;
(vii) initial familiarisation at night;
(viii) local area orientation;
(ix) significance of lights on other aircraft;
(x) ground obstruction lights;
(xi) division of piloting effort: external or instrument reference;
(xii) rejoining procedure;
(xiii) aerodrome lighting: approach and runway lighting (including VASI and PAPI):
 (A) threshold lights;
 (B) approach lighting;
 (C) visual approach slope indicator systems.

(4) night circuits;

(i) take-off and climb:
 (A) line up;
 (B) visual references during the take-off run;
 (C) transfer to instruments;
 (D) establishing the initial climb;
 (E) use of flight instruments;
 (F) instrument climb and initial turn.

(ii) circuit:
 (A) aeroplane positioning: reference to runway lighting;
 (B) the traffic pattern and look-out;
 (C) initial approach and runway lighting demonstration;
 (D) aeroplane positioning;
 (E) changing aspect of runway lights and VASI (or PAPI);
 (F) intercepting the correct approach path;
 (G) the climb away.

(iii) approach and landing:
 (A) positioning, base leg and final approach;
 (B) diurnal wind effect;
 (C) use of landing lights;
 (D) the flare and touchdown;
(E) the roll out;
(F) turning off the runway: control of speed.
(iv) missed approach:
(A) use of instruments;
(B) re-positioning in the circuit pattern;
(5) night navigation:
(i) particular emphasis on flight planning;
(ii) selection of ground features visible at night:
 (A) air light beacons;
 (B) effect of cockpit lighting on map colours;
 (C) use of radio aids;
 (D) effect of moonlight upon visibility at night;
(iii) emphasis on maintaining a ‘minimum safe altitude’;
(iv) alternate aerodromes: restricted availability;
(v) restricted recognition of weather deterioration;
(vi) lost procedures;
(6) night emergencies;
(i) radio failure;
(ii) failure of runway lighting;
(iii) failure of aeroplane landing lights;
(iv) failure of aeroplane internal lighting;
(v) failure of aeroplane navigation lights;
(vi) total electrical failure;
(vii) abandoned take-off;
(viii) engine failure;
(ix) obstructed runway procedure.

(b) Air exercise: during the air exercise all long briefing objectives mentioned above should also be trained on site and the student instructor should demonstrate the following items:
(1) how to plan and to perform a flight at night;
(2) how to advise the student pilot to plan and prepare a flight at night;
(3) how to advise the student pilot to perform a flight at night;
(4) how to analyse and correct errors as necessary.
B. Helicopters

GROUND INSTRUCTION

Note: During ground instruction the student instructor should pay specific attention to the teaching of enhanced ground instruction in weather interpretation, planning and route assessment, decision making on encountering DVE including reversing course or conduction a precautionary landing.

Part 2
AIR EXERCISES

(a) The air exercises are similar to those used for the training of PPL(H) but with additional items designed to cover the needs of an FI.

(b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide: therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(1) the applicant’s progress and ability;
(2) the weather conditions affecting the flight;
(3) the flight time available;
(4) instructional technique considerations;
(5) the local operating environment;
(6) applicability of the exercises to the helicopter type.

(c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

(d) The briefing normally includes a statement of the objectives and a brief reference to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted about who is to fly the helicopter and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.

(e) The four basic components of the briefing will be:

(1) the aim;
(2) principles of flight (briefest reference only);
(3) the air exercise(s) (what, and how and by whom);
(4) airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

(g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(H) level.

(h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(H).

(i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.

(j) If the privileges of the FI(H) certificate are to include instruction for night flying, exercise 28 should be undertaken either as part of the course or subsequent to certificate issue.

(k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

(l) The student instructor should be trained to keep in mind that wherever possible, flight simulation should be used to demonstrate to student pilots the effects of flight into DVE and to enhance their understanding and need for avoidance of this potentially fatal flight regime.
SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: FAMILIARISATION WITH THE HELICOPTER

(a) Long briefing objectives:
 (1) introduction to the helicopter;
 (2) explanation of the cockpit layout;
 (3) helicopter and engine systems;
 (4) checklist(s) and procedures;
 (5) familiarisation with the helicopter controls;
 (6) differences when occupying the instructor's seat;
 (5) emergency drills:
 (i) action if fire in the air and on the ground: engine, cockpit or
cabin and electrical fire;
 (ii) system failure drills as applicable to type;
 (iii) escape drills: location and use of emergency equipment and
exits.

(b) Air exercise: all long briefing objectives mentioned above should also be
trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT

(a) Long briefing objectives:
 (1) flight authorisation and helicopter acceptance, including technical
log (if applicable) and certificate of maintenance:
 (2) equipment required for flight (maps, etc.);
 (3) external checks;
 (4) internal checks;
 (5) student comfort, harness, seat and rudder pedal adjustment;
 (6) starting and after starting checks;
 (7) system, power or serviceability checks (as applicable);
 (8) closing down or shutting down the helicopter (including system
checks).
 (9) parking and leaving the helicopter (including safety or security as
applicable);
 (10) completion of authorisation sheet and helicopter serviceability
documents.

(b) Air exercise: all long briefing objectives mentioned above should also be
trained on site during the air exercise.
EXERCISE 3: AIR EXPERIENCE

(a) Long briefing objectives:
 Note: there is no requirement for a long briefing for this exercise.

(b) Air exercise:
 (1) air experience;
 (2) cockpit layout, ergonomics and controls;
 (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

(a) Long briefing objectives:
 (1) function of the flying controls (primary and secondary effect);
 (2) effect of air speed;
 (3) effect of power changes (torque);
 (4) effect of yaw (sideslip);
 (5) effect of disc loading (bank and flare);
 (6) effect on controls of selecting hydraulics on/off;
 (7) effect of control friction;
 (8) use of instruments;
 (9) operation of carburettor heat or anti-icing control.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 5: POWER AND ATTITUDE CHANGES

(a) Long briefing objectives:
 (1) relationship between cyclic control position, disc attitude, fuselage attitude and air speed flap back;
 (2) power required diagram in relation to air speed;
 (3) power and air speed changes in level flight;
 (4) use of the instruments for precision;
 (5) engine and air speed limitations;

(b) Air exercise:
 (1) relationship between cyclic control position, disc attitude, fuselage attitude and air speed flap back;
 (2) power and air speed changes in level flight;
 (3) use of instruments for precision (including instrument scan and look-out).
EXERCISE 6: LEVEL FLIGHT, CLIMBING, DESCENDING AND TURNING

Note: for ease of training this exercise is divided into four separate parts in the PPL(H) syllabus but may be taught complete or in convenient parts.

(a) Long briefing objectives:
 (1) basic factors involved in level flight;
 (2) normal power settings;
 (3) use of control friction or trim;
 (4) importance of maintaining direction and balance;
 (5) power required or power available diagram;
 (6) optimum climb and descent speeds, angles or rates;
 (7) importance of balance, attitude and co-ordination in the turn;
 (8) effects of turning on rate of climb or descent;
 (9) use of the gyro direction or heading indicator and compass;
 (10) use of instruments for precision.

(b) Air exercises:
 (1) maintaining straight and level flight at normal cruise power;
 (2) control in pitch, including use of control friction or trim;
 (3) use of the ball or yaw string to maintain direction and balance;
 (4) setting and use of power for selected air speeds and speed changes;
 (5) entry to climb;
 (6) normal and maximum rate of climb;
 (7) levelling off from climb at selected altitudes or heights;
 (8) entry to descent;
 (9) effect of power and air speed on rate of descent;
 (10) levelling off from descent at selected altitudes or heights;
 (11) entry to medium rate turns;
 (12) importance of balance, attitude and co-ordination to maintain level turn;
 (13) resuming straight and level flight;
 (14) turns onto selected headings, use of direction indicator and compass;
 (15) turns whilst climbing and descending;
 (16) effect of turn on rate of climb or descent;
 (17) use of instruments for precision (including instrument scan and look-out).
EXERCISE 7: AUTOROTATION

(a) Long briefing objectives:
 (1) characteristics of autorotation;
 (2) safety checks (including look-out and verbal warning);
 (3) entry and development of autorotation;
 (4) effect of AUM, IAS, disc loading, G forces and density altitude on RRPM and rate of descent;
 (5) rotor and engine limitations;
 (6) control of air speed and RRPM;
 (7) recovery to powered flight;
 (8) throttle override and control of ERPM or RRPM during re-engagement (as applicable);
 (9) danger of vortex condition during recovery.

(b) Air exercise:
 (1) safety checks (including verbal warning and look-out);
 (2) entry to and establishing in autorotation;
 (3) effect of IAS and disc loading on RRPM and rate of descent;
 (4) control of air speed and RRPM;
 (5) recovery to powered flight;
 (6) medium turns in autorotation;
 (7) simulated engine off landing (as appropriate).

EXERCISE 8: HOVERING AND HOVER TAXIING

(a) Long briefing objectives:
 (1) ground effect and power required;
 (2) effect of wind, attitude and surface;
 (3) stability in hover and effects of over controlling;
 (4) effect of control in hover;
 (5) control and co-ordination during spot turns;
 (6) requirement for slow hover speed to maintain ground effect;
 (7) effect of hydraulic failure in hover;
 (8) specific hazards, for example snow, dust, etc.

(b) Air exercise:
 (1) ground effect and power or height relationship;
 (2) effect of wind, attitude and surface;
 (3) stability in hover and effects of over controlling;
 (4) effect of control and hover technique;
(5) gentle forward running touchdown;
(6) control and co-ordination during spot (90° clearing) turns;
(7) control and co-ordination during hover taxi;
(8) dangers of mishandling and over pitching;
(9) (where applicable) effect of hydraulics failure in hover;
(10) simulated engine failure in the hover and hover taxi.

EXERCISE 9: TAKE-OFF AND LANDING

(a) Long briefing objectives:
 (1) pre take-off checks or drills;
 (2) importance of good look-out;
 (3) technique for lifting to hover;
 (4) after take-off checks;
 (5) danger of horizontal movement near ground;
 (6) dangers of mishandling and over pitching;
 (7) technique for landing;
 (8) after landing checks;
 (9) take-off and landing crosswind and downwind.

(b) Air exercise:
 (1) pre take-off checks or drills:
 (2) pre take-off look-out technique;
 (3) lifting to hover;
 (4) after take-off checks;
 (5) landing;
 (6) after landing checks or drills;
 (7) take-off and landing crosswind and downwind.

EXERCISE 10: TRANSITIONS FROM HOVER TO CLIMB AND APPROACH TO HOVER

(a) Long briefing objectives:
 (1) revision of ground effect;
 (2) translational lift and its effects;
 (3) inflow roll and its effects;
 (4) revision of flap back and its effects;
 (5) avoidance of curve diagram and associated dangers;
 (6) effect or dangers of wind speed and direction during transitions;
 (7) transition to climb technique;
(8) constant angle approach;
(9) transition to hover technique.

(b) Air exercise:
(1) revision of take-off and landing;
(2) transition from hover to climb;
(3) effect of translational lift, inflow roll and flap back;
(4) constant angle approach;
(5) technique for transition from descent to hover;
(6) a variable flare simulated engine off landing.

EXERCISE 11: CIRCUIT, APPROACH AND LANDING

(a) Long briefing objectives:
(1) circuit and associated procedures;
(2) take-off and climb (including checks or speeds);
(3) crosswind leg (including checks, speeds or angles of bank in turns);
(4) downwind leg (including pre-landing checks);
(5) base leg (including checks, speeds or angles of bank in turns);
(6) final approach (including checks or speeds);
(7) effect of wind on approach and hover IGE;
(8) crosswind approach and landing technique;
(9) missed approach and go-around technique (as applicable);
(10) steep approach technique (including danger of high sink rate);
(11) limited power approach technique (including danger of high speed at touchdown);
(12) use of the ground effect;
(13) abandoned take-off technique;
(14) hydraulic failure drills and hydraulics off landing technique (where applicable);
(15) drills or technique for tail rotor control or tail rotor drive failure;
(16) engine failure drills in the circuit to include;
(17) engine failure
(18) on take-off:
 (i) crosswind;
 (ii) downwind;
 (iii) base leg;
 (iv) on final approach.
(19) noise abatement procedures (as applicable).
(b) Air exercise:
 (1) revision of transitions and constant angle approach;
 (2) basic training circuit, including checks;
 (3) crosswind approach and landing technique;
 (4) missed approach and go-around technique (as applicable);
 (5) steep approach technique;
 (6) basic limited power approach or run on technique;
 (7) use of ground effect;
 (8) hydraulic failure and approach to touchdown with hydraulics off and to recover at safe height (as applicable);
 (9) simulated engine failure on take-off, crosswind, downwind, base leg and finals;
 (10) variable flare simulated engine off landing.

EXERCISE 12: FIRST SOLO

(a) Long briefing objectives:
 (1) warning of change of attitude due to reduced and laterally displaced weight;
 (2) low tail, low skid or wheel during hover or landing;
 (3) dangers of loss of RRPM and over pitching;
 (4) pre take-off checks;
 (5) into wind take-off;
 (6) drills during and after take-off;
 (7) normal circuit, approach and landing;
 (8) action if an emergency.

(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 13: SIDEWAYS AND BACKWARDS HOVER MANOEUVRING

(a) Long briefing objectives:
 (1) revision of hovering;
 (2) directional stability and weather cocking effect;
 (3) danger of pitching nose down on recovery from backwards manoeuvring;
 (4) helicopter limitations for sideways and backwards manoeuvring;
 (5) effect of CG position.

(b) Air exercise:
 (1) revision of hovering and 90 ° clearing turns;
 (2) manoeuvring sideways heading into wind;
(3) manoeuvring backwards heading into wind;
(4) manoeuvring sideways and backwards heading out of wind;
(5) manoeuvring backwards too fast and recovery action.

EXERCISE 14: SPOT TURNS

(a) Long briefing objectives:
(1) revision of ground effect and effect of wind;
(2) weather cocking and control actions;
(3) control of RRPM;
(4) torque effect;
(5) cyclic limiting stops due to CG position (where applicable);
(6) rate of turn limitations;
(7) spot turn about pilot position;
(8) spot turn about tail rotor position;
(9) spot turn about helicopter geometric centre;
(10) square (safe visibility) and clearing turn.

(b) Air exercise:
(1) weather cocking, torque effect and control actions;
(2) rate of turn;
(3) spot turn about pilot position;
(4) spot turn about tail rotor position;
(5) spot turn about helicopter geometric centre;
(6) square and clearing turn.

EXERCISE 15: HOVER OUT OF GROUND EFFECT AND VORTEX RING

(a) Long briefing objectives:
(1) revision of ground effect and power required diagram;
(2) drift, height and power control, look-out or scan;
(3) vortex ring, (including dangers, recognition and recovery actions);
(4) loss of tail rotor effectiveness.

(b) Air exercise:
(1) to demonstrate hover OGE;
(2) drift, height, power control and look-out, and instrument scan technique;
(3) recognition of incipient stage of vortex ring and settling with power;
(4) recovery action from incipient stage of vortex ring;
(5) recognition of loss of tail rotor effectiveness and recovery actions.
EXERCISE 16: SIMULATED ENGINE OFF LANDINGS

(a) Long briefing objectives:
 (1) revision of basic autorotation;
 (2) effect of AUM, disc loading, density altitude and RRPM decay;
 (3) use of cyclic and collective to control speed or RRPM;
 (4) torque effect;
 (5) use of flare or turn to restore RRPM;
 (6) technique for variable flare simulated EOL;
 (7) technique for constant attitude simulated EOL;
 (8) revision of technique for hover or hover taxi simulated EOL;
 (9) emergency technique for engine failure during transition;
 (10) technique for low level simulated EOL.

(b) Air exercise
 (1) revision of entry to and control in autorotation;
 (2) variable flare simulated EOL
 (3) constant attitude simulated EOL;
 (4) hover simulated EOL;
 (5) hover taxi simulated EOL;
 (6) low level simulated EOL.

EXERCISE 17: ADVANCED AUTOROTATIONS

(a) Long briefing objectives:
 (1) effect of air speed or AUM on angles or rates of descent
 (2) effect of RRPM setting on angle or rate of descent;
 (3) reason and technique for range autorotation;
 (4) reason and technique for constant attitude autorotation;
 (5) reason and technique for low speed and ‘S’ turns in autorotation;
 (6) speed or bank limitations in turns in autorotation;
 (7) revision of re-engagement or go-around procedures.

(b) Air exercise:
 (1) selection of ground marker and standard datum height to determine distance covered during various autorotation techniques;
 (2) revision of basic autorotation;
 (3) technique for range autorotation;
 (4) technique for constant attitude autorotation;
 (5) technique for low speed autorotation, including need for timely speed recovery;
(6) technique for ‘S’ turn in autorotation;
(7) 180 and 360 ° turns in autorotation;
(8) revision of re-engagement and go-around technique.

EXERCISE 18: PRACTICE FORCED LANDINGS

(a) Long briefing objectives:
 (1) types of terrain or surface options for choice of best landing area;
 (2) practice forced landing procedure;
 (3) forced landing checks and crash actions;
 (4) rules or height for recovery and go-around.

(b) Air exercise:
 (1) recognition of types of terrain from normal cruise height or altitude;
 (2) practice forced landing technique;
 (3) revision of recovery or go-around technique.

EXERCISE 19: STEEP TURNS

(a) Long briefing objectives:
 (1) air speed or angle of bank limitations;
 (2) technique for co-ordination to hold bank or attitude;
 (3) revision of speed or bank limitations in autorotation including RRPM control;
 (4) significance of disc loading, vibration and control feedback;
 (5) effect of wind in turns at low level.

(b) Air exercise:
 (1) technique for turning at 30 ° of bank;
 (2) technique for turning at 45 ° of bank (where possible);
 (3) steep autorotative turns;
 (4) explanation of faults in the turn: balance, attitude, bank and co-ordination;
 (5) effect of wind at low level.

EXERCISE 20: TRANSITIONS

(a) Long briefing objectives:
 (1) revision of effect of ground cushion, translational lift and flap back;
 (2) training requirement for precision exercise;
 (3) technique for transition to forward flight and back to hover as precision exercise;
(4) effect of wind.

(b) Air exercise:
 (1) transition from hover to minimum 50 knots IAS and back to hover;
 Note: select constant height (20 - 30 ft) and maintain.
 (2) effect of wind.

EXERCISE 21: QUICK STOPS

(a) Long briefing objectives:
 (1) power control co-ordination;
 (2) revision of effect of wind;
 (3) technique for quick stop into wind;
 (4) technique for quick stop from crosswind;
 (5) revision of air speed and angles of bank limitations;
 (6) technique for emergency turn from downwind;
 (7) technique for quick stop from downwind from high speed: flare and turn;
 (8) technique for quick stop from downwind from low speed: turn and flare;
 Note: use reasonable datum speed for example high speed, low speed.
 (9) danger of holding flare when downwind, (vortex ring) - (minimum speed 70 knots);
 (10) to revise danger of high disc loading.

(b) Air exercise:
 (1) technique for quick stop into wind;
 (2) technique for quick stop from crosswind;
 (3) danger of vortex ring and disc loading;
 (4) technique for quick stop from downwind with low speed;
 (5) technique for quick stop from downwind with high speed;
 (6) emergency turns from downwind.

EXERCISE 22: NAVIGATION

(a) Long briefing objectives:
 Note: to be broken down into manageable parts at discretion of instructor.
 (1) flight planning:
 (i) weather forecasts and actuals;
 (ii) map selection, orientation, preparation and use:
 (A) choice of route;
(B) regulated or controlled airspace;
(C) danger, prohibited and restricted areas;
(D) safety altitude.

(iii) calculations:
(A) magnetic heading(s), time(s) en route;
(B) fuel consumption;
(C) mass and balance.

(iv) flight information:
(A) NOTAMs etc;
(B) noting of required radio frequencies;
(C) selection of alternate landing sites.

(v) helicopter documentation;

(vi) notification of the flight:
(A) pre-flight administration procedures;
(B) flight plan form (where appropriate).

(2) departure:

(i) organisation of cockpit workload;

(ii) departure procedures:
(A) altimeter settings;
(B) ATC liaison in controlled or regulated airspace;
(C) setting heading procedure;
(D) noting of ETA(s);
(E) maintenance of height or altitude and heading.

(iii) procedure for revisions of ETA and headings to include:
(A) 10 ° line, double track, track error and closing angle;
(B) 1 in 60 rule;

(iv) amending an ETA;

(v) log keeping;

(vi) use of radio;

(vii) use of nav aids;

(viii) weather monitoring and minimum weather conditions for
continuation of flight;

(ix) significance of in-flight decision making;

(x) technique for transiting controlled or regulated airspace;

(xi) uncertainty of position procedure;

(xii) lost procedure.

(3) arrival:

(i) aerodrome joining procedure, in particular ATC liaison in controlled or regulated airspace:
(A) altimeter setting;
(B) entering traffic pattern;
(C) circuit procedures.

(ii) parking procedures, in particular:
(A) security of helicopter;
(B) refuelling;
(C) closing of flight plan, (if appropriate);
(D) post flight administrative procedures.

(4) navigation problems at low heights and reduced visibility:
(i) actions before descending;
(ii) significance of hazards, (for example obstacles and other traffic);
(iii) difficulties of map reading;
(iv) effects of wind and turbulence;
(v) significance of avoiding noise sensitive areas;
(vi) procedures for joining a circuit from low level;
(vii) procedures for a bad weather circuit and landing;
(viii) actions in the event of encountering DVE;
(ix) appropriate procedures and choice of landing area for precautionary landings;
(x) decision to divert or conduct precautionary landing;
(xi) precautionary landing.

(5) radio navigation:
(i) use of VOR:
 (A) availability, AIP and frequencies;
 (B) selection and identification;
 (C) use of OBS;
 (D) to or from indications: orientation;
 (E) use of CDI;
 (F) determination of radial;
 (G) intercepting and maintaining a radial;
 (H) VOR passage;
 (I) obtaining a fix from two VORs.
(ii) use of ADF equipment:
 (A) availability of NDB stations, AIP and frequencies;
 (B) selection and identification;
 (C) orientation relative to beacon;
 (D) homing.
(iii) use of VHF/DF
(A) availability, AIP and frequencies;
(B) R/T procedures and ATC liaison;
(C) obtaining a QDM and homing.

(iv) use of en-route or terminal radar:
(A) availability and AIP;
(B) procedures and ATC liaison;
(C) pilots responsibilities;
(D) secondary surveillance radar:
 (a) transponders;
 (b) code selection;
 (E) interrogation and reply.

(iv) use of DME:
(A) station selection and identification;
(B) modes of operation: distance, groundspeed and time to run.

(v) use of GNSS:
(A) selection of waypoints;
(B) to or from indications and orientation;
(C) error messages;
(D) hazards of over-reliance in the continuation of flight in DVE.

(b) Air exercise:

(1) navigation procedures as necessary;
(2) to advise student and correct errors as necessary;
(3) map reading techniques;
(4) the significance of calculations;
(5) revision of headings and ETA’s;
(6) use of radio;
(7) use of navaids: ADF/NDB, VOR, VHF/DF, DME and transponder;
(8) cross-country flying by using visual reference, DR, GNNS and, where available, radio navigation aids; simulation of deteriorating weather conditions and actions to divert or conduct precautionary landing;
(8) log keeping;
(9) importance of decision making;
(10) procedure to deal with uncertainty of position;
(11) lost procedure;
(12) appropriate procedures and choice of landing area for precautionary landings;
(13) aerodrome joining procedure;
(14) parking and shut-down procedures;
(15) post-flight administration procedures.
EXERCISE 23: ADVANCED TAKE-OFF, LANDINGS AND TRANSITIONS

(a) Long briefing objectives:
 (1) revision of landing and take-off out of wind (performance reduction);
 (2) revision of wind limitations;
 (3) revision of directional stability variation when out of wind;
 (4) revision of power required diagram;
 (5) technique for downwind transitions;
 (6i) technique for vertical take-off over obstacles;
 (7) reconnaissance technique for landing site;
 (8) power checks;
 (9) technique for running landing;
 (10) technique for zero speed landing;
 (11) technique for crosswind and downwind landings;
 (12) steep approach, including dangers;
 (13) revision of go-around procedures.

(b) Air exercise
 (1) technique for downwind transition;
 (2) technique for vertical take-off over obstacles;
 (3) reconnaissance technique for landing site;
 (4) power check and assessment;
 (5) technique for running landing;
 (6) technique for zero speed landing;
 (7) technique for crosswind and downwind landings;
 (8) technique for steep approach;
 (9) go-around procedures.

EXERCISE 24: SLOPING GROUND

(a) Long briefing objectives:
 (1) limitations;
 (2) wind and slope relationship, including blade and control stops;
 (3) effect of CG when on slope;
 (4) ground effect and power required when on slope;
 (5) landing technique when on slope, left, right and nose-up;
 (6) avoidance of dynamic rollover, dangers of soft ground and sideways movement;
 (7) dangers of over controlling near ground on slope;
(8) danger of striking main or tail rotor on up slope.

(b) Air exercise
 (1) technique for assessing slope angle;
 (2) technique for landing and take-off left skid up slope;
 (3) technique for landing and take-off right skid up slope;
 (4) technique for landing nose up slope;
 (5) dangers of over controlling near ground.

EXERCISE 25: LIMITED POWER

(a) Long briefing objectives:
 (1) use of appropriate helicopter performance graphs;
 (2) selection of technique according to available power;
 (3) effect of wind on available power.

(b) Air exercise: to revise and refine techniques demonstrated in exercise 23.

EXERCISE 26: CONFINED AREAS

(a) Long briefing objectives:
 (1) revision of use of helicopter performance graphs;
 (2) procedure for locating landing site and selecting site marker;
 (3) procedures for assessing wind speed and direction;
 (4) landing site reconnaissance techniques;
 (5) reason for selecting landing markers;
 (6) procedure for selecting direction and type of approach;
 (7) dangers of out of wind approach;
 (8) circuit procedures;
 (9) reason for approach to committal point and go-around, (practice approach);
 (10) approach technique;
 (11) revision of clearing turn and landing (sloping ground technique);
 (12) hover power check or performance assessment IGE and OGE (if necessary);
 (13) take-off procedures.

(b) Air exercise
 (1) procedures for locating landing site and selecting site marker;
 (2) procedures for assessing wind speed and direction;
 (3) landing site reconnaissance techniques;
 (4) selecting landing markers, direction and type of approach;
 (5) circuit procedure;
(6) practice approach, go-around and approach technique;
(7) revision of clearing turn and landing (sloping ground technique);
(8) hover power check or performance assessment IGE and OGE (if necessary);
(9) take-off procedures.

EXERCISE 27: BASIC INSTRUMENT FLIGHT

(a) Long briefing objectives:
 (1) physiological sensations;
 (2) instrument appreciation;
 (3) attitude instrument flight;
 (4) instrument scan;
 (5) instrument limitations;
 (6) basic manoeuvres by sole reference to instruments:
 (i) straight and level flight at various air speeds and configurations;
 (ii) climbing and descending;
 (iii) standard rate turns, climbing and descending, onto selected headings;
 (iv) recoveries from climbing and descending turns (unusual attitudes).

(b) Air exercise:
 (1) attitude instrument flight and instrument scan;
 (2) basic manoeuvres by sole reference to instruments:
 (i) straight and level flight at various air speeds and configurations;
 (ii) climbing and descending;
 (iii) standard rate turns, climbing and descending, onto selected headings;
 (iv) recoveries from climbing and descending turns (unusual attitudes).

EXERCISE 28: NIGHT FLYING (if night instructional qualification required)

(a) Long briefing objectives:
 (1) medical or physiological aspects of night vision;
 (2) requirement for torch to be carried (pre-flight inspection, etc.);
 (3) use of the landing light;
 (4) take-off and hover taxi procedures at night;
 (5) night take-off procedure;
(6) cockpit procedures at night;
(7) approach techniques;
(8) night landing techniques;
(9) night autorotation techniques (power recovery at safe height);
(10) technique for practice forced landing at night (using appropriate illumination);
(11) emergency procedures at night;
(12) navigation principles at night;
(13) map marking for night use (highlighting built up or lit areas with thicker lines, etc.).

(b) Air exercise:
(1) use of torch for pre-flight inspection;
(2) use of landing light;
(3) night take-off to hover (no sideways or backwards movement);
(4) night hover taxi (higher and slower than by day);
(5) night transition procedure;
(6) night circuit;
(7) night approach and landing (including use of landing light);
(8) night autorotation (power recovery at safe height);
(9) practice forced landing at night (using appropriate illumination);
(10) night emergency procedures;
(11) night cross country techniques, as appropriate.
C. Airships

Part 2

AIR EXERCISES

(a) The air exercises are similar to those used for the training of PPL(As) but with additional items designed to cover the needs of an FI.

(b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(1) the applicant's progress and ability;
(2) the weather conditions affecting the flight;
(3) the flight time available;
(4) instructional technique considerations;
(5) the local operating environment.

(c) It follows that student instructors will eventually be faced with similar interrelated factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

(d) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted about who is to fly the airship and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.

(e) The four basic components of the briefing will be:

(1) the aim;
(2) principles of flight (briefest reference only);
(3) the air exercise(s) (what, and how and by whom);
(4) airmanship (weather, flight safety etc.).

PLANNING OF FLIGHT LESSONS

(f) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.
GENERAL CONSIDERATIONS

(g) The student instructor should complete flight training to practise the principles of basic instruction at the PPL(As) level.

(h) During this training, except when acting as a student pilot for mutual flights, the student instructor occupies the seat normally occupied by the FI(As).

(i) It is to be noted that airmanship and look-out is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at all times.

(j) The exercises 15 and 16 of the flight instruction syllabus should be undertaken at night in addition to by day as part of the course.

(k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.
SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

LONG BRIEFINGS AND AIR EXERCISES
Note: although exercise 16 is not required for the PPL(As) course it is a requirement for the FI(As) course.

EXERCISE 1: FAMILIARISATION WITH THE AIRSHIP
(a) Long briefing objectives:
 (1) introduction to the airship;
 (2) characteristics of the airship;
 (3) cockpit layout;
 (4) airship and engine systems;
 (5) use of the checklist(s) and procedures;
 (6) to familiarise the student with the airship controls;
 (7) differences when occupying the instructor’s seat;
 (8) emergency drills:
 (i) action if fire in the air or on the ground: engine, cockpit or cabin and electrical fire;
 (ii) system failure drills as applicable to type;
 (iii) escape drills: location and use of emergency equipment and exits.
(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.

EXERCISE 2: PREPARATION FOR AND ACTION AFTER FLIGHT
(a) Long briefing objectives:
 (1) flight authorisation and airship acceptance including tech log (if applicable) and certificate of maintenance;
 (2) equipment required for flight (maps, etc.);
 (3) external checks;
 (4) internal checks;
 (5) student comfort, harness, seat and rudder pedal adjustment;
 (6) starting and after starting checks;
 (7) system, power or serviceability checks (as applicable);
 (8) closing down or shutting down the airship (including system checks);
 (9) parking, masting and unmasting, leaving the airship (including safety or security as applicable);
 (10) completion of the authorisation sheet and airship serviceability documents;
(b) Air exercise: all long briefing objectives mentioned above should also be trained on site during the air exercise.
EXERCISE 3: AIR EXPERIENCE

(a) Long briefing objectives:
 Note: there is no requirement for a long briefing for this exercise.

(b) Air exercise:
 (1) air experience;
 (2) cockpit layout, ergonomics and controls;
 (3) cockpit procedures: stability and control.

EXERCISE 4: EFFECTS OF CONTROLS

(a) Long briefing objectives:
 (1) function of the flying controls (primary and secondary effect);
 (2) effect of air speed;
 (3) effect of power changes;
 (4) effect of trimming and other controls;
 (5) use of instruments;
 (6) use of carburettor heat.

(b) Air exercise:
 (1) function of the flying controls;
 (2) effect of air speed;
 (3) effect of power changes;
 (4) effect of trimming and other controls;
 (5) use of instruments (including instrument scan);
 (6) use of carburettor heat.

EXERCISE 5: GROUND MANOEUVERING

(a) Long briefing objectives:
 (1) pre-taxi checks;
 (2) starting, control of speed and stopping;
 (3) engine handling;
 (4) masting procedures;
 (5) control of direction and turning;
 (6) effects of wind;
 (7) effects of ground surface;
 (8) marshalling signals;
 (9) instrument checks;
 (10) ATC procedures;
 (11) emergencies.

(b) Air exercise:
 (1) starting, control of speed and stopping;
(2) engine handling;
(3) masting procedures;
(4) control of direction and turning;
(5) effect of wind.

EXERCISE 6: TAKE-OFF PROCEDURES

(a) Long briefing objectives:
 (1) pre take-off checks;
 (2) take-off with different static heaviness;
 (3) drills during and after take-off;
 (4) noise abatement procedures.

(b) Air exercise:
 (1) take-off with different static heaviness;
 (2) drills during and after take-off.

EXERCISE 6e: EMERGENCIES

(a) Long briefing objectives:
 (1) abandoned take-off;
 (2) engine failures and actions after take-off;
 (3) malfunctions of thrust vector control;
 (4) aerodynamic control failures;
 (5) electrical and system failures.

(b) Air exercise:
 (1) how to abandon a take-off;
 (2) engine failure and suitable action;
 (3) malfunctions of thrust vector control;
 (4) aerodynamic control failures.

EXERCISE 7: CLIMBING

(a) Long briefing objectives:
 (1) entry and how to maintain the normal and max rate of climb;
 (2) levelling off procedure;
 (3) how to level off at selected altitudes;
 (4) maximum angle of climb;
 (5) maximum rate of climb.

(b) Air exercise:
 (1) how to level off at selected altitudes;
 (2) maximum angle of climb.
EXERCISE 8: STRAIGHT AND LEVEL FLIGHT

(a) Long briefing objectives:
 (1) how to attain and maintain straight and level flight;
 (2) flight at or close to pressure height;
 (3) control in pitch, including use of trim;
 (4) at selected air speeds (use of power);
 (5) during speed changes;
 (6) use of instruments for precision.

(b) Air exercise:
 (1) how to attain and maintain straight and level flight;
 (2) flight at or close to pressure height;
 (3) control in pitch, including use of trim;
 (4) at selected air speeds (use of power);
 (5) during speed changes.

EXERCISE 9: DESCENDING

(a) Long briefing objectives:
 (1) entry, maintaining and levelling off techniques;
 (2) levelling off at selected altitudes;
 (3) maximum rate of descent;
 (4) maximum angle of descent;
 (5) use of instruments for precision flight.

(b) Air exercise:
 (1) levelling off at selected altitudes;
 (2) maximum rate of descent;
 (3) maximum angle of descent.

EXERCISE 10: TURNING

(a) Long briefing objectives:
 (1) entry and maintaining level turns;
 (2) resuming straight flight;
 (3) faults in the turn;
 (4) climbing turns;
 (5) descending turns;
 (6) turns to selected headings: use of gyro heading indicator and compass;
 (7) use of instruments for precision.

(b) Air exercise
 (1) faults in the turn and correction techniques;
(2) climbing turns;
(3) descending turns.

EXERCISE 11: HOVERING

(a) Long briefing objectives: hovering manoeuvres (as applicable).
(b) Air exercise: hovering manoeuvres (as applicable).

EXERCISE 12: APPROACH AND LANDING

(a) Long briefing objectives:
 (1) effect of wind on approach and touchdown speeds;
 (2) landing with different static heaviness;
 (3) missed approach and go-around procedures;
 (4) noise abatement procedures.
(b) Air exercise
 (1) a landing with different static heaviness;
 (2) missed approach and go-around procedures.

EXERCISE 12e: EMERGENCIES

(a) Long briefing objectives:
 (1) aborted approach or go-around;
 (2) malfunction of thrust vector control;
 (3) envelope emergencies;
 (4) fire emergencies;
 (5) aerodynamic control failures;
 (6) electrical and system failures.
(b) Air exercise: emergency drills and actions.

EXERCISE 13: PRECAUTIONARY LANDING

(a) Long briefing objectives:
 (1) occasions necessitating a precautionary landing;
 (2) in-flight conditions;
 (3) landing area selection;
 (4) circuit and approach.
(b) Air exercise:
 (1) how to perform the landing area selection;
 (2) circuit and approach.

EXERCISE 14a: NAVIGATION

(a) Long briefing objectives:
 (1) how to do the flight planning;
(2) departure for a navigation flight;
(3) in-flight navigational techniques;
(4) arrival and aerodrome joining procedures;

(b) Air exercise:
(1) complete flight planning of a navigation flight;
(2) departure for a navigation flight;
(3) in-flight navigational techniques;
(4) arrival and aerodrome joining procedures.

EXERCISE 14b: NAVIGATION AT LOWER LEVELS AND IN REDUCED VISIBILITY

(a) Long briefing objectives:
(1) actions before descending;
(2) possible hazards (for example obstacles and terrain) and actions;
(3) student difficulties of map reading;
(4) effects of winds, turbulence and precipitation;
(5) vertical situational awareness;
(6) avoidance of noise sensitive areas;
(7) joining the circuit;
(8) bad weather circuit and landing.

(b) Air exercise:
(1) actions before descending;
(2) map reading techniques;
(3) vertical situational awareness;
(4) avoidance of noise sensitive areas;
(5) joining the circuit;
(6) bad weather circuit and landing.

EXERCISE 14c: RADIO NAVIGATION

(a) Long briefing objectives:
(1) use of VOR;
(2) use of ADF equipment;
(3) use of NDB stations;
(4) use of VHF/DF;
(5) use of en-route or terminal radar;
(6) use of DME equipment.

(b) Air exercise
(1) use of navaids;
(2) procedure to deal with uncertainty of position.
EXERCISE 15: BASIC INSTRUMENT FLIGHT

(a) Long briefing objectives:
 (1) physiological sensations;
 (2) instrument appreciation;
 (3) attitude instrument flight;
 (4) instrument scan;
 (5) instrument limitations;
 (6) basic manoeuvres by sole reference to the instruments:
 (i) straight and level;
 (ii) climbing and descending;
 (iii) turns, climbing and descending, onto selected headings;
 (iv) recoveries from climbing and descending turns.

(b) Air exercise:
 (1) attitude instrument flight and instrument scan;
 (2) the basic manoeuvres:
 (i) straight and level;
 (ii) climbing and descending;
 (iii) turns, climbing and descending, onto selected headings;
 (iv) recoveries from climbing and descending turns.

EXERCISE 16: NIGHT FLYING (if night instructional qualification required)

(a) Long briefing objectives:
 (1) medical and physiological aspects of night vision;
 (2) requirement for torch to be carried (pre-flight inspection, etc.);
 (3) use of the landing light;
 (4) ground manoeuvring procedures at night;
 (5) night take-off procedure;
 (6) cockpit procedures at night;
 (7) approach techniques;
 (8) night landing techniques
 (9) emergency procedures at night;
 (10) navigation principles at night.

(b) Air exercise:
 (1) use of landing light;
 (2) night ground manoeuvring;
 (3) night take-off, circuit or approach and landing (including use of landing light).
AMC2 FCL.930.FI FI — Training course

FI(S) AND FI(B) TRAINING COURSE

GENERAL
(a) The aim of the FI(S) and FI(B) training course is to train SPL and BPL holders to the level of competence defined in FCL.920 as instructor competencies.

(b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the FI task including at least the following:
 (1) refresh the technical knowledge of the student instructor;
 (2) train the student instructor to teach the ground subjects and air exercises;
 (3) ensure that the student instructor's flying is of a sufficiently high standard; and
 (4) teach the student instructor the principles of basic instruction and to apply them at all training levels.

(c) With the exception of the section on teaching and learning, all the subject detail contained in the ground and flight training syllabus is complementary to the SPL and BPL course syllabus.

(d) The FI training course should give particular stress to the role of the individual in relation to the importance of human factors in the man-machine and theoretical knowledge environment interaction. Special attention should be paid to the applicant’s maturity and judgement including an understanding of adults, their behavioural attitudes and variable levels of education.

(e) During the training course, the applicants should be made aware of their own attitudes to the importance of flight safety. Improving safety awareness should be a fundamental objective throughout the training course. It will be of major importance for the training course to aim at giving applicants the knowledge, skills and attitudes relevant to a flight instructor’s task.

(f) On successful completion of the training course and final test the applicant may be issued with an FI certificate.

CONTENT
(g) The training course consists of two parts:
 (1) Part 1, theoretical knowledge including the teaching and learning instruction that should comply with AMC1 FCL.920;
 (2) Part 2, flight instruction.
Part 1
The content of the teaching and learning part of the FI course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

The course should include at least 55 hours of theoretical knowledge including at least 25 hours teaching and learning instructions for the FI (S) and FI(B) certificate.
Part 2

FLIGHT INSTRUCTION SYLLABUS

An approved FI training course should comprise at least the minimum hours of flight instruction as defined in FCL.930.FI.

AIR EXERCISES

(a) The air exercises are similar to those used for the training of SPL or BPL but with additional items designed to cover the needs of a flight instructor.

(b) The numbering of exercises should be used primarily as an exercise reference list and as a broad instructional sequencing guide; therefore the demonstrations and practices need not necessarily be given in the order listed. The actual order and content will depend upon the following interrelated factors:

(1) the applicant's progress and ability;
(2) the weather conditions affecting the flight;
(3) the flight time available;
(4) instructional technique considerations;
(5) the local operating environment;
(6) Applicability of the exercises to the aircraft type.

(c) At the discretion of the instructors some of the exercises may be combined whereas some other exercises may be done in several flights.

(d) It follows that student instructors will eventually be faced with similar inter-related factors. They should be shown and taught how to construct flight lesson plans, taking these factors into account, so as to make the best use of each flight lesson, combining parts of the set exercises as necessary.

GENERAL

(e) The briefing normally includes a statement of the aim and a brief allusion to principles of flight only if relevant. An explanation is to be given of exactly what air exercises are to be taught by the instructor and practised by the student during the flight. It should include how the flight will be conducted with regard to who is to fly the aircraft and what airmanship, weather and flight safety aspects currently apply. The nature of the lesson will govern the order in which the constituent parts are to be taught.

(f) The five basic components of the briefing will be:

(1) the aim;
(2) the air exercise(s) (what, and how and by whom);
(3) flight briefing;
(4) check of understanding;
(5) airmanship.
PLANNING OF FLIGHT LESSONS

(g) The preparation of lesson plans is an essential prerequisite of good instruction and the student instructor is to be given supervised practice in the planning and practical application of flight lesson plans.

GENERAL CONSIDERATIONS

(h) The student instructor should complete flight training in order to practise the principles of basic instruction at the SPL or BPL level. During this training the student instructor occupies the seat normally occupied by the FI.

(i) The instructor providing this instructor training is normally taking over the role of the student pilot. In the case of the course for the FI(B) an additional person holding a BPL or LAPL(B) licence or a student pilot for these licences may be on board in order to function as a student pilot under the supervision of the instructor.

(j) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.

(k) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.
SYLLABUS OF FLIGHT INSTRUCTION CONTENTS

A. SAILPLANES

LONG BRIEFINGS AND AIR EXERCISES

Note: although the fully developed spin in exercise 10 is not required for the LAPL course, it is a requirement for the FI course.

EXERCISE 1: FAMILIARISATION WITH THE SAILPLANE

(a) Objective:
To advise the student instructor on how to familiarise the student with the sailplane which will be used for the training and to test his/her position in the sailplane for comfort, visibility, and ability to use all controls and equipment.

(b) Briefing and exercise:
The student instructor has to:
(1) present the type of sailplane which will be used;
(2) explain the cockpit layout: instruments and equipment;
(3) explain the flight controls: stick, pedals, airbrakes, flaps, cable release, undercarriage;
(4) check the position of the student on the seat for comfort, visibility, ability to use all controls;
(5) explain the use of the harness;
(6) demonstrate how to adjust the rudder pedal;
(7) explain the differences when occupying the instructor’s position;
(8) explain all checklists, drills, controls.

EXERCISE 2: PROCEDURE IN THE EVENT OF EMERGENCIES

(a) Objective:
To advise the student instructor on how to familiarise the student with the use of the parachute and how to explain the bail out procedure in case of emergency.

(b) Briefing and exercise:
The student instructor has to:
(1) explain how to handle the parachute with care (transport, storage and drying after use);
(2) demonstrate the adjustment of the parachute harness;
(3) explain the bail out procedure (especially from a sailplane in unusual attitude);
(4) explain the procedure for landing with a parachute in normal conditions and with a strong wind.
EXERCISE 3: PREPARATION FOR FLIGHT

(a) Objective:
To advise the student instructor on how to explain all the operations to be completed prior to flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
1. the need for a pre-flight briefing;
2. the structure and the content of this briefing;
3. which documents are required on board;
4. which equipment are required for a flight;
5. how to handle the sailplane on the ground, how to move it, how to tow it out and how to park it;
6. how to do the pre-flight external and internal checks;
7. the procedure for verifying in-limits mass and balance;
8. the pre-launch checks (checklist).

(c) Air exercise:
The student instructor has to demonstrate:
1. the need for a pre-flight briefing;
2. that the required documents are on board;
3. that the equipment required for the intended flight is on board;
4. how to handle the sailplane on the ground, move it to the start position, tow it out and park it;
5. how to perform a pre-flight external and internal check;
6. how to verify in-limits mass and balance;
7. how to adjust harness as well as seat or rudder pedals;
8. the pre-launch checks;
9. how to advise the student pilot in performing the pre-flight preparation;
10. how to analyse and correct pre-flight preparation errors as necessary.

EXERCISE 4: INITIAL AIR EXPERIENCE

(a) Objective:
To advise the student instructor on how to familiarise the student with being in the air, with the area around the airfield, to note his/her reactions in this situation, and to draw his/her attention to safety and look-out procedures.

(b) Briefing:
The student instructor has to explain:
1. the area around the airfield;
2. the need for looking out;
(3) the change of aircraft control.

(c) Air exercise:
The student instructor has to:
(1) show the noteworthy references on the ground;
(2) analyse the reactions of the student;
(3) check that the student looks out (safety).

EXERCISE 5: PRIMARY EFFECTS OF CONTROLS

(a) Objective:
To advise the student instructor on how to:
(1) demonstrate the primary effects of each control with the help of visual references;
(2) train the student pilot to recognise when the sailplane is no longer in a normal attitude along one of the axes and to return to the normal attitude;
(3) train continuous and efficient look-out during these exercises;
(4) analyse and correct errors and student pilot mistakes as necessary.

(b) Briefing:
The student instructor has to explain:
(1) define the axes of a sailplane;
(2) the look-out procedures;
(3) the visual references along each axis;
(4) the primary effects of controls when laterally level;
(5) the relationship between attitude and speed;
(6) the use of flaps;
(7) the use of airbrakes.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the visual references in flight;
(2) the primary effect of the elevator;
(3) the relationship between attitude and speed (inertia);
(4) the primary effect of rudder on the rotation of the sailplane around the vertical axis;
(5) the primary effect of ailerons on banking;
(6) the effect of airbrakes (including changes in pitch when airbrakes are extended or retracted);
(7) the effects of flaps (provided the sailplane has flaps);
(8) the look-out procedures during all the exercises;
(9) how to advise the student pilot to recognise the primary effects of each control;
EXERCISE 6: CO-ORDINATED ROLLING TO AND FROM MODERATE ANGLES OF BANK

(a) Objective:
To advise the student instructor on secondary effects of controls and on how to teach the student to coordinate ailerons and rudder in order to compensate for the adverse yaw effect. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
1. the secondary effects of controls;
2. the adverse yaw effect;
3. how to compensate for the adverse yaw;
4. the further effect of the rudder (roll).

(c) Air exercise:
The student instructor has to demonstrate:
1. the adverse yaw effect with a reference on ground;
2. the further effect of the rudder (roll);
3. the coordination of rudder and aileron controls to compensate for the adverse yaw effects;
4. rolling to and from moderate angles of bank (20 to 30 °) and returning to the straight flight;
5. how to advise the student pilot to coordinate ailerons and rudder;
6. how to analyse and correct errors as necessary.

EXERCISE 7: STRAIGHT FLYING

(a) Objective:
To advise the student instructor on how to train the student to maintain straight flight with a constant heading without slipping and skidding. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to:
1. explain how to maintain straight flight;
2. explain different air speed limitations;
3. explain the pitch stability of the sailplane;
4. explain the effect of trimming.

(c) Air exercise:
The instructor student has to demonstrate:
1. maintaining straight flight;
(2) inherent pitch stability;
(3) the control of the sailplane in pitch, including use of trim with visual references and speed;
(4) how to perform the instrument monitoring;
(5) the control of level attitude with visual references;
(6) the control of the heading with a visual reference on the ground;
(7) the look-out procedures during all the exercises;
(8) how to advise the student pilot to maintain straight flight;
(9) how to analyse and correct errors as necessary.

EXERCISE 8: TURNING

(a) Objective:
To advise the student instructor on how to teach students to fly turns and circles with a moderate constant bank of about 30 ° with constant attitude (speed) and coordinated flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the forces on the sailplane during a turn;
(2) the need to look out before turning;
(3) the sequences of a turn (entry, stabilizing and exiting);
(4) the common faults during a turn;
(5) how to turn on to selected headings, use of compass;
(6) the use of instruments (ball indicator or slip string) for precision.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the look-out procedure before turning;
(2) entering a turn (correction of adverse yaw);
(3) the stabilisation of a turn (keeping the attitude and compensating the induced roll);
(4) the exit from a turn;
(5) the most common faults in a turn;
(6) turns on to selected headings (use landmarks as reference);
(7) use of instruments (ball indicator or slip string) for precision;
(8) how to advise the student pilot to fly a turn or circle with a moderate bank;
(9) how to analyse and correct errors as necessary.
EXERCISE 9a: SLOW FLIGHT

(a) Objective:
To advise the student instructor on how to improve the student’s ability to recognize inadvertent flight at critically low speeds (high angle of attack) and to provide practice in maintaining the sailplane in balance while returning to normal attitude (speed). Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the characteristics of slow flight;
(2) the risks of stalling.

(c) Air Exercise:
The student instructor has to check that the airspace below the sailplane is free of other aircraft before starting the exercise.
The student instructor has to demonstrate:
(1) a controlled flight down to critically high angle of attack (slow air speed), and draw the attention of the student to the nose up attitude, reduction of noise, reduction of speed;
(2) a return to the normal attitude (speed);
(3) how to advise the student pilot to recognise inadvertent flight at critically low speeds;
(4) how to provide practice in maintaining the sailplane in balance while returning to normal attitude;
(5) how to analyse and correct errors as necessary.

EXERCISE 9b: STALLING

(a) Objective:
To advise the student Instructor on how to improve the student’s ability to recognize a stall and to recover from it. This includes stall from a level flight and stalls when a wing drops. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the mechanism of a stall;
(2) the effectiveness of the controls at the stall;
(3) pre-stall symptoms, recognition and recovery;
(4) factors affecting the stall (importance of the angle of attack and high speed stall);
(5) effect of flaps if any on the sailplane;
(6) the effects of unbalance at the stall safety checks;
(7) stall symptoms, recognition and recovery;
(8) recovery when a wing drops;
(9) approach to stall in the approach and in the landing configurations: recognition and recovery from accelerated stalls.

(c) Air Exercise:
The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.
The student instructor has to demonstrate:

1. stall from a level flight;
2. pre-stall symptoms, recognition and recovery;
3. stall symptoms, recognition and recovery;
4. recovery when a wing drops;
5. approach to stall in the approach and in the landing configurations;
6. recognition and recovery from accelerated stalls;
7. stalling and recovery at the incipient stage with ‘instructor induced’ distractions;
8. how to improve the student pilot’s ability to recognise a stall and to recover from it;
9. how to analyse and correct errors as necessary.

Note: consideration is to be given to manoeuvre limitations and references to the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) in relation to mass and balance limitations. The safety checks should take into account the minimum safe altitude for initiating such exercises in order to ensure an adequate margin of safety for the recovery. If specific procedures for stalling or spinning exercises and for the recovery techniques are provided by the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook), they have to be taken into consideration. These factors are also covered in the next exercise.

EXERCISE 10a: SPIN RECOGNITION AND AVOIDANCE

(a) Objective:
To advise the student Instructor on how to improve the student’s ability to recognize a spin at the incipient stage and to recover from it. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:

1. why a sailplane spins;
2. how to recognise the symptoms of a spin (not to be confused with spiral dive);
3. what are the parameters influencing the spin;
4. how to recover from a spin.

(c) Air exercise:
The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.
The student instructor has to:

1. demonstrate stalling and recovery at the incipient spin stage (stall with excessive wing drop, about 45°);
2. make sure that the student recognises the spin entry;
3. make sure that the student pilot is able to recover from the spin;
4. check if the student still reacts properly if the instructor induces distractions during the spin entry;
5. demonstrate how to analyse and correct errors as necessary.

Note: consideration of manoeuvre limitations and the need to refer to the sailplane manual and mass and balance calculations.

EXERCISE 10b: DEVELOPED SPINS: ENTRY AND RECOVERY

(a) Objective:
To advise the student instructor on how to recognize a developed spin and to recover from it. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:

1. the spin entry;
2. the symptoms of a real spin and the recognition and identification of spin direction;
3. the spin recovery;
4. use of controls;
5. effects of flaps (flap restriction applicable to type);
6. the effect of the CG upon spinning characteristics;
7. the spinning from various flight attitudes;
8. the sailplane limitations;
9. safety checks;
10. common errors during recovery.

(c) Air exercise:
The student instructor has to check that the airspace below the sailplane is free of other aircraft or traffic before starting the exercise.

The student instructor has to demonstrate:

1. safety checks;
2. the spin entry;
3. the recognition and identification of the spin direction;
4. the spin recovery (reference to flight manual);
5. the use of controls;
6. the effects of flaps (restrictions applicable to sailplane type);
7. spinning and recovery from various flight attitudes;
EXERCISE 11: TAKE OFF OR LAUNCH METHODS

Note: the student instructor has to teach at least one of the following launch methods: winch launch, aero tow, self launch. At least three launch failure exercises should be completed. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

EXERCISE 11a: WINCH LAUNCH

(a) Objective:

To advise the student instructor on how to teach winch launches and on how to make sure that their student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:

The student instructor has to explain:

1. the signals or communication before and during launch;
2. the use of the launching equipment;
3. the pre-take-off checks;
4. the procedure for into wind take-off;
5. the procedure for crosswind take-off;
6. the optimum profile of winch launch and limitations;
7. the launch failure procedures.

(c) Air exercise:

The student instructor has to demonstrate:

1. the use of the launching equipment;
2. the pre-take-off checks;
3. the into wind take-off;
4. the crosswind take-off;
5. the optimum profile of winch launch and limitations;
6. the procedure in case of cable break or aborted launch, launch failure procedures;
7. how to teach the student pilot to perform safe winch launches;
8. how to teach the student pilot to manage an aborted launch (different altitudes);
9. how to analyse and correct errors as necessary.

EXERCISE 11b: AERO TOW

(a) Objective:
To advise the student instructor on how to teach aero towing and on how to make sure that their student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the signals or communication before and during launch;
(2) the use of the launch equipment;
(3) the pre-take-off checks;
(4) the procedure for into wind take-off;
(5) the procedure for crosswind take-off;
(6) the procedure on tow: straight flight, turning and slip stream;
(7) the recovery from out-of-position on tow;
(8) the procedures in case of launch failure and abandonment;
(9) the descending procedure on tow (towing aircraft and sailplane);
(10) the reasons for launch failures and abandonment or procedures.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the signals before and during launch;
(2) the use of the launch equipment;
(3) the pre-take-off checks;
(4) the procedure for into wind take-off;
(5) the procedure for a crosswind take-off;
(6) the procedures on tow: straight flight, turning and slip stream;
(7) the recovery from out-of-position on tow;
(8) the procedure in case of launch failure and abandonment;
(9) the descending procedure on tow;
(10) how to teach the student pilot to perform safe aero tow launches;
(11) how to teach the student pilot to manage an aborted launch;
(12) how to analyse and correct errors as necessary.

EXERCISE 11c: SELF LAUNCH

(a) Objective:
To advise the student instructor on how to teach launching with a self launching sailplane and on how to make sure that his/her student will manage an aborted launch. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the engine extending and retraction procedures;
(2) the engine starting and safety precautions;
(3) the pre-take-off checks;
(4) the noise abatement procedures;
(5) the checks during and after take-off;
(6) the into wind take-off;
(7) the crosswind take-off;
(8) the procedure in case of power failure;
(9) the procedure in case of abandoned take-off;
(10) the maximum performance (short field and obstacle clearance) take-off;
(11) the short take-off and soft field procedure or techniques and performance calculations.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the engine extending and retraction procedures;
(2) the engine starting and safety precautions;
(3) the pre-take-off checks;
(4) the noise abatement procedures;
(5) the checks during and after take off;
(6) the into wind take-off;
(7) the crosswind take-off;
(8) the power failures and procedures;
(9) the procedure in case of abandoned take-off;
(10) the maximum performance (short field and obstacle clearance) take-off;
(11) the short take-off and soft field procedure or techniques and performance calculations;
(12) how to teach the student pilot to perform safe self launches;
(13) how to teach the student pilot to manage an aborted launch (different altitudes);
(14) how to analyse and correct errors as necessary.

EXERCISE 12: CIRCUIT APPROACH AND LANDING

(a) Objective:
To advise the student instructor on how to teach their students to fly a safe circuit approach and to land the sailplane. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the procedures for rejoining the circuit;
(2) the procedures for collision avoidance and the lookout techniques;
(3) the pre-landing check;
(4) the normal circuit procedures, downwind, base leg;
(5) the effect of wind on approach and touchdown speeds;
(6) the visualisation of a reference point;
(7) the approach control and use of airbrakes;
(8) the use of flaps (if applicable);
(9) the procedures for normal and crosswind approach and landing.

(c) Air exercise:

The student instructor has to demonstrate:
(1) the procedures for rejoining the circuit;
(2) the procedures for collision avoidance and the look-out techniques;
(3) the pre-landing check;
(4) the standard circuit and contingency planning (for example running out of height);
(5) the effect of wind on approach and touchdown speeds;
(6) the visualisation of an aiming point;
(7) the approach control and use of airbrakes;
(8) the use of flaps (if applicable);
(9) the procedures for normal and crosswind approaches and landings;
(10) how to teach the student pilot to fly a safe circuit approach;
(11) how to improve the student pilot’s ability to perform a safe landing;
(12) how to analyse and correct errors as necessary.

EXERCISE 13: FIRST SOLO

(a) Objective:

To advise the student instructor on how to prepare their students for the first solo flight.

(b) Briefing:

The student instructor has to explain:
(1) the limitations of the flight (awareness of local area and restrictions);
(2) the use of required equipment.

(c) Air exercise:

The student instructor has to;
(1) check with another or more senior instructor if the student can fly solo;
(2) monitor the flight;
(3) debrief the flight with the student.
EXERCISE 14: ADVANCED TURNING

(a) Objective:
To advise the student instructor on how to fly steep turns or circles (45 ° banking) at constant attitude (speed) and with the yaw string centred. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain;
(1) the relationship between banking and speed;
(2) how to master steep turns or circles;
(3) the unusual attitudes which can occur (stalling or spinning and spiral dive);
(4) how to recover from these unusual attitudes.

(c) Air exercise:
The student has to demonstrate:
(1) steep turns (45 °) at constant speed and with the yaw string centred;
(2) common errors (slipping and skidding);
(3) unusual attitudes and how to recover from them;
(4) how to teach the student pilot to fly steep turns or circles;
(5) how to analyse and correct errors as necessary.

EXERCISE 15: SOARING TECHNIQUES

Note: if the weather conditions during the instructor training do not allow the practical training of soaring techniques, all items of the air exercises have to be discussed and explained during a long briefing exercise only.

EXERCISE 15a: THERMALLING

(a) Objective:
To advise the student instructor on how to teach their students to recognise and detect thermals, on how to join a thermal and on how to look out, in order to avoid mid-air collisions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain;
(1) the look-out procedures;
(2) the detection and recognition of thermals;
(3) the use of audio soaring instruments;
(4) the procedure for joining a thermal and giving way;
(5) how to fly in close proximity to other sailplanes;
(6) how to centre in thermals;
(7) how to leave thermals.

(c) Air exercise:
The student instructor has to demonstrate;

(1) the look-out procedures;
(2) the detection and recognition of thermals;
(3) the use of audio soaring instruments;
(4) the procedure for joining a thermal and giving way;
(5) the procedure for flying in close proximity to other sailplanes;
(6) the centering in thermals;
(7) the procedure for leaving thermals;
(8) how to improve the student pilot’s ability to recognise and detect thermals;
(9) how to improve the student pilot’s ability to join a thermal and how to look out;
(10) how to analyse and correct errors as necessary.

EXERCISE 15b: RIDGE FLYING

(a) Objective:
To advise the student instructor on how to teach his/her students to fly safely on ridges, to control their speed, and to apply the rules in order to avoid mid-air collisions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:

(1) the look-out procedures;
(2) the ridge flying rules;
(3) the recognition of optimum flight path;
(4) speed control.

(c) Air exercise: (if applicable during training and, if possible, at training site)
The student instructor has to demonstrate:

(1) the look-out procedures;
(2) the practical application of ridge flying rules;
(3) the recognition of optimum flight path;
(4) speed control;
(5) how to teach the student pilot to fly safely on ridges;
(6) how to analyse and correct errors as necessary.

EXERCISE 15c: WAVE FLYING

(a) Objective:
To advise the student instructor on how to introduce students to wave flying and to teach them to fly safely at high altitude. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the look-out procedures;
(2) the techniques to be used to accede to a wave;
(3) the speed limitations with increasing height;
(4) the risks of hypoxia and the use of oxygen.

(c) Air exercise: (if applicable during training and if possible at training site)
The student instructor has to demonstrate:
(1) the look-out procedures;
(2) the wave access techniques;
(3) the speed limitations with increasing height;
(4) the use of oxygen (if available);
(5) how to improve the student pilot’s ability to recognise and detect waves;
(6) how to teach the student pilot to fly safely in a wave;
(7) how to analyse and correct errors as necessary.

EXERCISE 16: OUT-LANDINGS

Note: if the weather conditions during the instructor training do not allow the practical training of out-landing procedures (a touring motor glider may be used) all items of the air exercise have to be discussed and explained during a long briefing exercise only. Instructors may only teach the safe out-landing exercise after they have demonstrated the practical ability to do so.

(a) Objective:
To advise the student instructor on how to teach students to select an out-landing field, to fly the circuit and how to master the unusual landing situation. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the gliding range at max L/D;
(2) the engine re-start procedures (only for self-launching and self-sustaining sailplanes);
(3) the selection of a landing area;
(4) the circuit judgement and key positions;
(5) the circuit and approach procedures;
(6) the actions to be done after landing.

(c) Air exercise:
The student instructor has to demonstrate:
(1) precision landings on the airfield;
(2) the gliding range;
(3) the procedures for joining, arrival and circuit at a remote aerodrome;
(4) the selection of an out-landing area;
(5) the procedures for circuit and approach on an out-landing field;
(6) the actions to be done after landing;

The student instructor also has to be trained:
(7) how to advise the student pilot to do perform a safe out-landing;
(8) how to master an unusual landing situation;
(9) how to analyse and correct errors as necessary.

EXERCISE 17: CROSS COUNTRY FLYING

Note: if the weather conditions during the instructor training do not allow a cross country training flight the items of the air exercise have to be discussed and explained during a long briefing exercise only.

EXERCISE 17a: FLIGHT PLANNING

(a) Objective:
To advise the student instructor on how plan and prepare a cross-country flight.

(b) Briefing:
The student instructor has to explain:
(1) the weather forecast and current situation;
(2) the selection of the amount of water to be carried as a function of the weather forecast;
(3) the method for selecting a task, taking into account the average speed to be expected;
(4) the map selection and preparation;
(5) the NOTAMs and airspace considerations;
(6) the radio frequencies (if applicable);
(7) the pre-flight administrative procedures;
(8) the procedure for filing a flight plan where required;
(9) alternate aerodromes and landing areas.

EXERCISE 17b: IN-FLIGHT NAVIGATION

(a) Objective:
To advise the student instructor on how to teach performing a cross-country flight.

(b) Briefing:
The student instructor has to explain:
(1) how to maintain track and re-route if necessary;
(2) the altimeter settings;
(3) the use of radio and phraseology;
(4) the in-flight planning;
(5) the procedures for transiting regulated airspace or ATC liaison where required;
(6) the procedure in case of uncertainty of position;
(7) the procedure in case of becoming lost;
(c) Air exercise:
The student instructor has to demonstrate:
(1) maintaining track and re-routing if necessary;
(2) altimeter settings;
(3) the use of radio and phraseology;
(4) in-flight planning;
(5) procedures for transiting regulated airspace or ATC liaison where required;
(6) uncertainty of position procedure;
(7) lost procedure;
(8) use of additional equipment where required;
(9) joining, arrival and circuit procedures at remote aerodrome;
(10) how to teach the student pilot to perform a cross-country flight;
(11) how to analyse and correct errors as necessary.

EXERCISE 17c: CROSS-COUNTRY SOARING TECHNIQUES

(a) Objective:
To advise the student instructor on the techniques for an efficient cross country flight.

(b) Briefing:
The student instructor has to explain:
(1) the speed to fly at maximal L/D ratio;
(2) the speed to fly to maximise the cruise speed (McCready theory);
(3) how to select the optimal track (efficient use of cloud streets etc.);
(4) how to calculate the final glide;
(5) how to perform a safe out-landing.

(c) Air exercise:
The student instructor has to demonstrate:
(1) a cross-country flight;
(2) the selection of the optimal track (efficient use of cloud streets, etc);
(3) the use of the Mc Cready ring;
(4) use of final glide computers;
(5) how to reduce risk and to react to potential dangers;
(6) how to plan and perform an out-landing;
(7) how to teach the student pilot techniques for an efficient cross-country flight;
(8) how to analyse and correct errors as necessary.

B. BALLOONS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: FAMILIARISATION WITH THE BALLOON

(a) Objective:
To advise the student Instructor on how to familiarise the student with the balloon which will be used for the training and to test his position in the basket for comfort, visibility, and ability to use all controls and equipment. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing and exercise:
The student instructor has to:
(1) present the type of balloon which will be used;
(2) explain the characteristics of the balloon;
(3) explain the components, instruments and equipment;
(4) explain the re-fuelling procedures (in the case of hot air balloons);
(5) to familiarise the student with the balloon controls;
(6) explain the differences when occupying the instructor’s position;
(7) explain all checklists, drills and controls.

EXERCISE 2: PREPARATION FOR FLIGHT

(a) Objective:
To advise the student instructor on how to explain all the operations and necessary preparation to be completed before the flight. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing
The student instructor has to explain:
(1) the need for a pre-flight briefing;
(2) the structure and the content of this briefing;
(3) which documents are required on board;
(4) which equipment are required for a flight;
(5) the use of weather forecasts or actuals;
(6) the flight planning with particular regard to NOTAMs, airspace structure, sensitive areas, expected track and distance, pre-flight picture and possible landing fields;
(7) the use of load calculation chart;
(8) the selection of launch field with particular regard to permission, behaviour and adjacent fields.

(c) Air exercise:
The student instructor has to prepare and give a pre-flight briefing.
The student instructor has to demonstrate:
(1) that the required documents are on board;
(2) that the equipment required for the intended flight is on board;
(3) how to advice the student to do the pre-planning procedures for each flight;
(4) how to perform a pre-launch check;
(5) how to select a launch field with particular regard to permission, behaviour and adjacent fields;
(6) how to teach the student pilot to perform the preparation to be completed prior to flight;
(7) how to analyse and correct errors of the student pilot as necessary.

EXERCISE 3: CREW AND PASSENGER BRIEFING

(a) Objective:
To advise the student instructor on how to explain all the importance of correct clothing for pilot, passengers and crew and how to perform the briefing of ground- and retrieve crew and the briefing of passengers. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the correct clothing for passengers and crew;
(2) the briefings for ground- and retrieve crew and passengers.

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to advise the passengers and crew about the correct clothing;
(2) the briefing of ground- and retrieve crew;
(3) the briefing of passengers;
(4) how to familiarise the student pilot with the different type of briefings;
(5) how to analyse and correct errors of the student pilot.

EXERCISE 4: ASSEMBLY AND LAYOUT
(a) Objective:
To advise the student instructor on how to familiarise the student pilot with the control of the crowd and how to perform the securing of launch site. Furthermore the student instructor has to demonstrate how to familiarise the student pilot with the correct rigging of envelope and basket, the burner test procedure (hot air balloons) and the pre-inflation checks. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the control of the crowd;
(2) the securing of the launch site;
(3) the correct rigging procedure;
(4) the use of the restraint line;
(5) the pre-inflation checks.

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to control the crowd and securing of launch site;
(2) the correct rigging of envelope and basket;
(3) the correct use of the restraint line;
(4) the burner test procedure (hot air balloons);
(5) the pre-inflation checks;
(6) how to teach the student pilot to perform the correct rigging;
(7) how to analyse and correct assembly errors of the student pilot as necessary.

EXERCISE 5: INFLATION

(a) Objective:
To advise the student instructor on how to familiarise the student pilot with the different phases of the inflation procedure, the use of restraint line and inflation fan (hot air balloons) and the avoidance of electrostatic discharge (gas balloons). Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the different phases of the inflation procedure;
(2) the crowd control and securing procedures during inflation;
(3) the use of the inflation fan (hot air balloons);
(4) how to avoid electronic discharge (gas balloons).

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to control of crowd and securing of launch site during inflation procedure;
(2) the cold inflation procedure and use of restraint line and inflation fan (hot air balloons);
(3) the hot inflation procedure (hot air balloons);
(4) the avoidance of electrostatic discharge (gas balloons);
(5) the inflation procedure (gas balloons);
(6) how to teach the student pilot to perform the inflation procedures;
(7) how to analyse and correct errors of the student pilot during the inflation procedure as necessary.

EXERCISE 6: TAKE OFF IN DIFFERENT WIND CONDITIONS

(a) Objective:
To advise the student instructor how to explain the pre take-off checks and briefings, the preparation for controlled climb and the use of restraint equipment. Furthermore the student instructor should be able to demonstrate the assessment of wind and obstacles, the preparation for false lift and the take off techniques in different wind conditions. In addition to this the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the pre take-off checks and briefings;
(2) the preparation for controlled climb;
(3) the ‘hands off and hands on’ procedure for ground crew;
(4) the assessment of lift;
(5) the use of the restraint equipment;
(6) the assessment of wind and obstacles;
(7) the preparation for false lift;
(8) the take off techniques from sheltered and non sheltered launch fields.

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to perform the pre take-off checks and briefings;
(2) how to prepare for controlled climb;
(3) how to perform the ‘hands off and hands on’ procedure for ground crew;
(4) how to perform the assessment of lift without endangering the ground crew;
(5) how to use the restraint equipment;
(6) how to perform the assessment of wind and obstacles;
(7) how to prepare for false lift;
(8) how to teach the student pilot the correct take off techniques from sheltered and non sheltered launch fields;
(9) how to analyse and correct errors of the student pilot as necessary.

EXERCISE 7: CLIMB TO LEVEL FLIGHT

(a) Objective:
To advise the student instructor on how to explain and demonstrate the climb to flight level. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the climbing with a predetermined rate of climb;
(2) the effect on envelope temperature (hot air balloons);
(3) the maximum rate of climb according to manufacturer’s flight manual;
(4) how to level off at selected altitude.

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to climb with a predetermined rate of climb;
(2) how to perform look out techniques;
(3) the effect on envelope temperature (hot air balloons);
(4) the maximum rate of climb according to manufacturer’s flight manual;
(5) the levelling off techniques at selected altitude;
(6) how to advise the student pilot to perform the climb to level flight;
(7) how to analyse and correct faults or errors of the student pilot during the climb.

EXERCISE 8: LEVEL FLIGHT

(a) Objective:
To advise the student instructor on how to explain and demonstrate level flight. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) how to maintain level flight by use of instruments;
(2) how to maintain level flight by use of visual references;
(3) how to maintain level flight by use of all available means;
(4) the use of parachute;
(5) the use of turning vents if installed (hot air balloons).

(c) Air exercise:
The student instructor has to demonstrate:
(1) how to maintain level flight by use of instruments;
(2) how to maintain level flight by use of visual references;
(3) how to maintain level flight by use of all available means;
(4) the use of parachute;
(5) the use of turning vents if installed (hot air balloons);
(6) how to advise the student pilot to perform the level flight;
(7) how to analyse and correct faults or errors of the student pilot during the level flight.

EXERCISE 9: DESCENT TO LEVEL FLIGHT

(a) Objective:
To advise the student instructor on how to explain and demonstrate the descent to a certain flight level. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) how to descent with a predetermined rate of descent;
(2) a fast descent;
(3) the maximum rate of descent according to manufacturer’s flight manual;
(4) the use of parachute;
(5) a parachute stall and cold descent (hot air balloons);
(6) the levelling off technique at selected altitude.

(c) Air exercise:
The student instructor has to demonstrate:
(1) a descent with a predetermined rate of descent;
(2) how to perform look out techniques;
(3) a fast descent;
(4) the maximum rate of descent according to manufacturer’s flight manual;
(5) the use of parachute;
(6) how to level off at selected altitudes;
(7) how to advise the student pilot to perform a descent to a certain flight level;
(8) how to analyse and correct faults or errors of the student pilot during the descent.

EXERCISE 10: EMERGENCIES

(a) Objective:
To advise the student instructor on how to explain and demonstrate the different emergency situations and how to react. Furthermore the student instructor should learn how to identify student errors during the simulated emergency exercises and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the pilot light failure (hot air balloons);
(2) burner failures, valve leaks, flame out and re-light (hot air balloons);
(3) gas leaks;
(4) closed appendix during take-off and climb (gas balloons);
(5) the envelope over temperature (hot air balloons);
(6) envelope damage in flight;
(7) the parachute or rapid deflation system failure;
(8) fire on ground and in the air;
(9) how to avoid an obstacle contact including contact with electrical power lines;
(10) escape drills, location and use of emergency equipment.

(c) Air exercise:
The student instructor has to demonstrate:
(1) a pilot light failure (hot air balloons);
(2) a burner failure, valve leaks, flame out and re-light (hot air balloons);
(3) gas leaks;
(4) a closed appendix during take-off and climb (gas balloons);
(5) envelope over temperature (hot air balloons);
(6) envelope damage in flight;
(7) parachute or rapid deflation system failure;
(8) a fire on ground and in the air;
(9) the escape drills, location and use of emergency equipment;
(10) how to advise the student pilot in performing the different emergency drills;
(11) how to analyse and correct faults or errors of the student pilot.

EXERCISE 11: NAVIGATION

(a) Objective:
To advise the student instructor on how to explain and demonstrate the advanced navigational flight preparation. Furthermore the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the maps selection;
(2) the plotting of the expected track;
(3) the marking of positions and time;
(4) the calculation of distance and speed;
(5) the calculation of fuel consumption (hot air balloons);
(6) the calculation of ballast consumption (gas balloons);
(7) the ceiling limitations (ATC or weather);
(8) how to plan ahead;
(9) the monitoring of weather development;
(10) the monitoring of fuel or ballast consumption;
(11) ATC liaison (if applicable);
(12) the communication with retrieve crew;
(13) the use of GNSS.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the use of selected maps;
(2) the plotting of the expected track;
(3) the marking of positions and time;
(4) how to monitor of distance and speed;
(5) how to monitor the fuel or ballast consumption;
(6) the observance of ceiling limitations (ATC or weather);
(7) the planning ahead;
(8) the monitoring of weather development;
(9) the monitoring of envelope temperature (hot air balloons);
(10) ATC liaison (if applicable);
(11) communication with retrieve crew;
(12) use of GNSS;
(13) how to advise the student pilot in performing the navigational preparation;
(14) how to advise the student pilot in performing the different navigational in-flight tasks;
(15) how to analyse and correct faults or errors of the student pilot.

EXERCISE 12a: FUEL MANAGEMENT HOT AIR BALLOONS

(a) Objective:
To advise the student instructor on how to explain and demonstrate the fuel management techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the cylinder arrangement and the burner systems;
(2) the function of the pilot light supply (vapour or liquid);
(3) the use of master cylinders (if applicable);
(4) the fuel requirement and expected fuel consumption;
(5) the fuel state and pressure;
(6) the minimum fuel reserves;
(7) cylinder contents gauge and change procedure;
(8) the use of cylinder manifolds.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the cylinder arrangement and burner systems;
(2) the pilot light supply (vapour or liquid);
(3) the use of master cylinders (if applicable);
(4) how to monitor of fuel requirement and expected fuel consumption;
(5) the monitoring of fuel state and pressure;
(6) the monitoring of fuel reserves;
(7) the use of cylinder contents gauge and change procedure;
(8) the use of cylinder manifolds;
(9) how to advise the student pilot to perform the fuel management;
(10) how to analyse and correct faults or errors of the student pilot.

EXERCISE 12b: BALLAST MANAGEMENT GAS BALLOONS

(a) Objective:
To advise the student instructor on how to explain and demonstrate the ballast management. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the minimum ballast;
(2) the arrangement and securing of ballast;
(3) the ballast requirement and expected ballast consumption;
(4) the ballast reserves.

(c) Air exercise:
The student instructor also has to demonstrate:
(1) the arrangement of minimum ballast;
(2) the arrangement and securing of ballast;
(3) the ballast requirement calculation and expected ballast consumption;
(4) how to secure ballast reserves;
(5) how to advise the student pilot to perform the ballast management;
(6) how to analyse and correct faults or errors of the student pilot.

EXERCISE 13: APPROACH FROM LOW LEVEL
(a) Objective:
To advise the student instructor on how to explain and demonstrate the approach from level. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.
(b) Briefing:
The student instructor has to explain:
(1) the pre landing checks;
(2) passenger pre-landing briefing;
(3) the selection of field;
(4) the use of burner and parachute (hot air balloons);
(5) the use of ballast or parachute and valve (gas balloons);
(6) the use of trail rope (if applicable) (gas balloons);
(7) the look-out;
(8) missed approach and fly on procedures.
(c) Air exercise:
The student instructor has to demonstrate:
(1) the use of the pre landing checks;
(2) the selection of fields;
(3) the use of burner and parachute (hot air balloons);
(4) the use of ballast or parachute and valve (gas balloons);
(5) the use of trail rope (if applicable) (gas balloons);
(6) the look out procedures and how to avoid possible distractions;
(7) the missed approach and fly on techniques;
(8) how to advise the student pilot to perform an approach from low level;
(9) how to analyse and correct faults or errors of the student pilot.

EXERCISE 14: APPROACH FROM HIGH LEVEL
(a) Objective:
To advise the student instructor on how to explain and demonstrate the approach from high level. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.
(b) Briefing:
The student instructor has to explain:
(1) the pre-landing checks;
(2) passenger pre-landing briefing;
(3) the selection of field;
(4) the rate of descent;
(5) the use of burner and parachute (hot air balloons);
(6) the use of ballast and parachute (gas balloons);
(7) the use of trail rope (if applicable) (gas balloons);
(8) the look-out;
(9) the missed approach and fly on procedures.

(c) Air exercise:
 The student instructor has to demonstrate:
 (1) the pre-landing checks;
 (2) the selection of field;
 (3) the rate of descent;
 (4) the use of burner and parachute (hot air balloons);
 (5) the use of ballast and parachute (gas balloons);
 (6) the use of trail rope (if applicable) (gas balloons);
 (7) the look out procedures and how to avoid potential distraction;
 (8) the missed approach and fly on techniques;
 (9) how to advise the student pilot to perform an approach from a higher level;
 (10) how to analyse and correct faults or errors of the student pilot.

EXERCISE 15: OPERATING AT LOW LEVEL

(a) Objective:
 To advise the student instructor on how to explain and demonstrate the operation at a low height. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
 The student instructor has to explain:
 (1) the use of burner and parachute (hot air balloons);
 (2) the use of ballast and parachute (gas balloons);
 (3) the look out;
 (4) how to avoid a contact with low level obstacles;
 (5) how to avoid sensitive areas (for example nature protection areas);
 (6) landowner relations.

(c) Air exercise:
 The student instructor has to demonstrate:
 (1) the use of burner and parachute (hot air balloons);
 (2) the use of ballast and parachute (gas balloons);
 (3) the look out procedures and how to avoid potential distraction;
(4) how to avoid low level obstacles;
(5) good landowner relations;
(6) how to advise the student pilot to operate the balloon at a low level;
(7) how to analyse and correct faults or errors of the student pilot.

EXERCISE 16: LANDING IN DIFFERENT WIND CONDITIONS

(a) Objective:
To advise the student instructor on how to explain and demonstrate landings in different wind conditions. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the correct actions for turbulences during the approach or landing;
(2) the passenger pre-landing briefing;
(3) the use of burner and pilot lights (hot air balloons);
(4) the use of ballast, parachute, valve and rip panel (gas balloons);
(5) the use of parachute and turning vents (if applicable);
(6) the look out;
(7) the landing, dragging and deflation;
(8) landowner relations.

(c) Air exercise:
The student instructor has to demonstrate:
(1) the pre-landing checks;
(2) the passenger briefing;
(3) the selection of field;
(4) the effect of turbulence;
(5) the use of burner and pilot lights (hot air balloons);
(6) the use of ballast, parachute, valve and rip panel (gas balloons);
(7) the use of parachute and turning vents (if applicable);
(8) the look out procedures and how to avoid potential distraction;
(9) the landing, dragging and deflation procedures;
(11) how to advise the student pilot to perform a safe landing in different wind conditions;
(12) how to analyse and correct faults or errors of the student pilot.

EXERCISE 17: FIRST SOLO

(a) Objective:
To advise the student instructor on how to prepare their students for the first solo flight.
(b) Briefing:
The student instructor has to explain:
(1) the limitations of the flight;
(2) the use of required equipment.

(c) Air exercise:
The student instructor has to:
(1) check with another or more senior instructor if the student can fly solo;
(2) monitor the pre-flight preparation;
(3) brief the student (expected flight time or emergency actions);
(4) monitor the flight as far as possible;
(5) debrief the flight with the student.

EXERCISE 18: TETHERED FLIGHT HOT AIR BALLOONS (if tethered flight instructional qualification is required)

(a) Objective:
To advise the student instructor on how to explain and demonstrate the tethering techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) Briefing:
The student instructor has to explain:
(1) the ground preparations;
(2) the weather suitability;
(3) the tethering techniques and equipment;
(4) the maximum all-up-weight limitation;
(5) the crowd control;
(6) the pre take-off checks and briefings;
(7) the heating for controlled lift off;
(8) the ‘hands off and hands on’ procedure for ground crew;
(9) the assessment of wind and obstacles;
(10) the controlled climb to a pre-defined altitude (at least 60 ft).

(c) Air exercise:
The student instructor has to demonstrate:
(1) the ground preparations;
(2) the tethering techniques;
(3) the reason for maximum all-up-weight limitation;
(4) how to perform the crowd control;
(5) the pre take-off checks and briefings;
(6) the heating for controlled lift off;
(7) the ‘hands off and hands on’ procedure for ground crew;
(8) the assessment of wind and obstacles;
(9) the controlled climb;
(10) the landing techniques;
(11) how to advise the student pilot to perform a tethered flight;
(12) how to analyse and correct faults or errors of the student pilot.

EXERCISE 19: NIGHT FLYING (if night instructional qualification required)

(a) **Objective:**
To advise the student instructor on how to explain and demonstrate the night flying techniques. Furthermore, the student instructor should learn how to identify student errors and how to correct them properly.

(b) **Briefing:**
The student instructor has to explain:
1. the medical or physiological aspects of night vision;
2. the use of lights for assembly, layout and inflation;
3. the requirement for torch to be carried, (pre-flight inspection, etc.);
4. the use of the external- and instrument lights;
5. the night take-off procedure;
6. the checklist procedures at night;
7. the emergency procedures at night;
8. the navigation principles at night;
9. map marking for night use (highlighting built up or lit areas with thicker lines, etc.).

(c) **Air exercise:**
The student instructor has to demonstrate:
1. the use of lights for assembly, layout and inflation;
2. the use of torch for pre-flight inspection;
3. the use of external- and instrument lights;
4. the night take-off procedure;
5. how to perform the checklist procedures at night;
6. simulated night emergency procedures;
7. night cross country techniques, as appropriate;
8. how to advise the student pilot to perform a flight at night;
9. how to analyse and correct faults or errors of the student pilot.
AMC1 FCL.940.FI(a)(2) FI — Revalidation and renewal

FI OR IRI REFRESHER SEMINAR

(a) FI or IRI refresher seminars made available in Member States should have due regard to geographical location, numbers attending, and periodicity throughout the territory of the Member State concerned.

(b) Such seminars should run for at least 2 days, and attendance from participants will be required for the whole duration of the seminar including breakout groups and workshops. Different aspects, such as inclusion of participants holding certificates in other categories of aircraft should be considered.

(c) Some experienced FIs or IRIs currently involved with flying training and with a practical understanding of the revalidation requirements and current instructional techniques should be included as speakers at these seminars.

(d) The attendance form will be completed and signed by the organiser of the seminar as approved by the competent authority, following attendance and satisfactory participation by the FI or IRI.

(e) The content of the FI or IRI refresher seminar should be selected from the following:

1. new or current rules or regulations, with emphasis on knowledge of Part-FCL and operational requirements;
2. teaching and learning;
3. instructional techniques;
4. the role of the instructor;
5. national regulations (as applicable);
6. human factors;
7. flight safety, incident and accident prevention;
8. airmanship;
9. legal aspects and enforcement procedures;
10. navigational skills including new or current radio navigation aids;
11. teaching instrument flying;
12. weather related topics including methods of distribution.
13. any additional topic selected by the competent authority.

(f) Formal sessions should allow for a presentation time of 45 minutes, with 15 minutes for questions. The use of visual aids is recommended, with interactive video and other teaching aids (where available) for breakout groups and workshops.
GM1 FCL.940.FI(a)(2) FI — Revalidation and renewal

FI CERTIFICATE: REVALIDATION AND RENEWAL FORM

A. AEROPLANES

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.

<table>
<thead>
<tr>
<th>SINGLE-ENGINE</th>
<th>MULTI-ENGINE</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
<td>NIGHT</td>
<td>DAY</td>
</tr>
</tbody>
</table>

Total instructional hours (preceding 36 months):

Total instructional hours (preceding 12 months):

FI REFRESHER SEMINAR

1. **This is to certify that the undersigned attended an FI seminar**

2. **Attendee’s personal particulars:**

 - Name(s):
 - Address:
 - Licence number:
 - Expiration date of FI(A) certificate

3. **Seminar particulars:**

 - Date(s) of seminar:
 - Place:

4. **Declaration by the responsible organiser:**

 I certify that the above data are correct and that the FI seminar was carried out.

 - Date of approval:
 - Name(s) of organiser: (capital letters)
 - Date and place:
 - Signature:

5. **Declaration by the attendee:**

 I confirm the data under 1 through 3

 Attendee’s signature:

PROFICIENCY CHECK

(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.
Annex to ED Decision 2011/016/R

B. HELICOPTERS

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.

Instrument:

Total instructional hours (preceding 36 months):

Total instructional hours (preceding 12 months):

FI REFRESHER SEMINAR

1. **This is to certify that the undersigned attended an FI seminar**

2. **Attendees personal particulars:**

 Name(s):

 Address:

 Licence number:

 Expiration date of FI(H) certificate:

3. **Seminar particulars:**

 Date(s) of seminar:

 Place:

Page 393 of 562
4 Declaration by the responsible organiser:

I certify that the above data are correct and that the FI seminar was carried out.

<table>
<thead>
<tr>
<th>Date of approval:</th>
<th>Name(s) of organiser: (capital letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

5 Declaration by the attendee:

I confirm the data under 1 through 3

Attendee’s signature:

PROFICIENCY CHECK

(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.

<table>
<thead>
<tr>
<th>Flying time:</th>
<th>Helicopter or FFS used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main exercise:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name(s) of FIE:</th>
<th>Licence number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td></td>
</tr>
</tbody>
</table>

Signature:
C. AIRSHIPS

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.

<table>
<thead>
<tr>
<th>SINGLE-ENGINE</th>
<th>MULTI-ENGINE</th>
<th>INSTRUMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
<td>NIGHT</td>
<td>DAY</td>
</tr>
</tbody>
</table>

Total instructional hours (preceding 36 months):

Total instructional hours (preceding 12 months):

FLIGHT INSTRUCTOR REFRESHER SEMINAR

1. This is to certify that the undersigned attended an FI seminar

2. Attendee’s personal particulars:

 - Name(s):
 - Address:
 - Licence number:
 - Expiration date of FI(As) certificate:

3. Seminar particulars:

 - Date(s) of seminar:
 - Place:

4. Declaration by the responsible organiser:

 I certify that the above data are correct and that the FI seminar was carried out.

 - Date of approval:
 - Name(s) of organiser:
 - (capital letters)
 - Date and place:
 - Signature:

5. Declaration by the attendee:

 I confirm the data under 1 through 3

 - Attendee’s signature:

PROFICIENCY CHECK

(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.
D. SAILPLANES INSTRUCTIONAL FLYING EXPERIENCE

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours and take-offs flown during the preceding 36 months.

<table>
<thead>
<tr>
<th>SAILPLANE (hours and take-offs)</th>
<th>TMG (hours and take-offs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
<td>NIGHT</td>
</tr>
</tbody>
</table>

- **Total instructional hours (preceding 36 months):**
- **Total instructional hours (preceding 12 months):**
- **Total amount of take-offs (preceding 36 months):**
- **Total amount of take-offs (preceding 12 months):**

FI REFRESHER SEMINAR

1. **This is to certify that the undersigned attended an FI seminar**

2. **Attendee’s personal particulars:**
 - **Name(s):**
 - **Address:**
 - **Licence number:**
 - **Expiration date of FI(S) certificate:**

3. **Seminar particulars:**
 - **Date(s) of seminar:**
 - **Place:**

4. **Declaration by the responsible organiser:**
I certify that the above data are correct and that the FI seminar was carried out.

<table>
<thead>
<tr>
<th>Date of approval:</th>
<th>Name(s) of organiser: (capital letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

5 Declaration by the attendee:

I confirm the data under 1 through 3

Attendee’s signature:

PROFICIENCY CHECK

(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.

<table>
<thead>
<tr>
<th>Flying time:</th>
<th>Sailplane or TMG used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main exercise:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name(s) of FIE:</th>
<th>Licence number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

E. BALLOONS

INSTRUCTIONAL FLYING EXPERIENCE

Instructors applying for revalidation of the FI certificate should enter the instructional hours flown during the preceding 36 months.

<table>
<thead>
<tr>
<th>Balloons (gas)</th>
<th>Balloons (hot-air)</th>
<th>Hot-air airships</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY</td>
<td>NIGHT</td>
<td>DAY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NIGHT</td>
</tr>
</tbody>
</table>

| Total instructional hours (preceding 36 months): |

| Total instructional hours (preceding 12 months): |

FI REFRESHER SEMINAR

1 This is to certify that the undersigned attended an FI seminar
Annex to ED Decision 2011/016/R

Attendee’s personal particulars:

<table>
<thead>
<tr>
<th>Name(s):</th>
<th>Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licence number:</td>
<td>Expiration date of FI(B) certificate:</td>
</tr>
</tbody>
</table>

Seminar particulars:

<table>
<thead>
<tr>
<th>Date(s) of seminar:</th>
<th>Place:</th>
</tr>
</thead>
</table>

Declaration by the responsible organiser:

I certify that the above data are correct and that the FI seminar was carried out.

<table>
<thead>
<tr>
<th>Date of approval:</th>
<th>Name(s) of organiser: (capital letters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>

Declaration by the attendee:

I confirm the data under 1 through 3

<table>
<thead>
<tr>
<th>Attendee’s signature:</th>
</tr>
</thead>
</table>

PROFICIENCY CHECK

(Name(s) of applicant) has given proof of flying instructional ability during a proficiency check flight. This was done to the required standard.

<table>
<thead>
<tr>
<th>Flying time:</th>
<th>Balloon or hot-air airship used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main exercise:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name(s) of FIE:</th>
<th>Licence number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date and place:</td>
<td>Signature:</td>
</tr>
</tbody>
</table>
AMC1 FCL.930.TRI TRI — Training course

TRI TRAINING COURSE: AEROPLANES

GENERAL

(a) The aim of the TRI(A) training course is to train aeroplane licence holders to the level of competence defined in FCL.920 and adequate for a TRI.

(b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the TRI task, and should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for an aeroplane type rating for which the applicant is qualified.

(c) The TRI(A) training course should give particular emphasis to the role of the individual in relation to the importance of human factors in the man-machine environment and the role of CRM.

(d) Special attention should be given to the applicant’s maturity and judgment including an understanding of adults, their behavioural attitudes and variable levels of learning ability. During the training course the applicants should be made aware of their own attitudes to the importance of flight safety. It will be important during the training course to aim at giving the applicant the knowledge, skills and attitudes relevant to the role of the TRI.

(e) For a TRI(A) the amount of flight training will vary depending on the complexity of the aeroplane type. A similar number of hours should be used for the instruction and practice of pre-flight and post-flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and should be related to the type of aeroplane on which the applicant wishes to instruct. The content of the training programme should cover training exercises applicable to the aeroplane type as set out in the applicable type rating courses.

(f) A TRI(A) may instruct in a TRI(A) course once he or she has conducted a minimum of four type rating instruction courses.

(g) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.

(h) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

(i) The training course consists of three parts:

1. Part 1: teaching and learning instruction that should comply with AMC1 FCL.920;

2. Part 2: technical theoretical knowledge instruction (technical training);

Part 1
The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2
TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS
(a) The technical theoretical knowledge instruction should comprise of not less than 10 hours training to include the revision of technical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the TRI(A) to instruct the technical theoretical knowledge syllabus.
(b) If a TRI(A) certificate for MP aeroplanes is sought, particular attention should be given to multi-crew cooperation. If a TRI(A) certificate for SP aeroplanes is sought, particular attention should be given to the duty in SP operations.
(c) The type rating theoretical syllabus should be used to develop the TRI(A)’s teaching skills in relation to the type technical course syllabus. The course instructor should deliver example lectures from the applicable type technical syllabus and the candidate instructor should prepare and deliver lectures on topics selected by the course instructor from the type rating course.

Part 3
FLIGHT INSTRUCTION SYLLABUS
(a) The course should be related to the type of aeroplane on which the applicant wishes to instruct.
(b) TEM, CRM and the appropriate use of behavioural markers should be integrated throughout.
(c) The content of the training programme should cover all the significant exercises applicable to the aeroplane type.
(d) The applicant for a TRI(A) certificate should be taught and made familiar with the device, its limitations, capabilities and safety features, and the instructor station, including emergency evacuation.

FSTD TRAINING
(e) The applicant for a TRI(A) certificate should be taught and made familiar with giving instruction from the instructor station. In addition, before being checked for base training instruction, the applicant for a TRI(A) should be taught ands made familiar with giving instruction from all operating positions, including demonstrations of appropriate handling exercises.
(f) Training courses should be developed to give the applicant experience in training a variety of exercises, covering both normal and abnormal operations. The syllabus should be tailored appropriate to the aeroplane type, using exercises considered more demanding for the student. This should include engine-out handling and engine-out operations in addition to representative exercises from the type transition course.
(g) The applicant should be required to plan, brief, train and debrief sessions using all relevant training techniques.
AEROPLANE TRAINING

(h) The applicant for a TRI(A) certificate should receive instruction in an FFS to a satisfactory level in:

(1) right hand seat familiarisation, which should include at least the following as pilot flying:
 (i) re-flight preparation and use of checklists;
 (ii) taxiing;
 (iii) take-off;
 (iv) rejected take-off;
 (v) engine failure during take-off, after \(v_1 \);
 (vi) engine inoperative approach and go-around;
 (vii) one engine (critical) simulated inoperative landing;
 (viii) other emergency and abnormal operating procedures (as necessary).

(2) aeroplane training techniques:
 (i) methods for giving appropriate commentary;
 (ii) particularities of handling the aeroplane in touch and go manoeuvres;
 (iii) intervention strategies developed from situations role-played by a TRI course instructor, taken from but not limited to:
 (A) take-off configuration warning;
 (B) over controlling;
 (C) high flare: long float;
 (D) long flare;
 (E) baulked landing;
 (F) immediate go-around from touch;
 (G) too high on approach: no flare;
 (H) incorrect configuration;
 (I) TAWS warning;
 (J) misuse of rudder;
 (K) over control in roll axis during flare;
 (L) incapacitation;
 (M) actual abnormal or emergencies.

(i) Additionally, if the applicant is required to train emergency or abnormal procedures in an aeroplane, synthetic device training as follows:
 (1) appropriate methods and minimum altitudes for simulating failures;
 (2) incorrect rudder inputs;
 (3) failure of a critical engine;
 (4) approach and full-stop landing with simulated engine-out.

(j) In this case, the abnormal manoeuvres refer to engine-out handling as
necessary for completion of type rating training. If the applicant is required to train other abnormal items in the transition course, additional training will be required.

(k) Upon successful completion of the training above, the applicant should receive training in an aeroplane in-flight under the supervision of a TRI(A). At the completion of training the applicant instructor should be required to conduct a training flight under the supervision and to the satisfaction of a TRI(A) nominated for this purpose by the training organisation.

TRAINING FOR ASYMMETRIC POWER FLIGHT ON SP MET AEROPLANES

(l) During this part of the training, special emphasis is to be placed on the:

1. circumstances in which actual feathering and un-feathering practice will be done, for example safe altitude; compliance with regulations about minimum altitude or height for feathering practice, weather conditions, distance from nearest available aerodrome.

2. procedure to use for instructor and student co-operation, for example the correct use of touch drills and the prevention of misunderstandings, especially during feathering and unfeathering practice and when zero thrust is being used for asymmetric circuits. This procedure is to include positive agreement as to which engine is being shut down or re-started or set at zero thrust and identifying each control and naming the engine it is going to affect.

3. consideration to be given to avoid over-working the operating engine, and the degraded performance when operating the aeroplane during asymmetric flight.

4. need to use the specific checklist for the aeroplane type.

LONG BRIEFINGS:

(m) Flight on asymmetric power

1. introduction to asymmetric flight;

2. feathering the propeller: method of operation;

3. effects on aeroplane handling at cruising speed;

4. introduction to effects upon aeroplane performance;

5. note foot load to maintain a constant heading (no rudder trim);

6. un-feathering the propeller: regain normal flight;

7. finding the zero thrust setting: comparison of foot load when feathered and with zero thrust set.

8. effects and recognition of engine failure in level flight;

9. the forces and the effects of yaw;

10. types of failure:

 (i) sudden or gradual;

 (ii) complete or partial.

11. yaw, direction and further effects of yaw;

12. flight instrument indications;

13. identification of failed engine;
(14) the couples and residual out of balance forces: resultant flight attitude;
(15) use of rudder to counteract yaw;
(16) use of aileron: dangers of misuse;
(17) use of elevator to maintain level flight;
(18) use of power to maintain a safe air speed and altitude;
(19) supplementary recovery to straight and level flight: simultaneous increase of speed and reduction in power;
(20) identification of failed engine: = idle engine;
(21) use of engine instruments for identification:
 (i) fuel pressure or flow;
 (ii) RPM gauge response effect of CSU action at lower and higher air speed;
 (iii) engine temperature gauges.
(22) confirmation of identification: close the throttle of identified failed engine;
(23) effects and recognition of engine failure in turns;
(24) identification and control;
(25) side forces and effects of yaw.

(n) During turning flight:
(1) effect of ‘inside’ engine failure: effect sudden and pronounced;
(2) effect of ‘outside’ engine failure: effect less sudden and pronounced;
(3) the possibility of confusion in identification (particularly at low power):
 (i) correct use of rudder;
 (ii) possible need to return to lateral level flight to confirm correct identification;
(4) visual and flight instrument indications;
(5) effect of varying speed and power;
(6) speed and thrust relationship;
(7) at normal cruising speed and cruising power: engine failure clearly recognised;
(8) at low safe speed and climb power: engine failure most positively recognised;
(9) high speed descent and low power: possible failure to notice asymmetry (engine failure);

(o) Minimum control speeds:
(1) ASI colour coding: red radial line

Note: this exercise is concerned with the ultimate boundaries of controllability in various conditions that a student can reach in a steady asymmetric power state, approached by a gradual speed reduction. Sudden and complete failure should not be given at the
flight manual \(v_{mca} \). The purpose of the exercise is to continue the gradual introduction of a student to control an aeroplane in asymmetric power flight during extreme or critical situations. It is not a demonstration of \(v_{mca} \).

(2) techniques for assessing critical speeds with wings level and recovery – dangers involved when minimum control speed and the stalling speed are very close: use of \(v_{sse} \);

(3) establish a minimum control speed for each asymmetrically disposed engine: to establish critical engine (if applicable);

(4) effects on minimum control speeds of:
 (i) bank;
 (ii) zero thrust setting;
 (iii) take-off configuration:
 (A) landing gear down and take-off flap set;
 (B) landing gear up and take-off flap set.

Note: it is important to appreciate that the use of 5 ° of bank towards the operating engine produces a lower \(v_{mca} \) and also a better performance than that obtained with the wings held level. It is now normal for manufacturers to use 5 ° of bank in this manner when determining the \(v_{mca} \) for the specific type. Thus the \(v_{mca} \) quoted in the aeroplane manual will have been obtained using the technique.

(p) Feathering and un-feathering:
 (1) minimum heights for practising feathering or un-feathering drills;
 (2) engine handling: precautions (overheating, icing conditions, priming, warm up and method of simulating engine failure: reference to aircraft engine manual and service instructions and bulletins).

(q) Engine failure procedure:
 (1) once the maintenance of control has been achieved, the order in which the procedures are carried out will be determined by the phase of operation and the aircraft type;
 (2) flight phase:
 (i) in cruising flight;
 (ii) critical phase such as immediately after take-off or during the approach to landing or during a go-around.

(r) Aircraft type

Variations will inevitably occur in the order of certain drills and checks due to differences between aeroplane types and perhaps between models of the same type. The flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) is to be consulted to establish the exact order of these procedures.

For example, one flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) may call for the raising of flaps and landing gear before feathering, whilst another may recommend feathering as a first step. The reason for this latter procedure could be due to the fact that some engines cannot be feathered if the rpm drops below a certain figure.
Again, in some aeroplanes, the raising of the landing gear may create more drag during retraction due to the transient position of the landing gear doors and as a result of this retraction would best be left until feathering has been accomplished and propeller drag reduced.

Therefore, the order in which the drills and checks are shown in this syllabus under immediate and subsequent actions are to be used as a general guide only and the exact order of precedence is determined by reference to the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) for the specific aeroplane type being used on the course.

(s) In-flight engine failure in cruise or other flight phase not including take-off or landing:

(1) immediate actions:
 (i) recognition of asymmetric condition;
 (ii) identification and confirmation of failed engine:
 (A) idle leg = idle engine;
 (B) closing of throttle for confirmation.
 (iii) cause and fire check:
 (A) typical reasons for failure;
 (B) methods of rectification.
 (iv) feathering decision and procedure:
 (A) reduction of other drag;
 (B) need for speed but not haste;
 (C) use of rudder trim.

(2) subsequent actions:
 (i) live engine:
 (A) temperature, pressures and power;
 (B) remaining services;
 (C) electrical load: assess and reduce as necessary;
 (D) effect on power source for air driven instruments;
 (E) landing gear;
 (F) flaps and other services.
 (ii) re-plan flight:
 (A) ATC and weather;
 (B) terrain clearance, SE cruise speed;
 (C) decision to divert or continue.
 (iii) fuel management: best use of remaining fuel;
 (iv) dangers of re-starting damaged engine;
 (v) action if unable to maintain altitude: effect of altitude on power available;
 (vi) effects on performance;
 (vii) effects on power available and power required;
(viii) effects on various airframe configuration and propeller settings;
(ix) use of flight or owner's manual:
 (A) cruising;
 (B) climbing: ASI colour coding (blue line);
 (C) descending;
 (D) turning.
(x) 'live' engine limitations and handling;
(xi) take-off and approach: control and performance;

(t) Significant factors:
 (1) significance of take-off safety speed:
 (i) effect of landing gear, flap, feathering, take-off, trim setting and systems for operating landing gear and flaps;
 (ii) effect on mass, altitude and temperature (performance).
 (2) significance of best SE climb speed (v_{yse}):
 (i) acceleration to best engine climb speed and establishing a positive climb;
 (ii) relationship of SE climb speed to normal climb speed;
 (iii) action if unable to climb.
 (3) significance of asymmetric committal height and speed: action if baulked below asymmetric committal height;

(u) Engine failure during take-off:
 (1) below v_{mca} or unstick speed:
 (i) accelerate or stop distance considerations;
 (ii) prior use of flight manual data if available.
 (2) above v_{mca} or unstick speed and below safety speed;
 (3) immediate re-landing or use of remaining power to achieve forced landing;
 (4) considerations:
 (i) degree of engine failure;
 (ii) speed at the time;
 (iii) mass, altitude, temperature (performance);
 (iv) configuration;
 (v) length of runway remaining;
 (vi) position of any obstacles ahead;

(v) Engine failure after take-off:
 (1) simulated at a safe height and at or above take-off safety speed;
 (2) considerations:
 (i) need to maintain control;
 (ii) use of bank towards operating engine;
(iii) use of available power achieving best SE climb speed;
(iv) mass, altitude, temperature (performance);
(v) effect of prevailing conditions and circumstances.

(3) Immediate actions:

(i) maintenance of control, including air speed and use of power;
(ii) recognition of asymmetric condition;
(iii) identification and confirmation of failed engine;
(iv) feathering and removal of drag (procedure for type);
(v) establishing best SE climb speed.

(4) Subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:

(i) cause and fire check;
(ii) live engine, handling considerations;
(iii) remaining services;
(iv) ATC liaison;
(v) fuel management.

Note: these procedures are applicable to aeroplane type and flight situation.

(w) Asymmetric committal height:

(1) Asymmetric committal height is the minimum height needed to establish a positive climb whilst maintaining adequate speed for control and removal of drag during an approach to a landing.

Because of the significantly reduced performance of many CS-23 aeroplanes when operating on one engine, consideration is to be given to a minimum height from which it would be safely possible to attempt a go-around procedure, during an approach when the flight path will have to be changed from a descent to a climb with the aeroplane in a high drag configuration.

Due to the height loss which will occur during the time that the operating engine is brought up to full power, landing gear and flap retracted, and the aeroplane established in a climb at v_{yse} a minimum height (often referred to as ‘asymmetric committal height’) is to be selected, below which the pilot should not attempt to take the aeroplane round again for another circuit. This height will be compatible with the aeroplane type, all up weight, altitude of the aerodrome being used, air temperature, wind, the height of obstructions along the climb out path, and pilot competence.

(2) Circuit approach and landing on asymmetric power:

(i) definition and use of asymmetric committal height;
(ii) use of standard pattern and normal procedures;
(iii) action if unable to maintain circuit height;
(iv) speed and power settings required;
(v) decision to land or go-around at asymmetric committal height: factors to be considered;
(3) Undershooting: importance of maintaining correct air speed, (not below \(v_{yse}\)).

(x) Speed and heading control:

(1) height, speed and power relationship: need for minimum possible drag;

(2) establishing positive climb at best SE rate of climb speed:
 (i) effect of availability of systems, power for flap and landing gear;
 (ii) operation and rapid clean up.

Note 1: The air speed at which the decision is made to commit the aeroplane to a landing or to go-around should normally be the best SE rate of climb speed and in any case not less than the safety speed.

Note 2: On no account should instrument approach ‘decision height’ and its associated procedures be confused with the selection of minimum height for initiating a go-around in asymmetric power flight.

(y) Engine failure during an all engines approach or missed approach:

(1) use of asymmetric committal height and speed considerations;

(2) speed and heading control: decision to attempt a landing, go-around or force land as circumstances dictate.

Note: at least one demonstration and practice of engine failure in this situation should be performed during the course.

(z) Instrument flying on asymmetric power:

(1) considerations relating to aircraft performance during:
 (i) straight and level flight;
 (ii) climbing and descending;
 (iii) standard rate turns;
 (iv) level, climbing and descending turns including turns onto pre-selected headings.

(2) vacuum operated instruments: availability;

(3) electrical power source.

ADDITIONAL TRAINING FOR PRIVILEGES TO CONDUCT LINE FLYING UNDER SUPERVISION

(aa) In order to be able to conduct line flying under supervision, as provided in FCL.910.TRI(a), the TRI should have received the additional training described in paragraph (k) of this AMC.

TRAINING WHERE NO FSTD EXISTS

(ab) Where no FSTD exists for the type for which the certificate is sought, a similar course of training should be conducted in the applicable aeroplane type. This includes all elements listed under this sub paragraph, the synthetic device elements being replaced with appropriate exercises in an aeroplane of the applicable type.
AMC2 FCL.930.TRI TRI — training course

HELICOPTERS

GENERAL

(a) The aim of the TRI(H) course is to train helicopter licence holders to the level of competence defined in FCL.920 and adequate for a TRI.

(b) The training course should develop safety awareness throughout by teaching the knowledge, skills and attitudes relevant to the TRI(H) task, and should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for a helicopter type rating for which the applicant is qualified.

(c) The TRI(H) training course should give particular emphasis to the role of the individual in relation to the importance of human factors in the man-machine environment and the role of CRM.

(d) Special attention should be given to the applicant’s maturity and judgment including an understanding of adults, their behavioural attitudes and variable levels of learning ability. During the training course the applicants should be made aware of their own attitudes to the importance of flight safety. It will be important during the course of training to aim at giving the applicant the knowledge, skills and attitudes relevant to the role of the TRI.

(e) For a TRI(H) certificate the amount of flight training will vary depending on the complexity of the helicopter type.

(f) A similar number of hours should be used for the instruction and practice of pre-flight and post flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and should be related to the type of helicopter on which the applicant wishes to instruct. The content of the training program should cover training exercises applicable to the helicopter type as set out in the applicable type rating course syllabus.

(g) A TRI(H) may instruct in a TRI(H) course once he or she has conducted a minimum of four type rating instruction courses.

CONTENT

(h) The training course consists of three parts:

1. Part 1: teaching and learning, that should comply with AMC1 FCL.920;
2. Part 2: technical theoretical knowledge instruction (technical training);

Part 1

The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.
Part 2

TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

(a) The technical theoretical knowledge instruction should comprise of not less than 10 hours training to include the revision of technical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the TRI(H) to instruct the technical theoretical knowledge syllabus.

(b) If a TRI(H) certificate for MP helicopters is sought, particular attention should be given to multi-crew cooperation.

(c) The type rating theoretical syllabus should be used to develop the TRI(H)’s teaching skills in relation to the type technical course syllabus. The course instructor should deliver example lectures from the applicable type technical syllabus and the candidate instructor should prepare and deliver lectures on topics selected by the course instructor from the subject list below:

1. helicopter structure, transmissions, rotor and equipment, normal and abnormal operation of systems:
 - (i) dimensions;
 - (ii) engine including aux. power unit, rotors and transmissions;
 - (iii) fuel system;
 - (iv) air-conditioning;
 - (v) ice protection, windshield wipers and rain repellent;
 - (vi) hydraulic system;
 - (vii) landing gear;
 - (viii) flight controls, stability augmentation and autopilot systems;
 - (ix) electrical power supply;
 - (x) flight instruments, communication, radar and navigation equipment;
 - (xi) cockpit, cabin and cargo compartment;
 - (xii) emergency equipment.

2. limitations:
 - (i) general limitations, according to the helicopter flight manual;
 - (ii) minimum equipment list.

3. performance, flight planning and monitoring:
 - (i) performance;
 - (ii) light planning.

4. load and balance and servicing:
 - (i) load and balance;
 - (ii) servicing on ground;

5. emergency procedures;

6. special requirements for helicopters with EFIS;

7. optional equipment.
Part 3

FLIGHT INSTRUCTION SYLLABUS

(a) The amount of flight training will vary depending on the complexity of the helicopter type. At least 5 hours flight instruction for a SP helicopter and at least 10 hours for a MP ME helicopter should be counted. A similar number of hours should be used for the instruction and practice of pre-flight and post flight briefing for each exercise. The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently and related to the type of helicopter on which the applicant wishes to instruct. The content of the training programme should only cover training exercises applicable to the helicopter type as set out in Appendix 9 to Part-FCL.

(b) If a TRI(H) certificate for MP helicopters is sought, particular attention should be given to MCC.

(c) If a TRI(H) certificate for revalidation of instrument ratings is sought, then the applicant should hold a valid instrument rating.

FLIGHT OR FSTD TRAINING

(d) The training course should be related to the type of helicopter on which the applicant wishes to instruct.

(e) For MP helicopter type ratings MCC, CRM and the appropriate use of behavioural markers should be integrated throughout.

(f) The content of the training programme should cover identified and significant exercises applicable to the helicopter type.

FSTD TRAINING

(g) The applicant for a TRI(H) certificate should be taught and made familiar with the device, its limitations, capabilities and safety features, and the instructor station.

(h) The applicant for a TRI(H) certificate should be taught and made familiar with giving instruction from the instructor station seat as well as the pilot’s seats, including demonstrations of appropriate handling exercises.

(i) Training courses should be developed to give the applicant experience in training a variety of exercises, covering both normal and abnormal operations. The syllabus should be tailored appropriate to the helicopter type, using exercises considered more demanding for the student. This should include engine-out handling and engine-out operations in addition to representative exercises from the type transition course.

(j) The applicant should be required to plan, brief, train and debrief sessions using all relevant training techniques.

HELICOPTER TRAINING

(k) The applicant for a TRI(H) certificate should receive instruction in an FSTD to a satisfactory level in:

(1) left hand seat familiarisation, and in addition right hand seat familiarisation where instruction is to be given to co-pilots operating in
the left hand seat, which should include at least the following as pilot flying:

(i) pre-flight preparation and use of checklists;
(ii) taxiing: ground and air;
(iii) take-off and landings;
(iv) engine failure during take-off, before DPATO;
(v) engine failure during take-off, after DPATO;
(vi) engine inoperative approach and go-around;
(vii) one engine simulated inoperative landing;
(viii) autorotation to landing or power recovery;
(ix) other emergency and abnormal operating procedures (as necessary);
(x) instrument departure, approach and go-around with one engine simulated inoperative should be covered where TRI(H) privileges include giving instrument instruction for the extension of an IR(H) to additional types.

(2) helicopter training techniques:

(i) methods for giving appropriate commentary;
(ii) instructor demonstrations of critical manoeuvres with commentary;
(iii) particularities and safety considerations associated with handling the helicopter in critical manoeuvres such as one-engine-inoperative and autorotation exercises;
(iv) where relevant, the conduct of instrument training with particular emphasis on weather restrictions, dangers of icing and limitations on the conduct of critical manoeuvres in instrument meteorological conditions;
(v) intervention strategies developed from situations role-played by a TRI(H) course instructor, taken from but not limited to:

(A) incorrect helicopter configuration;
(B) over controlling;
(C) incorrect control inputs;
(D) excessive flare close to the ground;
(E) one-engine-inoperative take-off and landings;
(F) incorrect handling of autorotation;
(G) static or dynamic rollover on take-off or landing;
(H) too high on approach with associated danger of vortex ring or settling with power;
(I) incapacitation;
(L) abnormal and emergency procedures and appropriate methods and minimum altitudes for simulating failures in the helicopter;
(M) failure of the driving engine during OEI manoeuvres.
(l) Upon successful completion of the training above, the applicant should receive sufficient training in an helicopter in-flight under the supervision of a TRI(H) to a level where the applicant is able to conduct the critical items of the type rating course to a safe standard. Of the minimum course requirements of 5 hours flight training for a SP helicopter or 10 hours for a MP helicopter, up to 3 hours of this may be conducted in an FSTD.

TRAINING WHERE NO FSTD EXISTS

(m) Where no FSTD exists for the type for which the TRI(H) certificate is sought, a similar course of training should be conducted in the applicable helicopter type. This includes all elements listed under sub paragraphs (k)(1) and (2) of this AMC, the FSTD elements being replaced with appropriate exercises in a helicopter of the applicable type, subject to any restrictions placed on the conduct of critical exercises associated with helicopter flight manual limitations and safety considerations.
AMC1 FCL.930.CRI CRI — Training course

GENERAL

(a) The aim of the CRI training course is to train aircraft licence holders to the level of competence defined in FCL.920 and adequate to a CRI.

(b) The training course should be designed to give adequate training to the applicant in theoretical knowledge instruction, flight instruction and FSTD instruction to instruct for any class or type rating for non-complex non-high performance SP aeroplanes for which the applicant is qualified.

(c) The flight training should be aimed at ensuring that the applicant is able to teach the air exercises safely and efficiently to students undergoing a course of training for the issue of a class or type rating for non-complex non-high performance SP aeroplanes. The flight training may take place on the aeroplane or an FFS.

(d) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.

(e) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

(f) The training course consists of three parts:
 (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920;
 (2) Part 2: technical theoretical knowledge instruction (technical training);
 (3) Part 3: flight instruction.
Part 1
The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2
This syllabus is concerned only with the training on ME aeroplanes. Therefore, other knowledge areas, common to both SE and ME aeroplanes, should be revised as necessary to cover the handling and operating of the aeroplane with all engines operative, using the applicable sections of the ground subjects syllabus for the FI course. Additionally, the ground training should include 25 hours of classroom work to develop the applicant’s ability to teach a student the knowledge and understanding required for the air exercise section of the ME training course. This part will include the long briefings for the air exercises.
THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

Suggested breakdown of course classroom hours:

<table>
<thead>
<tr>
<th>Tuition hours</th>
<th>Practice in class</th>
<th>Topic</th>
<th>Internal progress test</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td></td>
<td>Aviation legislation</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>Performance, all engines operating, including mass and balance</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>Asymmetric flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principles of flight</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
<td>Control in asymmetric flight</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum control and safety speeds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Feathering and un-feathering</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>Performance in asymmetric flight</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td>Specific type of aeroplane – operation of systems.</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Airframe and engine limitations</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>5.00</td>
<td>Briefings for air exercises progress</td>
<td></td>
</tr>
</tbody>
</table>

| Total Coursel | 15.00 7.00 3.00 | 25.00 (including progress test) | 25.00 (including progress test) |
GENERAL SUBJECTS

(a) Air legislation:
 (1) aeroplane performance group definitions;
 (2) methods of factoring gross performance.
(b) Asymmetric power flight;
(c) Principles of flight;
(d) The problems:
 (1) asymmetry;
 (2) control;
 (3) performance;
(e) The forces and couples:
 (1) offset thrust line;
 (2) asymmetric blade effect;
 (3) offset drag line;
 (4) failed engine propeller drag;
 (5) total drag increase;
 (6) asymmetry of lift;
 (7) uneven propeller slipstream effect;
 (8) effect of yaw in level and turning flight;
 (9) thrust and rudder side force couples;
 (10) effect on moment arms.
(f) Control in asymmetric power flight:
 (1) use, misuse and limits of:
 (i) rudder;
 (ii) aileron;
 (iii) elevators.
 (2) effect of bank or sideslip and balance;
 (3) decrease of aileron and rudder effectiveness;
 (4) fin stall possibility;
 (5) effect of IAS and thrust relationship;
 (6) effect of residual unbalanced forces;
 (7) foot loads and trimming.
(g) Minimum control and safety speeds:
 (1) minimum control speed (v_{mc});
 (2) definition;
 (3) origin;
 (4) factors affecting (v_{mc}):
(i) thrust;
(ii) mass and centre of gravity position;
(iii) altitude;
(iv) landing gear;
(v) flaps;
(vi) cowl flaps or cooling gills;
(vii) turbulence or gusts;
(viii) pilot reaction or competence;
(ix) banking towards the operating engine;
(x) drag;
(xi) feathering;
(xii) critical engine.

(5) take-off safety speed;
(6) definition or origin of v_2;
(7) other relevant v codes;

(h) Aeroplane performance: one engine inoperative:
 (1) effect on excess power available;
 (2) SE ceiling;
 (3) cruising, range and endurance;
 (4) acceleration and deceleration;
 (5) zero thrust, definition and purpose;

(i) Propellers:
 (1) variable pitch: general principles;
 (2) feathering and un-feathering mechanism and limitations (for example minimum RPM);

(j) Specific aeroplane type;

(k) Aeroplane and engine systems:
 (1) operation normal;
 (2) operation abnormal;
 (3) emergency procedures.

(l) Limitations: airframe:
 (1) load factors;
 (2) landing gear and flap limiting speeds (v_{io} and v_{fe});
 (3) rough air speed (v_{ra});
 (4) maximum speeds (v_{no} and v_{ne}).

(m) Limitations: engine:
 (1) RPM and manifold pressure;
 (2) oil temperature and pressure;
 (3) emergency procedures.
(n) Mass and balance:
(to be covered in conjunction with the flight manual or equivalent document (for example owner's manual or pilot's operating handbook))
(1) mass and balance documentation for aeroplane type;
(2) revision of basic principles;
(3) calculations for specific aeroplane type.

(o) Mass and performance:
(to be covered in conjunction with the flight manual or equivalent document (for example owner's manual or pilot's operating handbook))
(1) calculations for specific aeroplane type (all engines operating);
(2) take-off run;
(3) take-off distance;
(4) accelerate and stop distance;
(5) landing distance;
(6) landing run;
(7) take-off or climb out flight path;
(8) calculations for specific aeroplane type (one engine operating);
(9) climb out flight path;
(10) landing distance;
(11) landing run.
Part 3

FLIGHT INSTRUCTION SYLLABUS: NORMAL FLIGHT

(a) This part is similar to the air exercise sections of the SE FI course, including ‘Introduction to instrument flying’ except that the objectives, airmanship considerations and common errors are related to the operation of an ME aeroplane.

(b) The purpose of this part is to acquaint the applicant with the teaching aspects of the operational procedures and handling of an ME aeroplane with all engines functioning.

(c) The following items should be covered:
 (1) aeroplane familiarisation;
 (2) pre-flight preparation and aeroplane inspection;
 (3) engine starting procedures;
 (4) taxiing;
 (5) pre take-off procedures;
 (6) the take-off and initial climb:
 (i) into wind;
 (ii) crosswind;
 (iii) short field.
 (7) climbing;
 (8) straight and level flight;
 (9) descending (including emergency descent procedures);
 (10) turning;
 (11) slow flight;
 (12) stalling and recoveries;
 (13) instrument flight: basic;
 (14) emergency drills (not including engine failure);
 (15) circuit, approach and landing:
 (i) into wind;
 (ii) crosswind;
 (iii) short field;
 (16) mislanding and going round again;
 (17) actions after flight.

AIR EXERCISES

(d) The following air exercises are developments of the basic SE syllabus which are to be related to the handling of ME types to ensure that the student learns the significance and use of controls and techniques which may be strange to the student in all normal, abnormal and emergency situations, except that engine failure and flight on asymmetric power are dealt with separately in the air exercises in Part 2.
EXERCISE 1: FAMILIARISATION WITH THE AEROPLANE

(a) Long briefing objectives:
1. introduction to the aeroplane;
2. explanation of the cockpit layout;
3. systems and controls;
4. aeroplane power plant;
5. checklists and drills;
6. differences when occupying the instructor’s seat;
7. emergency drills:
 (i) action in event of fire in the air and on the ground;
 (ii) escape drills: location of exits and use of emergency equipment (for example fire extinguishers, etc.).
8. pre-flight preparation and aeroplane inspection:
 (i) aeroplane documentation;
 (ii) external checks;
 (iii) internal checks;
 (iv) harness, seat or rudder pedal adjustment;
9. engine starting procedures:
 (i) use of checklists;
 (ii) checks before starting;
 (iii) checks after starting.

(b) Air exercise:
1. external features;
2. cockpit layout;
3. aeroplane systems;
4. checklists and drills;
5. action if fire in the air and on the ground:
 (i) engine;
 (ii) cabin;
 (iii) electrical.
6. systems failure (as applicable to type);
7. escape drills (location and use of emergency equipment and exits);
8. preparation for and action after flight:
 (i) flight authorisation and aeroplane acceptance;
 (ii) technical log or certificate of maintenance release;
 (iii) mass and balance and performance considerations;
 (iv) external checks;
 (v) internal checks, adjustment of harness or rudder pedals;
(vi) starting and warming up engines;
(vii) checks after starting;
(viii) radio navigation and communication checks;
(ix) altimeter checks and setting procedures;
(x) power checks;
(xi) running down and switching off engines;
(xii) completion of authorisation sheet and aeroplane serviceability documents.

EXERCISE 2: TAXIING

(a) Long briefing objectives:
 (1) pre-taxiing area precautions (greater mass: greater inertia);
 (2) effect of differential power;
 (3) precautions on narrow taxiways;
 (4) pre take-off procedures:
 (i) use of checklist;
 (ii) engine power checks;
 (iii) pre take-off checks;
 (iv) instructor’s briefing to cover the procedure to be followed should an emergency occur during take-off, for example engine failure.
 (5) the take-off and initial climb:
 (i) ATC considerations;
 (ii) factors affecting the length of the take-off run or distance;
 (iii) correct lift-off speed;
 (iv) importance of safety speed;
 (v) crosswind take-off, considerations and procedures;
 (vi) short field take-off, considerations and procedures;
 (vii) engine handling after take-off: throttle, pitch and engine synchronisation.
 (6) climbing:
 (i) pre-climbing checks;
 (ii) engine considerations (use of throttle or pitch controls);
 (iii) maximum rate of climb speed;
 (iv) maximum angle of climb speed;
 (v) synchronising the engines.

(b) Air exercise
 (1) pre-taxing checks;
 (2) starting, control of speed and stopping;
 (3) control of direction and turning;
(4) turning in confined spaces;
(5) leaving the parking area;
(6) freedom of rudder movement (importance of pilot ability to use full rudder travel);
(7) instrument checks;
(8) emergencies (brake or steering failure);
(9) pre take-off procedures:
 (i) use of checklist;
 (ii) engine power and system checks;
 (iii) pre take-off checks;
 (iv) instructor's briefing if emergencies during take-off.
(10) the take-off and initial climb:
 (i) ATC considerations;
 (ii) directional control and use of power;
 (iii) lift-off speed;
 (iv) crosswind effects and procedure;
 (v) short field take-off and procedure.
 (vi) procedures after take-off (at an appropriate stage of the course):
 (A) landing gear retraction;
 (B) flap retraction (as applicable);
 (C) selection of manifold pressure and RPM;
 (D) engine synchronisation;
 (E) other procedures (as applicable).
(11) climbing:
 (i) pre-climbing checks;
 (ii) power selection for normal and maximum rate climb;
 (iii) engine and RPM limitations;
 (iv) effect of altitude on manifold pressure, full throttle;
 (v) levelling off: power selection;
 (vi) climbing with flaps down;
 (vii) recovery to normal climb;
 (viii) en-route climb (cruise climb);
 (ix) maximum angle of climb;
 (x) altimeter setting procedures;
 (xi) prolonged climb and use of cowl flaps or cooling gills;
 (xii) instrument appreciation.
EXERCISE 3: STRAIGHT AND LEVEL FLIGHT

(a) Long briefing objectives:

(1) selection of power: throttle or pitch controls;
(2) engine synchronisation;
(3) fuel consumption aspects;
(4) use of trimming controls: elevator and rudder (aileron as applicable);
(5) operation of flaps:
 (i) effect on pitch attitude;
 (ii) effect on air speed.
(6) operation of landing gear:
 (i) effect on pitch attitude;
 (ii) effect on air speed.
(7) use of mixture controls;
(8) use of alternate air or carburettor heat controls;
(9) operation of cowl flaps or cooling gills;
(10) use of cabin ventilation and heating systems;
(11) operation and use of the other systems (as applicable to type);
(12) descending:
 (i) pre-descent checks;
 (ii) normal descent;
 (iii) selection of throttle or pitch controls;
 (iv) engine cooling considerations;
 (v) emergency descent procedure.
(13) turning:
 (i) medium turns;
 (ii) climbing and descending turns;
 (iii) steep turns (45 ° of bank or more).

(b) Air exercise:

(1) at normal cruising power:
 (i) selection of cruise power;
 (ii) manifold pressure or RPM;
 (iii) engine synchronisation;
 (iv) use of trimming controls;
 (v) performance considerations: range or endurance.
(2) instrument appreciation;
(3) operation of flaps (in stages):
 (i) air speed below $v_{le}$$;$
 (ii) effect on pitch attitude;
(iii) effect on air speed.

(4) operation of landing gear:
 (i) air speed below v_{lo} / v_{le};
 (ii) effect on pitch attitude;
 (iii) effect on air speed.

(5) use of mixture controls;

(6) use of alternate air or carburettor control;

(7) operation of cowl flaps or cooling gills;

(8) operation of cabin ventilation or heating systems;

(9) operation and use of other systems (as applicable to type);

(10) descending;
 (i) pre-descent checks;
 (ii) power selection: manifold pressure or RPM;
 (iii) powered descent (cruise descent);
 (iv) engine cooling considerations: use of cowl flaps or cooling gills;
 (v) levelling off;
 (vi) descending with flaps down;
 (vii) descending with landing gear down;
 (viii) altimeter setting procedure;
 (ix) instrument appreciation;
 (x) emergency descent:
 (A) as applicable to type;
 (B) limitations in turbulence v_{no}.

(11) turning:
 (i) medium turns;
 (ii) climbing and descending turns;
 (iii) steep turns: 45 ° of ban;
 (iv) instrument appreciation.

EXERCISE 4: SLOW FLIGHT

(a) Long briefing objectives:
 (1) aeroplane handling characteristics during slow flight: flight at v_{s1} and $v_{so} +5$ knots;
 (2) simulated go-around from slow flight:
 (i) at v_{sae} with flaps down;
 (ii) note pitch trim change.
(3) stalling:
 (i) power selection;
 (ii) symptoms approaching the stall;
 (iii) full stall characteristics;
 (iv) recovery from the full stall;
 (v) recovery at the incipient stall;
 (vi) stalling and recovery in the landing configuration;
 (vii) recovery at the incipient stage in the landing configuration.

(4) instrument flight (basic):
 (i) straight and level;
 (ii) climbing;
 (iii) turning;
 (iv) descending.

(5) emergency drills (not including engine failure), as applicable to type;

(6) circuit approach and landing:
 (i) downwind leg:
 (A) air speed below \(v_{fe} \);
 (B) use of flaps (as applicable);
 (C) pre-landing checks;
 (D) position to turn onto base leg.
 (ii) base leg:
 (A) selection of power (throttle or pitch), flaps and trimming controls;
 (B) maintenance of correct air speed.
 (iii) final approach:
 (A) power adjustments (early reaction to undershooting);
 (B) use of additional flaps (as required);
 (C) confirmation of landing gear down;
 (D) selection ‘touch down’ point;
 (E) air speed reduction to \(V_{at} \);
 (F) maintenance of approach path.
 (iv) landing:
 (A) greater sink rate;
 (B) longer landing distance and run;
 (C) crosswind approach and landing;
 (D) crosswind considerations;
 (E) short field approach and landing;
 (F) short field procedure: considerations.
(b) Air exercise

(1) safety checks;

(2) setting up and maintaining (flaps up):
 (i) $v_{sl} + 5$ knots;
 (ii) note aeroplane handling characteristics.

(3) setting up and maintaining (flaps down):
 (i) $v_{so} + 5$ knots;
 (ii) note aeroplane handling characteristics.

(4) simulated go-around from a slow flight with flaps:
 (i) down and air speed not below V_{ssr}, for example air speed at V_{ssr} or $V_{mca} + 10$ knots;
 (ii) increase to full power and enter a climb;
 (iii) note pitch change.

(5) resume normal flight.

(6) stalling;
 (i) selection of RPM;
 (ii) stall symptoms;
 (iii) full stall characteristics;
 (iv) recovery from the full stall: care in application of power;
 (v) recovery at the incipient stage;
 (vi) stalling and recovery in landing configuration;
 (vii) stall recovery at the incipient stage in the landing configuration.

(7) instrument flight (basic):
 (i) straight and level;
 (ii) climbing;
 (iii) turning;
 (iv) descending.

(8) emergency drills (not including engine failure), as applicable to type;

(9) circuit, approach and landing:
 (i) downwind leg:
 (A) control of speed (below V_{fe});
 (B) flaps as applicable;
 (C) pre-landing checks;
 (D) control of speed and height;
 (E) base leg turn.
(ii) base leg:
 (A) power selection;
 (B) use of flap and trimming controls;
 (C) maintenance of correct air speed.

(iii) final approach:
 (A) use of additional flap (as required);
 (B) confirmation of landing gear down;
 (C) selection of touchdown point;
 (D) air speed reduction to V_{at};
 (E) maintaining correct approach path: use of power.

(iv) landing:
 (A) control of sink rate during flare;
 (B) crosswind considerations;
 (C) longer landing roll;
 (D) short or soft field approach and landing;
 (E) considerations and precautions.

(10) Asymmetric power flight.

During this part, special emphasis is to be placed on the:

(i) circumstances in which actual feathering and un-feathering practice will be done, for example safe altitude; compliance with regulations about minimum altitude or height for feathering practice, weather conditions, distance from nearest available aerodrome;

(ii) procedure to use for instructor and student co-operation, for example the correct use of touch drills and the prevention of misunderstandings, especially during feathering and un-feathering practice and when zero thrust is being used for asymmetric circuits. This procedure is to include positive agreement as to which engine is being shut down or re-started or set at zero thrust and identifying each control and naming the engine it is going to affect;

(iii) consideration to be given to avoid over-working the operating engine, and the degraded performance when operating the aeroplane during asymmetric flight;

(iv) need to use the specific checklist for the aeroplane type.

EXERCISE 5: FLIGHT ON ASYMMETRIC POWER

(a) Long briefing objectives:
 (1) introduction to asymmetric flight;
 (2) feathering the propeller: method of operation;
 (3) effects on aeroplane handling at cruising speed;
 (4) introduction to effects upon aeroplane performance;
 (5) note foot load to maintain a constant heading (no rudder trim);
(6) un-feathering the propeller;
(7) return to normal flight finding the zero thrust setting;
(8) comparison of foot load when feathered and with zero thrust set.
(9) effects and recognition of engine failure in level flight;
(10) forces and the effects of yaw;
(11) types of failure:
 (i) sudden or gradual;
 (ii) complete or partial.
(12) yaw, direction and further effects of yaw;
(13) flight instrument indications;
(14) identification of failed engine;
(15) the couples and residual out of balance forces: resultant flight attitude;
(16) use of rudder to counteract yaw;
(17) use of aileron: dangers of misuse;
(18) use of elevator to maintain level flight;
(19) use of power to maintain a safe air speed and altitude;
(20) supplementary recovery to straight and level flight: simultaneous increase of speed and reduction in power;
(21) identification of failed engine: idle leg = idle engine;
(22) use of engine instruments for identification:
 (i) fuel pressure or flow;
 (ii) RPM gauge response effect of CSU action at lower and higher air speed;
 (iii) engine temperature gauges.
(23) confirmation of identification: close the throttle of identified failed engine;
(24) effects and recognition of engine failure in turns;
(25) identification and control;
(26) side forces and effects of yaw.
(27) During turning flight:
 (i) effect of ‘inside’ engine failure: effect sudden and pronounced;
 (ii) effect of ‘outside’ engine failure: effect less sudden and pronounced;
 (iii) the possibility of confusion in identification (particularly at low power):
 (A) correct use of rudder;
 (B) possible need to return to lateral level flight to confirm correct identification.
 (iv) visual and flight instrument indications;
 (v) effect of varying speed and power;
(vi) speed and thrust relationship;
(vii) at normal cruising speed and cruising power: engine failure clearly recognised;
(viii) at low safe speed and climb power: engine failure most positively recognised;
(ix) high speed descent and low power: possible failure to notice asymmetry (engine failure).

(28) Minimum control speeds:

(i) ASI colour coding: red radial line.

Note: this exercise is concerned with the ultimate boundaries of controllability in various conditions that a student can reach in a steady asymmetric power state, approached by a gradual speed reduction. Sudden and complete failure should not be given at the Flight Manual v_{mca}. The purpose of the exercise is to continue the gradual introduction of a student to control an aeroplane in asymmetric power flight during extreme or critical situations. It is not a demonstration of v_{mca}.

(ii) Techniques for assessing critical speeds with wings level and recovery: dangers involved when minimum control speed and the stalling speed are very close: use of V_{sse};

(iii) Establish a minimum control speed for each asymmetrically disposed engine to establish critical engine (if applicable);

(iv) Effects on minimum control speeds of:

(A) bank;
(B) zero thrust setting;
(C) take-off configuration:
 (a) landing gear down and take-off flap set;
 (b) landing gear up and take-off flap set.

Note: it is important to appreciate that the use of 5° of bank towards the operating engine produces a lower v_{mca} and also a better performance than that obtained with the wings held level. It is now normal for manufacturers to use 5° of bank in this manner when determining the v_{mca} for the specific type. Thus, the v_{mca} quoted in the aeroplane manual will have been obtained using the technique.

(29) Feathering and un-feathering:

(i) minimum heights for practising feathering or un-feathering drills;

(ii) engine handling: precautions (overheating, icing conditions, priming, warm-up, method of simulating engine failure: reference to aircraft engine manual and service instructions and bulletins).

(30) Engine failure procedure:

(i) once the maintenance of control has been achieved, the order in which the procedures are carried out will be determined by the phase of operation and the aircraft type.

(ii) flight phase:
(A) in cruising flight;
(B) critical phase such as immediately after take-off or during the approach to landing or during a go-around.

(31) Aircraft type:
Variations will inevitably occur in the order of certain drills and checks due to differences between aeroplane types and perhaps between models of the same type, and the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) is to be consulted to establish the exact order of these procedures.

For example, one flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) may call for the raising of flaps and landing gear before feathering, whilst another may recommend feathering as a first step. The reason for this latter procedure could be due to the fact that some engines cannot be feathered if the RPM drops below a certain figure.

Again, in some aeroplanes, the raising of the landing gear may create more drag during retraction due to the transient position of the landing gear doors and as a result of this retraction would best be left until feathering has been accomplished and propeller drag reduced.

Therefore, the order in which the drills and checks are shown in this syllabus under ‘immediate actions’ and ‘subsequent actions’ are to be used as a general guide only and the exact order of precedence is determined by reference to the flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook) for the specific aeroplane type being used on the course.

(32) In-flight engine failure in cruise or other flight phase not including take-off or landing:

(i) immediate actions:
 (A) recognition of asymmetric condition and control of the aircraft;
 (B) identification and confirmation of failed engine:
 (a) idle leg = idle engine;
 (b) closing of throttle for confirmation.
 (C) cause and fire check:
 (a) typical reasons for failure;
 (b) methods of rectification.
 (D) feathering decision and procedure:
 (a) reduction of other drag;
 (b) need for speed but not haste;
 (c) use of rudder trim.

(ii) subsequent actions;
 (A) live engine:
 (a) temperature, pressures and power;
 (b) remaining services;
 (c) electrical load: assess and reduce as necessary;
(d) effect on power source for air driven instruments;
(e) landing gear;
(f) flaps and other services.

(B) re-plan flight:
(a) ATC and weather;
(b) terrain clearance, SE cruise speed;
(c) decision to divert or continue.

(C) fuel management: best use of remaining fuel;

(D) dangers of re-starting damaged engine;

(E) action if unable to maintain altitude: effect of altitude on power available;

(F) effects on performance;

(G) effects on power available and power required;

(H) effects on various airframe configuration and propeller settings;

(I) use of flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook):
 (a) cruising;
 (b) climbing: ASI colour coding (blue line);
 (c) descending;
 (d) turning.

(J) ‘live’ engine limitations and handling;

(K) take-off and approach: control and performance.

(33) Significant factors:
 (i) significance of take-off safety speed:
 (A) effect of landing gear, flap, feathering, take-off, trim setting, systems for operating landing gear and flaps;
 (B) effect on mass, altitude and temperature (performance).
 (ii) significance of best SE climb speed (V_{yse}):
 (A) acceleration to best engine climb speed and establishing a positive climb;
 (B) relationship of SE climb speed to normal climb speed;
 (C) action if unable to climb.
 (iii) significance of asymmetric committal height and speed: action if baulked below asymmetric committal height.

(34) Engine failure during take-off:
 (i) below V_{mca} or unstick speed:
 (A) accelerate or stop distance considerations;
 (B) prior use of flight manual data if available.
 (ii) above V_{mca} or unstick speed and below safety speed;
(iii) immediate re-landing or use of remaining power to achieve forced landing;

(iv) considerations:
 (A) degree of engine failure;
 (B) speed at the time;
 (C) mass, altitude and temperature (performance);
 (D) configuration;
 (E) length of runway remaining;
 (F) position of any obstacles ahead.

(35) Engine failure after take-off:
 (i) simulated at a safe height and at or above take-off safety speed;
 (ii) considerations:
 (A) need to maintain control;
 (B) use of bank towards operating engine;
 (C) use of available power achieving best SE climb speed;
 (D) mass, altitude, temperature (performance);
 (E) effect of prevailing conditions and circumstances.

(36) Immediate actions: maintenance of control, including air speed and use of power:
 (i) recognition of asymmetric condition;
 (ii) identification and confirmation of failed engine;
 (iii) feathering and removal of drag (procedure for type);
 (iv) establishing best SE climb speed.

(37) Subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:
 (i) cause and fire check;
 (ii) live engine, handling considerations;
 (iii) remaining services;
 (iv) ATC liaison;
 (v) fuel management.

Note: these procedures are applicable to aeroplane type and flight situation.

(38) Significance of asymmetric committal height:
 (i) Asymmetric committal height is the minimum height needed to establish a positive climb whilst maintaining adequate speed for control and removal of drag during an approach to a landing.

Because of the significantly reduced performance of many CS/JAR/FAR 23 aeroplanes when operating on one engine, consideration is to be given to a minimum height from which it would be safely possible to attempt a go-around procedure,
during an approach when the flight path will have to be changed from a descent to a climb with the aeroplane in a high drag configuration.

Due to the height loss which will occur during the time that the operating engine is brought up to full power, landing gear and flap retracted, and the aeroplane established in a climb at \(v_{vyse} \), a minimum height (often referred to as ‘Asymmetric committal height’) is to be selected, below which the pilot should not attempt to take the aeroplane round again for another circuit. This height will be compatible with the aeroplane type, all up weight, altitude of the aerodrome being used, air temperature, wind, the height of obstructions along the climb out path, and pilot competence.

(ii) circuit approach and landing on asymmetric power:
 (A) definition and use of asymmetric committal height;
 (B) use of standard pattern and normal procedures;
 (C) action if unable to maintain circuit height;
 (D) speed and power settings required;
 (E) decision to land or go-around at asymmetric committal height: factors to be considered.

(iii) undershooting importance of maintaining correct air speed (not below \(v_{vyse} \)).

(39) Speed and heading control:
 (i) height, speed and power relationship: need for minimum possible drag;
 (ii) establishing positive climb at best SE rate of climb speed:
 (A) effect of availability of systems, power for flap and landing gear;
 (B) operation and rapid clean up.

Note 1: The air speed at which the decision is made to commit the aeroplane to a landing or to go-around should normally be the best SE rate of climb speed and in any case not less than the safety speed.

Note 2: On no account should instrument approach ‘decision height’ and its associated procedures be confused with the selection of minimum height for initiating a go-around in asymmetric power flight.

(40) Engine failure during an all engines approach or missed approach:
 (i) use of asymmetric committal height and speed considerations;
 (ii) speed and heading control;
 (iii) decision to attempt a landing, go-around or force land as circumstances dictate.

Note: at least one demonstration and practice of engine failure in this situation should be performed during the course.

(41) Instrument flying on asymmetric power:
 (i) considerations relating to aircraft performance during:
(A) straight and level flight;
(B) climbing and descending;
(C) standard rate turns;
(D) level, climbing and descending turns including turns onto pre-selected headings.
(ii) availability of vacuum operated instruments;
(iii) availability of electrical power source.

(b) Air exercise

This section covers the operation of a SP ME aeroplane when one engine has failed and it is applicable to all such light piston aeroplanes. Checklists should be used as applicable.

(1) introduction to asymmetric flight:
(2) close the throttle of one engine;
(3) feather its propeller;
(4) effects on aeroplane handling at cruising speed;
(5) effects on aeroplane performance for example cruising speed and rate of climb;
(6) note foot load to maintain a constant heading;
(7) un-feather the propeller;
(8) return to normal flight finding the zero thrust throttle setting;
(9) comparison of foot load when feathered and with zero thrust set.
(10) effects and recognition of engine failure in level flight with the aeroplane straight and level at cruise speed:
(i) slowly close the throttle of one engine;
(ii) note yaw, roll and spiral descent.
(11) return to normal flight:
(i) close throttle of other engine;
(ii) note same effects in opposite direction.
(12) methods of control and identification of failed engine close one throttle and maintain heading and level flight by use of:
(i) rudder to control yaw;
(ii) aileron to hold wings level;
(iii) elevators to maintain level flight;
(iv) power (as required) to maintain air speed and altitude.
(13) alternative or supplementary method of control:
(i) simultaneously;
(ii) lower aeroplane nose to increase air speed;
(iii) reduce power;
(iv) loss of altitude: inevitable.
(14) identification of failed engine: idle foot = idle engine;
(15) use of instruments for identification:
 (i) fuel pressure or fuel flow;
 (ii) RPM gauge or CSU action may mask identification;
 (iii) engine temperature gauges.

(16) confirmation of identification: close the throttle of the identified failed engine;

(17) effects and recognition of engine failure in turns and effects of 'inside' engine failure:
 (i) more pronounced yaw;
 (ii) more pronounced roll;
 (iii) more pronounced pitch down.

(18) effects of 'outside' engine failure:
 (i) less pronounced yaw;
 (ii) less pronounced roll;
 (iii) less pronounced pitch down.

(19) possibility of confusion in identification:
 (i) use of correct rudder application;
 (ii) return to lateral level flight if necessary.

(20) flight instrument indications;

(21) effect of varying speed and power;

(22) failure of one engine at cruise speed and power: engine failure clearly recognised;

(23) failure of one engine at low speed and high power (not below ν_{sle}): engine failure most positively recognised;

(24) failure of one engine at higher speeds and low power: possible failure to recognise engine failure;

(25) minimum control speeds;

(26) establish the ν_{yse}:
 (i) select maximum permitted manifold pressure and RPM;
 (ii) close the throttle on one engine;
 (iii) raise the aeroplane nose and reduce the air speed;
 (iv) note the air speed when maximum rudder deflection is being applied and when directional control can no longer be maintained;
 (v) lower the aeroplane nose and reduce power until full directional control is regained;
 (vi) the lowest air speed achieved before the loss of directional control will be the V_{mc} for the flight condition;
 (vii) repeat the procedure closing the throttle of the other engine;
 (viii) the higher of these two air speeds will identify the most critical engine to fail.
Note: warning - in the above situations the recovery is to be initiated immediately before directional control is lost with full rudder applied, or when a safe margin above the stall remains, for example when the stall warning device operates, for the particular aeroplane configuration and flight conditions. On no account should the aeroplane be allowed to decelerate to a lower air speed.

(27) establish the effect of using 5° of bank at \(V_{mc} \):
 (i) close the throttle of one engine;
 (ii) increase to full power on the operating engine;
 (iii) using 5° of bank towards the operating engine reduce speed to the \(V_{mc} \);
 (iv) note lower \(V_{mc} \) when 5° of bank is used.

(28) ‘in-flight’ engine failure procedure;

(29) in cruise and other flight circumstances not including take-off and landing.

(30) Immediate actions: maintenance of control including air speed and use of power:
 (i) identification and confirmation of failed engine;
 (ii) failure cause and fire check;
 (iii) feathering decision and implementation;
 (iv) reduction of any other drag, for example flaps, cowl flaps etc.;
 (v) retrim and maintain altitude.

(31) Subsequent actions:
 (i) live engine:
 (A) oil temperature, pressure, fuel flow and power;
 (B) remaining services;
 (C) electrical load: assess and reduce as necessary;
 (D) effect on power source for air driven instruments;
 (E) landing gear;
 (F) flaps and other services.
 (ii) re-plan flight:
 (A) ATC and weather;
 (B) terrain clearance;
 (C) SE cruise speed;
 (D) decision to divert or continue;
 (iii) fuel management: best use of fuel;
 (iv) dangers of re-starting damaged engine;
 (v) action if unable to maintain altitude:
 (A) adopt \(V_{vse} \);
 (B) effect of altitude on power available.
 (vi) effects on performance;
(vii) effects on power available and power required;
(viii) effects on various airframe configurations and propeller settings;
(ix) use of flight manual or equivalent document (for example owner’s manual or pilot’s operating handbook):
 (A) cruising;
 (B) climbing: ASI colour coding (blue line);
 (C) descending;
 (D) turning.
(x) ‘live’ engine limitations and handling;
(xi) take-off and approach: control and handling;
 Note: to be done at a safe height away from the circuit;
(xii) take-off case with landing gear down and take-off flap set (if applicable);
(xiii) significance of take-off at or above safety speed (at safety speed. The ability to maintain control and to accelerate to SE climb speed with aeroplane clean and zero thrust set. Thereafter to achieve a positive climb);
(xiv) significance of flight below safety speed (below safety speed and above v_{mca}. A greater difficulty to maintain control, a possible loss of height whilst maintaining speed, cleaning up, accelerating to SE climb speed and establishing a positive climb);
(xv) significance of best SE climb speed (the ability to achieve the best rate of climb on one engine with minimum delay).

(32) Significance of asymmetric committal height:
 (i) the ability to maintain or accelerate to the best SE rate of climb speed and to maintain heading whilst cleaning up with perhaps a slight height loss before climbing away;
 (ii) below this height, the aeroplane is committed to continue the approach to a landing.

(33) Engine failure during take-off run and below safety speed briefing only;

(34) Engine failure after take-off;
 Note: to be initiated at a safe height and at not less than take-off safety speed with due regard to the problems of a prolonged SE climb in the prevailing conditions.
 (i) immediate actions:
 (A) control of direction and use of bank;
 (B) control of air speed and use of power;
 (C) recognition of asymmetric condition;
 (D) identification and confirmation of failed engine feathering and reduction of drag (procedure for type);
 (E) re-trim;
(ii) subsequent actions: whilst carrying out an asymmetric power climb to the downwind position at SE best rate of climb speed:
(A) cause and fire check;
(B) live engine, handling considerations;
(C) drills and procedures applicable to aeroplane type and flight situation;
(D) ATC liaison;
(E) fuel management.

(35) Asymmetric circuit, approach and landing;
(i) downwind and base legs:
(A) use of standard pattern;
(B) normal procedures;
(C) landing gear and flap lowering considerations;
(D) position for base leg;
(E) live engine handling;
(F) air speed and power settings;
(G) maintenance of height.

(ii) final approach:
(A) asymmetric committal height drill;
(B) control of air speed and descent rate;
(C) flap considerations.

(iii) going round again on asymmetric power (missed approach):
(A) not below asymmetric committal height;
(B) speed and heading control;
(C) reduction of drag, landing gear retraction;
(D) maintaining V_{yse};
(E) establish positive rate of climb.

(36) Engine failure during all engines approach or missed approach:
Note: to be started at not less than asymmetric committal height and speed and not more than part flap set:

(i) speed and heading control;
(ii) reduction of drag flap;
(iii) decision to attempt landing or go-around;
(iv) control of descent rate if approach is continued;
(v) if go-around is initiated, maintain V_{yse}, flaps and landing gear retracted and establish positive rate of climb.

Note: at least one demonstration and practice of engine failure in this situation should be performed during the course.
(37) Instrument flying on asymmetric power;
(38) Flight instrument checks and services available:
 (i) straight and level flight;
 (ii) climbing and descending;
 (iii) standard rate turns;
 (iv) level, climbing and descending turns including turns onto pre-selected headings.
AMC1 FCL.940.CRI CRI — Revalidation and renewal

REFRESHER TRAINING

(a) Paragraph (c)(1) of FCL.940.CRI determine that an applicant for renewal of a CRI certificate shall complete refresher training as a CRI at an ATO. Paragraph (a)(2) also establishes that an applicant for revalidation of the CRI certificate that has not completed a minimum amount of instruction hours (established in paragraph (a)(1)) during the validity period of the certificate shall undertake refresher training at an ATO for the revalidation of the certificate. The amount of refresher training needed should be determined on a case by case basis by the ATO, taking into account the following factors:

1. the experience of the applicant;
2. whether the training is for revalidation or renewal;
3. the amount of time lapsed since the last time the applicant has conducted training, in the case of revalidation, or since the certificate has lapsed, in the case of renewal. The amount of training needed to reach the desired level of competence should increase with the time lapsed.

(b) Once the ATO has determined the needs of the applicant, it should develop an individual training programme that should be based on the CRI training course and focus on the aspects where the applicant has shown the greatest needs.
AMC1 FCL.930.IRI IRI— Training course

GENERAL

(a) The aim of the IRI training course is to train aircraft licence holders to the level of competence defined in FCL.920, and adequate for an IRI.

(b) The IRI training course should give particular stress to the role of the individual in relation to the importance of human factors in the man-machine environment.

(c) Special attention should be paid to the applicant’s levels of maturity and judgement including an understanding of adults, their behavioural attitudes and variable levels of education.

(d) With the exception of the section on ‘teaching and learning’, all the subject detail contained in the theoretical and flight training syllabus is complementary to the instrument rating pilot course syllabus which should already be known by the applicant. Therefore, the objective of the course is to:

 (1) refresh and bring up to date the technical knowledge of the student instructor;

 (2) train pilots in accordance with the requirements of the modular instrument flying training course;

 (3) enable the applicant to develop the necessary instructional techniques required for teaching of instrument flying, radio navigation and instrument procedures to the level required for the issue of an instrument rating;

 (4) ensure that the student instrument rating instructor’s flying is of a sufficiently high standard.

(e) In part 3 some of the air exercises of the flight instruction syllabus of this AMC may be combined in the same flight.

(f) During the training course the applicants should be made aware of their own attitudes to the important aspects of flight safety. Improving safety awareness should be a fundamental objective throughout the training course. It will be of major importance for the training course to aim at giving applicants the knowledge, skills and attitudes relevant to an instructor’s task. To achieve this, the course curriculum, in terms of objectives, should comprise at least the following areas.

 (g) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.

 (h) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

CONTENT

(i) The training course consists of three parts:

 (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920.

 (2) Part 2: instrument technical theoretical knowledge instruction (technical training).
(3) Part 3: flight instruction.

Part 1
The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.

Part 2
THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS
(a) The instrument theoretical knowledge instruction should comprise not less than 10 hours training to include the revision of instrument theoretical knowledge, the preparation of lesson plans and the development of classroom instructional skills to enable the IRI to instruct the instrument theoretical knowledge syllabus.
(b) All the subject detail contained in the instrument theoretical knowledge instruction syllabus and flight instruction syllabus is complementary to the instrument rating pilot course syllabus which should already be known by the applicant. Therefore, the objective of the course is to:
(1) refresh and bring up to date the technical knowledge of the student instructor;
(2) train pilots in accordance with the requirements of the modular instrument flying training course;
(3) enable the applicant to develop the necessary instructional techniques required for teaching of instrument flying, radio navigation and instrument procedures to the level required for the issue of an instrument rating; and
(4) ensure that the student instrument rating instructor's flying is of a sufficiently high standard.
(c) The theoretical subjects covered below should be used to develop the instructor's teaching skills. The items selected should relate to the student’s background and should be applied to training for an IR.

GENERAL SUBJECTS
(d) Physiological and psychological factors:
(1) the senses;
(2) spatial disorientation;
(3) sensory illusions;
(4) stress.
(e) Flight instruments:
(1) air speed indicator;
(2) altimeter;
(3) vertical speed indicator;
(4) attitude indicator;
(5) heading indicator;
(6) turn and slip indicator;
(7) magnetic compass;
(8) in relation to the above instruments the following items should be covered:
 (i) principles of operation;
 (ii) errors and in-flight serviceability checks;
 (iii) system failures.

(f) Radio navigation aids:
 (1) basic radio principles;
 (2) use of VHF RTF channels;
 (3) the Morse code;
 (4) basic principles of radio aids;
 (5) use of VOR;
 (6) ground and aeroplane equipment;
 (7) use of NDB/ADF;
 (8) ground and aeroplane equipment;
 (9) use of VHF/DF;
 (10) radio detection and ranging (radar);
 (11) ground equipment;
 (12) primary radar;
 (13) secondary surveillance radar;
 (14) aeroplane equipment;
 (15) transponders;
 (16) precision approach system;
 (17) other navigational systems (as applicable) in current operational use;
 (18) ground and aeroplane equipment;
 (19) use of DME;
 (20) ground and aeroplane equipment;
 (21) marker beacons;
 (22) ground and aeroplane equipment;
 (23) pre-flight serviceability checks;
 (24) range, accuracy and limitations of equipment.

(g) Flight planning considerations;

(h) Aeronautical information publications:
 (1) the training course should cover the items listed below, but the applicant’s aptitude and previous aviation experience should be taken into account when determining the amount of instructional time allotted. Although a number of items contained under this
heading are complementary to those contained in the PPL/CPL/IR syllabi, the instructor should ensure that they have been covered during the applicant’s training and due allowance should be made for the time needed to revise these items as necessary.

(2) AIP
(3) NOTAM class 1 and 2;
(4) AIC;
(5) information of an operational nature;
(6) the rules of the air and ATS;
(7) visual flight rules and instrument flight rules;
(8) flight plans and ATS messages;
(9) use of radar in ATS;
(10) radio failure;
(11) classification of airspace;
(12) airspace restrictions and hazards;
(13) holding and approach to land procedures;
(14) precision approaches and non precision approaches;
(15) radar approach procedures;
(16) missed approach procedures;
(17) visual manoeuvring after an instrument approach;
(18) conflict hazards in uncontrolled airspace;
(19) communications;
(20) types of services;
(21) extraction of AIP data relating to radio aids;
(22) charts available;
(23) en-route;
(24) departure and arrival;
(25) instrument approach and landing;
(26) amendments, corrections and revision service.

(i) flight planning general:
(1) the objectives of flight planning;
(2) factors affecting aeroplane and engine performance;
(3) selection of alternate(s);
(4) obtaining meteorological information;
(5) services available;
(6) meteorology briefing;
(7) telephone or electronic data processing;
(8) actual weather reports (TAFs, METARs and SIGMET messages);
(9) the route forecast;
(10) the operational significance of the meteorological information obtained (including icing, turbulence and visibility);

(11) altimeter considerations;

(12) definitions of:
 (i) transition altitude;
 (ii) transition level;
 (iii) flight level;
 (iv) QNH;
 (v) regional QNH;
 (vi) standard pressure setting;
 (vii) QFE.

(13) altimeter setting procedures;

(14) pre-flight altimeter checks;

(15) take-off and climb;

(16) en-route;

(17) approach and landing;

(18) missed approach;

(19) terrain clearance;

(20) selection of a minimum safe en-route altitude;

(21) IFR;

(22) preparation of charts;

(23) choice of routes and flight levels;

(24) compilation of flight plan or log sheet;

(25) log sheet entries;

(26) navigation ground aids to be used;

(27) frequencies and identification;

(28) radials and bearings;

(29) tracks and fixes;

(30) safety altitude(s);

(31) fuel calculations;

(32) ATC frequencies (VHF);

(33) tower, approach, en-route, radar, FIS, ATIS, and weather reports;

(34) minimum sector altitudes at destination and alternate aerodromes;

(35) determination of minimum safe descent heights or altitudes (decision heights) at destination and alternate aerodromes.

(j) The privileges of the instrument rating:

(1) outside controlled airspace;

(2) within controlled airspace;

(3) period of validity and renewal procedures.
Part 3

FLIGHT INSTRUCTION SYLLABUS

(a) An approved IRI course should comprise of at least 10 hours of flight instruction, of which a maximum of 8 hours may be conducted in an FSTD. A similar number of hours should be used for the instruction and practice of pre-flight and post-flight briefing for each exercise.

(b) The flight instruction should aim to ensure that the applicant is able to teach the air exercises safely and efficiently.
A. AEROPLANES

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INTRUMENT FLYING (Basic)
(for revision, as deemed necessary by the instructor)

(a) Long briefing objectives:
 (1) flight instruments;
 (2) physiological considerations;
 (3) instrument appreciation:
 (i) attitude instrument flight;
 (ii) pitch indications;
 (iii) bank indications;
 (iv) different instrument presentations;
 (v) introduction to the use of the attitude indicator;
 (vi) pitch attitude;
 (vii) bank attitude;
 (viii) maintenance of heading and balanced flight;
 (ix) instrument limitations (inclusive system failures).
 (4) attitude, power and performance:
 (i) attitude instrument flight;
 (ii) control instruments;
 (iii) performance instruments;
 (iv) effect of changing power and configuration;
 (v) cross-checking the instrument indications;
 (vi) instrument interpretation;
 (vii) direct and indirect indications (performance instruments);
 (viii) instrument lag;
 (ix) selective radial scan.
 (5) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds and aeroplane configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings.

(b) Air exercise:
 (1) instrument flying (basic);
(i) physiological sensations;
(ii) instrument appreciation;
(iii) attitude instrument flight;
(iv) pitch attitude;
(v) bank attitude;
(vi) maintenance of heading and balanced flight;
(vii) attitude instrument flight;
(viii) effect of changing power and configuration;
(ix) cross-checking the instruments;
(x) selective radial scan;

(2) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds and aeroplane configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings.

EXERCISE 2: INTRUMENT FLYING (Advanced)

(a) Long briefing objectives:
 (1) full panel;
 (2) 30 ° level turns;
 (3) unusual attitudes: recoveries;
 (4) transference to instruments after take-off;
 (5) limited panel;
 (6) basic flight manoeuvres;
 (7) unusual attitudes: recoveries.

(b) Air exercise:
 (1) full panel;
 (2) 30 ° level turns;
 (3) unusual attitudes: recoveries;
 (4) limited panel;
 (5) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR

(a) Long briefing objectives:
 (1) availability of VOR stations en-route;
 (2) station frequencies and identification;
(3) signal reception range;
(4) effect of altitude;
(5) VOR radials;
(6) use of OBS;
(7) to or from indicator;
(8) orientation;
(9) selecting radials;
(10) intercepting a pre-selected radial;
(11) assessment of distance to interception;
(12) effects of wind;
(13) maintaining a radial;
(14) tracking to and from a VOR station;
(15) procedure turns;
(16) station passage;
(17) use of two stations for obtaining a fix;
(18) pre-selecting fixes along a track;
(19) assessment of ground speed and timing;
(20) holding procedures;
(21) various entries;
(22) communication (R/T procedures and ATC liaison).

(b) Air exercise:
(1) station selection and identification;
(2) orientation;
(3) intercepting a pre-selected radial;
(4) R/T procedures and ATC liaison;
(5) maintaining a radial inbound;
(6) recognition of station passage;
(7) maintaining a radial outbound;
(8) procedure turn;
(9) use of two stations to obtain a fix along the track;
(10) assessment of ground speed and timing;
(11) holding procedures and entries;
(12) holding at a pre-selected fix;
(13) holding at a VOR station.

EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF NDB

(a) Long briefing objectives:
 (1) availability of an NDB facilities en-route;
(2) location, frequencies, tuning (as applicable) and identification codes;
(3) signal reception range;
(4) static interference;
(5) night effect;
(6) station interference;
(7) mountain effect;
(8) coastal refraction;
(9) orientation in relation to an NDB;
(10) homing;
(11) intercepting a pre-selected magnetic bearing and tracking inbound;
(12) station passage;
(13) tracking outbound;
(14) time and distance checks;
(15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
(16) holding procedures and various approved entries;
(17) communication (R/T procedures and ATC liaison).

(b) Air exercise:
(1) selecting, tuning and identifying an NDB;
(2) ADF orientation;
(3) communication (R/T procedures and ATC liaison);
(4) homing;
(5) tracking inbound;
(6) station passage;
(7) tracking outbound;
(8) time and distance checks;
(9) intercepting a pre-selected magnetic bearing;
(10) determining the aeroplane’s position from two NDBs or alternatively from one NDB and one other navaid;
(11) ADF holding procedures and various approved entries.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

(a) Long briefing objectives:
(1) availability of VHF/DF facilities en-route;
(2) location, frequencies, station call signs and hours of operation;
(3) signal and reception range;
(4) effect of altitude;
(5) communication (R/T procedures and ATC liaison);
(6) obtaining and using types of bearings, for example QTE, QDM and QDR;
(7) homing to a station;
(8) effect of wind;
(9) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
(10) assessment of groundspeed and timing.

(b) Air exercise:
(1) establishing contact with a VHF/DF station;
(2) R/T Procedures and ATC liaison;
(3) obtaining and using a QDR and QTE;
(4) homing to a station;
(5) effect of wind;
(6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
(7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

(a) Long briefing objectives:
(1) availability of DME facilities;
(2) location, frequencies and identification codes;
(3) signal reception range;
(4) slant range;
(5) use of DME to obtain distance, groundspeed and timing;
(6) use of DME to obtain a fix.

(b) Air exercise:
(1) station selection and identification;
(2) use of equipment functions;
(3) distance;
(4) groundspeed;
(5) timing;
(6) DME arc approach;
(7) DME holding.

EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS (SSR)

(a) Long briefing objectives:
(1) operation of transponders;
(2) code selection procedure;
(3) emergency codes;
(4) precautions when using airborne equipment.

(b) Air exercise:
(1) operation of transponders;
(2) types of transponders;
(3) code selection procedure;
(4) emergency codes;
(5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR

(a) Long briefing objectives:
(1) availability of radar services;
(2) location, station frequencies, call signs and hours of operation;
(3) AIP and NOTAMs;
(4) provision of service;
(5) communication (R/T, procedures and ATC liaison);
(6) airspace radar advisory service;
(7) emergency service;
(8) aircraft separation standards.

(b) Air exercise:
(1) communication (R/T procedures and ATC liaison);
(2) establishing the service required and position reporting;
(3) method of reporting conflicting traffic;
(4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL PROCEDURES

(a) Long briefing objectives:
(1) determining the serviceability of the aeroplane radio;
(2) navigation equipment;
(3) obtaining the departure clearance;
(4) setting up radio navaids before take-off for example VOR frequencies, required radials, etc.;
(5) aerodrome departure procedures, frequency changes;
(6) altitude and position reporting as required;
(7) SID procedures;
(8) obstacle clearance considerations.
(b) Air exercise:

1. radio equipment serviceability checks;
2. departure clearance;
3. navaid selection;
4. frequencies, radials, etc.;
5. aerodrome departure checks, frequency changes, altitude and position reports;
6. SID procedures.

EXERCISE 10: INSTRUMENT APPROACH: ILS APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURE

(a) Long briefing objectives:

1. precision approach charts;
2. approach to the initial approach fix and minimum sector altitude;
3. navaid requirements, for example radar, ADF, etc.;
4. communication (ATC liaison and R/T phraseology);
5. holding procedure;
6. the final approach track;
7. forming a mental picture of the approach;
8. completion of aerodrome approach checks;
9. initial approach procedure;
10. selection of the ILS frequency and identification;
11. obstacle clearance altitude or height;
12. operating minima;
13. achieving the horizontal and vertical patterns;
14. assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
15. use of DME (as applicable);
16. go-around and missed approach procedure;
17. review of the published instructions;
18. transition from instrument to visual flight (sensory illusions);
19. visual manoeuvring after an instrument approach:
 (i) circling approach;
 (ii) visual approach to landing.

(b) Air exercise:

1. initial approach to the ILS;
2. completion of approach planning;
3. holding procedure;
4. frequency selection and identification of ILS;
(5) review of the published procedure and minimum sector altitude;
(6) communication (ATC liaison and R/T phraseology);
(7) determination of operating minima and altimeter setting;
(8) weather consideration, for example cloud base and visibility;
(9) availability of runway lighting;
(10) ILS entry methods;
(11) radar vectors;
(12) procedural method;
(13) assessment of approach time from the final approach fix to the aerodrome;
(14) determination of:
 (i) the descent rate on final approach;
 (ii) the wind velocity at the surface and the length of the landing runway;
 (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
(15) circling approach;
(16) the approach:
 (i) at the final approach fix;
 (ii) use of DME (as applicable);
 (iii) ATC liaison;
 (iv) note time and establish air speed and descent rate;
 (v) maintaining the localiser and glide path;
 (vi) anticipation in change of wind velocity and its effect on drift;
 (vii) decision height;
(17) runway direction;
(18) overshoot and missed approach procedure;
(19) transition from instrument to visual flight;
(20) circling approach;
(21) visual approach to landing.

EXERCISE 11: INSTRUMENTS APPROACH: NDB APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

(a) Long briefing objectives:
 (1) non-precision approach charts;
 (2) initial approach to the initial approach fix and minimum sector altitude;
 (3) ATC liaison;
 (4) communication (ATC procedures and R/T phraseology);
 (5) approach planning;
(6) holding procedure;
(7) the approach track;
(8) forming a mental picture of the approach;
(9) initial approach procedure;
(10) operating minima;
(11) completion of approach planning;
(12) achieving the horizontal and vertical patterns;
(13) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
(14) use of DME (as applicable);
(15) go-around and missed approach procedure;
(16) review of the published instructions;
(17) transition from instrument to visual flight (sensory illusions);
(18) visual manoeuvring after an instrument approach;
(19) circling approach;
(20) visual approach to landing.

(b) Air exercise:

(1) completion of approach planning including determination of:
 (i) descent rate from the final approach fix;
 (ii) the wind velocity at the surface and length of the landing runway;
 (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
(2) circling approach;
(3) go-around and missed approach procedure;
(4) initial approach;
(5) frequency selection and identification;
(6) review of the published procedure and minimum safe sector altitude;
(7) ATC liaison and R/T phraseology;
(8) determination of decision height and altimeter setting;
(9) weather considerations, for example cloud base and visibility;
(10) availability of runway lighting;
(11) determination of inbound track;
(12) assessment of time from final approach fix to the missed approach point;
(13) ATC liaison;
(14) the outbound procedure (inclusive completion of pre-landing checks);
(15) the inbound procedure;
(16) re-check of identification code;
(17) altimeter setting re-checked;
(18) the final approach;
(19) note time and establish air speed and descent rate;
(20) maintaining the final approach track;
(21) anticipation of change in wind velocity and its effect on the drift;
(22) minimum descent altitude or height;
(23) runway direction;
(24) go-around and missed approach procedure;
(25) transition from instrument to visual flight (sensory illusions);
(26) visual approach.

EXERCISE 12: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF GNSS (to be developed)

(a) Long briefing objectives: use of GNSS.
(b) Air exercise: use of GNSS.
B. HELICOPTERS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INSTRUMENT FLYING (Basic)
(for revision as deemed necessary by the instructor)

(a) Long briefing objectives:
 (1) flight instruments;
 (2) physiological considerations;
 (3) instrument appreciation:
 (i) attitude instrument flight;
 (ii) pitch indications;
 (iii) bank indications;
 (iv) different instrument presentations;
 (v) introduction to the use of the attitude indicator;
 (vi) pitch attitude;
 (vii) bank attitude;
 (viii) maintenance of heading and balanced flight;
 (ix) instrument limitations (inc. system failures);
 (4) attitude, power and performance:
 (i) attitude instrument flight;
 (ii) control instruments;
 (iii) performance instruments;
 (iv) effect of changing power;
 (v) cross-checking the instrument indications;
 (vi) instrument interpretation;
 (vii) direct and indirect indications (performance instruments);
 (viii) instrument lag;
 (ix) selective radial scan;
 (5) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings.

(b) Air exercise:
 (1) physiological sensations;
 (2) instrument appreciation;
(3) attitude instrument flight;
(4) pitch attitude;
(5) bank attitude;
(6) maintenance of heading and balanced flight;
(7) attitude instrument flight;
(8) effect of changing power;
(9) cross-checking the instruments;
(10) selective radial scan;
(11) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds and helicopter configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings;
 (vi) manoeuvring at minimum and maximum IMC speed.

EXERCISE 2: INSTRUMENT FLYING (Advanced)

(a) Long briefing objectives:
 (1) full panel;
 (2) 30° level turns;
 (3) unusual attitudes: recoveries;
 (4) transition to instruments after take-off;
 (5) limited panel;
 (6) basic flight manoeuvres;
 (7) unusual attitudes: recoveries.

(b) Air exercise:
 (1) full panel;
 (2) 30° level turns;
 (3) unusual attitudes: recoveries;
 (4) identification and recovery from low pitch steep bank and high pitch steep bank attitudes (at low and high power settings);
 (5) limited panel;
 (6) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR

(a) Long briefing objectives:
 (1) availability of VOR stations en-route;
(2) station frequencies and identification;
(3) signal reception range;
(4) effect of altitude;
(5) VOR radials;
(6) use of OBS;
(7) to and from indicator;
(8) orientation;
(9) selecting radials;
(10) intercepting a pre-selected radial;
(11) assessment of distance to interception;
(12) effects of wind;
(13) maintaining a radial;
(14) tracking to and from a VOR station;
(15) procedure turns;
(16) station passage;
(17) use of two stations for obtaining a fix;
(18) pre-selecting fixes along a track;
(19) assessment of ground speed and timing;
(20) holding procedures;
(21) various entries;
(22) communication (R/T procedures and ATC liaison).

(b) Air exercise:
(1) station selection and identification;
(2) orientation;
(3) intercepting a pre-selected radial;
(4) R/T procedures and ATC liaison;
(5) maintaining a radial inbound;
(6) recognition of station passage;
(7) maintaining a radial outbound;
(8) procedure turns;
(9) use of two stations to obtain a fix along the track;
(10) assessment of ground speed and timing;
(11) holding procedures and entries;
(12) holding at a pre-selected fix;
(13) holding at a VOR station.
EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF NDB

(a) Long briefing objectives:
 (1) availability of NDB facilities en-route;
 (2) location, frequencies, tuning (as applicable) and identification codes;
 (3) signal reception range;
 (4) static interference;
 (5) night effect;
 (6) station interference;
 (7) mountain effect;
 (8) coastal refraction;
 (9) orientation in relation to an NDB;
 (10) homing;
 (11) intercepting a pre-selected magnetic bearing and tracking inbound;
 (12) station passage;
 (13) tracking outbound;
 (14) time and distance checks;
 (15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
 (16) holding procedures;
 (17) communication (R/T procedures and ATC liaison).

(b) Air exercise:
 (1) selecting, tuning and identifying an NDB;
 (2) ADF orientation;
 (3) communication (R/T procedures and ATC liaison);
 (4) homing;
 (5) tracking inbound;
 (6) station passage;
 (7) tracking outbound;
 (8) time and distance checks;
 (9) intercepting a pre-selected magnetic bearing;
 (10) determining the helicopter’s position from two NDBs or alternatively from one NDB and one other navaid;
 (11) ADF holding procedures.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

(a) Long briefing objectives:
 (1) availability of VHF/DF facilities en-route;
(2) location, frequencies, station call signs and hours of operation;
(3) signal and reception range;
(4) effect of altitude;
(5) communication (R/T procedures and ATC liaison);
(6) obtaining and using types of bearings, for example QTE, QDM, QDR;
(7) homing to a station;
(8) effect of wind;
(9) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
(10) assessment of groundspeed and timing.

(b) Air exercise:
 (1) establishing contact with a VHF/DF station;
 (2) R/T procedures and ATC liaison;
 (3) obtaining and using a QDR and QTE;
 (4) homing to a station;
 (5) effect of wind;
 (6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
 (7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

(a) Long briefing objectives:
 (1) availability of DME facilities;
 (2) location, frequencies and identification codes;
 (3) signal reception range;
 (4) slant range;
 (5) use of DME to obtain distance, groundspeed and timing;
 (6) use of DME to obtain a fix;

(b) Air exercise:
 (1) station selection and identification;
 (2) use of equipment functions;
 (3) distance;
 (4) groundspeed;
 (5) timing;
 (6) DME arc approach;
 (7) DME holding.
EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS

(a) Long briefing objectives:
 (1) operation of transponders;
 (2) code selection procedure;
 (3) emergency codes;
 (4) precautions when using airborne equipment.

(b) Air exercise:
 (1) operation of transponders;
 (2) types of transponders;
 (3) code selection procedure;
 (4) emergency codes;
 (5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR SERVICES

(a) Long briefing objectives:
 (1) availability of radar services;
 (2) location, station frequencies, call signs and hours of operation;
 (3) AIP and NOTAMS;
 (4) provision of service;
 (5) communication (R/T procedures and ATC liaison);
 (6) airspace radar advisory service;
 (7) emergency service;
 (8) aircraft separation standards.

(b) Air exercise:
 (1) communication (R/T procedures and ATC liaison);
 (2) establishing the service required and position reporting;
 (3) method of reporting conflicting traffic;
 (4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL PROCEDURES

(a) Long briefing objectives:
 (1) determining the serviceability of the radio equipment;
 (2) navigation equipment;
 (3) obtaining the departure clearance;
 (4) setting up radio navaids before take-off for example VOR frequencies, required radials, etc.;
 (5) aerodrome departure procedures, frequency changes;
(6) altitude and position reporting as required;
(7) SID procedures;
(8) obstacle clearance considerations.

(b) Air exercise:
(1) radio equipment serviceability checks;
(2) departure clearance;
(3) navaid selection;
(4) frequencies, radials, etc.;
(5) aerodrome departure checks, frequency changes, altitude and position reports;
(6) SID procedures.

EXERCISE 10: INSTRUMENT APPROACH: PRECISION APPROACH AID TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

(a) Long briefing objectives:
(1) precision approach charts;
(2) approach to the initial approach fix and minimum sector altitude;
(3) navaid requirements, for example radar, ADF, etc.;
(4) communication (ATC liaison and R/T phraseology);
(5) holding procedure;
(6) the final approach track;
(7) forming a mental picture of the approach;
(8) completion of aerodrome approach checks;
(9) initial approach procedure;
(10) selection of the ILS frequency and identification;
(11) obstacle clearance altitude or height;
(12) operating minima;
(13) achieving the horizontal and vertical patterns;
(14) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
(15) use of DME (as applicable);
(16) go-around and missed approach procedure;
(17) review of the published instructions;
(18) transition from instrument to visual flight (sensory illusions);
(19) visual manoeuvring after an instrument approach;
 (i) circling approach;
 (ii) visual approach to landing.

(b) Air exercise:
(1) initial approach to the ILS;
(2) completion of approach planning;
(3) holding procedure;
(4) frequency selection and identification of ILS;
(5) review of the published procedure and minimum sector altitude;
(6) communication (ATC liaison and R/T phraseology);
(7) determination of operating minima and altimeter setting;
(8) weather consideration, for example cloud base and visibility;
(9) availability of landing site lighting;
(10) ILS entry methods;
(11) radar vectors;
(12) procedural method;
(13) assessment of approach time from the final approach fix to the aerodrome;
(14) determination of:
 (i) the descent rate on final approach;
 (ii) the wind velocity at the surface and the length of the landing site;
 (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
(15) circling approach;
(16) the approach:
 (i) at the final approach fix;
 (ii) use of DME (as applicable);
 (iii) ATC liaison;
 (iv) note time and establish air speed and descent rate;
 (v) maintaining the localizer and glide path;
 (vi) anticipation in change of wind velocity and its effect on drift;
 (vii) decision height.
(17) landing direction;
(18) go-around and missed approach procedure;
(19) transition from instrument to visual flight;
(20) circling approach;
(21) visual approach to landing.

EXERCISE 11: INSTRUMENT APPROACH: NON-PRECISION APPROACH TO SPECIFIED MINIMA AND MISSED APPROACH PROCEDURES

(a) Long briefing objectives:

 (1) non-precision approach charts;
 (2) initial approach to the initial approach fix and minimum sector altitude;
(3) ATC liaison;
(4) communication (ATC procedures and R/T phraseology);
(5) approach planning;
(6) holding procedure;
(7) the approach track;
(8) forming a mental picture of the approach;
(9) initial approach procedure;
(10) operating minima;
(11) completion of approach planning;
(12) achieving the horizontal and vertical patterns;
(13) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
(14) use of DME (as applicable);
(15) go-around and missed approach procedure;
(16) review of the published instructions;
(17) transition from instrument to visual flight (sensory illusions);
(18) visual manoeuvring after an instrument approach;
(19) circling approach;
(20) visual approach to landing.

(b) Air exercise:
(1) completion of approach planning, including determination of:
 (i) descent rate from the final approach fix;
 (ii) the wind velocity at the surface and length of the landing site;
 (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach.
(2) circling approach;
(3) go-around and missed approach procedure;
(4) initial approach;
(5) frequency selection and identification;
(6) review of the published procedure and minimum safe sector altitude;
(7) ATC liaison and R/T phraseology;
(8) determination of decision height and altimeter setting;
(9) weather considerations, for example cloud base and visibility;
(10) availability of landing site lighting;
(11) determination of inbound track;
(12) assessment of time from final approach fix to the missed approach point;
(13) ATC liaison;
(14) the outbound procedure (incl. completion of pre-landing checks);
(15) the inbound procedure;
(16) re-check of identification code;
(17) altimeter setting re-checked;
(18) the final approach;
(19) note time and establish air speed and descent rate;
(20) maintaining the final approach track;
(21) anticipation of change in wind velocity and its effect on the drift;
(22) minimum descent altitude or height;
(23) landing site direction;
(24) go-around and missed approach procedure;
(25) transition from instrument to visual flight (sensory illusions);
(26) visual approach.

EXERCISE 12: USE OF GNSS (to be developed)

(a) Long briefing objectives: use of GNSS.
(b) Air exercise: use of GNSS.
C. AIRSHIPS

LONG BRIEFINGS AND AIR EXERCISES

EXERCISE 1: INSTRUMENT FLYING (Basic)
(for revision as deemed necessary by the instructor)

(a) Long briefing objectives:
 (1) flight instruments;
 (2) physiological considerations;
 (3) instrument appreciation:
 (i) attitude instrument flight;
 (ii) pitch indications;
 (iii) different instrument presentations;
 (iv) introduction to the use of the attitude indicator;
 (v) pitch attitude;
 (vi) maintenance of heading and balanced flight;
 (vii) instrument limitations (inclusive system failures).
 (4) attitude, power and performance:
 (i) attitude instrument flight;
 (ii) control instruments;
 (iii) performance instruments;
 (iv) effect of changing power, trim and configuration;
 (v) cross-checking the instrument indications;
 (vi) instrument interpretation;
 (vii) direct and indirect indications (performance instruments);
 (viii) instrument lag;
 (ix) selective radial scan.
 (5) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds and airship configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings.

(b) Air exercise:
 (1) physiological sensations;
 (2) instrument appreciation;
 (3) attitude instrument flight;
(4) pitch attitude;
(5) bank attitude;
(6) maintenance of heading and balanced flight;
(7) attitude instrument flight;
(8) effect of changing power and configuration;
(9) cross-checking the instruments;
(10) selective radial scan;
(11) the basic flight manoeuvres (full panel):
 (i) straight and level flight at various air speeds and airship configurations;
 (ii) climbing;
 (iii) descending;
 (iv) standard rate turns;
 (v) level, climbing and descending on to pre-selected headings.

EXERCISE 2: INSTRUMENT FLYING (Advanced)
(a) Long briefing objectives:
 (1) full panel;
 (2) unusual attitudes: recoveries;
 (3) transference to instruments after take-off;
 (4) limited panel;
 (5) basic flight manoeuvres;
 (6) unusual attitudes: recoveries.
(b) Air exercise:
 (1) full panel;
 (2) unusual attitudes: recoveries;
 (3) limited panel;
 (4) repeat of the above exercises.

EXERCISE 3: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VOR
(a) Long briefing objectives:
 (1) availability of VOR stations en-route;
 (2) station frequencies and identification;
 (3) signal reception range;
 (4) effect of altitude;
 (5) VOR radials;
 (6) use of OBS;
 (7) to or from indicator;
(8) orientation;
(9) selecting radials;
(10) intercepting a pre-selected radial;
(11) assessment of distance to interception;
(12) effects of wind;
(13) maintaining a radial;
(14) tracking to and from a VOR station;
(15) procedure turns;
(16) station passage;
(17) use of two stations for obtaining a fix;
(18) pre-selecting fixes along a track;
(19) assessment of ground speed and timing;
(20) holding procedures;
(21) various entries;
(22) communication (R/T procedures and ATC liaison).

(b) Air exercise:
(1) station selection and identification;
(2) orientation;
(3) intercepting a pre-selected radial;
(4) R/T procedures and ATC liaison;
(5) maintaining a radial inbound;
(6) recognition of station passage;
(7) maintaining a radial outbound;
(8) procedure turns;
(9) use of two stations to obtain a fix along the track;
(10) assessment of ground speed and timing;
(11) holding procedures and entries;
(12) holding at a pre-selected fix;
(13) holding at a VOR station.

EXERCISE 4: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF ADF
(Automatic DF equipment)

(a) Long briefing objectives:
(1) availability of NDB facilities en-route;
(2) location, frequencies, tuning (as applicable) and identification codes;
(3) signal reception range;
(4) static interference;
(5) night effect;
(6) station interference;
(7) mountain effect;
(8) coastal refraction;
(9) orientation in relation to an NDB;
(10) homing;
(11) intercepting a pre-selected magnetic bearing and tracking inbound;
(12) station passage;
(13) tracking outbound;
(14) time and distance checks;
(15) use of two NDBs to obtain a fix or alternatively use of one NDB and one other navaid;
(16) holding procedures and various approved entries;
(17) communication (R/T procedures and ATC liaison).

(b) Air exercise:
(1) selecting, tuning and identifying an NDB;
(2) ADF orientation;
(3) communication (R/T procedures and ATC liaison);
(4) homing;
(5) tracking inbound;
(6) station passage;
(7) tracking outbound;
(8) time and distance checks;
(9) intercepting a pre-selected magnetic bearing;
(10) determining the airship's position from two NDBs or alternatively from one NDB and one other navaid;
(11) ADF holding procedures and various approved entries.

EXERCISE 5: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF VHF/DF

(a) Long briefing objectives:
(1) availability of VHF/DF facilities en-route;
(2) location, frequencies, station call signs and hours of operation;
(3) signal and reception range;
(4) effect of altitude;
(5) communication (R/T procedures and ATC liaison);
(6) obtaining and using types of bearings, for example QTE, QDM, QDR;
(7) homing to a station;
(8) effect of wind;
(9) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
(10) assessment of groundspeed and timing.

(b) Air exercise:
 (1) establishing contact with a VHF/DF station;
 (2) R/T procedures and ATC liaison;
 (3) obtaining and using a QDR and QTE;
 (4) homing to a station;
 (5) effect of wind;
 (6) use of two VHF/DF stations to obtain a fix (or alternatively one VHF/DF station and one other navaid);
 (7) assessment of groundspeed and timing.

EXERCISE 6: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF DME

(a) Long briefing objectives:
 (1) availability of DME facilities;
 (2) location, frequencies and identification codes;
 (3) signal reception range;
 (4) slant range;
 (5) use of DME to obtain distance, groundspeed and timing;
 (6) use of DME to obtain a fix.

(b) Air exercise:
 (1) station selection and identification;
 (2) use of equipment functions;
 (3) distance;
 (4) groundspeed;
 (5) timing;
 (6) DME arc approach;
 (7) DME holding.

EXERCISE 7: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF TRANSPONDERS

(a) Long briefing objectives:
 (1) operation of transponders;
 (2) code selection procedure;
 (3) emergency codes;
 (4) precautions when using airborne equipment.
Exhibit to ED Decision 2011/016/R

(b) Air exercise:
(1) operation of transponders;
(2) types of transponders;
(3) code selection procedure;
(4) emergency codes;
(5) precautions when selecting the required code.

EXERCISE 8: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF EN-ROUTE RADAR SERVICES

(a) Long briefing objectives:
(1) availability of radar services;
(2) location, station frequencies, call signs and hours of operation;
(3) AIP and NOTAMS;
(4) provision of service;
(5) communication (R/T, procedures and ATC liaison);
(6) airspace radar advisory service;
(7) emergency service;
(8) aircraft separation standards.

(b) Air exercise:
(1) communication (R/T procedures and ATC liaison);
(2) establishing the service required and position reporting;
(3) method of reporting conflicting traffic;
(4) terrain clearance.

EXERCISE 9: PRE-FLIGHT AND AERODROME DEPARTURE AND ARRIVAL PROCEDURES

(a) Long briefing objectives:
(1) determining the serviceability of the airship radio;
(2) navigation equipment;
(3) obtaining the departure clearance;
(4) setting up radio navaiids before take-off for example VOR frequencies, required radials, etc.;
(5) aerodrome departure procedures, frequency changes;
(6) altitude and position reporting as required;
(7) SID procedures;
(8) obstacle clearance considerations.

(b) Air exercise:
(1) radio equipment serviceability checks;
(2) departure clearance;
(3) navaid selection;
(4) frequencies, radials, etc.;
(5) aerodrome departure checks, frequency changes, altitude and position reports;
(6) SID procedures.

EXERCISE 10: INSTRUMENT APPROACHES: ILS APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACHES PROCEDURES

(a) Long briefing objectives:
 (1) precision approach charts;
 (2) approach to the initial approach fix and minimum sector altitude;
 (3) navaid requirements, for example radar, ADF, etc.;
 (4) communication (ATC liaison and R/T phraseology);
 (5) review;
 (6) holding procedure;
 (7) the final approach track;
 (8) forming a mental picture of the approach;
 (9) completion of aerodrome approach checks;
 (10) initial approach procedure;
 (11) selection of the ILS frequency and identification;
 (12) obstacle clearance altitude or height;
 (13) operating minima;
 (14) achieving the horizontal and vertical patterns;
 (15) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;
 (16) use of DME (as applicable);
 (17) go-around and missed approach procedure;
 (18) review of the published instructions;
 (19) transition from instrument to visual flight (sensory illusions);
 (20) visual manoeuvring after an instrument approach;
 (i) circling approach;
 (ii) visual approach to landing.

(b) Air exercise:
 (1) initial approach to the ILS;
 (2) completion of approach planning;
 (3) holding procedure;
 (4) frequency selection and identification of ILS;
 (5) review of the published procedure and minimum sector altitude;
 (6) communication (ATC liaison and R/T phraseology);
(7) determination of operating minima and altimeter setting;
(8) weather consideration, for example cloud base and visibility;
(9) availability of runway lighting;
(10) ILS entry methods;
(11) radar vectors;
(12) procedural method;
(13) assessment of approach time from the final approach fix to the aerodrome;
(14) determination of:
 (i) the descent rate on final approach;
 (ii) the wind velocity at the surface (and the length of the landing runway);
 (iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach;
(15) circling approach;
(16) the approach:
 (i) at the final approach fix;
 (ii) use of DME (as applicable);
 (iii) ATC liaison;
 (iv) note time and establish air speed and descent rate;
 (v) maintaining the localiser and glide path;
 (vi) anticipation in change of wind velocity and its effect on drift;
 (vii) decision height;
 (viii) runway direction.
(17) missed approach procedure;
(18) transition from instrument to visual flight;
(19) circling approach;
(20) visual approach to landing.

EXERCISE 11: INSTRUMENT APPROACHES: NDB APPROACHES TO SPECIFIED MINIMA AND MISSED APPROACHES PROCEDURE

(a) Long briefing objectives:
 (1) non-precision approach charts;
 (2) initial approach to the initial approach fix and minimum sector altitude;
 (3) ATC liaison;
 (4) communication (ATC procedures and R/T phraseology);
 (5) approach planning:
 (i) holding procedure;
 (ii) the approach track;
(iii) forming a mental picture of the approach; (iv) initial approach procedure; (v) operating minima; (vi) completion of approach planning.

(6) achieving the horizontal and vertical patterns;

(7) assessment of distance, groundspeed time, and rate of descent from the final approach fix to the aerodrome;

(8) use of DME (as applicable);

(9) go-around and missed approach procedure;

(10) review of the published instructions;

(11) transition from instrument to visual flight (sensory illusions);

(12) visual manoeuvring after an instrument approach;

(13) circling approach;

(14) visual approach to landing.

(b) Air exercise:

(1) completion of approach planning including;

(2) determination of:

(i) descent rate from the final approach fix;

(ii) the wind velocity at the surface and length of the landing runway;

(iii) the obstruction heights to be borne in mind during visual manoeuvring after an instrument approach.

(3) circling approach;

(4) go-around and missed approach procedure;

(5) initial approach;

(6) frequency selection and identification;

(7) review of the published procedure and minimum safe sector altitude;

(8) ATC liaison and R/T phraseology;

(9) determination of decision height and altimeter setting;

(10) weather considerations, for example cloud base and visibility;

(11) availability of runway lighting;

(12) determination of inbound track;

(13) assessment of time from final approach fix to the missed approach point;

(14) ATC liaison;

(15) the outbound procedure (inclusive completion of pre-landing checks);

(16) the inbound procedure;

(17) re-check of identification code;
(18) altimeter setting re-checked;
(19) the final approach;
(20) note time and descent rate;
(21) maintaining the final approach track;
(22) anticipation of change in wind velocity and its effect on the drift;
(23) minimum descent altitude or height;
(24) runway direction;
(25) go-around and missed approach procedure;
(26) transition from instrument to visual flight (sensory illusions);
(27) visual approach.

EXERCISE 12: RADIO NAVIGATION (APPLIED PROCEDURES): USE OF GNNS (to be developed)

(a) Long briefing objectives: use of GNSS.
(b) Air exercise: use of GNSS.
AMC1 FCL.930.MCCI MCCI — Training course

AEROPLANES

GENERAL
(a) The objective of the technical training is to apply the core instructor competencies acquired during the teaching and learning training to MCC training.
(b) During the practical training the applicant should demonstrate the ability to instruct a pilot in MCC.
(c) To supervise applicants for MCCI certificates, the adequate experience should include at least three type rating or MCC courses.
(d) It is to be noted that airmanship is a vital ingredient of all flight operations. Therefore, in the following air exercises the relevant aspects of airmanship are to be stressed at the appropriate times during each flight.
(e) The student instructor should learn how to identify common errors and how to correct them properly, which should be emphasised at all times.

COURSE OBJECTIVE
(f) The course should be designed to give adequate training to the applicant in theoretical knowledge instruction and FSTD instruction to instruct those aspects of MCC required by an applicant for a type rating on a first MP aeroplane.
(g) Confirmation of competency of the applicant to be authorised as an MCCI(A) will be determined by the applicant conducting at least 3 hours MCC instruction to a satisfactory standard on the relevant FNPT or FFS under the supervision of a TRI(A), SFI(A) or MCCI(A) nominated by the ATO for this purpose.
(h) The course consists of three parts:
 (1) Part 1: teaching and learning that should follow the content of AMC1 FCL.920;
 (2) Part 2: technical theoretical knowledge instruction (technical training);
 (3) Part 3: flight instruction.

Part 1
The content of the teaching and learning part of the FI training course, as established in AMC1 FCL.930.FI, should be used as guidance to develop the course syllabus.
Part 2

TECHNICAL THEORETICAL KNOWLEDGE INSTRUCTION SYLLABUS

(a) The FSTD training consists of the application of core instructor competencies to MCC training in a commercial air transport environment, including principles of threat and error management and CRM.

The content of the training programme should cover MCC course exercises in sufficient depth to meet the standard required for issue of the MCCI(A) certificate.

(b) The course should be related to the type of FSTD on which the applicant wishes to instruct. A training programme should give details of all theoretical knowledge instruction.

(c) Identification and application of human factors (as set in the ATPL syllabus 040) related to MCC aspects of the training.
Part 3

FLIGHT INSTRUCTION SYLLABUS

(a) The content of the instruction programme should cover training exercises as applicable to the MCC requirements of an applicant for a MP type rating.

(b) Training exercises:

The exercises should be accomplished as far as possible in a simulated commercial air transport environment. The instruction should cover the following areas:

(1) pre-flight preparation, including documentation, and computation of take-off performance data;

(2) pre-flight checks, including radio and navigation equipment checks and setting;

(3) before take-off checks, including powerplant checks, and take-off briefing by the PF;

(4) normal take-offs with different flap settings, tasks of PF and PNF, call-outs;

(5) rejected take-offs; crosswind take-offs; take-offs at maximum take-off mass; engine failure after \(v_1 \);

(6) normal and abnormal operation of aircraft systems, use of checklists;

(7) selected emergency procedures to include engine failure and fire, smoke control and removal, windshear during take-off and landing, emergency descent, incapacitation of a flight crew member;

(8) early recognition of and reaction on approaching stall in differing aircraft configurations;

(9) instrument flight procedures, including holding procedures; precision approaches using raw navigation data, flight director and automatic pilot, one engine simulated inoperative approaches, non-precision and circling approaches, approach briefing by the PF, setting of navigation equipment, call-out procedures during approaches; computation of approach and landing data;

(10) go-arounds; normal and with one engine simulated inoperative, transition from instrument to visual flight on reaching decision height or minimum descent height or altitude;

(11) landings, normal, crosswind and with one engine simulated inoperative, transition from instrument to visual flight on reaching decision height or minimum descent height or altitude.
SUBPART K — EXAMINERS

GM1 FCL.1000 Examiner certificates

SPECIAL CONDITIONS

When new aircraft are introduced, requirements such as to hold a licence and rating equivalent to the one for which the skill test is being conducted, or to have adequate flight experience, may not be possible to comply with. In this case, to allow for the first ratings for these aircraft to be issued to applicants, competent authorities need the possibility to issue a specific certificate that does not have to comply with the requirements established in this Subpart.

The competent authority should only give these certificates to holders of other examiner certificates. As far as possible, preference should be given to persons with experience in similar types or classes of aircraft, for example, in aircraft having the same kind and number of engines or rotors and of the same order of mass or technology.

The certificate should ideally be limited in validity to the time needed to qualify the first examiners for the new aircraft in accordance with this Subpart, but in any case it should not exceed the 3 years established in the rule.
GM1 FCL.1005(b) Limitation of privileges in case of vested interests

Examples of a situation where the examiner should consider if his/her objectivity is affected are when the applicant is a relative or a friend of the examiner, or when they are linked by economical interests or political affiliations, etc.
AMC1 FCL.1010 Prerequisites for examiners

When evaluating the applicant’s background, the competent authority should evaluate the personality and character of the applicant, and his/her cooperation with the competent authority.

The competent authority may also take into account whether the applicant has been convicted of any relevant criminal or other offenses, taking into account national law and principles of non-discrimination.
AMC1 FCL.1015 Examiner standardisation

GENERAL

(a) The competent authority may provide the course itself or through an arrangement with an ATO. This arrangement should clearly state that the ATO is acting under the management system of the competent authority.

(b) The course should last:

 (1) for the FE and FIE, at least 1 day, divided into theoretical and practical training;

 (2) for other examiners, at least 3 days, divided into theoretical training (1 day) and practical training in an FFS conducting role played proficiency checks and skill tests (at least 2 days).

(c) The competent authority or the ATO should determine any further training required before presenting the candidate for the examiner assessment of competence.

CONTENT

(d) The training should comprise:

 (1) Theoretical training covering at least:

 (i) the contents of AMC2 FCL.1015 and the FEM;

 (ii) Part-FCL and related AMCs and GM relevant to their duties;

 (iii) operational requirements and related AMCs and GM relevant to their duties;

 (iv) national requirements relevant to their examination duties;

 (v) fundamentals of human performance and limitations relevant to flight examination;

 (vi) fundamentals of evaluation relevant to applicant’s performance;

 (vii) management system of ATOs;

 (viii) MCC, human performance and limitations, if applicable.

 (2) Examiners should also be briefed on the protection requirements for personal data, liability, accident insurance and fees, as applicable in the member state concerned.

 (3) All items above are the core knowledge requirements for an examiner and are recommended as the core course material. This core course may be studied before recommended examiner training is commenced. The core course may utilise any suitable training format.

 (4) Practical training consisting of at least:

 (i) knowledge and management of the test for which the certificate is to be sought. These are described in the relevant modules in the FEM;

 (ii) knowledge of the administrative procedures pertaining to that test or check.
(5) For an initial examiner certificate, practical training should include the examination of the test profile sought, consisting of the conduct of at least two test or check profiles in the role of examiner (these two tests or checks profiles can be performed in the same simulator session), including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. This training is conducted in the aircraft if approval for testing or checking in the aircraft is required. If examiner privileges in FSTD’s are required, practical instruction in the use of FSTD(s) for testing or checking should also be completed.

(6) If examiner privileges are to include the conduct of proficiency checks for the revalidation or renewal of an instrument rating, practical instruction should include the conduct of at least four instrument check profiles in the role of examiner, including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. This training is conducted in the aircraft if approval for testing or checking in the aircraft is required. If examiner privileges in both FSTD and aircraft are required, at least one of the instrument check profiles should be conducted in an FSTD.

(7) For extension of an examiner certificate to further types (as required for TRE), further practical training on the new type may be required, consisting of the conduct of at least one test or check profile in the role of examiner on the new type, including briefing, conduct of the skill test and proficiency check, assessment of the applicant to whom the test or check is given, debriefing and recording or documentation under the supervision of an examiner of the appropriate category on the applicable type. A further examiner check on the new type may be required, which may be supervised by an inspector of the competent authority or a suitably authorised senior examiner.
AMC2 FCL.1015 Examiner standardisation

STANDARDISATION ARRANGEMENTS FOR EXAMINERS

LIMITATIONS

(a) An examiner should allow an applicant adequate time to prepare for a test or check, normally not more than 1 hour.

(b) An examiner should plan a test or check flight so that all required exercises can be performed while allowing sufficient time for each of the exercises and with due regard to the weather conditions, traffic situation, ATC requirements and local procedures.

PURPOSE OF A TEST OR CHECK

(c) Determine through practical demonstration during a test or check that an applicant has acquired or maintained the required level of knowledge and skill or proficiency.

(d) Improve training and flight instruction in ATOs by feedback of information from examiners about items or sections of tests or checks that are most frequently failed.

(e) Assist in maintaining and, where possible, improving air safety standards by having examiners display good airmanship and flight discipline during tests or checks.

CONDUCT OF TEST OR CHECK

(f) An examiner will ensure that an applicant completes a test or check in accordance with Part-FCL requirements and is assessed against the required test or check standards.

(g) Each item within a test or check section should be completed and assessed separately. The test or check schedule, as briefed, should not normally be altered by an examiner. A failed item is not always a failed section, for example type rating skill test where a failure of an item in a section does not fail the entire section, only the failed item is taken again.

(h) Marginal or questionable performance of a test or check item should not influence an examiner’s assessment of any subsequent items.

(i) An examiner should verify the requirements and limitations of a test or check with an applicant during the pre-flight briefing.

(j) When a test or check is completed or discontinued, an examiner should debrief the applicant and give reasons for items or sections failed. In case of a failed or discontinued skill test and proficiency check, the examiner should provide appropriate advice to assist the applicant in re-tests or re-checks.

(k) Any comment on, or disagreement with, an examiner’s test or check evaluation or assessment made during a debriefing will be recorded by the examiner on the test or check report, and will be signed by the examiner and countersigned by the applicant.
EXAMINER PREPARATION

(l) An examiner should supervise all aspects of the test or check flight preparation, including, where necessary, obtaining or assuring an ATC ‘slot’ time.

(m) An examiner will plan a test or check in accordance with Part-FCL requirements. Only the manoeuvres and procedures set out in the appropriate test or check form will be undertaken. The same examiner should not re-examine a failed applicant without the agreement of the applicant.

EXAMINER APPROACH

(n) An examiner should encourage a friendly and relaxed atmosphere to develop both before and during a test or check flight. A negative or hostile approach should not be used. During the test or check flight, the examiner should avoid negative comments or criticisms and all assessments should be reserved for the debriefing.

ASSESSMENT SYSTEM

(o) Although test or checks may specify flight test tolerances, an applicant should not be expected to achieve these at the expense of smoothness or stable flight. An examiner should make due allowance for unavoidable deviations due to turbulence, ATC instructions, etc. An examiner should terminate a test or check only when it is clear that the applicant has not been able to demonstrate the required level of knowledge, skill or proficiency and that a full re-test will be necessary or for safety reasons. An examiner will use one of the following terms for assessment:

(1) a ‘pass’, provided that the applicant demonstrates the required level of knowledge, skill or proficiency and, where applicable, remains within the flight test tolerances for the licence or rating;

(2) a ‘fail’ provided that any of the following apply:

(i) the flight test tolerances have been exceeded after the examiner has made due allowance for turbulence or ATC instructions;

(ii) the aim of the test or check is not completed;

(iii) the aim of exercise is completed but at the expense of safe flight, violation of a rule or regulation, poor airmanship or rough handling;

(iv) an acceptable level of knowledge is not demonstrated;

(v) an acceptable level of flight management is not demonstrated;

(vi) the intervention of the examiner or safety pilot is required in the interest of safety.

(3) a ‘partial pass’ in accordance with the criteria shown in the relevant skill test appendix of Part-FCL.
METHOD AND CONTENTS OF THE TEST OR CHECK

(p) Before undertaking a test or check an examiner will verify that the aircraft or FSTD intended to be used is suitable and appropriately equipped for the test or check.

(q) A test or check flight will be conducted in accordance with the AFM and, if applicable, the AOM.

(r) A test or check flight will be conducted within the limitations contained in the operations manual of an ATO.

(s) Contents:
 (1) a test or check is comprised of:
 (i) oral examination on the ground (where applicable);
 (ii) pre-flight briefing;
 (iii) in-flight exercises;
 (iv) post-flight debriefing.
 (2) oral examination on the ground should include:
 (i) aircraft general knowledge and performance;
 (ii) planning and operational procedures;
 (iii) other relevant items or sections of the test or check.
 (3) pre-flight briefing should include:
 (i) test or check sequence;
 (ii) power setting, speeds and approach minima, if applicable;
 (iii) safety considerations.
 (4) in-flight exercises will include each relevant item or section of the test or check;
 (5) post-flight debriefing should include:
 (i) assessment or evaluation of the applicant;
 (ii) documentation of the test or check with the applicant’s FI present, if possible.

(t) A test or check is intended to simulate a practical flight. Thus, an examiner may set practical scenarios for an applicant while ensuring that the applicant is not confused and air safety is not compromised.

(u) When manoeuvres are to be flown by sole reference to instruments, the examiner should ensure that a suitable method of screening is used to simulate IMC.

(v) An examiner should maintain a flight log and assessment record during the test or check for reference during the post or flight debriefing.

(w) An examiner should be flexible to the possibility of changes arising to pre-flight briefings due to ATC instructions, or other circumstances affecting the test or check.

(x) Where changes arise to a planned test or check an examiner should be satisfied that the applicant understands and accepts the changes. Otherwise, the test or check flight should be terminated.
(y) Should an applicant choose not to continue a test or check for reasons considered inadequate by an examiner, the applicant will be assessed as having failed those items or sections not attempted. If the test or check is terminated for reasons considered adequate by the examiner, only these items or sections not completed will be tested during a subsequent test or check.

(z) An examiner may terminate a test or check at any stage, if it is considered that the applicant’s competency requires a complete re-test or re-check.
GM1 FCL.1015 Examiner standardisation

(a) An examiner should plan per day not more than:
 (1) three tests or checks relating to PPL, CPL, IR or class ratings;
 (2) four tests or checks relating to LAPL, SPL or BPL;
 (3) two tests or checks related to CPL, IR or ATPL;
 (4) two assessments of competence related to instructor certificates;
 (5) four tests or checks relating to SP type ratings.

(b) An examiner should plan at least 2 hours for a LAPL, SPL or BPL, 3 hours for a PPL, CPL, IR or class rating test or checks, and at least 4 hours for FI, CPL, IR, MPL, ATPL or MP type rating tests or checks, including pre-flight briefing and preparation, conduct of the test, check or assessment of competence, de-briefing, evaluation of the applicant and documentation.

(c) When planning the duration of a test, check or assessment of competence, the following values may be used as guidance:
 (1) 45 minutes for a LAPL(B) or BPL and SP class ratings VFR only;
 (2) 90 minutes for LAPL(A) or (H), PPL and CPL, including navigation section;
 (3) 60 minutes for IR, FI and SP type or class ratings;
 (4) 120 minutes for CPL, MPL, ATPL and MP type ratings.

(d) For the LAPL(S) and SPL test or check flight the flight time must be sufficient to allow that all the items in each test or check section can be fully completed. If not all the items can be completed in one flight, additional flights have to be done.
AMC1 FCL.1020 Examiners assessment of competence

GENERAL

(a) The competent authority may nominate either one of its inspectors or a senior examiner to assess the competence of applicants for an examiner certificate.

DEFINITIONS

(b) Definitions:

1. ‘Inspector’: the inspector of the competent authority conducting the examiner competence assessment;
2. ‘Examiner applicant’: the person seeking certification as an examiner;
3. ‘Candidate’: the person being tested or checked by the examiner applicant. This person may be a pilot for whom the test or check would be required, or the inspector of the competent authority who is conducting the examiner certification acceptance test.

CONDUCT OF THE ASSESSMENT

(c) An inspector of the competent authority or a senior examiner will observe all examiner applicants conducting a test on a ‘candidate’ in an aircraft for which examiner certificate is sought. Items from the related training course and test or check schedule will be selected by the inspector for examination of the ‘candidate’ by the examiner applicant. Having agreed with the inspector the content of the test, the examiner applicant will be expected to manage the entire test. This will include briefing, the conduct of the flight, assessment and debriefing of the ‘candidate’. The inspector will discuss the assessment with the examiner applicant before the ‘candidate’ is debriefed and informed of the result.

BRIEFING THE ‘CANDIDATE’

(d) The ‘candidate’ should be given time and facilities to prepare for the test flight. The briefing should cover the following:

1. the objective of the flight;
2. licensing checks, as necessary;
3. freedom for the ‘candidate’ to ask questions;
4. operating procedures to be followed (for example operators manual);
5. weather assessment;
6. operating capacity of ‘candidate’ and examiner;
7. aims to be identified by ‘candidate’;
8. simulated weather assumptions (for example icing and cloud base);
9. use of screens (if applicable);
10. contents of exercise to be performed;
11. agreed speed and handling parameters (for example V-speeds, bank angle, approach minima);
(12) use of R/T;
(13) respective roles of ‘candidate’ and examiner (for example during emergency);
(14) administrative procedures (for example submission of flight plan).

(e) The examiner applicant should maintain the necessary level of communication with the ‘candidate’. The following check details should be followed by the examiner applicant:

1. involvement of examiner in a MP operating environment;
2. the need to give the ‘candidate’ precise instructions;
3. responsibility for safe conduct of the flight;
4. intervention by examiner, when necessary;
5. use of screens;
6. liaison with ATC and the need for concise, easily understood intentions;
7. prompting the ‘candidate’ about required sequence of events (for example following a go-around);
8. keeping brief, factual and unobtrusive notes.

ASSESSMENT

(f) The examiner applicant should refer to the flight test tolerances given in the relevant skill test. Attention should be paid to the following points:

1. questions from the ‘candidate’;
2. give results of the test and any sections failed;
3. give reasons for failure.

DEBRIEFING

(g) The examiner applicant should demonstrate to the inspector the ability to conduct a fair, unbiased debriefing of the ‘candidate’ based on identifiable factual items. A balance between friendliness and firmness should be evident. The following points should be discussed with the ‘candidate’, at the applicant’s discretion:

1. advise the candidate on how to avoid or correct mistakes;
2. mention any other points of criticism noted;
3. give any advice considered helpful.

RECORDING OR DOCUMENTATION

(h) The examiner applicant should demonstrate to the inspector the ability to complete the relevant records correctly. These records may be:

1. the relevant test or check form;
2. licence entry;
3. notification of failure form;
4. relevant company forms where the examiner has privileges of conducting operator proficiency checks.
DEMONSTRATION OF THEORETICAL KNOWLEDGE

(i) The examiner applicant should demonstrate to the inspector a satisfactory knowledge of the regulatory requirements associated with the function of an examiner.
AMC1 FCL.1020; FCL.1025

QUALIFICATION OF SENIOR EXAMINERS

(a) A senior examiner specifically tasked by the competent authority to observe skill tests or proficiency checks for the revalidation of examiner certificates should:

(1) hold a valid or current examiner certificate appropriate to the privileges being given;
(2) have examiner experience level acceptable to the competent authority;
(3) have conducted a number of skill tests or proficiency checks as a Part-FCL examiner.

(b) The competent authority may conduct a pre-assessment of the applicant or candidate carrying out a skill test and proficiency check under supervision of an inspector of the competent authority.

(c) Applicants should be required to attend a senior examiner briefing, course or seminar arranged by the competent authority. Content and duration will be determined by the competent authority and should include:

(1) pre-course self-study;
(2) legislation;
(3) the role of the senior examiner;
(4) an examiner assessment;
(5) national administrative requirements.

(d) The validity of the authorisation should not exceed the validity of the examiners certificate, and in any case should not exceed 3 years. The authorisation may be revalidated in accordance with procedures established by the competent authority.
AMC1 FCL.1025 Validity, revalidation and renewal of examiner certificates

EXAMINER REFRESHER SEMINAR

The examiner refresher seminar should follow the content of the examiner standardisation course, included in AMC1 FCL.1015, and take into account specific contents adequate to the category of examiner affected.
AMC1 FCL.1030 (b)(3) Conduct of skill tests, proficiency checks and assessments of competence

OBLIGATIONS FOR EXAMINERS APPLICATION AND REPORT FORMS

Common application and report forms can be found:
(a) For skill tests or proficiency checks for issue, revalidation or renewal of LAPL, BPL, SPL, PPL, CPL and IR in AMC1 to Appendix 7;
(b) For training, skill tests or proficiency checks for ATPL, MPL or class and type ratings, in AMC1 to Appendix 9;
(c) For assessments of competence for instructors, in AMC5 FCL.935.
Appendices

AMC1 to Appendix 3 Training courses for the issue of a CPL and an ATPL

GENERAL

(a) When ensuring that the applicant complies with the prerequisites for the course, in accordance with ORA.ATO.145, the ATO should check that the applicant has enough knowledge of mathematics, physics and English to facilitate the understanding of the theoretical knowledge instruction content of the course.

(b) Whenever reference is made to a certain amount of hours of training, this means a full hour. Time not directly assigned to training (such as breaks, etc.) is not to be counted towards the total amount of time that is required.
A. **ATP integrated course: aeroplanes**

(a) The ATP integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for previous experience given to an applicant who already holds a PPL should be entered into the applicant’s training record. In the case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 750 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 750 hours of instruction should be divided in such a way that in each subject the minimum hours are:

1. **Air law**
2. Aircraft general knowledge
3. Flight performance and planning
4. Human performance and limitations
5. Meteorology
6. Navigation
7. Operational procedures
8. Principles of flight
9. Communications

Other subdivision of hours may be agreed upon between the competent authority and the ATO.

FLYING TRAINING

(d) The flying instruction is divided into five phases:

1. **phase 1:**
 - Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane including:
 - (i) pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
 - (ii) aerodrome and traffic pattern operations, collision avoidance and precautions;
 - (iii) control of the aeroplane by external visual references;
 - (iv) normal take-offs and landings;
(v) flight at critically low air speeds, recognition of recovery from incipient and full stalls, spin avoidance;
(vi) unusual attitudes and simulated engine failure.

(2) phase 2:
Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:
(i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
(ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
(iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;
(iv) aerodrome and traffic pattern operations at different aerodromes;
(v) crosswind take-offs and landings;
(vi) abnormal and emergency procedures and manoeuvres, including simulated aeroplane equipment malfunctions;
(vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
(viii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.

(3) phase 3:
Exercises up to the VFR navigation progress test comprise a total of at least 5 hours of dual instruction and at least 40 hours as PIC.
The dual instruction and testing up to the VFR navigation progress test should comprise:
(i) repetition of exercises of phases 1 and 2;
(ii) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;
(iii) VFR navigation progress test conducted by an FI not connected with the applicant’s training;
(iv) night flight time including take-offs and landings as PIC.

(4) phase 4:
Exercises up to the instrument rating skill test comprise:
(i) at least 55 hours instrument flight, which may contain up to 25 hours of instrument ground time in an FNPT I or up to 40 hours in an FNPT II or FFS which should be conducted by an FI or an authorised SFI;
(ii) 20 hours instrument time flown as SPIC;
(iii) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
(iv) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
(A) transition from visual to instrument flight on take-off;
(B) SIDs and arrivals;
(C) en-route IFR procedures;
(D) holding procedures;
(E) instrument approaches to specified minima;
(F) missed approach procedures;
(G) landings from instrument approaches, including circling.

(v) in-flight manoeuvres and specific flight characteristics;
(vi) operation of an ME aeroplane in the exercises of (iv), including operation of the aeroplane solely by reference to instruments with one engine simulated inoperative, and engine shut-down and restart (the latter training should be at a safe altitude unless carried out in an FSTD).

(5) phase 5:

(i) instruction and testing in MCC comprise the relevant training requirements;

(ii) if a type rating for MP aeroplanes is not required on completion of this part, the applicant will be provided with a certificate of course completion for MCC training.
B. ATP modular theoretical knowledge course: aeroplanes

(a) The aim of this course is to train pilots who have not received the theoretical knowledge instruction during an integrated course to the level of theoretical knowledge required for the ATPL.

(b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by the competent authority. Approved distance learning (correspondence) courses may also be offered as part of the course.

(c) The ATP modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.
C. CPL/IR integrated course: aeroplanes

(a) The CPL/IR integrated course should last between 9 and 30 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for previous experience given to an applicant who already holds a PPL should be entered into the applicant's training record. In the case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 500 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 500 hours of instruction should be divided in such a way that in each subject the minimum hours are:

1. Air law 30 hours
2. Aircraft general knowledge 50 hours
3. Flight performance and planning 60 hours
4. Human performance and limitations 15 hours
5. Meteorology 40 hours
6. Navigation 100 hours
7. Operational procedures 10 hours
8. Principles of flight 25 hours
9. Communications 30 hours

Other subdivisions of hours may be agreed upon between the competent authority and the ATO.

FLYING TRAINING

(d) The flying instruction is divided into four phases:

1. Phase 1:
 Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane, including:
 1. pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
 2. aerodrome and traffic pattern operations, collision avoidance and precautions;
 3. control of the aeroplane by external visual references;
 4. normal take-offs and landings;
(v) flight at critically low air speeds, recognition of and recovery from incipient and full stalls, spin avoidance;
(vi) unusual attitudes and simulated engine failure.

(2) phase 2:
Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:
(i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
(ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
(iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;
(iv) aerodrome and traffic pattern operations at different aerodromes;
(v) crosswind take-offs and landings;
(vi) abnormal and emergency operations and manoeuvres, including simulated aeroplane equipment malfunctions;
(vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
(viii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.

(3) phase 3:
Exercises up to the VFR navigation progress test comprise a total of at least 5 hours of instruction and at least 40 hours as PIC. The dual instruction and testing up to the VFR navigation progress test and the skill test should contain the following:
(i) repetition of exercises of phases 1 and 2;
(ii) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;
(iii) VFR navigation progress test conducted by an FI not connected with the applicant’s training;
(iv) night flight time including take-offs and landings as PIC.

(4) phase 4:
Exercises up to the instrument rating skill test comprise:
(i) at least 55 hours instrument time, which may contain up to 25 hours of instrument ground time in an FNPT I or up to 40 hours in an FNPT II or FFS which should be conducted by an FI or an authorised SFI;
(ii) 20 hours instrument time flown as SPIC;
(iii) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
(iv) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
(A) transition from visual to instrument flight on take-off;
(B) SIDs and arrivals;
(C) en-route IFR procedures;
(D) holding procedures;
(E) instrument approaches to specified minima;
(F) missed approach procedures;
(G) landings from instrument approaches, including circling.

(v) in-flight manoeuvres and particular flight characteristics;
(vi) operation of either an SE or an ME aeroplane in the exercises of (iv), including in the case of an ME aeroplane operation of the aeroplane solely by reference to instruments with one engine simulated inoperative and engine shut-down and restart. The latter exercise is to be conducted at a safe altitude unless carried out in an FSTD.
D. CPL integrated course: aeroplanes

(a) The CPL integrated course should last between 9 and 24 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant’s training record. In the case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in a helicopter or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 350 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

FLYING TRAINING

(d) The flying instruction is divided into four phases:

1. phase 1:
 Exercises up to the first solo flight comprise a total of at least 10 hours dual flight instruction on an SE aeroplane, including:
 (i) pre-flight operations, mass and balance determination, aeroplane inspection and servicing;
 (ii) aerodrome and traffic pattern operations, collision avoidance and precautions;
 (iii) control of the aeroplane by external visual references;
 (iv) normal take-offs and landings;
 (v) flight at relatively slow air speeds, recognition of and recovery from incipient and full stalls, spin avoidance;
 (vi) unusual attitudes and simulated engine failure.

2. phase 2:
 Exercises up to the first solo cross-country flight comprise a total of at least 10 hours of dual flight instruction and at least 10 hours solo flight including:
 (i) maximum performance (short field and obstacle clearance) take-offs and short-field landings;
 (ii) flight by reference solely to instruments, including the completion of a 180 ° turn;
 (iii) dual cross-country flying using external visual references, DR and radio navigation aids, diversion procedures;
 (iv) aerodrome and traffic pattern operations at different aerodromes;
 (v) crosswind take-offs and landings;
(vi) abnormal and emergency procedures and manoeuvres, including simulated aeroplane equipment malfunctions;

(vii) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;

(vii) knowledge of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS.

(3) phase 3:
Exercises up to the VFR navigation progress test comprise a total of at least 30 hours instruction and at least 58 hours as PIC, including:

(a) at least 10 hours instrument time, which may contain 5 hours of instrument ground time in an FNPT or an FFS and should be conducted by an FI or an authorised SFI;

(b) repetition of exercises of phases 1 and 2, which should include at least 5 hours in an aeroplane certificated for the carriage of at least four persons and have a variable pitch propeller and retractable landing gear;

(c) VFR flight at relatively critical high air speeds, recognition of and recovery from spiral dives;

(d) night flight time including take-offs and landings as PIC.

(4) phase 4:
The dual instruction and testing up to the CPL(A) skill test contain the following:

(i) up to 30 hours instruction which may be allocated to specialised aerial work training;

(ii) repetition of exercises in phase 3, as required;

(iii) in-flight manoeuvres and particular flight characteristics;

(iv) ME training.

If required, operation of an ME aeroplane including operation of the aeroplane with one engine simulated inoperative, and engine shutdown and restart (the latter exercise at a safe altitude unless carried out in an FSTD).
E. CPL modular course: aeroplanes

(a) The CPL modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.

(b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by the competent authority. Approved distance learning (correspondence) courses may also be offered as part of the course.

THEORETICAL KNOWLEDGE

(c) The 250 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

FLYING TRAINING

(d) The following flight time is suggested for the flying training:

(1) visual flight training: suggested flight time
 (i) Exercise 1:
 pre-flight operations: mass and balance determination, aeroplane inspection and servicing.
 (ii) Exercise 2:
 take-off, traffic pattern, approach and landing, use of checklist, collision avoidance and checking procedures. 0:45 hours
 (iii) Exercise 3:
 traffic patterns: simulated engine failure during and after take-off. 0:45 hours
 (iv) Exercise 4:
 maximum performance (short field and obstacle clearance) take-offs and short-field landings. 1:00 hours
 (v) Exercise 5:
 crosswind take-offs, landings and go-arounds. 1:00 hours
 (vi) Exercise 6:
flight at relatively critical high air speeds; recognition of and recovery from spiral dives.

(vii) Exercise 7:
flight at critically slow air speeds, spin avoidance, recognition of and recovery from incipient and full stalls.

(viii) Exercise 8:
cross-country flying using DR and radio navigation aids; flight planning by the applicant; filing of ATC flight plan; evaluation of weather briefing documentation, NOTAM, etc.; R/T procedures and phraseology; positioning by radio navigation aids; operation to, from and transiting controlled aerodromes, compliance with ATS procedures for VFR flights, simulated radio communication failure, weather deterioration, diversion procedures; simulated engine failure during cruise flight; selection of an emergency landing strip.

(2) instrument flight training:

(i) This module is identical to the 10 hours basic instrument flight module as set out in AMC2 to Appendix 6. This module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitudes.

(ii) All exercises may be performed in an FNPT I or II or an FFS. If instrument flight training is in VMC, a suitable means of simulating IMC for the student should be used.

(iii) A BITD may be used for the following exercises: (9), (10), (11), (12), (14) and (16).

(iv) The use of the BITD is subject to the following:
Annex to ED Decision 2011/016/R

(A) the training is complemented by exercises on an aeroplane;
(B) the record of the parameters of the flight is available;
(C) an FI(A) or IRI(A) conducts the instruction.

(v) Exercise 9:
Basic instrument flying without external visual cues; horizontal flight; power changes for acceleration or deceleration, maintaining straight and level flight; turns in level flight with 15 ° and 25 ° bank, left and right; roll-out onto predetermined headings.

(vi) Exercise 10:
Repetition of exercise 9; additionally climbing and descending, maintaining heading and speed, transition to horizontal flight; climbing and descending turns.

(vii) Exercise 11:
Instrument pattern: 0:45 hours
(1) start exercise, decelerate to approach speed, flaps into approach configuration;
(2) initiate standard turn (left or right);
(3) roll out on opposite heading, maintain new heading for 1 minute;
(4) standard turn, gear down, descend 500 ft/min;
(5) roll out on initial heading, maintain descent (500 ft/min) and new heading for 1 minute;
(6) transition to horizontal flight, 1,000 ft below initial flight level;
(7) initiate go-around;
(8) climb at best rate
 of climb speed.

(viii) Exercise 12:
 Repetition of exercise 9 and steep turns with 45° bank;
 recovery from unusual attitudes.

(ix) Exercise 13:
 Repetition of exercise 12

(x) Exercise 14:
 Radio navigation using VOR, NDB or, if available, VDF; interception of predetermined QDM and QDR.

(xi) Exercise 15:
 Repetition of exercise 9 and recovery from unusual attitudes.

(xii) Exercise 16:
 Repetition of exercise 9, turns and level change and recovery from unusual attitudes with simulated failure of the artificial horizon or directional gyro.

(xiii) Exercise 17:
 Recognition of, and recovery from, incipient and full stalls.

(xiv) Exercise 18:
 Repetition of exercises (14), (16) and (17).

(3) ME training

If required, operation of an ME aeroplane in the exercises 1 through 18, including operation of the aeroplane with one engine simulated inoperative, and engine shutdown and restart. Before commencing training, the applicant should have complied with the type and class ratings requirements as appropriate to the aeroplane used for the test.
F. ATP/IR integrated course: helicopters

(a) The ATP/IR integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant’s training record. In case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 750 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 750 hours of instruction should be divided in such a way that in each subject the minimum hours are:

1. Air law
2. Aircraft general knowledge
3. Flight performance and planning
4. Human performance and limitations
5. Meteorology
6. Navigation
7. Operational procedures
8. Principles of flight
9. Communications

Other subdivision of hours may be agreed upon between the competent authority and the ATO.

(d) The flight instruction is divided into four phases:

1. phase 1:

 Flight exercises up to the first solo flight comprise a total of not less than 12 hours dual flight instruction on a helicopter, including:

 (i) pre-flight operations, mass and balance determination, helicopter inspection and servicing;

 (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;

 (iii) control of the helicopter by external visual reference;

 (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;

 (v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.
(2) phase 2:

Flight exercises until general handling and day VFR navigation progress check, and basic instrument flying progress check. This phase comprises a total flight time of not less than 128 hours including 73 hours of dual flight instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as student PIC. The instruction and testing contain the following:

(i) sideways and backwards flight, turns on the spot;
(ii) incipient vortex ring recovery;
(iii) advanced/touchdown auto-rotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
(iv) steep turns;
(v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
(vi) limited power and confined area operations, including low level operations to and from unprepared sites;
(vii) flight by sole reference to basic flight instruments, including completion of a 180° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
(viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;
(ix) aerodrome and traffic pattern operations at different aerodromes;
(x) operations to, from and transiting controlled aerodromes; compliance with ATS procedures, R/T procedures and phraseology;
(xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
(xii) night flight, including take-offs and landings as PIC;
(xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant’s training.

(3) phase 3:

Flight exercises up to IR skill test. This part comprises a total of 40 hours dual instrument flight time, including 10 hours of an ME IFR certificated helicopter.

The instruction and testing should contain the following:

(i) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
(ii) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:
 (A) transition from visual to instrument flight on take-off;
 (B) SIDs and arrivals;
(C) en-route IFR procedures;
(D) holding procedures;
(E) instrument approaches to specified minima;
(F) missed approach procedure;
(G) landings from instrument approaches;
(H) in-flight manoeuvres and particular flight characteristics;
(I) instrument exercises with one engine simulated inoperative.

(4) phase 4:

Instruction in MCC should comprise the relevant training set out in FCL.735.H and AMC1 FCL.735.A, FCL.735.H and FCL.735.As.

If a type rating for MP helicopter is not required on completion of this part, the applicant should be provided with a certificate of course completion for MCC training.
G. ATP integrated course: helicopters

(a) The ATP integrated course should last between 12 and 36 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant’s training record. In case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 650 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 650 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1) Air law 30 hours
(2) Aircraft general knowledge 70 hours
(3) Flight performance and planning 65 hours
(4) Human performance and limitations 40 hours
(5) Meteorology 40 hours
(6) Navigation 120 hours
(7) Operational procedures 20 hours
(8) Principles of flight 30 hours
(9) Communications 25 hours

Other subdivision of hours may be agreed upon between the competent authority and the ATO.

(d) The flight instruction is divided into three phases:

(1) phase 1:

 Flight exercises up to the first solo flight comprise a total of not less than 12 hours dual flight instruction on a helicopter, including:

 (i) pre-flight operations, mass and balance determination, helicopter inspection and servicing;
 (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
 (iii) control of the helicopter by external visual reference;
 (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
 (v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.
(2) phase 2:

Flight exercises until general handling and day VFR navigation progress and basic instrument flying progress check conducted by an FI not connected with the applicant’s training. This phase comprises a total flight time of not less than 128 hours, including 73 hours of dual instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as student PIC. The instruction and testing contain the following:

(i) sideways and backwards flight, turns on the spot;
(ii) incipient vortex ring recovery;
(iii) touchdown or advanced auto-rotations, simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
(iv) steep turns;
(v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
(vi) limited power and confined area operations, including low level operations to and from unprepared sites;
(vii) 10 hours flight by sole reference to basic flight instruments, including completion of a 180 ° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
(viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;
(ix) aerodrome and traffic pattern operations at different aerodromes;
(x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
(xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
(xii) night flight, including take-offs and landings as PIC;
(xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant’s training.

(3) phase 3:

Instruction in MCC comprises the relevant training set out in FCL.735.H and AMC1 FCL.735.A, FCL.735.H and FCL.735.As.

If a type rating for MP helicopter is not required on completion of this part, the applicant should be provided with a certificate of course completion for MCC training.
H. ATP modular theoretical knowledge course: helicopters

(a) The aim of this course is to train pilots who have not received the theoretical knowledge instruction during an integrated course to the level of theoretical knowledge required for the ATPL.

(b) An approved course should include formal classroom work and may include the use of such facilities as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by the competent authority. Approved distance learning (correspondence) courses may also be offered as part of the course.

(c) The ATP modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.
I. CPL/IR integrated course: helicopters

(a) The CPL/IR integrated course should last between 9 and 30 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant’s training record. In case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 500 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 500 hours of instruction should be divided in such a way that in each subject the minimum hours are:

(1) Air law 30 hours
(2) Aircraft general knowledge 50 hours
(3) Flight performance and planning 60 hours
(4) Human performance and limitations 15 hours
(5) Meteorology 40 hours
(6) Navigation 100 hours
(7) Operational procedures 10 hours
(8) Principles of flight 25 hours
(9) Communications 30 hours

Other subdivision of hours may be agreed upon between the competent authority and the ATO.

FLYING TRAINING

(d) The flight instruction is divided into three phases:

(1) phase 1:

Flight exercises up to the first solo flight. This part comprises a total of at least 12 hours dual flight instruction on a helicopter including:

(i) pre-flight operations: mass and balance determination, helicopter inspection and servicing;
(ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
(iii) control of the helicopter by external visual reference;
(iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
(v) emergency procedures, basic auto-rotation, simulated engine failure, ground resonance recovery if relevant to type.

(2) phase 2:
Flight exercises until general handling and day VFR navigation progress check conducted by an FI not connected with the applicant’s training, and basic instrument progress check. This part comprises a total flight time of not less than 128 hours, including 73 hours of dual instruction flight time and including at least 5 hours VFR conversion training on an ME helicopter, 15 hours of solo flight and 40 hours flown as SPIC. The instruction and testing contain the following:
(i) sideways and backwards flight, turns on the spot;
(ii) incipient vortex ring recovery;
(iii) touchdown or advanced auto-rotation and simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;
(iv) steep turns;
(v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;
(vi) limited power and confined area operations, including selection of and low level operations to and from unprepared sites;
(vii) flight by sole reference to basic flight instruments, including completion of 180 degree turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;
(viii) cross-country flying by external visual reference, DR and radio navigation aids and diversion procedures;
(ix) aerodrome and traffic pattern operations at different aerodromes;
(x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;
(xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;
(xii) night flight, including take-offs and landings as PIC;
(xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant’s training.

(3) phase 3:
Flight exercises up to IR skill test. This part comprises a total of 40 hours dual instrument flight time, including 10 hours of an ME IFR certificated helicopter.
The instruction and testing should contain the following:
(i) pre-flight procedures for IFR flights, including the use of the flight manual and appropriate ATS documents in the preparation of an IFR flight plan;
(ii) procedures and manoeuvres for IFR operation under normal, abnormal and emergency conditions covering at least:

(A) transition from visual to instrument flight on take-off;
(B) SIDs and arrivals;
(C) en-route IFR procedures;
(D) holding procedures;
(E) instrument approaches to specified minima;
(F) missed approach procedure;
(G) landings from instrument approaches;
(H) in-flight manoeuvres and particular flight characteristics;
(I) instrument exercises with one engine simulated inoperative.
J. CPL integrated course: helicopters

(a) The CPL integrated course should last between 9 and 24 months. This period may be extended where additional flying training or ground instruction is provided by the ATO.

CREDITING

(b) Credit for the hours flown should be entered into the applicant’s training record. In case of a student pilot who does not hold a pilot licence and with the approval of the competent authority, an ATO may designate certain dual exercises to be flown in an aeroplane or a TMG up to a maximum of 20 hours.

THEORETICAL KNOWLEDGE

(c) The 350 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

The 350 hours of instruction should be divided in such a way that in each subject the minimum hours are:

1. Air law 25 hours
2. Aircraft general knowledge 30 hours
3. Flight performance and planning 25 hours
4. Human performance and limitations 10 hours
5. Meteorology 30 hours
6. Navigation 55 hours
7. Operational procedures 8 hours
8. Principles of flight 20 hours
9. Communications 10 hours

Other subdivision of hours may be agreed upon between the competent authority and the ATO.

FLYING TRAINING

(d) The flight instruction is divided into two phases:

1. phase 1:

 Flight exercises up to the first solo flight. This part comprises a total of not less than 12 hours dual flight instruction on a helicopter, including:

 (i) pre-flight operations: mass and balance determination, helicopter inspection and servicing;
 (ii) aerodrome and traffic pattern operations, collision avoidance and procedures;
 (iii) control of the helicopter by external visual reference;
 (iv) take-offs, landings, hovering, look-out turns and normal transitions from and to the hover;
(v) emergency procedures, basic auto-rotations, simulated engine failure, ground resonance recovery if relevant to type.

(2) phase 2:

Flight exercises until general handling and day VFR navigation progress check conducted by an FI not connected with the applicant’s training, and basic instrument progress check. This part comprises a total flight time of not less than 123 hours, including 73 hours of dual instruction flight time, 15 hours of solo flight and 35 hours flown as SPIC. The instruction and testing contain the following:

(i) sideways and backwards flight, turns on the spot;

(ii) incipient vortex ring recovery;

(iii) touchdown or advanced auto-rotations and simulated engine-off landings, practice forced landings. Simulated equipment malfunctions and emergency procedures relating to malfunctions of engines, controls, electrical and hydraulic circuits;

(iv) steep turns;

(v) transitions, quick stops, out of wind manoeuvres, sloping ground landings and take-offs;

(vi) limited power and confined area operations, including selection of and low level operations to and from unprepared sites;

(vii) flight by sole reference to basic flight instruments, including completion of a 180° turn and recovery from unusual attitudes to simulate inadvertent entry into cloud;

(viii) cross-country flying by external visual reference, DR and radio navigation aids, diversion procedures;

(ix) aerodrome and traffic pattern operations at different aerodromes;

(x) operations to, from and transiting controlled aerodromes, compliance with ATS procedures, R/T procedures and phraseology;

(xi) application of meteorological briefing arrangements, evaluation of weather conditions for flight and use of AIS;

(xii) night flight, including take-offs and landings as PIC;

(xiii) general handling, day VFR navigation and basic instrument flying progress checks in accordance with Appendix 4 to Part-FCL, conducted by an FI not connected with the applicant’s training.
K. CPL modular course: helicopters

(a) The CPL modular course should last 18 months. This period may be extended where additional training is provided by the ATO. The flight instruction and skill test need to be completed within the period of validity of the pass in the theoretical examinations.

(b) An approved course should include formal classroom work and may include the use of facilities such as interactive video, slide or tape presentation, learning carrels and computer-based training and other media distance learning (correspondence) courses as approved by the competent authority. Approved distance learning (correspondence) courses may also be offered as part of the course.

THEORETICAL KNOWLEDGE

(c) The 250 hours of instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

FLYING TRAINING

(d) The flying instruction comprises the following items. The flight time allocated to each exercise is at the discretion of the FI, provided that at least 5 hours flight time is allocated to cross-country flying.

VISUAL INSTRUCTION

(e) Within the total of dual flight instruction time, the applicant may have completed during the visual phase up to 5 hours in a helicopter FFS or FTD 2, 3 or FNPT II, III.

(1) pre-flight operations: mass and balance calculations, helicopter inspection and servicing;

(2) level flight speed changes, climbing, descending, turns, basic auto-rotations, use of checklist, collision avoidance and checking procedures;

(3) take-offs and landings, traffic pattern, approach, simulated engine failures in the traffic pattern. Sideways and backwards flight and spot turns in the hover;

(4) recovery from incipient vortex ring condition;

(5) advanced auto-rotations covering the speed range from low speed to maximum range and manoeuvre in auto-rotations (180 °, 360 ° and 'S' turns) and simulated engine-off landings;

(6) selection of emergency landing areas, auto-rotations following simulated emergencies to given areas and steep turns at 30 ° and 45 ° bank;

(7) manoeuvres at low level and quick-stops;

(8) landings, take-offs and transitions to and from the hover when heading out of wind;

(9) landings and take-offs from sloping or uneven ground;
(10) landings and take-offs with limited power;

(11) low level operations into and out of confined landing sites;

(12) cross-country flying using dead reckoning and radio navigation aids, flight planning by the applicant, filing of ATC flight plan, evaluation of weather briefing documentation, NOTAM, etc., R/T procedures and phraseology, positioning by radio navigation aids; operation to, from and transiting controlled aerodromes, compliance with ATS procedures for VFR flights, simulated radio communication failure, weather deterioration, diversion procedures; location of an off airfield landing site and simulated approach.

BASIC INSTRUMENT INSTRUCTION

(f) A maximum of 5 hours of the following exercises may be performed in an FFS or FTD or FNPT. Flight training should be carried out in VMC using a suitable means of simulating IMC for the student.

(1) Exercise 1:
Instrument flying without external visual cues. Level flight performing speed changes, maintaining flight altitude (level, heading) turns in level flight at rate 1 and 30° bank, left and right; roll-out on predetermined headings;

(2) Exercise 2:
repetition of exercise 1; additionally climbing and descending, maintaining heading and speed, transition to horizontal flight; climbing and descending turns;

(3) Exercise 3:
repetition of exercise 1; and recovery from unusual attitudes;

(4) Exercise 4:
radio navigation;

(5) Exercise 5:
repetition of exercise 1; and turns using standby magnetic compass and standby artificial horizon (if fitted).
OVERVIEW OF FSTD TRAINING CREDITS FOR DUAL INSTRUCTION IN HELICOPTER FLYING TRAINING COURSES

<table>
<thead>
<tr>
<th>ATPL(H)/IR integrated</th>
<th>FSTD credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>Solo</td>
</tr>
<tr>
<td>Visual, including ME T/R training</td>
<td>75 hrs</td>
</tr>
<tr>
<td>Basic instrument</td>
<td>10 hrs</td>
</tr>
<tr>
<td>Instrument rating training</td>
<td>40 hrs</td>
</tr>
<tr>
<td>MCC</td>
<td>15 hrs</td>
</tr>
<tr>
<td>Total</td>
<td>140 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ATPL(H)/VFR integrated</th>
<th>FSTD credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>Solo</td>
</tr>
<tr>
<td>Visual including ME T/R training</td>
<td>75 hrs</td>
</tr>
<tr>
<td>Basic instrument</td>
<td>10 hrs</td>
</tr>
<tr>
<td>MCC / VFR</td>
<td>10 hrs</td>
</tr>
<tr>
<td>Total</td>
<td>95 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPL(H)/IR integrated</th>
<th>FSTD credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
<td>Solo</td>
</tr>
<tr>
<td>Visual including ME T/R training</td>
<td>75 hrs</td>
</tr>
<tr>
<td>Basic instrument</td>
<td>10 hrs</td>
</tr>
</tbody>
</table>
| Instrumen
t rating training | 40 hrs | - | 40 hrs | 3 or FNPT II/III or 10 hrs in at least an FNPT I |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>125 hrs</td>
<td>55 hrs</td>
<td>180 hrs</td>
<td>50 hrs FFS C/D level or 45 hrs FTD 2, 3 or 40 hrs FNPT II/III or 10 hrs in at least an FNPT I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPL(H) Integrated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
</tr>
<tr>
<td>Visual</td>
</tr>
<tr>
<td>Basic instrument</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPL(H) modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
</tr>
<tr>
<td>Visual</td>
</tr>
<tr>
<td>Basic instrument</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IR(H) modular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual</td>
</tr>
<tr>
<td>SE</td>
</tr>
<tr>
<td>ME</td>
</tr>
</tbody>
</table>

| MCC(H) |

Page 525 of 562
<table>
<thead>
<tr>
<th></th>
<th>Dual</th>
<th>Solo</th>
<th>SPIC</th>
<th>Total</th>
<th>FFS; FTD; FNPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCC / IR</td>
<td>20 hrs</td>
<td>-</td>
<td>-</td>
<td>20 hrs</td>
<td>20 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)</td>
</tr>
<tr>
<td>MCC / VFR</td>
<td>15 hrs</td>
<td>-</td>
<td>-</td>
<td>15 hrs</td>
<td>15 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)</td>
</tr>
<tr>
<td>MCC / IR for MCC/VFR holders</td>
<td>5 hrs</td>
<td>-</td>
<td>-</td>
<td>5 hrs</td>
<td>5 hrs FFS or FTD 2, 3 (MCC) or FNPT II/III (MCC)</td>
</tr>
</tbody>
</table>

Note: In this matrix FSTD credits refer to helicopter FSTDs if not mentioned otherwise.
GM1 to Appendix 5 Integrated MPL training course

GENERAL

(a) In broad terms, the MPL holder is expected to be able to complete the airline operators’ conversion course with a high probability of success and within the time frame normally allowed for this phase. The standard is equivalent to what is currently expected from graduates of the ATP(A) integrated course who have completed type rating training.

(b) The general approach is to use the existing ATP(A) integrated training course as a reference and to implement progressively the MPL integrated training course and specifically the transfer from actual flight to simulated flight.

(c) This transfer should be organised in a way that is similar to the approach used for ETOPS. Successive evolutions of the training syllabus introduce progressively a higher level of simulated flight and a reduction of actual flight. Change from one version to the next should only take place after enough experience has been gained and once its results, including those of airline operator conversion courses, have been analysed and taken into account.
MPL TRAINING SCHEME

(d) The following scheme should be applied:

<table>
<thead>
<tr>
<th>Phases of training</th>
<th>Training items</th>
<th>Flight and simulated flight training media</th>
<th>Ground training media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1 – core flying skills</td>
<td>Specific basic SP training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 – basic</td>
<td>Introduction of multi-crew operations and instrument flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 3 – intermediate</td>
<td>Application of multi-crew operations in a high performance ME turbine aeroplane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 4 – advanced</td>
<td>Type rating training within an airline oriented environment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THEORETICAL KNOWLEDGE INSTRUCTION

(e) The 750 hours of theoretical knowledge instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions.

COMPETENCY UNITS, COMPETENCY ELEMENTS AND PERFORMANCE CRITERIA

(f) Apply human performance principles, including principles of threat and error management:

1. cooperation;
2. leadership and managerial skills;
3. situation awareness;
4. decision making.

These behaviour categories are intended to help in the effective utilisation of all available resources to achieve safe and efficient operations.

These behaviour categories may be adapted and extended to incorporate issues like communication and use of automation if it is considered to be relevant to the development of the curriculum.

(g) Perform Aircraft Ground and Pre-Flight Operations

List of competency elements and performance criteria:

1. demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

Duty Observation and assessment
Satisfactory (S)
Unsatisfactory (U)

2. perform dispatch duties:

i. verifies technical condition of the a/c, including adequate use of MEL; PF/PNF

ii. checks technical bulletins and notices; PF/PNF

iii. determines operational environment and pertinent weather; PF/PNF

iv. determines impact of weather on aircraft performance; PF/PNF

v. applies flight planning and load procedures; PF/PNF

vi. determines fuel requirement; PF/PNF

vii. files an ATS flight plan (if required). PF/PNF
(3) provide flight crew and cabin crew briefings;
 (i) briefed flight crew in all relevant matters; PF
 (ii) briefed cabin crew in all relevant matters. PF

(4) perform pre-flight checks and cockpit preparation:
 (i) ensures the airworthiness of the aircraft; PF
 (ii) performs the cockpit preparation and briefings; PF/PNF
 (iii) performs FMS initialisation, data insertion and confirmation; PF/PNF
 (iv) optimises and checks take-off performance and take-off data calculation.

(5) perform engine start:
 (i) asks for, receives acknowledges and checks ATC clearance; PNF
 (ii) performs engine start procedure; PF/PNF
 (iii) uses standard communication procedures with ground crew and ATC.

(6) perform taxi out:
 (i) receives, checks and adheres to taxi clearance; PNF
 (ii) taxis the aircraft, including use of exterior lighting; PF
 (iii) complies to taxi clearance; PF/PNF
 (iv) maintains look-out for conflicting traffic and obstacles; PF/PNF
 (v) operates thrust, brakes and steering; PF
 (vi) conducts relevant briefings; PF
 (vii) uses standard communication procedures with crew and ATC; PNF
 (viii) completes standard operating procedures and checklists; PF/PNF
 (ix) updates and confirms FMS data; PF/PNF
 (x) manages changes in performance and departure route; PF/PNF
 (xi) completes de- or anti-ice procedures. PF/PNF

(7) manage abnormal and emergency situations:
(i) identifies the abnormal condition; PF/PNF
(ii) interprets the abnormal condition; PF/PNF
(iii) performs the procedure for the abnormal condition. PF/PNF

(8) communicate with cabin crew, passengers and company: (S) or (U)
(i) communicates relevant information with cabin crew; PF
(ii) communicates relevant information with company; PF/PNF
(iii) makes passenger announcements when appropriate. PF/PNF

(h) Perform take-off
List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors.

(2) perform pre-take-off and pre-departure preparation: (S) or (U)
(i) checks and acknowledges line up clearance; PF/PNF
(ii) checks correct runway selection; PF/PNF
(iii) confirms validity of performance data; PF/PNF
(iv) checks approach sector and runway are clear; PF/PNF
(v) confirms all checklists and take-off preparations completed;
(vi) lines up the aircraft on centreline without losing distance;
(vii) checks weather on departure sector; PF/PNF
(viii) checks runway status and wind. PF/PNF

(3) perform take-off roll: (S) or (U)
(i) applies take-off thrust; PF
(ii) checks engine parameters; PNF
(iii) checks air speed indicators; PF/PNF
(iv) stays on runway centreline. PF

(4) perform transition to instrument flight rules: (S) or (U)
(i) applies \(v_1\) procedures; PF / PNF
(ii) rotates at \(v_1\) to initial pitch attitude; PF
(iii) establishes initial wings level attitude; PF
(iv) retracts landing gear; PNF
(v) maintains climb out speed. PF

(5) perform initial climb to flap retraction altitude: (S) or (U)
 (i) sets climb power; PF
 (ii) adjusts attitude for acceleration; PF
 (iii) selects flaps according flap speed schedule; PF/PNF
 (iv) observes speed restrictions; PF
 (v) completes relevant checklists. PF/PNF

(6) perform rejected take-off: (S) or (U)
 (i) recognises the requirement to abort the take-off; PF
 (ii) applies the rejected take-off procedure; PF
 (iii) assesses the need to evacuate the aircraft. PF/PNF

(7) perform navigation: (S) or (U)
 (i) complies to departure clearance; PF
 (ii) complies with published departure procedures, for example speeds;
 (iii) monitors navigation accuracy; PF/PNF
 (iv) communicates and coordinates with ATC. PNF

(8) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
 (ii) interprets the abnormal condition; PF/PNF
 (iii) performs the procedure for the abnormal PF/PNF condition.

(i) Perform climb

List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) perform SID or en-route navigation: (S) or (U)
 (i) complies with departure clearance and PF procedures;
 (ii) demonstrates terrain awareness; PF/PNF
(iii) monitors navigation accuracy; PF/PNF
(iv) adjusts flight to weather and traffic conditions; PF
(v) communicates and coordinates with ATC; PNF
(vi) observes minimum altitudes; PF/PNF
(vii) selects appropriate level of automation; PF
(viii) complies with altimeter setting procedures. PF/PNF

(3) complete climb procedures and checklists: (S) or (U)
 (i) performs the after take-off items; PF/PNF
 (ii) confirms and checks according checklists. PF/PNF

(4) modify climb speeds, rate of climb and cruise altitude: (S) or (U)
 (i) recognises the need to change speed, rate PF
 of climb or cruise altitude;
 (ii) selects and maintains the appropriate climb PF
 speed or rate of climb;
 (iii) selects optimum cruise flight level. PF/PNF

(5) perform systems operations and procedures: (S) or (U)
 (i) monitors operation of all systems; PF/PNF
 (ii) operates systems as required. PF/PNF

(6) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
 (ii) interprets the abnormal condition; PF/PNF
 (iii) performs the procedure for the abnormal PF/PNF
 condition.

(7) communicate with cabin crew, passengers and PF
 company:
 (i) communicates relevant information with cabin PF
 crew;
 (ii) communicates relevant information with PF/PNF PF
 company;
 (iii) makes passenger announcements when PF PF
 appropriate.

(j) Perform cruise

List of competency elements and performance criteria.
(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) monitor navigation accuracy: (S) or (U)
 (i) demonstrates adequate area knowledge; PF/PNF
 (ii) demonstrates adequate route knowledge; PF/PNF
 (iii) navigates according to flight plan and clearance; PF
 (iv) adjusts flight to weather and traffic conditions; PF
 (v) communicates and coordinates with ATC; PNF
 (vi) observes minimum altitudes; PF/PNF
 (vii) uses all means of automation. PF

(3) monitor flight progress: (S) or (U)
 (i) selects optimum speed; PF
 (ii) selects optimum cruise flight level; PF
 (iii) monitors and controls fuel status; PF/PNF
 (iv) recognises the need for a possible diversion; PF/PNF
 (v) creates a diversion contingency plan if required. PF/PNF

(4) perform descent and approach planning: (S) or (U)
 (i) checks weather of destination and alternate airport; PF/PNF
 (ii) checks runway in use and approach procedure; PF/PNF
 (iii) sets the FMS accordingly; PNF
 (iv) checks landing weight and landing distance required; PNF
 (v) checks MEA, MGA and MSA; PF/PNF
 (vi) identifies top of descent point. PF

(5) perform systems operations and procedures: (S) or (U)
 (i) monitors operation of all systems; PF/PNF
 (ii) operates systems as required. PNF

(6) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
 (ii) interprets the abnormal condition; PF/PNF
 (iii) performs the procedure for the abnormal condition.
(7) communicate with cabin crew, passengers and company:
 (i) communicates relevant information with cabin crew; PF
 (ii) communicates relevant information with PF/PNF company;
 (iii) makes passenger announcements when appropriate.

(k) Perform descent

List of competency elements and performance criteria:

(1) Demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) initiate and manage descent: (S) or (U)
 (i) starts descent according to ATC clearance or optimum descent point; PF
 (ii) selects optimum speed and descent rate; PF
 (iii) adjusts speed to existing environmental conditions; PF
 (iv) recognises the need to adjust the descent path; PF
 (v) adjusts the flight path as required; PF
 (vi) utilises all means of FMS descent information. PF

(3) monitor and perform en route and descent navigation: (S) or (U)
 (i) complies with arrival clearance and procedures; PF
 (ii) demonstrates terrain awareness; PF/PNF
 (iii) monitors navigation accuracy; PF/PNF
 (iv) adjusts flight to weather and traffic conditions; PF
 (v) communicates and coordinates with ATC; PNF
 (vi) observes minimum altitudes; PF/PNF
 (vii) selects appropriate level or mode of automation; PF
 (viii) complies with altimeter setting procedures. PF/PNF

(4) re-planning and update of approach briefing: (S) or (U)
 (i) re-checks destination weather and runway in use; PNF
 (ii) briefs or re-briefs about instrument approach and landing as required; PF
 (iii) reprograms the FMS as required; PNF
(iv) re-checks fuel status. PF/PNF

(5) perform holding: (S) or (U)

(i) identifies holding requirement; PF/PNF
(ii) programs FMS for holding pattern; PNF
(iii) enters and monitors holding pattern; PF
(iv) assesses fuel requirements and determines max holding time; PF/PNF
(v) reviews the need for a diversion; PF/PNF
(vi) initiates diversion. PF

(6) perform systems operations and procedures: (S) or (U)

(i) monitors operation of all systems; PF/PNF
(ii) operates systems as required. PF/PNF

(7) manage abnormal and emergency situations:

(i) identifies the abnormal condition; PF/PNF
(ii) interprets the abnormal condition; PF/PNF
(iii) performs the procedure for the abnormal condition.

(8) communicate with cabin crew, passengers and company: (S) or (U)

(i) communicates relevant information with cabin crew; PF
(ii) communicates relevant information with PF/PNF company;
(iii) makes passenger announcements when appropriate;

(l) Perform approach

List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) perform approach in general: (S) or (U)

(i) executes approach according to procedures and situation; PF
(ii) selects appropriate level or mode of automation; PF
(iii) selects optimum approach path; PF
(iv) operates controls smooth and coordinated; PF
(v) performs speed reduction and flap extension; PF/PNF
(vi) performs relevant checklists; PF/PNF
(vii) initiates final descent; PF
(viii) achieves stabilised approach criteria; PF
(ix) ensures adherence to minima; PF/PNF
(x) initiates go-around if required; PF
(xi) masters transition to visual segment. PF

(3) perform precision approach: (S) or (U)
 (i) performs ILS approach; PF
 (ii) performs MLS approach. PF

(4) perform non-precision approach: (S) or (U)
 (i) performs VOR approach; PF
 (ii) performs NDB approach; PF
 (iii) performs SRE approach; PF
 (iv) performs GNSS approach; PF
 (v) performs ILS loc approach; PF
 (vi) performs ILS back beam approach. PF

(5) perform approach with visual reference to ground: (S) or (U)
 (i) performs standard visual approach; PF
 (ii) performs circling approach. PF

(6) monitor the flight progress: (S) or (U)
 (i) insures navigation accuracy; PF/PNF
 (ii) communicates with ATC and crew members; PNF
 (iii) monitors fuel status. PF/PNF

(7) perform systems operations and procedures:
 (i) monitors operation of all systems; PF
 (ii) operates systems as required. PF

(8) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
(ii) interprets the abnormal condition; PF/PNF
(iii) performs the procedure for the abnormal condition.

(9) perform missed approach and go-around: (S) or (U)
(i) initiates go-around procedure; PF
(ii) navigates according to missed approach procedure; PF
(iii) completes the relevant checklists; PF/PNF
(iv) initiates approach or diversion after the go-around; PF
(v) communicates with ATC and crew members. PNF

(10) communicate with cabin crew, passengers and company: (S) or (U)
(i) communicates relevant information with cabin crew; PF
(ii) communicates relevant information with company; PF/PNF
(iii) makes passenger announcements when appropriate; PF
(iv) initiates go-around procedure. PF

(m) Perform landing

List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) land the aircraft: (S) or (U)
(i) maintains a stabilised approach path during visual segment; PF
(ii) recognises and acts on changing conditions for windshift or wind shear segment; PF
(iii) initiates flare; PF
(iv) controls thrust; PF
(v) achieves touchdown in touchdown zone on centreline; PF
(vi) lowers nose wheel; PF
(vii) maintains centreline; PF
(viii) performs after-touchdown procedures; PF
(ix) makes use of appropriate braking and reverse thrust; PF
(x) vacates runway with taxi speed. PF

(3) perform systems operations and procedures: (S) or (U)
 (i) monitors operation of all systems; PF
 (ii) operates systems as required. PF

(4) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
 (ii) interprets the abnormal condition; PF/PNF
 (iii) performs the procedure for the abnormal condition. PF/PNF

(n) Perform after landing and post flight operations

List of competency elements and performance criteria:

(1) demonstrate attitudes and behaviours appropriate to the safe conduct of flight, including recognising and managing potential threats and errors;

(2) perform taxiing and parking: (S) or (U)
 (i) receives, checks and adheres to taxi clearance; PNF
 (ii) taxies the aircraft including use of exterior lighting; PF
 (iii) controls taxi speed; PF/PNF
 (iv) maintains centreline; PF
 (v) maintains look-out for conflicting traffic and obstacles; PF
 (vi) identifies parking position; PF/PNF
 (vii) complies with marshalling or stand guidance; PF/PNF
 (viii) applies parking and engine shut down procedures; PF
 (ix) completes with relevant checklists. PF/PNF

(3) perform aircraft post-flight operations: (S) or (U)
 (i) communicates to ground personnel and crew; PF
 (ii) completes all required flight documentation; PF/PNF
 (iii) ensures securing of the aircraft; PF
 (iv) conducts the debriefings. PF

(4) perform systems operations and procedures: (S) or (U)
 (i) monitors operation of all systems; PF/PNF
(ii) operates systems as required. PF/PNF

(5) manage abnormal and emergency situations: (S) or (U)
 (i) identifies the abnormal condition; PF/PNF
 (ii) interprets the abnormal condition; PF/PNF
 (iii) performs the procedure for the abnormal condition. PF/PNF

(6) communicate with cabin crew, passengers and company: (S) or (U)
 (i) communicates relevant information with cabin crew; PF
 (ii) communicates relevant information with company; PF/PNF
 (iii) makes passenger announcements when appropriate. PF

PRINCIPLES OF THREAT AND ERROR MANAGEMENT

(0) One model that explains the principles of threat and error management is the TEM model.

(1) The components of the TEM model:

There are three basic components in the TEM model, from the perspective of flight crews: threats, errors and undesired aircraft states. The model proposes that threats and errors are part of everyday aviation operations that must be managed by flight crews, since both threats and errors carry the potential to generate undesired aircraft states. Flight crews must also manage undesired aircraft states, since they carry the potential for unsafe outcomes. Undesired state management is an essential component of the TEM model, as important as threat and error management. Undesired aircraft state management largely represents the last opportunity to avoid an unsafe outcome and thus maintain safety margins in flight operations.

(2) Threats:

(i) Threats are defined as events or errors that occur beyond the influence of the flight crew, increase operational complexity, and which must be managed to maintain the margins of safety. During typical flight operations, flight crews have to manage various contextual complexities. Such complexities would include, for example, dealing with adverse meteorological conditions, airports surrounded by high mountains, congested airspace, aircraft malfunctions, errors committed by other people outside of the cockpit, such as air traffic controllers, flight attendants or maintenance workers, and so forth. The TEM model considers these complexities as threats because they all have the potential to negatively affect flight operations by reducing margins of safety;

(ii) Some threats can be anticipated, since they are expected or known to the flight crew. For example, flight crews can
anticipate the consequences of a thunderstorm by briefing their response in advance, or prepare for a congested airport by making sure they keep a watchful eye on other aircraft as they execute the approach;

(iii) Some threats can occur unexpectedly, such as an in-flight aircraft malfunction that happens suddenly and without warning. In this case, flight crews must apply skills and knowledge acquired through training and operational experience;

(iv) Lastly, some threats may not be directly obvious to, or observable by, flight crews immersed in the operational context, and may need to be uncovered by safety analysis. These are considered latent threats. Examples of latent threats include equipment design issues, optical illusions, or shortened turn-around schedules;

(v) Regardless of whether threats are expected, unexpected, or latent, one measure of the effectiveness of a flight crew’s ability to manage threats is whether threats are detected with the necessary anticipation to enable the flight crew to respond to them through deployment of appropriate countermeasures;

(vi) Threat management is a building block to error management and undesired aircraft state management. Although the threat-error linkage is not necessarily straightforward, and although it may not be always possible to establish a linear relationship, or one-to-one mapping between threats, errors and undesired states, archival data demonstrates that mismanaged threats are normally linked to flight crew errors, which in turn are often linked to undesired aircraft states. Threat management provides the most proactive option to maintain margins of safety in flight operations, by voiding safety-compromising situations at their roots. As threat managers, flight crews are the last line of defence to keep threats from impacting flight operations;

(vii) Table 1 presents examples of threats, grouped under two basic categories derived from the TEM Model. Environmental threats occur due to the environment in which flight operations take place. Some environmental threats can be planned for and some will arise spontaneously, but they all have to be managed by flight crews in real time. Organisational threats, on the other hand, can be controlled (for example removed or, at least, minimised) at source by aviation organisations. Organisational threats are usually latent in nature. Flight crews still remain the last line of defence, but there are earlier opportunities for these threats to be mitigated by aviation organisations themselves.

<table>
<thead>
<tr>
<th>Environmental threats</th>
<th>Organisational threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) weather: thunderstorms, turbulence, icing, wind shear, cross or tailwind, very low or high temperatures;</td>
<td>(A) operational pressure: delays, late arrivals or equipment changes;</td>
</tr>
<tr>
<td>(B) ATC: traffic congestion, ACAS RA/TA, ATC command, ATC error, ATC language difficulty, ATC non-standard phraseology,</td>
<td>(B) aircraft: aircraft malfunction, automation event or anomaly, MEL/CDL;</td>
</tr>
<tr>
<td></td>
<td>(C) cabin: flight attendant error,</td>
</tr>
</tbody>
</table>
Table 1. Examples of threats (list is not exhaustive)

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>ATC runway change, ATIS communication or units of measurement (QFE/meters);</td>
</tr>
<tr>
<td>(B)</td>
<td>cabin event distraction, interruption, cabin door security;</td>
</tr>
<tr>
<td>(C)</td>
<td>airport: contaminated or short runway; contaminated taxiway, lack of, confusing, faded signage, markings, birds, aids unserviceable, complex surface navigation procedures or airport constructions;</td>
</tr>
<tr>
<td>(D)</td>
<td>maintenance: maintenance event or error;</td>
</tr>
<tr>
<td>(E)</td>
<td>ground: ground-handling event, de-icing or ground crew error;</td>
</tr>
<tr>
<td>(F)</td>
<td>dispatch: dispatch paperwork event or error;</td>
</tr>
<tr>
<td>(G)</td>
<td>documentation: manual error or chart error;</td>
</tr>
<tr>
<td>(H)</td>
<td>other: crew scheduling event.</td>
</tr>
</tbody>
</table>

(3) Errors:

(i) Errors are defined actions or inactions by the flight crew that lead to deviations from organisational or flight crew intentions or expectations. Unmanaged or mismanaged errors frequently lead to undesired aircraft states. Errors in the operational context thus tend to reduce the margins of safety and increase the probability of adverse events;

(ii) Errors can be spontaneous (for example without direct linkage to specific, obvious threats), linked to threats, or part of an error chain. Examples of errors would include the inability to maintain stabilised approach parameters, executing a wrong automation mode, failing to give a required callout, or misinterpreting an ATC clearance;

(iii) Regardless of the type of error, an error’s effect on safety depends on whether the flight crew detects and responds to the error before it leads to an undesired aircraft state and to a potential unsafe outcome. This is why one of the objectives of TEM is to understand error management (for example detection and response), rather than to solely focus on error causality (for example causation and commission). From the safety perspective, operational errors that are timely detected and promptly responded to (for example properly managed), errors that do not lead to undesired aircraft states, do not reduce margins of safety in flight operations, and thus become operationally inconsequential. In addition to its safety value, proper error management represents an example of successful human performance, presenting both learning and training value;

(iv) Capturing how errors are managed is then as important, if not more, as capturing the prevalence of different types of error. It is of interest to capture if and when errors are detected and by whom, the response(s) upon detecting errors, and the outcome of errors. Some errors are quickly detected and resolved, thus becoming operationally inconsequential, while others go undetected or are mismanaged. A mismanaged error is defined as an error
that is linked to or induces an additional error or undesired aircraft state;

(v) Table 2 presents examples of errors, grouped under three basic categories derived from the TEM model. In the TEM concept, errors have to be ‘observable’ and therefore, the TEM model uses the ‘primary interaction’ as the point of reference for defining the error categories;

(vi) The TEM model classifies errors based upon the primary interaction of the pilot or flight crew at the moment the error is committed. Thus, in order to be classified as aircraft handling error, the pilot or flight crew must be interacting with the aircraft (for example through its controls, automation or systems). In order to be classified as procedural error, the pilot or flight crew must be interacting with a procedure (for example checklists; SOPs; etc.). In order to be classified as communication error, the pilot or flight crew must be interacting with people (ATC, ground crew, other crewmembers, etc.);

(vii) Aircraft handling errors, procedural errors and communication errors may be unintentional or involve intentional non-compliance. Similarly, proficiency considerations (for example skill or knowledge deficiencies, training system deficiencies) may underlie all three categories of error. In order to keep the approach simple and avoid confusion, the TEM model does not consider intentional non-compliance and proficiency as separate categories of error, but rather as sub-sets of the three major categories of error.

Aircraft handling errors	(A) manual handling, flight controls: vertical, lateral or speed deviations, incorrect flaps or speed brakes, thrust reverser or power settings;
	(B) automation: incorrect altitude, speed, heading, auto throttle settings, incorrect mode executed or incorrect entries;
	(C) systems, radio, instruments: incorrect packs, incorrect anti-icing, incorrect altimeter, incorrect fuel switches settings, incorrect speed bug or incorrect radio frequency dialled;
	(D) ground navigation: attempting to turn down wrong taxiway or runway, taxi too fast, failure to hold short or missed taxiway or runway.
Procedural errors	(A) SOPs: failure to cross-verify automation inputs;
	(B) checklists: wrong challenge and response; items missed, checklist performed late or at the wrong time;
	(C) callouts: omitted or incorrect callouts;
Table 2. Examples of errors (list is not exhaustive)

(4) Undesired aircraft states:

(i) Undesired aircraft states are flight crew-induced aircraft position or speed deviations, misapplication of flight controls, or incorrect systems configuration, associated with a reduction in margins of safety. Undesired aircraft states that result from ineffective threat or error management may lead to compromising situations and reduce margins of safety in flight operations. Often considered at the cusp of becoming an incident or accident, undesired aircraft states must be managed by flight crews;

(ii) Examples of undesired aircraft states would include lining up for the incorrect runway during approach to landing, exceeding ATC speed restrictions during an approach, or landing long on a short runway requiring maximum braking. Events such as equipment malfunctions or ATC controller errors can also reduce margins of safety in flight operations, but these would be considered threats;

(iii) Undesired states can be managed effectively, restoring margins of safety, or flight crew response(s) can induce an additional error, incident, or accident;

(iv) Table 3 presents examples of undesired aircraft states, grouped under three basic categories derived from the TEM model;
Undesired Aircraft States

<table>
<thead>
<tr>
<th>Ground navigation</th>
<th>Incorrect aircraft configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) proceeding towards wrong taxiway or runway;</td>
<td>(A) incorrect systems configuration;</td>
</tr>
<tr>
<td>(B) Wrong taxiway, ramp, gate or hold spot.</td>
<td>(B) incorrect flight controls configuration;</td>
</tr>
<tr>
<td></td>
<td>(C) incorrect automation configuration;</td>
</tr>
<tr>
<td></td>
<td>(D) incorrect engine configuration;</td>
</tr>
<tr>
<td></td>
<td>(E) incorrect weight and balance configuration.</td>
</tr>
</tbody>
</table>

Table 3. Examples of undesired aircraft states (list is not exhaustive)

(v) An important learning and training point for flight crews is the timely switching from error management to undesired aircraft state management. An example would be as follows: a flight crew selects a wrong approach in the FMC. The flight crew subsequently identifies the error during a cross-check prior to the FAF. However, instead of using a basic mode (for example heading) or manually flying the desired track, both flight crew members become involved in attempting to reprogram the correct approach prior to reaching the FAF. As a result, the aircraft 'stitches' through the localiser, descends late, and goes into an unstable approach. This would be an example of the flight crew getting ‘locked in’ to error management, rather than switching to undesired aircraft state management. The use of the TEM model assists in educating flight crews that, when the aircraft is in an undesired state, the basic task of the flight crew is undesired aircraft state management instead of error management. It also illustrates how easy it is to get locked in to the error management phase;

(vi) Also from a learning and training perspective, it is important to establish a clear differentiation between undesired aircraft states and outcomes. Undesired aircraft states are transitional states between a normal operational state (for example a stabilised approach) and an outcome. Outcomes, on the other hand, are end states, most notably, reportable occurrences (for example incidents and accidents). An example would be as follows: a stabilised
approach (normal operational state) turns into an unstabilised approach (undesired aircraft state) that results in a runway excursion (outcome);

(vii) The training and remedial implications of this differentiation are of significance. While at the undesired aircraft state stage, the flight crew has the possibility, through appropriate TEM, of recovering the situation, returning to a normal operational state, thus restoring margins of safety. Once the undesired aircraft state becomes an outcome, recovery of the situation, return to a normal operational state, and restoration of margins of safety is not possible.

(5) Countermeasures:

(i) Flight crews must, as part of the normal discharge of their operational duties, employ countermeasures to keep threats, errors and undesired aircraft states from reducing margins of safety in flight operations. Examples of countermeasures would include checklists, briefings, call-outs and SOPs, as well as personal strategies and tactics. Flight crews dedicate significant amounts of time and energies to the application of countermeasures to ensure margins of safety during flight operations. Empirical observations during training and checking suggest that as much as 70 % of flight crew activities may be countermeasures-related activities.

(ii) All countermeasures are necessarily flight crew actions. However, some countermeasures to threats, errors and undesired aircraft states that flight crews employ build upon ‘hard’ resources provided by the aviation system. These resources are already in place in the system before flight crews report for duty, and are therefore considered as systemic-based countermeasures. The following would be examples of ‘hard’ resources that flight crews employ as systemic-based countermeasures:

(A) ACAS;
(B) TAWS;
(C) SOPs;
(D) checklists;
(E) briefings;
(F) training;
(G) etc.

(iii) Other countermeasures are more directly related to the human contribution to the safety of flight operations. These are personal strategies and tactics, individual and team countermeasures that typically include canvassed skills, knowledge and attitudes developed by human performance training, most notably, by CRM training. There are basically three categories of individual and team countermeasures:

(A) planning countermeasures: essential for managing anticipated and unexpected threats;
(B) execution countermeasures: essential for error detection and error response;
(v) Enhanced TEM is the product of the combined use of systemic-based and individual and team countermeasures. Table 4 presents detailed examples of individual and team countermeasures. Further guidance on countermeasures can be found in the sample assessment guides for terminal training objectives (PANS-TRG, Chapter 3, Attachment B) as well as in the ICAO manual, Line Operations Safety Audit (LOSA) (Doc 9803).

<table>
<thead>
<tr>
<th>Planning countermeasures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOP briefing</td>
<td>The required briefing was interactive and operationally thorough</td>
</tr>
<tr>
<td>Plans stated</td>
<td>Operational plans and decisions were communicated and acknowledged</td>
</tr>
<tr>
<td>Workload assignment</td>
<td>Roles and responsibilities were defined for normal and non-normal situations</td>
</tr>
<tr>
<td>Contingency management</td>
<td>Crew members developed effective strategies to manage threats to safety</td>
</tr>
<tr>
<td></td>
<td>(A) Threats and their consequences were anticipated;</td>
</tr>
<tr>
<td></td>
<td>(B) Used all available resources to manage threats</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Execution countermeasures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor and cross-check</td>
<td>Crew members actively monitored and cross-checked systems and other crew members</td>
</tr>
<tr>
<td>Workload management</td>
<td>Operational tasks were prioritised and properly managed to handle primary flight duties</td>
</tr>
<tr>
<td></td>
<td>(A) Avoided task fixation;</td>
</tr>
<tr>
<td></td>
<td>(B) Did not allow work overload</td>
</tr>
</tbody>
</table>

Page 547 of 562
Automation management

| Automation was properly managed to balance situational and workload requirements |
| (A) Automation setup was briefed to other members |
| (B) Effective recovery techniques from automation anomalies |

Review countermeasures

Evaluation and modification of plans	Existing plans were reviewed and modified when necessary	Crew decisions and actions were openly analysed to make sure the existing plan was the best plan
Inquiry	Crew members asked questions to investigate and/or clarify current plans of action	Crew members not afraid to express a lack of knowledge: ‘Nothing taken for granted’ attitude
Assertiveness	Crew members stated critical information or solutions with appropriate persistence	Crew members spoke up without hesitation

Table 4. Examples of individual and team countermeasures
AMC1 to Appendix 6 Modular training course for the IR

(a) The theoretical knowledge instruction may be given at an ATO conducting theoretical knowledge instruction only, in which case the HT of that organisation should supervise that part of the course.

(b) The 150 hours of theoretical knowledge instruction can include classroom work, interactive video, slide or tape presentation, learning carrels, computer-based training, and other media as approved by the competent authority, in suitable proportions. Approved distance learning (correspondence) courses may also be offered as part of the course.
AMC2 to Appendix 6 Modular training course for the IR

AEROPLANES

BASIC INSTRUMENT FLIGHT MODULE TRAINING COURSE

(a) This 10 hours module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitude recovery.

(b) All exercises may be performed in an FNPT I or II or an FFS, for a maximum of 5 hours. If instrument flight training is in VMC, a suitable means of simulating IMC for the student should be used.

(c) A BITD may be used for the exercises 1, 2, 3, 4, 6, and 8.

(d) The use of the BITD is subject to the following:

 (1) the training should be complemented by exercises on an aeroplane;
 (2) the record of the parameters of the flight must be available;
 (3) an FI(A) or IRI(A) should conduct the instruction.

EXERCISES

(e) Exercise 1:

 (1) basic instrument flying without external visual cues; 0:30 hours
 (2) horizontal flight;
 (3) maintaining straight and level flight;
 (4) turns in level flight with 15 ° and 25 ° bank, left and right;
 (5) roll-out onto predetermined headings.

(f) Exercise 2:

 (1) repetition of exercise 1; 0:45 hours
 (2) additionally climbing, descending, maintaining heading and speed, transition to horizontal flight;
 (3) climbing and descending turns.

(g) Exercise 3:

 Instrument pattern:

 (1) start exercise, decelerate to approach speed, flaps into
approach configuration;
(2) initiate standard turn
(left or right);
(3) roll out on opposite heading,
maintain new heading for
1 minute;
(4) standard turn, gear down,
descend 500 ft/min;
(4) roll out on initial heading,
maintain descent (500 ft/min)
and new heading for 1 minute;
(5) transition to horizontal
flight, 1000 ft below
initial flight level;
(6) initiate go-around;
(7) climb at best rate
of climb speed.

(h) Exercise 4:
Repetition of exercise 1 and
steep turns with 45° bank;
recovery from unusual
attitudes.

(i) Exercise 5:
Repetition of exercise 4. 0:45 hours

(j) Exercise 6:
(1) radio navigation using VOR, NDB
 or, if available, VDF;
(2) interception
 of predetermined QDM, QDR.

(k) Exercise 7:
Repetition of exercise 1 and
recovery from unusual attitudes.

(l) Exercise 8:
(1) Repetition of exercise 1;

Page 551 of 562
(2) turns, level change and recovery from unusual attitudes with simulated failure of the artificial horizon or directional gyro.

(m) Exercise 9: Recognition of, and recovery from, incipient and full stalls. 0:45 hours

(n) Exercise 10: Repetition of exercises 6, 8 and 9. 3:30 hours

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE
<table>
<thead>
<tr>
<th>TRAINING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic instrument flight module training received during period:</td>
</tr>
<tr>
<td>from:</td>
</tr>
<tr>
<td>Location and date:</td>
</tr>
<tr>
<td>Type and number of licence and state of issue:</td>
</tr>
</tbody>
</table>
AMC3 to Appendix 6 Modular training course for the IR

AIRSHIPS

BASIC INSTRUMENT FLIGHT MODULE TRAINING COURSE

(a) This 10 hours module is focused on the basics of flying by sole reference to instruments, including limited panel and unusual attitude recovery.

(b) All exercises may be performed in an FNPT I or II or an FFS, for a maximum of 5 hours. If instrument flight training is in VMC, a suitable means of simulating IMC for the student should be used.

(c) A BITD may be used for the exercises 1, 2, 3, 4, 6 and 8.

(d) The use of the BITD is subject to the following:
 (1) the training should be complemented by exercises on an airship;
 (2) the record of the parameters of the flight must be available;
 (3) an FI(As) or IRI(As) should conduct the instruction.

EXERCISES

(e) Exercise 1:
 (1) basic instrument flying without external visual cues; 0:30 hours
 (2) horizontal flight;
 (3) maintaining straight and level flight;
 (4) turns in level flight, left and right;
 (5) rollout onto predetermined headings.

(f) Exercise 2:
 (1) Repetition of exercise 1; additionally climbing and descending 0:45 hours
 (2) maintaining heading and speed;
 (3) transition to horizontal flight;
 (4) climbing and descending turns.

(g) Exercise 3:
 Instrument pattern: 0:45 hours
 (1) start exercise, decelerate to approach speed,
approach configuration;
(2) initiate standard turn
(left or right);
(3) rollout on opposite heading,
maintain new heading for
1 minute;
(4) standard turn,
descend with given rate
(for example 500 ft/min);
(5) rollout on initial heading,
maintain descent (for example 500 ft/min)
and new heading for 1 minute;
(6) transition to horizontal
flight (for example 1000 ft below initial level);
(7) initiate go-around;
(8) climb at best rate
of climb speed.

(h) Exercise 4:
(1) repetition of exercise 1; 0:45 hours
(2) recovery from unusual attitudes.

(i) Exercise 5
Repetition of exercise 4. 0:45 hours

(j) Exercise 6
(1) radio navigation using VOR, NDB or, if available, VDF; 0:45 hours
(2) interception of predetermined QDM, QDR.

(k) Exercise 7
(1) repetition of exercise 1; 0:45 hours
(2) recovery from unusual attitudes.

(l) Exercise 8
(1) repetition of exercise 1; 0:45 hours
(2) turns, level change and recovery from
unusual attitudes with simulated
failure of the artificial horizon or directional gyro.

(m) Exercise 9
Repetition of exercises (6) and (8). 4:15 hours

CERTIFICATE OF COMPLETION OF BASIC INSTRUMENT FLIGHT MODULE

<table>
<thead>
<tr>
<th>Pilot’s last name(s):</th>
<th>First name(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of licence:</td>
<td>Number: State:</td>
</tr>
<tr>
<td>Flight training hours performed on airship:</td>
<td></td>
</tr>
<tr>
<td>Flight training hours performed in an FSTD (maximum 5 hours):</td>
<td></td>
</tr>
<tr>
<td>Signature of applicant:</td>
<td></td>
</tr>
</tbody>
</table>

The satisfactory completion of basic instrument flight module according to requirements is certified below:

TRAINING

Basic instrument flight module training received during period:

from: to: at: ATO

Location and date: Signature of head of training:
<table>
<thead>
<tr>
<th>Type and number of licence and state of issue:</th>
<th>Name(s) in capital letters of authorised instructor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GM1 to Appendix 7 IR skill test

To the skill test, an ME centreline thrust aeroplane is considered an SE aeroplane.
AMC1 to Appendix 7 IR skill test

APPLICATION AND REPORT FORM

LAPL, BPL, SPL, PPL, CPL, IR SKILL TEST AND PROFICIENCY CHECK APPLICATION AND REPORT FORM

<table>
<thead>
<tr>
<th>Applicant’s last name(s):</th>
<th>LAPL: A □ H □ B □ S □</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicant’s first name(s):</td>
<td>BPL: □ SPL: □</td>
</tr>
<tr>
<td>Signature of applicant:</td>
<td></td>
</tr>
<tr>
<td>Type of licence*:</td>
<td>PPL: A □ H □ As □</td>
</tr>
<tr>
<td>Licence number*:</td>
<td>CPL: A □ H □ As □</td>
</tr>
<tr>
<td>State:</td>
<td>IR: □ H □ As □</td>
</tr>
</tbody>
</table>

1 Details of the flight

<table>
<thead>
<tr>
<th>Group, class, type of aircraft:</th>
<th>Registration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodrome or site:</td>
<td></td>
</tr>
<tr>
<td>Take-off time:</td>
<td></td>
</tr>
<tr>
<td>Landing time:</td>
<td></td>
</tr>
<tr>
<td>Flight time:</td>
<td></td>
</tr>
</tbody>
</table>

Total flight time:

2 Result of the test

Skill test details:

- Pass □
- Fail □
- Partial pass □

3 Remarks

Location and date:

- Examiner’s certificate number *:
- Type and number of licence:
- Signature of examiner:
- Name(s) in capital letters:

* if applicable
Annex to ED Decision 2011/016/R

AMC1 to Appendix 9 Training, skill test and proficiency check for MPL, ATPL, type and class ratings, and proficiency check for IRs

APPLICATION AND REPORT FORM

If applicable, this form is also the certificate of completion of the type rating course for ZFTT.

<table>
<thead>
<tr>
<th>Application and Report Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atpl, mpl, type rating, training, skill test and proficiency check</td>
</tr>
<tr>
<td>Aeroplanes (A) and Helicopters (H)</td>
</tr>
</tbody>
</table>

Applicant's last name(s):	**Aircraft:**	**SE-SP:** A □ H □	**ME-SP:** A □ H □
Applicant's first name(s):	**SE-MP:** A □ H □	**ME-MP:** A □ H □	
Signature of applicant:	**Operations:**	**SP □**	**MP □**
Type of licence held:	**Checklist:**	**Training record:** □	**Type rating:** □
Licence number:	**Skill test:** □	**Class rating:** □	
State of licence issue:	**Proficiency check:** □	**ATPL:** □	**MPL:** □

1. Theoretical training for the issue of a type or class rating performed during period

<table>
<thead>
<tr>
<th>From:</th>
<th>To:</th>
<th>At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature of HT:</td>
<td>Name(s) in capital letters:</td>
<td></td>
</tr>
</tbody>
</table>

2. FSTD

<table>
<thead>
<tr>
<th>FSTD (aircraft type):</th>
<th>Three or more axes: Yes □ No □</th>
<th>Ready for service and used:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSTD manufacturer:</td>
<td>Motion or system:</td>
<td>Visual aid: Yes □ No □</td>
</tr>
<tr>
<td>FSTD operator:</td>
<td></td>
<td>FSTD ID code:</td>
</tr>
<tr>
<td>Total training time at the controls:</td>
<td>Instrument approaches at aerodromes to a decision altitude or height of:</td>
<td></td>
</tr>
<tr>
<td>Location, date and time:</td>
<td>Type and number of licence:</td>
<td></td>
</tr>
<tr>
<td>Type rating instructor □ Class rating instructor □</td>
<td>Signature of instructor:</td>
<td></td>
</tr>
<tr>
<td>Name(s) in capital letters:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Flight training: in the aircraft □ in the FSTD (for ZFTT) □

<table>
<thead>
<tr>
<th>Type of aircraft:</th>
<th>Registration:</th>
<th>Flight time at the controls:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-offs:</td>
<td>Landings:</td>
<td>Training aerodromes or sites (take-offs, approaches and landings):</td>
</tr>
<tr>
<td>Take-off time:</td>
<td></td>
<td>Landing time:</td>
</tr>
<tr>
<td>Location and date:</td>
<td>Type and number of licence held:</td>
<td></td>
</tr>
<tr>
<td>Type rating instructor □ Class rating instructor □</td>
<td>Signature of instructor:</td>
<td></td>
</tr>
<tr>
<td>Name(s) in capital letters:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Skill test and proficiency check details:

<table>
<thead>
<tr>
<th>Aerodrome or site:</th>
<th>Total flight time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off time:</td>
<td>Landing time:</td>
</tr>
<tr>
<td>Pass ☐ Fail ☐</td>
<td>Reason(s) why, if failed:</td>
</tr>
<tr>
<td>Location and date:</td>
<td>SIM or aircraft registration:</td>
</tr>
<tr>
<td>Examiner’s certificate number (if applicable):</td>
<td>Type and number of licence:</td>
</tr>
<tr>
<td>Signature of examiner:</td>
<td>Name(s) in capital letters:</td>
</tr>
</tbody>
</table>
TRAINING, SKILL TEST AND PROFICIENCY CHECK: SP AEROPLANES

Section 3.B of the training and skill test and proficiency check content for SP aeroplanes included in Appendix 9.B should include training on a circling approach, after an IFR approach.