

Research Project Runway Micro Texture - Final Dissemination Event

This project is funded from the European Union's Horizon Europe research and innovation programme 08/05/25

14:30-17:00 CET

Disclaimer

This project is funded by the European Union under the Horizon Europe Programme.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Union Aviation Safety Agency (EASA). Neither the European Union nor EASA can be held responsible for them.

This deliverable has been carried out for EASA by an external organisation and expresses the opinion of the organisation undertaking this deliverable. It is provided for information purposes. Consequently, it should not be relied upon as a statement, as any form of warranty, representation, undertaking, contractual, or other commitment binding in law upon the EASA.

Ownership of all copyright and other intellectual property rights in this material including any documentation, data and technical information, remains vested to the European Union Aviation Safety Agency. All logo, copyrights, trademarks, and registered trademarks that may be contained within are the property of their respective owners. For any use or reproduction of photos or other material that is not under the copyright of EASA, permission must be sought directly from the copyright holders.

Welcome to this webinar!

This webinar is the final dissemination event of this research project

This project has received funding from the European Union's Horizon Europe research and innovation Programme

The EC delegated the contractual and technical management of this research action to EASA

EASA contracted NLR as Consortium lead for the implementation of the research action following a public tender procedure

EASA-managed projects are addressing research needs of aviation authorities and are an important pillar of the EASA R&I portfolio

The agenda

Time	Title, Speaker
14:30 - 14:35	Welcome to the webinar EASA
14:35 – 14:45	Research scope and objectives EASA
14:45 – 15:30	Overview of the project implementation and key results NLR
15:30 - 15:50	Benefits from the project, planned follow-up actions EASA
15:50 - 16:50	Questions and answers Participants, project team
16:50 - 17:00	Concluding remarks EASA

Note: this webinar will be recorded and made available at the EASA website after the event.

Question and Answers

- → For sending questions and comments, please use the slido app, which is also accessible through WebEx:
 - www.slido.com
 - event code: 3314881
 - passcode: moffgi

Research Scope and Objectives

An Agency of the European Union This project is funded by the European Union's Horizon 2020 Programme

6

- → Runway excursion is one of the main key safety risk areas for commercial air transport, business aviation and non-commercial operations with motor-powered aircraft
- \rightarrow Wet runways are contributing factors
 - → Macro-texture and micro-texture of runway surface are very important to ensure good braking performance
 - → Macro-texture refers to visible roughness of the pavement surface
 - → Micro-texture refers to the roughness of the individual stones that form the macro-texture

- → Macro-texture can be measured through simple methods such as the 'sand and grease patch'
- → CFME mainly assess the effect of macrotexture
- → For micro-texture there are neither minimum requirements nor an established method for determining and monitoring microtexture characteristics

Deliverables

- → Correlation of measured micro-texture characteristics with aircraft braking performance
- → Recommend runway-microtexture threshold values, below which a runway becomes 'slippery wet'
- → A practical guide, which could be used by aerodrome operators, competent authorities and accident investigation bodies on using surface laser scanners for assessing runway micro-texture

Overview of the project implementation and key results

An Agency of the European Union This project is funded by the European Union's Horizon 2020 Programme

Basics of wheel braking

Wet runway wheel braking forces

NLR

PH-LAB

- Runway texture (macro and micro)
 Speed
- Tyre pressureAntiskid
- Wetness
- LoadingSurface temperature

Micro texture versus macro texture

Tyre footprint on wet surface

What is happening in tyre-surface contact area?

EASA

Slippery wet runways

Slippery wet runway definition

<u>EASA</u>: 'Slippery wet runway' means a wet runway where the surface friction characteristics of a significant portion of the runway have been determined to be degraded.

Runway Condition Assessment Matrix

RUNWAY CONDITION CODE	RUNWAY SURFACE CONDITION DESCRIPTION	REPORTED BRAKING ACTION
6	Dry	Dry
5	Wet (Smooth, Grooved or PFC) or Frost 3 mm (0.12 inches) or less of: Water, Slush, Dry Snow or Wet Snow	Good
4	Compacted Snow at or below -15°C OAT	Good to Medium
3	Wet (Slippery), Dry Snow or Wet Snow (any depth) over Compacted Snow Greater than 3 mm (0.12 inches) of : Dry Snow or Wet Snow Compacted Snow at OAT warmer than -15°C	Medium
2	Greater than 3 mm (0.12 inches) of: Water or Slush	Medium to Poor
1	Ice	Poor
0	Wet Ice, Water on top of Compacted Snow, Dry Snow or Wet Snow over Ice	Nil

RCAM Assumed braking friction in performance calculations – example

Slippery wet runway braking performance

→ TALPA ARC proposed to relate *slippery wet* to braking performance **medium**;

 \rightarrow Wheel braking friction coefficient μ_{EFF} <u>chosen</u> for this level is:

→ 0.16 (fully modulating anti-skid system);
→ 0.10 (quasi modulating anti-skid system).

Braking on slippery wet ungrooved runways

Braking on slippery wet grooved runways

Braking friction levels on slippery wet runways

- $\rightarrow \mu_{EFF}$ can be up to 80% <u>lower</u> than assumed for RWCC 5;
- \rightarrow Sometimes lower μ_{EFF} than for snow/ice covered runways;
- \rightarrow Differences in μ_{EFF} mainly caused by variations in texture along a given runway:
 - → Micro texture is dominant (smoother than assumed in 25.109)
 → Viscous hydroplaning

Current assessment of slippery wet runways

- \rightarrow CFME compared to Minimum Friction Level MFL
 - \rightarrow CFME can give optimistic results
 - \rightarrow MFL arbitrarily chosen based on experience and highly scattered data
- → Observation by aerodrome maintenance personnel → Subjective
- \rightarrow Pilot reports
 - → Subjective (e.g. thrust reversers will mask true braking performance)
- → Realtime onboard analysis of braking performance
 - ightarrow Promising but requires wet runway with friction limited braking
 - \rightarrow Equipped aircraft needed that land on your aerodrome

Example CFME results in a B737 overrun

What causes slippery wet runways?

→ Smooth micro textured runway surfaces are believed to be responsible for slippery wet runways:

- \rightarrow Due to normal wear of runway surface;
- → None visible rubber build-up after touchdown zone (reduces micro texture);
- → Use of fog seal/rejuvenators to repair runway surface (can reduce micro texture).

How to assess runway micro texture?

High Resolution surface laser scanner

Scan 'area'

Basic approach EASA project

EASA project tasks

- \rightarrow Literature survey;
- \rightarrow Testing:
 - \rightarrow Flight tests on wet runways
 - \rightarrow Surface tests
- → Development of algorithms to deduce micro texture parameters from surface laser scans;
- → Development of slippery wet runway threshold;

 \rightarrow Guidance material.

Testing activities

Testing activities

 \rightarrow Flight tests on wet runways:

→ Collect wheel braking friction data on different runways surveys;

 \rightarrow Surface tests:

 \rightarrow Use laser scanner on a variety of surfaces;

→ Tests using British Pendulum Tester (BPT) on same surfaces.

BPT indicative for micro texture characteristics

Flight test aircraft

Test runs at Twente airport – Falcon 2000

Surface tests

- → Measurements using BPT and high resolution surface laser scanner;
 - \rightarrow All locations used for flight testing;
 - → Additional surfaces including taxiways, road surfaces, rubber deposited surfaces, fog sprayed surfaces and very smooth surfaces
- → BPT provides additional test data used for correlation and validation.

British Pendulum tester & laser scanner

Micro texture characterisation

Micro texture representation – ESDU model

Assume protrusions in micro texture are triangular with vertex upward

Assume a micro texture parameter related in some way to angle of vertex F_1

- On a nearly complete sharp surface F₁= 0
- On a perfectly **smooth** surface $F_1 = \pi$
- **F**₁ = **Balkwill parameter** (micro texture sharpness)

Example: Pressures beneath metal cones pressed into rubber

ESDU models for micro texture sharpness

- → Vertex angle (F₁) determines contact pressure between surface and tyre;
- → High contact pressures needed to reduce viscous hydroplaning;
- → ESDU (*Ken Balkwill*) developed models for deducing F₁ from BPT and aircraft wheel braking friction test data;
- \rightarrow Models are semi-empirical.

Deducing micro texture parameter from laser scans

→ Different parameters can be derived from surface scans that characterise micro texture;

→ Identify parameter that gives best correlation with F₁ deduced from flight tests and BPT.

High Resolution surface laser scan line

Correlation analysis

Surface laser scanner

Example of relation F₁ and selected micro texture parameter

Threshold for slippery wet runways

Threshold for slippery wet runways

- *'Slippery wet'* runway is defined by ICAO study group (1991):
 - a wet runway on which *twice* dry braked stopping distance is approximately needed to stop an aeroplane;
 - Should correspond to MFL;
 - Based on FAA/NASA/USAF Runway Research program.
- US study proposed stopping distance ratio of **2.0-2.5** as threshold;
- Currently for performance calculations constant μ_{eff} of 0.16 is used for 'slippery wet' (RWYCC=3):
 - FCOMs MEDIUM versus DRY give avg. SDR of **2.3**

Threshold for slippery wet runways

Threshold F₁

 \rightarrow Proposed F₁ threshold based on combination of:

- → Simulations of landing stopping performance by varying F_1 , macro texture and water depth (μ -speed relations based on ESDU models);
- \rightarrow F₁ deduced from wet runway overrun accidents by matching ESDU model results.
- → Further validation is recommended by analysis of 'slippery wet' runways as identified by for instance onboard measurements (*like RunwaySense on Airbus aircraft*).

Findings and next steps

Findings

→ New method for objective assessment of runway micro texture is developed;

→ Method can assist in assessing braking friction characteristics of runways in a more consistent manner which is much less subjective;

 \rightarrow Method can help in determining slippery wet runways.

Next steps

- → Choices need to be made which micro texture parameter derived from surface scans should be used;
- → Proposed threshold should be evaluated in order to establish a common accepted criterium for slippery wet surface related to micro texture or macro texture (in case the macro texture is very smooth);
- → Consider other devices to assess micro texture (e.g. optical);
- → Approach needs further validation before full operational use by aerodrome operators and AIBs.

→ Operational water depth measurements remains challenging;

→ Consideration of surface temperature in wet runway friction;

→ Macro texture depth effects (need for minimum values);

→ Integrate overall review, link runway, operation, airworthiness & airlines
→ safety;

→ Review & revise runway condition code underlying assumptions?

Planned follow-up activities

An Agency of the European Union This project is funded by the European Union's Horizon 2020 Programme

What next

- → Initiate rulemaking to revise Regulation (EU) No 139/2014 in order to establish micro-texture values, below which a runway would be considered as slippery wet and maintenance actions are required
- → Develop a guidance on the method that will be used to measure the micro-texture
- → Establish clear criteria for the development of a trend monitoring programme of runway surface, and
- → Review the certification specifications regarding runway surface construction
- → Present the outcome to ICAO with a view of including the method in ICAO documentation

Questions and answers

An Agency of the European Union This project is funded by the European Union's Horizon 2020 Programme

57

Question and Answers

- → For sending questions and comments, please use the slido app, which is also accessible through WebEx:
 - www.slido.com
 - event code: 3314881
 - passcode: moffgi

Concluding Remarks

An Agency of the European Union This project is funded by the European Union's Horizon 2020 Programme

59

Thank you for joining this webinar!

Runway Micro Texture (RWYMT) | EASA

easa.europa.eu/connect f in У O

An Agency of the European Union

