

2017- 2020 Consortium included Airbus, Honeywell, Fraunhofer, RIVM, VITO, TNO

Service Contract MOVE/B3/SER/2016-363/SI2.748114

Over-arching objectives from tender

- Characterization of composition and concentration of contaminants of bleed air and their impact on cabin/cockpit air quality.
- Identification of short- and/or long-term health effects (toxicological and physiological), that might evolve from exposure to cabin air.
- Strategy for simulating CAC-events.
- Toxicological risk assessment methodology for decision-support relating to cabin air quality
- Risk mitigation strategy aimed at reducing likelihood of CAQ-risk.

Set up Bleed Air Contamination Simulator BACS

Exposure variable monitored

- Pressure, temperature, relative humidity continuously
- Following compounds continuously:
 - Carbon monoxide
 - Carbon dioxide
 - Nitrogen oxides
 - Sulphur dioxide
 - Ozone
 - Formaldehyde
 - Total Volatile Organic Compounds
 - Selected Volatile Organic Compounds
 - Particulate matter 0.005 40 µm (UFP, PM1, PM2.5, PM10 and larger)
 - Black carbon

Compounds

Volatile Organic Compounds	
(VOC, C6-C16, incl. BTXE, halogenated)	
Volatile Organic Compounds	
(VOC, C6-C16, incl. BTXE, Acrolein)	
Very Volatile Organic Compounds	
(VVOC, C2-C6)	
SVOC in suspension (phthalates, PAHs, PCBs, flame retardants,	
organo phosphates)	
Aldehydes/Ketones	
Carboxylic acids	
Organo-phosphates (28 incl. 10 TCP isomers)	
Dioxins and furans	
PAHs	
Odour active compounds	
Characterisation of particles	

Risk assessment methodology

- Objective (tender): Toxicological risk assessment methodology for decision-support relating to cabin air quality
- Three main areas of interest identified
 - Suitability of available reference values in cabin air quality
 - Development of risk assessment framework
 - > For incidental fume events and normal flight conditions.
 - Flight crew as well as passengers.
 - Focus on exposure and effects via inhalation
 - Flowcharts and Excel files as basis for a CAQ III

Toxicity testing - objectives

• Main goal:

assess whether exposure to fume events contributes to neuronal effects as observed in cases of 'aerotoxic syndrome'

• Specific objectives

- Hazard identification: rank fume mixtures in terms of general toxicity and specific neurotoxic potency
- Screening for biomarkers in test animals used in controlled exposure to characterized fumes/extracts → not performed, CAQ III will do this in vivo/mice

Toxicity testing

An air-liquid interface (ALI) exposure system for realistic inhalation exposure to fumes generated with miniBACS to assess pulmonary and neurotoxicity of simulated fume events in the aircraft cabin

Diagram of mini-BACs and ALI exposure system

Bleed Air Contamination Simulator (mini-BACS)

Generation of oil fume samples

Heating to 350°C or 200°C

Ai-liquid interface lung connected to mini-BACs

Lung cell modules

One for air control and several for aerosol samples. Cells are transferred into each wells for exposure Can be connected with analytical instruments: particle number concentration, size, and; VOCs, etc.

Conclusions – Lung model

> 4 commonly engine oils and 2 hydraulic oils

Almost oil samples can induce cytotoxicity at applied doses (0 - 100 mg/cm³)

Hydraulic oil samples are more toxic than engine oil samples

Enviro Volum

Environment International Volume 156, November 2021, 106718

In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system

Rui-Wen He ^{a, b}, Marc M.G. Houtzager ^c, W.P. Jongeneel ^a, Remco H.S. Westerink ^b, Flemming R. Cassee ^{a, b} **A**

Direct neurotoxicity testing

Hydraulic oil-derived fumes exhibit higher neurotoxic potential than engine oil-derived fumes

Mean Spike Rate			IC₅₀ values [μg/mL] + Cl 95%		
Oil type	ID	Temp.	0.5 h exposure	24 h exposure	48 h exposure
Engine Oil	Engine 1	350°C	121 [85 - 233]	86	98
	Engine 2	350°C	39 [33 – 47]	45 [? – 57]	62 [46 - ?]
	Engine 3	350°C	57 [41 – 81]	47 [40- 56]	37 [24 – 56]
	Engine 4	350°C	84 [57 – 140]	37 [? – 43]	52 [43 – 64]
Hydraulic Oil	Hydraulic 1	200°C	2.3 [1.7 – 2.9]	15 [? – 19]	17 [13 – 23]
	Hydraulic 2	200°C	5.8 [5.0 – 6.7]	17 [14 – 21]	16 [13 – 19]

Neuronal function: Multi-Electrode Array Assay

Neurotoxicity testing

- Fumes deriving from engine and hydraulic oils reduce neuronal activity
- Engine oil fumes-induced neurotoxicity mainly occurs after prolonged exposure whereas for hydraulic oils already acute exposure affects neuronal activity
- Fumes generated from hydraulic oils more potent in inhibition neuronal activity compared to engine oil-derived fumes

Remarks

- Simulated fume events
- Relative long and high concentration exposure
- Simplified (in vitro) models, outcome need to be interpreted with a lot of caution
- Guidance for understanding chemical component related effects and ranking potencies but not for risk assessment

