23 July 2024

TYPE-CERTIFICATE DATA SHEET

EASA.IM.E.240

for CF6-80A / CF6-80C Series

Type Certificate Holder

GENERAL ELECTRIC COMPANY GE AVIATION 1 Neumann Way Cincinnati, OH 45215-6301 United States of America

For Models:

CF6-80A	CF6-80C2B1	CF6-80C2B1F1
CF6-80A1	CF6-80C2B2	CF6-80C2D1F
CF6-80A2	CF6-80C2B4	CF6-80C2A5F
CF6-80A3	CF6-80C2B6	CF6-80C2B7F
CF6-80C2A1	CF6-80C2B1F	CF6-80C2B5F
CF6-80C2A2	CF6-80C2B2F	CF6-80C2B8F
CF6-80C2A3	CF6-80C2B3F	
CF6-80C2A5	CF6-80C2B4F	
CF6-80C2A8	CF6-80C2B6F	

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 1 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Intentionally left blank

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 2 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

TABLE OF CONTENTS

I. General		4
1. Type/	Model	4
2. Type C	ertificate Holder	4
3. Manu	facturer	4
	f Application	
5. EASA	Type Certification Date	5
II. Certificat	ion Basis	6
1. Stat	e of Design Authority Certification Basis	6
2. EAS	A Certification Basis	6
2.1.	Airworthiness Standards	6
2.2.	Special Conditions (SC)	6
2.3.	Equivalent Safety Findings	7
2.4.	Deviations	7
2.5.	Environmental Protection	7
III. Technica	al Characteristics	9
1. Type	e Design Definition	9
2. Des	cription	9
3. Equi	pment	9
4. Dim	ensions	9
5. Dry	Weight	. 10
6. Rati	ngs	. 10
7. Con	trol System	. 11
8. Fluid	ds (Fuel, Oil, Coolant, Additives)	. 12
8.1.	Fuel and Additives	12
8.2.	Oil	12
9. Airc	raft Accessory Drives	. 12
10. Max	imum Permissible Air Bleed Extraction	. 13
IV. Operati	ng Limitations	15
1. Tem	perature Limits	. 15
1.1.	Climatic Operating Envelope	15
1.2.	Turbine Exhaust Gas Temperature (EGT), °C (°F)	15
1.3.	1.3 Fuel temperature	15
1.4.	Oil temperature	15
2. Pres	sure Limits	. 16
2.1.	Fuel pressure limits at engine pump inlet	16
2.2.	Oil pressure at idle	16
3. Spe	ed limits	. 17
4. Insta	allation Assumptions:	. 17
5. Time	e Limited Dispatch:	. 17
	g and Service Instructions	
VI. Notes	-	19
SECTION: A	DMINISTRATIVE	27
I. Acrony	ms and Abbreviations	. 27
II. Type C	Certificate Holder Record	. 27
III. Chang	ge Record	. 27

**** **** TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 3 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

I. General

1. Type/ Model

CF6-80, -80A, -80A1, -80A2, -80A3, -80C2A1, -80C2A2, -80C2A3, -80C2A5, -80C2A5F, -80C2A8, -80C2B1, -80C2B1F, -80C2B1F1, -80C2B2, -80C2B2F, -80C2B3F, -80C2B4, -80C2B4F, -80C2B5F, -80C2B6F, -80C2B7F, -80C2B8F, -80C2D1F.

2. Type Certificate Holder

GENERAL ELECTRIC COMPANY GE AVIATION 1 Neumann Way Cincinnati, OH 45215-6301 United States of America

3. Manufacturer

GE Aviation	Safran Aircraft Engines (formerly SNECMA)*
Production Certification No. 108	
	1, Rond point René Ravaud 77550 Moissy-
One Neumann Way	Cramayel, France
Cincinnati - Ohio 45215	
United States of America	EASA Production Certificate N° FR.21G.0007
* Soo Noto 12	

* See Note 12

4. Date of Application

CF6-80A	01 December 1978	CF6-80A1	29 July 1980
CF6-80A2	16 June 1981	CF6-80A3	16 June 1981
CF6-80C2A1	11 September 1984	CF6-80C2A2	11 September 1984
CF6-80C2A3	05 March 1986	CF6-80C2A5	12 May 1987
CF6-80C2A5F	02 April 1993	CF6-80C2A8	22 June 1990
CF6-80C2B1	11 September 1984	CF6-80C2B1F	26 March 1987
CF6-80C2B1F1	23 October 1989	CF6-80C2B2	20 November 1986
CF6-80C2B2F	18 May 1988	CF6-80C2B3F	11 April 1990
CF6-80C2B4	05 March 1986	CF6-80C2B4F	18 May 1988
CF6-80C2B5F	22 May 1997	CF6-80C2B6	20 February 1987
CF6-80C2B6F	18 May 1988	CF6-80C2B7F	27 January 1993
CF6-80C2B8F	02 September 1997	CF6-80C2D1F	18 May 1988

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 4 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Application for some of the engine models had been made to individual EU member states prior to EASA existence. The date of application to the FAA is taken as reference date.

CF6-80A	9 February 1993	CF6-80A1	14 June 1982
CF6-80A2	9 February 1993	CF6-80A3	14 June 1982
CF6-80C2A1	05 September 1985	CF6-80C2A2	04 February 1986
CF6-80C2A3	22 January 1987	CF6-80C2A5	14 January 1988
CF6-80C2A5F	22 December 1993	CF6-80C2A8	23 May 1991
CF6-80C2B1	23 February 1987	CF6-80C2B1F	23 August 1989
CF6-80C2B1F1	23 May 1991	CF6-80C2B2	27 April 1987
CF6-80C2B2F	23 August 1989	CF6-80C2B3F	22 December 1993
CF6-80C2B4	23 February 1987	CF6-80C2B4F	23 August 1989
CF6-80C2B5F	09 October 2002	CF6-80C2B6	25 November 1987
CF6-80C2B6F	23 August 1989	CF6-80C2B7F	18 February 2000
CF6-80C2B8F	18 February 2000	CF6-80C2D1F	23 May 1991

5. EASA Type Certification Date

The EASA Type Certificate for these engines is granted in accordance with article 2 paragraph 3 (a) of EU Commission Regulation (EU) No 748/2012 of 3 August 2012. These dates have been taken over from individual EU member states approval dates.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 5 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

II. Certification Basis

1. State of Design Authority Certification Basis

See FAA TCDS E13NE.

2. EASA Certification Basis

These engine models had been certified in several EU member states before 28 September 2003. According to Article 3 Paragraph 1 (a)(i) of Commission Regulation (EU) 748/2012 for these engines the European TC and associated TCDS have been issued based on the Certification Basis as established by the State of Design.

The basis for the Airworthiness Standards () and the Special Conditions have been the former TCDS nr. M-IM 13 issued by DGAC France, German LBA TCDS nr. 6318 and UK-CAA Airworthiness Approval Notes (AAN) 22462, 22463, 22464, 23916, 25053, including Addendums and Up-issues.

2.1. Airworthiness Standards

Models	EASA Airworthiness Standards
CF6-80A, -80A1, -80A2, -80A3	JAR-E Change 4 of 26 septembre 1978
CF6-80C2A1, -80C2A2, -80C2A3, -80C2A5, -80C2A8, -80C2B1, - 80C2B2, -80C2B4, -80C2B6	JAR-E Change 4 of 26 septembre 1978
CF6-80C2B1F, -80C2B1F1, - 80C2B2F, -80C2B3F, -80C2B4F, - 80C2B6F, -80C2D1F	JAR-E Change 4 of 26 septembre 1978
CF6-80C2A5F	JAR-E Change 4 of 26 septembre 1978
CF6-80C2B5F, -80C2B7F, - 80C2B8F	JAR-E Change 4 of 26 septembre 1978

2.2. Special Conditions (SC)

Models	EASA Airworthiness Standards
CF6-80A, -80A1, -80A2, -80A3	None
CF6-80C2A1, -80C2A2, -80C2A3, -80C2A5, -80C2A8, -80C2B1, - 80C2B2, -80C2B4, -80C2B6	None
CF6-80C2B1F, -80C2B1F1, - 80C2B2F, -80C2B3F, -80C2B4F, - 80C2B6F, -80C2D1F	 NPA-E10 As indicated in DGAC France letter 53052 SFACT/TC du 18 January 1989,
CF6-80C2A5F	 NPA-E10 SC n° 1, Birds ingestion: Medium bird 1,134 kg (2,5 Lbs)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 6 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

	 SC n° 2, Water and hail ingestion: AIA "Advisory proposal" PC 338-1 As indicated in DGAC France letter 54154/SFACT/N du 29 October 1993.
CF6-80C2B5F, -80C2B7F, - 80C2B8F	 Electronic Engine Control: compliance with JAR-E50(b), E150(c) and E530(f) as interpreted in AMJ 20X1 (as in JAR-E change 10). Compliance with NPA-E-20: Birds (dated 8 January 1999) - Definition of a new threat. Compliance with JAR-E -790 as in JAR-E change 10 - Ingestion of rain and hail. As indicated in DGAC France letter 990771 - SFACT/NME du 02
	February 1999, and letter SFACT 2002-3623- du 23 September 2002.

2.3. Equivalent Safety Findings

None.

2.4. Deviations

None.

2.5. Environmental Protection

Models	Environmental Protection Requirements
All models	ICAO emissions standards identified in Annex 16, Volume II, Third Edition, Part III, Chapter 2, Section 2.2.2 for SN, Section 2.3.2 for CO and HC, Section 2.3.2.e.3 for NOx (also known as CAEP/8), and Part II Chapter 2 for fuel venting have also been demonstrated.
CF6-80C2B1F, CF6-80C2BSF	CS-34 Amendment 3 as implemented by ED Decision 2019/014/R (29 July 2019); ICAO Annex 16 Volume II, Fourth Edition, Amendment 9 applicable 01 January 2018 as implemented into EU legislation 11 September 2018.
CF6-80C2B6F, CF6-80C2B7F	 NOx levels in compliance with Part III, Chapter 2, paragraph 2.3.2 d) (CAEP/6), Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2 (CAEP/10)
CF6-80C2B1F, CF6-80C2BSF CF6-80C2B6F, CF6-80C2B7F	 ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021 as implemented into EU legislation 27 April 2021 and detailed in Annex Part21 21B.85 NOx levels in compliance with ICAO Annex 16 Volume II, Part III, Chapter 2, paragraph 2.3.2 e) (CAEP/8). HC, CO levels in compliance with ICAO Annex 16 Volume II, Part III, Chapter 2, paragraph 2.3.2.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 7 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 8 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

III. Technical Characteristics

1. Type Design Definition

As defined by the applicable GE Model List and approved design changes.

CF6-80A	CF6-80A1	CF6-80A2	CF6-80A3	CF6-80C2A1	CF6-80C2A2	CF6-80C2A3
CF6-80C2A5	CF6-80C2A5F	CF6-80C2A8	CF6-80C2B1	CF6-80C2B1F	CF6-80C2B1F1	CF6-80C2B2
CF6-80C2B2F	CF6-80C2B3F	CF6-80C2B4	CF6-80C2B4F	CF6-80C2B5F	CF6-80C2B6	CF6-80C2B6F
CF6-80C2B7F	CF6-80C2B8F	CF6-80C2D1F				

2. Description

The series CF6-80A (CF6-80A, -80A1, -80A2, -80A3) Dual rotor, axial flow, high bypass turbofan. The 14stage high pressure compressor is driven by a 2-stage high pressure turbine and the integrated front fan and low-pressure compressor are driven by a 4-stage low pressure turbine.

The series CF6-80C2 (CF6-80C2A1, -80C2A2, -80C2B1, -80C2B4, -80C2A3, -80C2B2, -80C2B6, -80C2A5, -80C2A8, -80C2B1F, -80C2B2F, -80C2B4F, -80C2B6F, -80C2D1F, -80C2B1F1, -80C2B3F, -80C2A5F, -80C2B7F, -80C2B5F, -80C2B8F) Dual rotor, axial flow high bypass turbofan. The 14-stage compressor is driven by a 2-stage high pressure turbine and the integrated front fan and low-pressure compressor are driven by a 5-stage low pressure turbine.

See notes 13 and 18.

3. Equipment

As defined by the applicable GE Model Lists.

4. Dimensions

Models	Dimensions mm (in.)			
	Overall Length	Overall Width	Overall Height	
CF6-80A, CF6-80A2	4239.3	2486.6 (97.9)	2415.5 (95.1)	
CF6-80A1, CF6-80A3	(166.9)	2400 (94.5)	2682.2 (105.6)	

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 9 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Models	Dimensions mm (in.)			
	Overall Length	Overall Width	Overall Height	
Series CF6-80C2 (CF6-80C2A1, -80C2A2, - 80C2B1, -80C2B4, -80C2A3, -80C2B2, - 80C2B6, -80C2A5, -80C2A8)	4273.8	2669.5 (105.10)	2691.6	
Series CF6-80C2 (CF6-80C2B1F, -80C2B2F, - 80C2B4F, -80C2B6F, -80C2D1F, -80C2B1F1, - 80C2B3F, -80C2A5F, -80C2B7F, -80C2B5F, - 80C2B8F)	(168.26)	2830.1 (111.42)	(105.97)	

5. Dry Weight

Models	Dry Weight		
Models	kg (lbs)		
	3980.7 kg		
CF6-80A, CF6-80A2	(8776 lbs)		
	3973.5 kg		
CF6-80A1, CF6-80A3	(8760 lbs)		

Models	Dry Weight
Wodels	kg (lbs)
Series CF6-80C2 (CF6-80C2A1, -80C2A2, -	4300.1 kg
80C2A3, -80C2A5, -80C2A8)	(9480 lbs)
Series CF6-80C2 (CF6-80C2B1, -80C2B4, -	4386.2 kg
80C2B2, -80C2B6)	(9670 lbs)
Series CF6-80C2 (CF6-80C2B1F, -80C2B2F, -	
80C2B4F, -80C2B6F, -80C2D1F, -80C2B1F1, -	4440.7 kg
80C2B3F, -80C2A5F, -80C2B7F, -80C2B5F, -	(9790 lbs)
80C2B8F)	
CF6-80C2D1F	4467.9 kg
	(9850 lbs)
	4308.7 kg
CF6-80C2B3F	(9499 lbs)
CF6-80C2A5F	4472.4 kg
	(9860 lbs)

See Note 1.

6. Ratings

	Thrust kN (lbf)		
Models	Take-off	Maximum	
wodels	(5 minutes)	Continuous	
А	208.755 (46930)	194.209 (43660)	
A1	209.022 (46990)	193.987 (43610)	
A2	216.494 (48670)	203.373 (45720)	
A3	217.829 (48970)	203.728 (45800)	
C2A1	257.374 (57860)	237.490 (53390)	

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 10 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

C2A2	233.354 (52460)	213.870 (48080)
C2A3	262.223 (58950)	243.718 (54790)
C2A5	267.338 (60100)	250.034 (56210)
C2A8	257.374 (57860)	213.870 (48080)
C2B1	249.011 (55980)	220.409 (49550)
C2B1F1	267.027 (60030)	221.566 (49810)
C2B2	231.085 (51950)	218.052 (49020)
C2B4	254.349 (57180)	232.953 (52370)
C2B6	267.205 (60070)	249.545 (56100)
C2B1F	254.260 (57160)	221.566 (49810)
C2B2F	231.352 (52010)	218.586 (49140)
C2B4F	254.794 (57280)	233.398 (52470)
C2B5F	267.027 (60030)	221.566 (49810)
C2B6F	267.027 (60030)	249.857 (56170)
C2D1F	269.962 (60690)	252.348 (56730)
C2A5F	267.338 (60100)	250.034 (56210)
C2B3F	231.352 (52010)	177.262 (39850)
C2B7F	267.027 (60030)	249.857 (56170)
C2B8F	267.027 (60030)	249.857 (56170)

See Notes 2, 3, and 4.

7. Control System

- i. The following engines are equipped with a Full Authority Digital Engine Control (FADEC) consisting primarily of a dual channel Electronic Control Unit (ECU), a Hydro Mechanical Unit (HMU), an ECU Rating Plug and a Main Fuel Pump. Refer to the Installation Manuals (§ V.) for unit part numbers.
 - CF6-80C2B1F, CF6-80C2B2F, CF6-80C2B4F, CF6-80C2B6F, CF6-80C2D1F, CF6-80C2B1F1, CF6-80C2B3F, CF6-80C2B3F, CF6-80C2B5F, CF6-80C2B5F, CF6-80C2B5F.
- ii. The following engines are not equipped with a Full Authority Digital Engine Control (FADEC). The engines are controlled by a Woodward Main Engine Control (MEC), supervised by Power Management Control (PMC), and a Main Fuel Pump. Refer to the Installation Manuals (§ V.) for unit part numbers.
 - CF6-80A, CF6-80A1, CF6-80A2, CF6-80A3, CF6-80C2A1, CF6-80C2A2, CF6-80C2B1, CF6-80C2B4, CF6-80C2A3, CF6-80C2B2, CF6-80C2B6, CF6-80C2A5, CF6-80C2A8.
- iii. See Note 13
- iv. The incorporation of the Engine Identification Plug is applicable to the CF6-80C2 FADEC engine models only. See Note 16.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 11 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

8. Fluids (Fuel, Oil, Coolant, Additives)

8.1. Fuel and Additives

The approved fuels and additives must conform to GE Specification D50TF2. The latest revision of the specification will apply.

8.2. Oil

The engine oil must be a synthetic type conforming to GE Specification D50TF1, Class B. For approved brands of oil refer to Service Bulletin 79-001.

9. Aircraft Accessory Drives

For CF6-80A / A2:

Drive Pad	Rotation Facing	Gear Ratio to	Horsepower Continuous	Shear Torque**	Maximum Overhung
	Gearbox Pad	Core Speed	Pad Rating	loique	Moment**
Starter	CCW	0.956	949.07	1898.1	45.2
			(8400)**	(16800)	(400)
IDG	CCW	0.832	130.5	1072.45	226.0
			(175)*	(9492)	(2000)
Hydraulic Pump	CCW	0.344	63.4	481.1	45.2
			(85)*	(4260)	(400)
IDG Overload	225 hp (167.8 kw) for 5 minutes per 1,000 hours of operation				
Limits	225 hp (167.8 kw) for 5 seconds per hour of operation				
	450 hp (335.6 k	w) for 5 seconds	per 1,000 hours	of operation	

For CF6-80A1 / A3:

Drive Pad	Rotation	Gear Ratio	Horsepower	Shear	Maximum	
	Facing	to	Continuous	Torque**	Overhung	
	Gearbox Pad	Core Speed	Pad Rating		Moment**	
Starter	CCW	0.956	1220.24	2169.31	45.2	
			(10800)**	(19200)	(400)	
IDG	CCW	0.832	130.5	1072.45	226.0	
			(175)*	(9492)	(2000)	
Hydraulic Pump	CCW	0.350	63.4	836.1	45.2	
		(85)* (7400) (400)				
IDG Overload	225 hp (167.8 kw) for 5 minutes per 1,000 hours of operation					
Limits	225 hp (167.8 kw) for 5 seconds per hour of operation					
	450 hp (335.6 kw) for 5 seconds per 1,000 hours of operation					

For CF6-80C2A1 / A2/ A3 / A5 / A8 / D1F / A5F:

Drive Pad	Rotation Facing Gearbox Pad	Gear Ratio to Core Speed	Horsepower Continuous Pad Rating	Shear Torque**	Maximum Overhung Moment**
Starter	CCW	0.956	949.07	1898.1	45.2
			(8400)**	(16800)	(400)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 12 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

GENERAL ELECTRIC COMPANY CF6-80 series

23 July 2024

IDG	CCW	0.832	160.3	1186.4	226.0
			(215)*	(10500)	(2000)
Hydraulic Pump	CCW	0.344	31.3	481.1	45.2
			(42)*	(4260)	(400)
IDG Overload	225 hp (167.8 kw) for 5 minutes per 1,000 hours of operation				
Limits	225 hp (167.8 kw) for 5 seconds per hour of operation				
	450 hp (335.6 kw) for 5 seconds per 1,000 hours of operation				

For CF6-80C2B1 / B2 / B4 / B6 / B1F/ B2F / B3F / B4F / B6F / B1F1 / B7F / B5F / B8F:

Drive Pad	Rotation	Gear Ratio	Horsepower	Shear	Maximum
	Facing	to	Continuous	Torque**	Overhung
	Gearbox Pad	Core Speed	Pad Rating		Moment**
Starter	CCW	0.956	949.07	1898.1	45.2
			(8400)**	(16800)	(400)
IDG	CCW	0.832	164.1	1186.4	226.0
			(220)*	(10500)	(2000)
Hydraulic Pump	CCW	0.344	63.4	481.1	45.2
		(85)* (4260) (400)			
IDG Overload	270 hp (201.3 kw) for 5 minutes per 1,000 hours of operation				
Limits	360 hp (268.5 kw) for 10 seconds per hour of operation				
	450 hp (335.6 k	w) for 5 seconds	per 1,000 hours	of operation	

CCW = Counter Clockwise * Units: kW (hp)

** Units: Torque Nm (lb-in)

10. Maximum Permissible Air Bleed Extraction

Bleed location	CF6-80A/A2	CF6-80A1/A3
Stage 8, compressor airflow, normal	5.00%	5.00%
Stage 8, compressor airflow, intermittent (*)		
N2 RPM 8009-8600	5.75%	5.75%
N2 RPM 8600-8850	6.25% (**)	
N2 RPM 8850-9680	5.75%	
Compressor discharge		
Steady state at takeoff rating	5.00%	5.00%
Steady state between 80% N2 and maximum continuous	10.00%	10.00%
During acceleration above 80% N2	7.00%	7.00%
Operating at 80% N2 or below	12.50%	12.50%
Stage 10	2.00%	2.00%
Stage 11		

(*) Intermittent operation is defined as "dispatch with a system inoperative, or bleed system, or engine failure inflight" and should be confined to the physical core speed (N2) range of 8009 (81.5%) to 9680 (98.5%) rpm as shown in the above tabulation. At all normal flight conditions, maximum bleed will remain

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 13 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

5% of core engine physical airflow. The manufacturer is to be consulted regarding conditions, number of occurrences, and duration of each occurrence within the limitations of:

The average of 2 x 10-3 occurrences per engine operating hour; and a maximum of 0.5 hour duration per occurrence (cumulative total of 50 hours).

Bleed location	CF6-80C2 FADEC (percent)	CF6-80C2 PMC (percent)
Stage 8, compressor airflow, normal	8.8	8.8
Stage 11	1.5	1.5
Compressor discharge		
Steady state at takeoff rating	5.0	5.0
Steady state at maximum continuous or below	10.0	
Transient operation above maximum continuous rating	7.0	
Steady state between 80% N2 and maximum continuous		10.0
During acceleration above 80% N2		7.0
Operating at 80% N2 or below		12.0

(**) 5.75 maximum allowable stage 8 bleed when 10th stage customer bleed is also used.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 14 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

IV. Operating Limitations

1. Temperature Limits

1.1. Climatic Operating Envelope

The engine may be used in:

- Altitude: from 0 to 13 700 m
- Temperature: 55 ° to + 55 °C ground temperature
- Mach nr: 0 to 0,94

Refer to the Installation Manual for details of the Operating Envelope, including the air inlet distortion at the engine inlet.

1.2. Turbine Exhaust Gas Temperature (EGT), °C (°F)

	Exhaust Gas Temperature °C (°F)				
Models	Take-off (5 minutes)	Maximum Continuous	Starting Maximum Transient (40 sec)	Starting (Ground) Max (no time limit)	120 second maximum transient
CF6-80A (ALL MODELS)	940 (1724)*	895 (1643)*	970 (1509)	750 (1292)	
CF6-80C2 (ALL MODELS)	960 (1760)**	925 (1697)	870 (1598)	750 (1382)	965 (1769) ***

See Note 5 for time temperature envelope.

(*) See Note 20 for further information regarding maximum permissible parameters on CF6-80A engines.

(**) See Notes 11 and 15 for further information regarding EGT Redline and EGT Junction Box.

(***) 120 second maximum transient is only for CF6-80C2B8F

1.3.1.3 Fuel temperature

For the fuel temperature at the Fuel Pump Inlet, refer to the Installation Manual for additional information:

Models	Installation manual
CF6-80A / CF6-80A2	CF6-80A Installation Manual GEK 50460
CF6-80A1 / CF6-80A3	CF6-80A Installation Manual GEK 50490
CF6-80C2A1 / A2 / A3 / A5 / A8 / B1 / B2 / B4 / B6	CF6-80C2 Installation Manual GEK 50492
CF6-80C2B1F / B2F / B3F / B4F / B6F / D1F / B1F1 / A5F / B7F / B5F / B8F	CF6-80C2 FADEC Installation Manual GEK 97284

1.4. Oil temperature

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 15 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

	Maximum Oil Temperature °C (°F)		
Models	Continuous Operation	Transient (15 minutes maximum)	
Oil Outlet	160 (320)	175 (347)	

2. Pressure Limits

2.1. Fuel pressure limits at engine pump inlet

i. CF6-80A / A2

a. GROUND STARTING

This limit is from minimum fuel pressure of not less than 82.7 kPa, absolute (12 psia) to a maximum of 441.3 kPa gage (64 psig) (relative to atmosphere) with vapor/liquid ratio of zero at all conditions.

b. OPERATION AND AIR STARTING

Operation and air starting pressure limit extends from a minimum fuel pressure of more than 34.5 kPa (5.0 psi) above the true vapor fuel pressure to a normal maximum fuel pressure of 441.3 kPa gage (64 psig) with transient pressure (2 minute maximum) up to 489.5 kPa gage (71 psig) permitted (relative to the atmosphere) at all conditions.

ii. CF6-80A1 / A3

a. GROUND STARTING

This limit is from a minimum fuel pressure of not less than 82.7 kPa, absolute (12 psia) to a maximum of 344.8 kPa gage (50 psig) (relative to atmosphere) with vapor/liquid ratio of zero at all conditions.

b. OPERATION AND AIR STARTING

The engine fuel system will provide fuel flow and pressure required for starting and operating the engine throughout the defined operational envelope when the fuel pressure at the fuel pump inlet connections to the engine ranges from a minimum of true vapor pressure of the fuel plus 34.5 kPa (5.0 psi) to a maximum of 344.8 kPa gage (50 psig) supplied with vapor-free fuel for all normal operating conditions except idle power at altitudes greater than 3.048 km (10,000 feet). For altitudes greater than 3.048 km (10,000 feet) at least 103.4 kPa gage pressure (15 psig) is required at the main fuel pump inlet at metered fuel flow levels of 1134 kg/hr (2500 pph) or less.

iii. CF6-80C2 (ALL MODELS)

 a. GROUND STARTING, AIR STARTING, AND OPERATION
 This limit is from a minimum fuel pressure of not less than 34.34 kPa, absolute (5.0 psia) above the true vapor pressure to a maximum of 482.6 kPa gage (70 psig) (relative to atmosphere)

with vapor/liquid ratio of zero at all conditions.

2.2. Oil pressure at idle

i. CF6-80A / A1 / A2 / A3

The pressure limit at idle is 69.0 kPa differential minimum (10 psid); varying from 179.4 to 827.6 kPa diff. (26 to 120 psid) in the normal operating range.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 16 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

ii. CF6-80C2 (ALL MODELS)

The pressure limit at idle is 65.5 kPa differential minimum (9.5 psid); varying from 179.4 to 827.6 kPa diff (26 to 120 psid) in the normal operating range. See Note 10.

3. Speed limits

	Maximum Permissible Rotor Speeds rpm (%)		
Models	Low Pressure Rotor (N1)	High Pressure Rotor (N2)	
CF6-80A (ALL MODELS)	4016 rpm (117.0%)	10859 rpm (110.5%) (*)	
CF6-80C2 (ALL MODELS)	3854 rpm (117.5%)	11055 rpm (112.5%)	

(*) See Note 20 for further information regarding maximum permissible parameters on CF6-80A engines.

4. Installation Assumptions:

The installation assumptions are stated in the appropriate engine Installation Manual. See Note 14 and 17.

5. Time Limited Dispatch:

Criteria pertaining to the dispatch and maintenance requirements for CF6-80C2 FADEC engines are specified in the Airworthiness Limitations Section of CF6-80C2 Engine Manual GEK 92451, which define the various configurations and maximum operating intervals.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 17 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

V. Operating and Service Instructions

	Document Reference			
Document	CF6-80A / CF6-80A2	CF6-80A1 / CF6-80A3	CF6-80C2 (ALL MODELS)	CF6-80C2B1F / B2F / B3F / B4F / B6F / D1F / B1F1 / A5F / B7F / B5F / B8F
Installation Manual	GEK 50460	GEK 50490	GEK 50492	
Specific Operating Instructions	GEK 7	72506	GEK 92462	
Engine Manual	GEK 72501		GEK 92451	
Maintenance Manual	GEK 7	72500	GEK 92450	
FADEC Installation Manual				GEK 97284
Service Bulletins	As issued for each engine model			

See Notes 6, 7, 8 and 9.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 18 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

VI. Notes

- 1. Dry weight includes basic engine accessories & optional equipment as listed in the manufacturer's engine specifications, including condition monitoring instrumentation sensors.
- 2. The engine ratings are based on the following conditions:
 - Fan inlet air at 15°C (59°F) and 14.69 psia (29.92 in. hg.) abs. zero humidity.
 - Ideal engine inlet (100% bellmouth recovery).
 - No external air bleed or accessory drive power for aircraft accessories.
 - o Turbine temperature and engine rotor speed limits not exceeded.

Also, with the following flight exhaust system definition:

	Exhaust systems
Models	defintion
	NS-CF6-1
	NS-CF6-1G01
CF6-80A, -80A1, -80A2, -80A3	NS-CF6-1G02
	NS-CF6-1G03
	NS-CF6-1G04
	ES-CF6-1G01
CF6-80C2A1, -80C2A2, -80C2A3, -80C2A5, -	ES-CF6-1G02
80C2A8	ES-CF6-1G03
	ES-CF6-1G04
	TR-CF6-F23G03
	TR-CF6-F23G04
	TR-CF6-F23G07
	TR-CF6-F23G08
CF6-80C2B1	TR-CF6-F23G11
	TR-CF6-F23G12
	TR-CF6-F23G13
	TR-CF6-F23G14
	TR-CF6-F23G01
	TR-CF6-F23G02
	TR-CF6-F23G05
CF6-80C2B2, -80C2B4, -80C2B6	TR-CF6-F23G06
	TR-CF6-F23G09
	TR-CF6-F23G10
	TR-CF6-F23FG03
	TR-CF6-F23FG04
CF6-80C2B1F/	TR-CF6-F23FG07
B1F1/B3F/B5F	TR-CF6-F23FG08
	TR-CF6-F23FG11
	TR-CF6-F23FG12
	TR-CF6-F23FG13
	TR-CF6-F23FG14
CF6-80C2	TR-CF6-F23FG01
B2F/B4F/B6F/B7F/B8F	TR-CF6-F23FG02

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 19 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

	TR-CF6-F23FG05
	TR-CF6-F23FG06
	TR-CF6-F23FG09
	TR-CF6-F23FG10
	ES-CF6-2G01
	ES-CF6-2G02
	ES-CF6-2G03
	ES-CF6-2G04
	ES-CF6-2G05
CF6-80C2D1F	ES-CF6-2G06
	ES-CF6-2G07
	ES-CF6-2G08
	ES-CF6-2G09
	ES-CF6-2G10
	ES-CF6-2G11
	ES-CF6-2G12
	ES-CF6-5G01
CF6-80C2A5F	ES-CF6-5G02
	ES-CF6-5G03
	ES-CF6-5G04

- 3. Take off rating is limited to a continuous period of not more than 5 minutes except in the event of a power unit having failed or been shut down when a continuous period of not more than 10 minutes is allowed.
- 4. Take-off thrust and Maximum Continuous thrust is flat rated up to ambient temperature of:

	Flat rating ambient temperature °C (°F)	
Models	Take-off	Maximum
wodels		Continuous
A, A1, A2, A3	33.3°C (92°F)	25°C (77°F)
C2A1	30°C (86°F)	25°C (77°F)
C2A2	44°C (111°F)	25°C (77°F)
C2A3	30°C (86°F)	25°C (77°F)
C2A5	30°C (86°F)	25°C (77°F)
C2A8	35°C (95°F)	25°C (77°F)
C2B1	30°C (86°F)	25°C (77°F)
C2B1F1	30°C (86°F)	25°C (77°F)
C2B2	32.2°C (90°F)	30°C (86°F)
C2B4	32.2°C (90°F)	25°C (77°F)
C2B6	30°C (86°F)	25°C (77°F)
C2B1F	32.2°C (90°F)	25°C (77°F)
C2B2F	32.2°C (90°F)	30°C (86°F)
C2B4F	32.2°C (90°F)	25°C (77°F)
C2B5F	30°C (86°F)	25°C (77°F)
C2B6F	30°C (86°F)	25°C (77°F)
C2D1F	30°C (86°F)	25°C (77°F)
C2A5F	30°C (86°F)	25°C (77°F)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 20 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

C2B3F	32.2°C (90°F)	25°C (77°F)
C2B7F	30°C (86°F)	25°C (77°F)
C2B8F	30°C (86°F)	25°C (77°F)

- 5. Refer to CF6-80A Operating Instruction GEK 72506, or CF6-80C2 Operating Instruction GEK 92462 for time temperature envelope.
- 6. Cyclic life limits for critical rotating and static components are published in the Airworthiness Limitations Sections of CF6-80A Engine Manual GEK 72501, CF6-80C2 Engine Manual GEK 92451.
- 7. Power setting, power checks and control of engine thrust output in all operations is to be based on GE engine charts referring to Fan Speed (N1). Speed sensors are included in the engine assembly for this purpose
- 8. For CF6-80A inflight operation during icing conditions, the minimum permissible N1 rpm is 40% for CF6-80 series engines. However, momentary N1 excursions below 40%, not to exceed 60 seconds duration, are permissible for approach and landing operation below 10,000 feet pressure altitude. For CF6-80C2 operation, the minimum idle permissible inflight corresponds to N2 (core) = 6050 rpm, which is a preset limit within the Main Engine Control, (PMC engines) or Electronic Control Unit (FADEC engines) and is not field adjustable.
- 9. CF6-80A1/A3 Models

The engine manufacturer supplies Nacelle System NS-CF6-1. The following kits listed, which are part of this Nacelle system, have been approved for installation on CF6-80A1/A3 engines.

System	Kit Number
Nozzle & Centerbody	681L287
Engine Attach Fittings	
Lower Aft Mount	681L288
Upper Aft Mount	681L294
Engine Assembled EBU	681L185
Fan Reverser TR-CF6-F23G02	
Position #1	681L292
Position #2	681L293
Fan Reverser Actuation System	
Supply Air - Pylon Mounted	681L188
Supply Air - Engine Mounted	681L189
Compartment Cooling Air System	681L244
Fuel Flowmeter	681L250

CF6-80C2 Models

The engine manufacturer supplies the engine assembled EBU for CF6-80C2A1 / A2 / A3 / A5 / A8 / A5F; CF6-80C2B1 / B2 / B4 / B6; CF6-80C2B1F / B2F / B3F / B4F / B5F / B6F / B7F / B1F1; and

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 21 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

CF6-80C2D1F engines. The components, which had been approved for installation on CF6-80C2 engines, are defined in the model lists CF6-80C2A1 / A2 / A3 / A5/ A8; CF6-80C2B1 / B2 /B4 / B6; CF6-80C2B1F / B2F / B3F / B4F / B5F / B6F / B7F / B1F1 / B8F; CF6-80C2D1F; CF6-80C2A5F.

The engine manufacturer also supplies total exhaust system and engine attach fittings for the CF6-80C2A1 / A2 / A3 / A5 / A8; the CF6-80C2A5F, and CF6-80C2D1F (except D1F upper aft mount beam), but supplies only the Fan Reverser System for the CF6-80C2B1 / B2 / B4 / B6 and CF6-80C2B1F / B2F / B3F / B4F / B5F / B6F / B7F / B1F1 / B8F engines.

The exhaust system (ES) and Fan Reverser (TR) Kit numbers approved for installation are listed in Note 2 of this TCDS.

- 10. CF6-80C2 models only: During negative-g operation only, it is permissible to operate below minimum oil pressure 69 kPa differential (10 psi differential) for a maximum of 30 seconds. See Sections 6 of CF6-80C2 Specific Operating Instructions, GEK 92462.
- 11. The indicated 960°C EGT Redline for the CF6-80C2 engines using EGT Shunt Junction Box P/N 1325M15P05 or 1325M15P07 corresponds to an actual 1005°C EGT. The indicated 960°C EGT Redline for CF6-80C2 engines using EGT Shunt Junction Box P/N 1383M97P03 or 1383M97P07 corresponds to an actual 1020°C EGT. CF6-80C2A1/A2/A3/B1/B2/B4 and CF6-80C2B1F/B2F/B3F/B4F models equipped with EGT Shunt Junction Box P/N 1383M97P03/P07 must also incorporate the HP/LP turbine hardware and associated changes per General Electric CF6-80C2 Service Bulletins 72-201, 72-222, 72-240, 72-241, 72-248, 72-255, 72-268, 77-005, and 77-006.
- CF6-80A1/A3 engines and parts thereof manufactured by Safran Aircraft Engines (formerly SNECMA),
 Rond point René Ravaud 77550 Moissy-Cramayel, France under Production agreement No. 6-3032 with the General Electric Company, are identified by engine Serial Numbers 585-.

CF6-80C2 engines and parts thereof manufactured by Safran Aircraft Engines (formerly SNECMA), 1, Rond point René Ravaud 77550 Moissy-Cramayel, France under Production agreement No. 6.3592 with the General Electric Company, are identified by engine Serial Numbers 695- assigned to CF6-80C2 PMC engines manufactured by Safran Aircraft Engines, and Numbers 703- and 705-204 and up are assigned to CF6-80C2 FADEC engines manufactured by Safran Aircraft Engines.

13. These models incorporate the following general characteristics:

SERIES CF6-80A	
CF6-80A	Basic model.
CF6-80A1	Same as CF6-80A, except the engine incorporates a fan case mounted gearbox.
CF6-80A2	Same as CF6-80A, except increased takeoff thrust rating. Corresponding PMC and MEC changes.
CF6-80A3	Same as CF6-80A1, except increased takeoff thrust rating. Corresponding PMC and MEC changes.

SERIES CF6-80C2

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 22 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

CF6-80C2A1	Basic model (takeoff ideal thrust rating: 59,000 pounds).
CF6-80C2A2	Same as 80C2A1, except lower takeoff thrust rating (53,500 ideal). Corresponding PMC and MEC changes.
CF6-80C2A3	Same as 80C2A1, except higher takeoff thrust rating (60,200 ideal). Corresponding PMC and MEC changes.
CF6-80C2B1	Same as 80C2A1, except lower takeoff thrust rating (56,700 ideal). Corresponding PMC and MEC changes. Minor airframe related hardware changes and added servo fuel heater.
CF6-80C2B2	Same as 80C2A1, except lower takeoff thrust rating (52,500 ideal). Corresponding PMC and MEC changes. Minor airframe related hardware changes and added servo fuel heater.
CF6-80C2B4	Same as 80C2A1, except lower takeoff thrust rating (57,900 ideal). Corresponding PMC and MEC changes. Minor airframe related hardware changes and added servo fuel heater.
CF6-80C2B6	Same as 80C2A1, except higher takeoff thrust rating (60,800 ideal). Corresponding PMC and MEC changes. Minor HPT and LPT hardware changes, minor airframe related hardware changes, and added servo fuel heater.
CF6-80C2A5	Same as 80C2A1, except higher takeoff thrust rating (61,300 ideal). Corresponding PMC and MEC changes. Minor HPT and LPT hardware changes
CF6-80C2A8	Same as 80C2A1, except takeoff thrust is flat rated to 95°F. Corresponding PMC and MEC changes. Minor HPT and LPT hardware changes.
CF6-80C2B1F	Same as 80C2A1, except lower takeoff thrust rating (58,000 ideal). Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater.
CF6-80C2B1F1	Same as 80C2A1, except higher takeoff thrust rating (60,800 ideal) and maximum continuous rating same as 80C2B1F. Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT,

(FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of the 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater. Only ECU P/N 1820M33P04 incorporating 8.2.N software can be used on the CF6-80C2B1F1. See Note 19.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 23 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

- CF6-80C2B2F Same as 80C2A1, except lower takeoff thrust rating (52,700 ideal). Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater.
- CF6-80C2B3F Same as 80C2A1, except lower takeoff thrust rating (52,700 ideal). Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater. Only ECU P/Ns 1471M63P31, 1519M89P21, or 1820M33P04 incorporating 8.2.N software can be used on the CF6-80C2B3F. See Note 19.
- CF6-80C2B4F Same as 80C2A1, except lower takeoff thrust rating (58,100 ideal). Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater.
- CF6-80C2B6F Same as 80C2A1, except higher takeoff thrust rating (60,800 ideal). Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater.
- CF6-80C2D1F Same as CF6-80C2A1, except higher takeoff rating (61,960 ideal). Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling, and two levels of 11th stage cooling to the HPT. Minor airframe related changes.
- CF6-80C2A5F Same as 80C2A1, except higher takeoff thrust rating (61,300 ideal). Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT and LPT, modulated bore cooling. Minor airframe related hardware changes, and added servo fuel heating system.
- CF6-80C2B7F Same as 80C2A1, except higher takeoff thrust rating (60,800 ideal). Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulating active clearance control for the HPT and LPT, modulated bore cooling, two levels of 11th stage cooling to the HPT and redesigned accessory gearbox. Minor airframe related hardware changes, and added servo fuel heater.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 24 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

TCDS No.: IM.E.240 Issue: 02

- CF6-80C2B5F Same as 80C2A1 except higher takeoff thrust rating (60,800 ideal). Minor HPT and LPT hardware changes. Incorporates Full Authority Digital Engine Control (FADEC), modulated active clearance control for the HPT, and a constant level of 11th stage cooling to HPT. Minor airframe related changes, and added servo fuel heater.
- CF6-80C2B8FSame as CF6-80C2B7F except for increased thrust during takeoff. In
addition, the CF6-80C2B8F incorporates a 965°C transient EGT redline for
a maximum of two minutes. Incorporates improved HPT and LPT rotors.
- 14. The CF6-80C2A5/A8/B5F/B6/B6F/B7F/B1F1/D1F/A5F engine models require the incorporation of General Electric CF6-80C2 Service Bulletins 72-201, 72-222, 72-240, 72-241, 72-248, 72-255, 72-268, 77-005 and 77-006.
- 15. Incorporation of EGT Junction Box P/N 1519M97P01 (direct readout) in lieu of EGT Shunt Junction box P/N 1325M15P07 or 1383M97P03/P07 is applicable to CF6-80C2 FADEC engine models only and requires the simultaneous introduction of ECU P/N's 1471M63P16 (or later) or 1519M89P08 (or later) or 1820M33P01 (or later) for CF6-80C2B1F/B2F/B3F/B4F/ B5F/ B6F/ B1F1/ B7F/ B8F engine models as listed on the data sheet. EGT Junction Box P/N 1519M97P01 is used on all CF6-80C2DF and CF6-80C2AF models.
- 16. The incorporation of the Engine Identification Plug is applicable to the CF6-80C2 FADEC engine models only. The applicable part numbers are as follows:

CF6-80C2BF Engine Models

Engine Identification Plug P/N 7157M87 must be used with ECU P/N's 1471M63P07/P08/P11/ P12 and with 1519M89P05/P06.

Engine Identification Plug P/N 7161M98 must be used with ECU P/N's 1471M63P16 (or later) or 1519M89P08 (or later) or 1820M33P01 (or later). Engine Identification Plug P/N 7161M98 or 1851M56 must be used with ECU P/N's 1471M63P31 (or later) or 1519M89P21 (or later) or 1820M33P04 (or later) or 2121M25P01 (or later), or 2121M26P01 (or later), or 2121M29P01 (or later), or 2121M37P01 (or later), or 2121M38P01 (or later), or 2121M41P01 (or later). The exact Engine Identification Plug P/N is determined by engine hardware options and engine test results.

CF6-80C2DF Models

Engine Identification Plug P/N's 7161M98 must be used with ECU P/N 1519M91P04 (or later) or 1820M34P01 (or later). Engine Identification Plug P/N 7161M98 or 1851M56 must be used with ECU P/N's 1519M91P07 (or later) or 1820M34P02(or later) or 1851M51P01(or later) or 1851M52P01(or later) or 1851M53P01(or later). The exact Engine Identification Plug P/N is determined by engine hardware options and engine test results.

CF6-80C2AF Models

Engine Identification Plug P/N 7161M98 or 1851M56 must be used for all ECU P/N's. The exact Identification Plug P/N is determined by engine hardware options and engine test results.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 25 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

- 17. The CF6-80C2B3F does not require the incorporation of General Electric CF6-80C2 Service Bulletins 72-201, 72-222, 72-240, 72-241, 72-248, 72-255, 72-268, 77-005 and 77-006. If these bulletins are not incorporated, the engine must use one of the Identification Plug P/N's 7161M98G26 through G49 or P/N's 7161M98G74 through G97. See Note 16.
- 18. A suffix may be added to the CF6-80C2B7F basic engine model number on the engine nameplate to identify minor variations in the engine configuration, installation components, or differences peculiar to aircraft requirements. For example: CF6-80C2B7FX.

CF6-80C2B7F1 – Same as CF6-80C2B7F except for a minor variation in the installation components and engine control software to interface with aircraft requirements for higher bleed demand. All hardware, limitations, and other ratings are identical. Only ECU P/N 1820M33P04 incorporating 8.2.N software can be used on the CF6-80C2B7F1. See note 19.

- 19. The engine Instructions for Continued Airworthiness (ICA's) are incomplete and do not include the CF6-80C2B1F1 / B3F / B7F1 engine models. Aircraft with CF6-80C2B1F1 / B3F / B7F1 engine models installed are not eligible for an airworthiness certificate until the ICA's are revised and accepted by the FAA Engine Certification Office.
- 20. The maximum high pressure rotor speed and maximum turbine exhaust gas temperatures permissible for all CF6-80A models, determined in (§. IV), have been increased from originally certified operating limits. This limit increase was approved by the FAA in Service Bulletin No. CF6-80 S/B 72-260, Revision 2, dated January 31, 1984. The life limits, dependent on the operating limits, applicable to certain rotating components are listed in Chapter 5 of the Engine Manual GEK 72501.

SECTION: ADMINISTRATIVE

I. Acronyms and Abbreviations

EASA EGT FAA FADEC	European Union Aviation Safety Agency Exhaust Gas Temperature Federal Aviation Administration Full Authority Digital Engine Control	
GE	General Electric	
HPC/HPT	High Pressure Compressor/Turbine	
ICAO	International Civil Aviation Organisation	
IDG	Integrated Drive Generator	
JAA	Joint Aviation Authorities	
JAR	Joint Aviation Requirements	
LPC/LPT	Low Pressure Compressor/Turbine	
SC	Special Condition	
ТС	Type Certificate	
TCDS	Type Certificate Data Sheet	

II. Type Certificate Holder Record

n/a

III. Change Record

Issue	Date	Changes	TC issue
Issue 01	11 April 2022	Initial Issue. Transferring from former EU NAA	Initial Issue,
		TCDSs into EASA TCDS format	11 April 2022
Issue 02	23 July 2024	Compliance with applicable engine emissions requirements (CAEP/11) according to Annex Part 21B.85 (Major Change Approval 10084950)	

-END-

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 27 of 27 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.