

TYPE-CERTIFICATE DATA SHEET

No. E.018

for BR700-710 engines

Type Certificate Holder

Rolls-Royce Deutschland Ltd. & Co. KG Eschenweg 11 15827 Blankenfelde-Mahlow Germany

EASA Design Organisation Approval No: EASA.21J.065

For Models:

BR700-710A1-10 BR700-710A2-20 BR700-710C4-11 BR700-725A1-12 BR700-710D5-21

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 1 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

I

Intentionally left blank

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified.Page 2 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

I

TABLE OF CONTENTS

1. Type/ Model 4
2. Type Certificate Holder 4
3. Manufacturer 4
4. Date of Application4
5. EASA Type Certification Date 4
II. Certification Basis
1. EASA Certification Basis
1.1. Airworthiness Standards
1.2. Special Conditions (SC)
1.3. Equivalent Safety Findings
1.4. Deviations
1.5. Environmental Protection
III. Technical Characteristics7
1. Type Design Definition7
2. Description7
3. Equipment
4. Dimensions
5. Dry Weight
6. Ratings9
7. Control System
8. Fluids (Fuel, Oil, Coolant, Additives)9
9. Aircraft Accessory Drives 10
10. Maximum Permissible Air Bleed Extraction11
IV. Operating Limitations
1. Temperature Limits
2. Speed Limits
3. Pressure Limits
3.1 Fuel Pressure
3.2 Oil Pressure
4. Installation Assumptions:16
5. Time Limited Dispatch: 16
6. ETOPS Capability: 16
V. Operating and Service Instructions 17
VI. Notes
SECTION: ADMINISTRATIVE
I. Acronyms and Abbreviations19
II. Type Certificate Holder Record19
III. Change Record

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 3 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

I. General

1. Type/ Model

Type: BR700-710

BR700-710A1-10 BR700-710A2-20 BR700-710C4-11 BR700-725A1-12 BR700-710D5-2	Models:				
	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21

These Models are approved for use on multi-engined civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the powerplant installation requirements appropriate to approved installations.

2. Type Certificate Holder

Rolls-Royce Deutschland Ltd. & Co. KG Eschenweg 11 15827 Blankenfelde-Mahlow Germany

EASA Design Organisation Approval No: EASA.21J.065

3. Manufacturer

Rolls-Royce Deutschland Ltd. & Co. KG (Formerly Rolls-Royce Deutschland GmbH, formerly BMW Rolls-Royce GmbH)

4. Date of Application

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
16 February 1993	23 March 1994	15 January 2001	6 March 2006	12 December 2012

5. EASA Type Certification Date

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
(refer to note 6)	(refer to note 6)	(refer to note 6)		
14 August 1996	28 January 1997	24 June 2002	23 June 2009	28 February 2018

Certification Reference Date:

<u>31 August 1993</u> for BR700-710A1-10, BR700-710A2-20, BR700-710C4-11, BR700-725A1-12 <u>28 February 2015</u> for BR700-710D5-21

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 4 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

II. Certification Basis

1. EASA Certification Basis

1.1. Airworthiness Standards

BR700-710A1-10 and BR700-710A2-20: JAR-E, Change 8 Amendment E/91/1, effective 27.05.1991 Amendment E/93/1, effective 17.05.1993 Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)

BR700-710C4-11:

JAR-E, Change 8 Amendment E/91/1, effective 27.05.1991 Amendment E/93/1, effective 17.05.1993 JAR-E, Change 10, E790 Ingestion of Rain and Hail JAR-E, Change 10, E40(f) Rating Emissions and Fuel Venting: ICAO Annex 16, Volume II (Second Edition July 1993)

BR700-725A1-12:

CS-E, Initial Issue dated 24 October 2003 E50 and E1030 of CS-E, Amendment 1 dated 10 December 2007 E1040 of CS-E, Amendment 3

BR700-710D5-21:

CS-E, Amendment 4 dated 12 March 2015 for the engine JAR-E, change 8 plus Amendments E/91/1 and E/93/1 for the Thrust Reverser

1.2. Special Conditions (SC)

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11
Ingestion of Hail Ingestion of Rain		none

BR700-725A1-12 and BR700-710D5-21: None

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 5 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1.3. Equivalent Safety Findings

BR	700-710A1-10	BR700-710A2-20	BR700-710C4-11
		JAR-E840(a)(2) Rotor Integri	ty
BR700-725A1-12: None		ne	
		E740(b)(1) Endurance Test Sched E790(a)(1) Large Hailstone Ingest	

1.4. Deviations

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11
JAR-E890(a)	Engine Calibration in Reverse Tl	nrust – Exemption

BR700-725A1-12 and BR700-710D5-21: None

1.5. Environmental Protection

BR700-710A1-10:

CS-34 as issued by EASA Decision No. 2003/3/RM of the Executive Director of the Agency dated 17 October 2003 in accordance with environmental protection requirements, ICAO Annex 16 Volume II Amendment 7 applicable 17 November 2011. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, paragraph 2.3.2 e) (CAEP/8).

BR700-710A2-20 and BR700-710C4-11:

CS-34 Amendment 4 as implemented by ED Decision 2021/011/R (applicable 25 July 2021), ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021 as implemented into EU legislation 27 April 2021 . NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard).

BR700-725A1-12:

CS-34 Amendment 4 as implemented by ED Decision 2021/011/R (applicable 25 July 2021), ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021 as implemented into EU legislation 27 April 2021 . NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard).

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 6 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

BR700-710D5-21:

CS-34 Amendment 4 as implemented by ED Decision 2021/011/R (applicable 25 July 2021), ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021 as implemented into EU legislation 27 April 2021 . NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2 a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard).

III. Technical Characteristics

1. Type Design Definition

The Engine Type Designs are defined in the following Drawing Introduction Sheets (DIS):

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
DIS 10002 Issue	DIS 10005 Issue	DIS 10012 Issue	DIS 10016 Issue	DIS 10018, Issue
03	02	01	03	04
or later approved				
issues	issues	issues	issues	issues

Changes to the Engine Type Design are introduced by approved Modification Bulletins.

2. Description

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21			
Two spool axial flow engine consisting of a single stage fan, a ten stage axial flow high pressure compressor, an annular combustion chamber, a two stage axial flow high pressure turbine, a							
•	xial flow low pressure		• •	•			

Full Authority Digital Engine Control (FADEC).

* The BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 feature a two stage axial flow low pressure turbine, while the BR700-725A1-12 and BR700-710D5-21 features a three stage axial flow low pressure turbine.

** The BR700-725A1-12 is designed for use with a Thrust Reverser, but it is not part of the engine Type Design.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 7 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

3. Equipment

Approved equipment is listed in the following RRD Reports:

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
E-TR150/95-(FR), ISSUE 03 'Engine Equipment Classification' or later approved issues	E-TR427/96-(FR), ISSUE 01 'Engine Equipment Classification' or later approved issues	E-TR466/01-(FR), ISSUE 02 'Engine Equipment Classification' or later approved issues	See Installation Manual O-TR1458/08 or later approved issues	See Installation Manual EDNS 01000373100/006 or later approved issues

For details of equipment included in the type design definition: refer to the appropriate engine DIS.

4. Dimensions

	BR700- 710A1-10	BR700- 710A2-20	BR700- 710C4-11	BR700-725A1-12	BR700-710D5-21
Overall Length	4669 mm	4669 mm	4660 mm	3297 mm (tip of spinner to rear of exhaust cone)	4809 mm (tip of spinner to rear of thrust reverser)
Maximum Diameter (radius)	1820 mm	1820 mm	1785 mm	950 mm (<u>radius</u> from center line measured at the lowest pont of AGB)	980 mm (radius from centreline measured to the drains plate)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 8 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

5. Dry Weight

BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
1851,2 kg	1891,0 kg	1818,4 kg	1635,2 kg	1828,8 kg

Dry weight includes thrust reverser and dressings for the BR700-710A1-10, BR700-710A2-20 and BR700-710C4-11 and dressings for the BR700-725A1-12, but excludes all fluids and all buyer furnished equipment and in the case of the BR700-725A1-12 also the thrust reverser.

6. Ratings

	BR700- 710A1-10	BR700- 710A2-20	BR700- 710C4-11	BR700-725A1-12	BR700-710D5-21
Take off	65,6 kN	65,6 kN	68,4 kN	75,2 kN	67,8 kN
Maximum Continuous	64,3 kN	64,3 kN	64,3 kN	66,6 kN	63,4 kN

See Note 5.

7. Control System

The engine is equipped with a Full Authority Digital Engine Control (FADEC) system.

_	BR700- 710A1-10	BR700- 710A2-20	BR700- 710C4-11	BR700-725A1-12	BR700-710D5-21
EEC P/N	1501KDC01- 817 or later approved standards	1520KDC01- 605 or later approved standards	1505KDC01- 002 or later approved standards	G3010ECU01BA or later approved standards	G3020ECU01AE or later approved standards

8. Fluids (Fuel, Oil, Coolant, Additives)

Approved fuels, additives and oils are listed in the Operating Instructions.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 9 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

9. Aircraft Accessory Drives

BR700-710A1-10 (with two hydraulic pumps installed)	Direction of Rotation*	Trans- mission Ratio	Shear Torque	Weight	Static Overhang Moment	Maximum Torque Extraction
		-	[Nm]	[kg]	[Nm]	[Nm]
Gear Line 6 Pad (Hydr. Pump 1)	counter- clockwise	0.270	418	8.91	8.1	69
Gear Line 8 Pad (Hydr. Pump 2)	counter- clockwise	0.275	418	8.91	8.1	68
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106

BR700-710A1-10 & BR700-710C4-11	Direction of Rotation*	Trans- mission Ratio -	Shear Torque [Nm]	Weight [kg]	Static Overhang Moment [Nm]	Maximum Torque Extraction [Nm]
Gear Line 8 Pad (Hydraulic Pump)	counter- clockwise	0.275	418	8.91	8.1	86
Gear Line 11 Pad (Generator)	clockwise	0.520	412.5	32.61	56.5	106

BR700-710A2-20	Direction of Rotation*	Trans- mission Ratio	Shear Torque	Weight	Static Overhang Moment	Maximum Torque Extraction
		-	[Nm]	[kg]	[Nm]	[Nm]
Gear Line 6 Pad	counter-	0.335	305.1	6.54	6.1	39
(Hydraulic Pump)	clockwise	0.555	505.1	0.54	0.1	55
Gear Line 8 Pad	counter-	1.080	283	20.3**	32.5	50
(Generator No. 2)	clockwise	1.080	205	20.5	52.5	30
Gear Line 11 Pad	clockwise	1.083	283	20.3**	32.5	50
(Generator No. 1)	CIUCKWISE	1.065	205	20.5	52.5	50

BR700-725A1-12	Direction	Trans-	Shear	Weight	Contin.	Static
	of	mission	Torque		Torque	Overhang
	Rotation*	Ratio				Moment
		-	[Nm]	[kg]	[Nm]	[Nm]
Hydr. Pump and	clockwise	0.261	406,75	14,82****	120***	16,37
Actuator	CIOCKWISE	0.201	400,75	14,02		10,57
IDG	clockwise	0,522	412,5	32,61**	109***	56,5
ATS	clockwise	0,988	847	9,99**	415	6,76

*: Looking normal to pad along shaft.

**: Dry.

***: Further details regarding acceptable loading are defined in the Installation Manual.

****: Wet.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 10 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

BR700-710D5-21

Pad	Direction of	Gear Ratio	Max wet	Shear Neck	Maximum	Weight dry
	Rotation	to N2	Overhung	Value [Nm]	Torque	[kg]
			Moment		[Nm]	
			[Nm]			
EDP	CCW	0,2778	9,5	305,1	50 <i>,</i> 8 [*]	8,48
VFG	CCW	0,8594	22,03	293 highest	50 <i>,</i> 0 [*]	20,29
Pad 1, 4						
VFG	CW	0,8978	22,03	293 highest	50,0 [*]	20,29
Pad 2, 3						

* Further details regarding acceptable loading are defined in the Installation Manual.

10. Maximum Permissible Air Bleed Extraction

BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 :

EPR=P50/P20.

The amounts of bleed extraction from stages 5 and 8, respectively, are related to the core entry mass flow, W26. The amounts of fan bleed extraction are related to the fan entry mass flow, W1A.

Stage 8 bleed extractions are cleared for operation up to and including Maximum Continuous rating.

BR700-710A1-10	Normal Flow [%]			Maximum	Flow [%]	
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	\ge	7.8	\ge	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.2	8.3	7.9	1.6
Above 1.3 EPR	4.3	\ge	0.4	8.5	8.0	1.8

BR700-710A2-20	Normal Flow [%]			Maximum Flow [%]		
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	\searrow	7.8	0,4	3.0	12.1	0.6
1.06 to 1.3 EPR	4.4	4.2	0.4	8.3	7.9	0.9
Above 1.3 EPR	4.3	\searrow	0.4	8.5	8.0	1.1

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 11 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

BR700-710C4-11	Normal Flow [%]			Maximum	Flow [%]	
Power Range	Stage 5	Stage 8	Fan	Stage 5	Stage 8	Fan
Idle to 1.06 EPR	\searrow	7.7	\ge	3.0	12.0	0.6
1.06 to 1.3 EPR	4.3	4.1	0.2	8.2	7.8	1.6
Above 1.3 EPR	4.2	\searrow	0.4	8.3	7.8	1.8

BR700-725A-12:

$$NHRT2 = \frac{\text{Mechanical HP Speed [rpm]}}{\sqrt{\text{Engine Inlet Temperature }[K]}} = \frac{NH}{\sqrt{T2}}$$

- Stage 5 and stage 8 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W26.
- Fan bleed flow is expressed as percentage of the fan tip entry mass flow W12.
- Further details regarding acceptable conditions for customer bleed air extractions are defined in the installation Manual

HP Bleed Stage 5						
Nominal		Maximum				
NHRT2	% W26	NHRT2	% W26			
Idle – 675	6.5	Idle – 700	7.7			
675 – 850	10.1	700 – 875	10.1			
850 – MTO	6.5	875 – MTO	8.6			

HP Bleed Stage 8						
Nominal		Maximum				
NHRT2	% W26	NHRT2	% W26			
Idle – 790	13.6	Idle – 800	14.1			
790 – MTO	9.3	800 – MTO	13.6			

LP(Fan) Bleed					
Nominal		Maximum	Maximum		
NHRT2	% W12	NHRT2	% W12		
Idle – 700	1.4	Idle – 720	1.5		
700 – 775	1.7	720 – MTO	1.9		
775 - MTO	1.7		·		

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 12 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

BR700-710D5-21:

Allowable Nominal bleed flows

Bleed Stage	Unit	Idle ≤ NHRT2 ≤ 980	NHRT2 > 980
Fan	%W020A	0,5	0,6
HPC stage 4	%W026	1,6	5,6
		or	
HPC stage 7	%W026	9,9	9,2

Allowable Maximum bleed flows

Bleed Stage	Unit	Idle ≤ NHRT2 ≤ 980	NHRT2 > 980
Fan	%W020A	0,5	0,6
HPC stage 4	%W026	1,6	7,3
	C	or	
HPC stage 7	%W026	11,7	10,8

A constant percentage of 1.6%W026 is supplied by HPC stage 4 bleed across the full NHRT2 range. For NHRT2 \leq 980 only stage 7 bleed can be extracted up to the illustrated levels in addition to the stated 1.6%W026 supplied by HPC stage 4 bleed.

For NHRT2 > 980 either HPC stage 4 or stage 7 can be extracted up to the illustrated levels. Simultaneous extraction of HPC stage 4 beyond the stated 1.6%W026 and stage 7 bleed is not permitted.

$$NHRT2 = \frac{\text{Mechanical HP Speed [rpm]}}{\sqrt{\text{Engine Inlet Temperature }[K]}} = \frac{NH}{\sqrt{T2}}$$

Stage 4 and stage 7 HP compressor customer bleed is expressed as a percentage of HP compressor entry mass flow W026.

Fan bleed flow is expressed as percentage of the total fan face entry mass flow W020A. Further details regarding acceptable conditions for customer bleed air extractions are defined in the Installation Manual.

IV. Operating Limitations

1. Temperature Limits

Gas Temperatures TGT (trimmed):

	BR700-710A1-10 BR700-710A2-20 BR700-710C4-11	BR700-725A1-12	BR700-710D5-21
Maximum prior to starting on ground	150 °C	150°C	150°C
Starting on ground	700 °C	700°C	700°C
Starting in flight	850 °C	850°C	850°C
Take-off *	900 °C	900°C	890°C
Take-off (transient 2 min.)	N/A	N/A	900°C
Maximum Continuous	860 °C	885°C	850°C
Maximum Overtemperature (20 sec)	905°C	920°C	915°C (see note 7)

* Limited to 5 minutes and to maximum 10 minutes after one engine having failed

Fuel Temperatures:

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 13 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Type BR700-710 engines

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
				BR700-710D5-21
LP Pump Inlet, maximum	54 °C (at sea level)			
LP Pump Inlet, 51000ft *	47°C			
Min. fuel temp.	-40°C within the Take-Off envelope/			
	-45°C outside the Take-Off envelope			

*: The max. engine fuel inlet temperatures at altitude below 51000ft are derived by linear interpolation between the values given for sea level and 51000ft.

Oil Temperatures:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12 BR700-710D5-21
Minimum for engine starting	-30 °C	-40 °C*	-30 °C	-40°C
Minimum for acceleration to Take-off	20 °C			
Maximum for unrestricted use		16	0°C	

*: For temperature below -30°C see OI-710-2BR Operating Instruction.

2. Speed Limits

Low Pressure Turbine N1:

	BR700-710A1-10*	BR700-710A2-20*	BR700-710C4-11*	BR700-725A1-12**
Maximum Take-off	101.1 %	102.1 %	101.1 %	102,8 %
Maximum Continuous	101.0 %	102.1 %	101.0 %	102,8 %
Maximum Overspeed (20 sec.)	101.5 %	102.5 %	101.5 %	104,3 %
Reverse Thrust (maximum 30 sec.)	70.0 %			78,1%

	BR700-710D5-21*
Maximum Take-off	102.1 %
Maximum Continuous	102.1 %
Maximum Overspeed (20 sec.)	103.3 %
Reverse Thrust (maximum 30 sec.)	70.4 %

*: 100% N1 equals 7431 rpm

**: 100% N1 equals 7000 rpm

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 14 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

High Pressure Turbine N2:

	BR700-710A1-10* BR700-710A2-20* BR700-710C4-11*		BR700-710D5-21**
Maximum Take-off	99.6%	100.0 %	101,6%
Maximum Continuous	98.9%	98.7 %	99,9%
Maximum Overspeed (20 sec.)	99.8%	101.3 %	102,8%

*: 100% N2 equals 15898 rpm

****:** 100% N2 equals 19000 rpm

3. Pressure Limits

3.1 Fuel Pressure

Fuel Pressures:

	BR700-710A1-10 BR700-710C4-11	BR700-710A2-20 BR700-710D5-21 BR700-725A1-12	
Minimum at LP Pump Inlet		34.5 kPa	

3.2 Oil Pressure

Differential Oil Pressures:

Lower limit for flight in the	BR700-710A1-10	BR700-710C4-11	BR700-710D5-21
range	BR700-710A2-20	BR700-725A1-12	
ldle to72.3% N2	241.2 kPa		
72.3% N2 to 90% N2	Straight line interp	olation form 241.2 l	kPa to 310.3 kPa
Above 90% N2	310.3 kPa		
Minimum to complete	BR700-710A1-10	BR700-710C4-11	BR700-710D5-21
flight in the range	BR700-710A2-20	BR700-725A1-12	
Idle to 72.3% N2	172.3 kPa		
72.3% N2 to 90% N2	Straight line interp	olation form 172.3	kPa to 241.2 kPa

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 15 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4. Installation Assumptions:

Refer to Installation Manuals for details.

5. Time Limited Dispatch:

Information on engine operation with FADEC system dispatch limitations is contained in the respective Engine Operating Instructions and Time Limits Manuals.

6. ETOPS Capability:

The BR700-725A1-12 engine is approved for ETOPS capability in accordance with CS-E1040 amendment 3 by EASA Approval 10059805 for a Maximum Approved Diversion Time of 180 minutes at Maximum Continuous thrust. This approval does not constitute an approval to conduct ETOPS operations.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 16 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

V. Operating and Service Instructions

Manuals	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12
Installation Manual	E-TR206/95	E-TR364/95	E-TR240/01(FR)	O-TR1458/08
	Issue 6	Issue 1	ISS02	Issue 2
	or later approved	or later approved	or later approved	or later approved
	issues	issues	issues	issues
Operating Instructions	OI-710-1BR	OI-710-2BR	OI-710-4BR	OI-725-7BR
ICA				
Maintenance Manual	M-710-1BR	M-710-2BR	M-710-4BR	M-725-7BR
Engine Manual	E-710-1BR	E-710-2BR	E-710-4BR	E-725-7BR
Time Limits Manual	T-710-1BR	T-710-2BR	T-710-4BR	T-725-7BR
Service Bulletins	As issued by Rolls-I	Royce Deutschland L	td. & Co. KG.	

Manuals	BR700-710D5-21
Installation Manual	EDNS 01000373100/008 or later approved
	issues
Operating Instructions	OI-710-8BR
ICA	
Maintenance Manual	M-710-8BR
Engine Manual	E-710-8BR
Time Limits Manual	T-710-8BR
Service Bulletins	As issued by Rolls-Royce Deutschland Ltd. & Co.
	KG.

For BR700-710C4-11 Engines with Modification 72-101466 incorporated E-TR0283/06 Issue01 or later approved issue and the Service Bulletin SB-BR700-72-101466 apply additionally.

VI. Notes

1. The engines are equipped with a thrust reverser:

	BR700-710A1-10	BR700-710A2-20	BR700-710C4-11	BR700-725A1-12	BR700-710D5- 21
Left hand engine	P/N04G0001-039	P/N07G0001-005	P/N25G0001-001	P/N RD00103001-1	P/N 29G0001-021
	or later approved	or later approved	or later approved	or later approved	or later approved
	standards	standards	standards	standards	standards
Right hand engine	P/N04G0001-041	P/N07G0001-007	P/N25G0001-003	P/N RD00103001-2	P/N 29G0001-023
	or later approved	or later approved	or later approved	or later approved	or later approved
	standards	standards	standards	standards	standards
	Operation of these thrust reversers is approved for ground use only.				
	Power back is <u>prohibited.</u>				

- 2. The EASA approved Airworthiness Limitation Section of the Instructions for Continued Airworthiness is published in the applicable Time Limits Manual.
- 3. The EEC software has been developed and verified in accordance with RTCA/DO-178B respectively ED-12B, Level A.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified. Page 17 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

- 4. Information on lightning protection and electromagnetic compatibility is contained in the Installation Manuals.
- 5. The ratings shown under III.6. are achieved at sea level and ISA standard day conditions using a defined test bed configuration for the air intake and exhaust system with all optional bleeds closed and the aircraft service equipment drives unloaded, at a lower fuel heating value of 43179 kJ/kg [22721 CHU/kg]. The take-off rating and associated operating limitations may be used for up to 10 minutes in the event of an engine failure or shut down.
- Models BR700-710A1-10, BR700-710A2-20, BR700-710C4-11 were previously covered under LBA Engine Type Certificate 6305 and Type Certificate Data Sheets 6305 (BR700-710A1-10 at Issue 7, BR700-710A2-20 at Issue 6, BR700-710C4-11 at Issue 1) prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.
- 7. The BR700-725A1-12 engine is approved for a maximum exhaust gas over temperature of 920°C, BR700-710D5-21 engine 915°C for inadvertent use for periods up to 20 seconds without requiring maintenance action. The cause of the over temperature must be investigated and recorded.
- 8. The BR700-725A1-12 engine is approved for ground operation in freezing fog conditions down to minus 20°C, BR700-710D5-21 down to minus 19°C.
- 9. Deleted (refer to section 1.5 Environmental Protection).
- 10. "Pearl 15" is the marketing name for the BR700-710D5-21 engine model

SECTION: ADMINISTRATIVE

I. Acronyms and Abbreviations

n/a

I

II. Type Certificate Holder Record

n/a

III. Change Record

Issue	Date	Changes	TC issue	
lssue 01	20 July 2006	Initial Issue	20 July 2006	
Issue 02	23 June 2009	BR700-725A1-12 certification	23 June 2009	
Issue 03	27 April 2011	BR700-725A1-12 Operating Limitations - Major		
		Changes Approval 10034743, Time Limit		
		Dispatch - Major Changes Approval 10034748		
		and Minimum Starting temperature - Major		
		Changes Approval 10034333		
Issue 04	21 May 2012	BR700-725A1-12 EEC Minimum Standard -		
		Major Change Approval 10039751		
Issue 05	03 July 2012	Increased Torque Load IDG - Major Change		
		Approval 10040434		
		Customer bleed extraction limitations - Major		
		Change Approval 10040435		
Issue 06	04 January 2013	Change of Environmental Protection		
		Certification Basis - Major Change Approval		
		10042670		
Issue 07	15 November 2013	VFG Weight Limit Change - Major Change		
		Approval 10047087		
Issue 08	26 October 2016	BR700-725A1-12 ETOPS Capability - Major		
		Change Approval 10059805		
Issue 09	15 February 2017	BR700-725A1-12 Temperature Limit for		
		Freezing Fog Operation - Major Change		
		Approval 10061036		
Issue 10	27 March 2017	TCDS number in document header		
lssue 11	28 February 2018	Model BR700-710D5-21 added	28 February 2018	
lssue 12	13 June 2018	Correction to table in section III. 2.		
Issue 13	03 June 2019	Re-Certification to CS-E Amendment 4. Major		
		Changes Approval 10069580, 10067649,		
		10069550 and 10067705 included.		
lssue 14	05 December 2019	BR700-710D5-21 to add latest DIS Issue 4,		
		Engine Manual E-710-8BR - Major Change		
		Approval 10071884, new EEC P/N - Major		
		Change Approval 10070971 and CAEP/10 -		
		Major Change Approval 10071907, 10071908,		

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified.Page 19 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1

		10071910.	
Issue 15	16 November 2022	To add CAEP/11 - Major Change Approval	
		10080469 plus some editorial changes	
Issue 16	24 October 2023	BR700-725A1-12 Technical Characteristics –	
		new hydraulic pump standard - Major Change	
		Approval 10081366 and recording of the latest	
		DIS 10016 Issue 03 - Major Change Approval	
		10082991. Former note-10 in TCDS_issue-15	
		deleted. Covered by the DIS Issue 03 defining	
		the new minimum hardware standard.	

-END-

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2023. All rights reserved. ISO9001 Certified.Page 20 of 20 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

An agency of the European Union