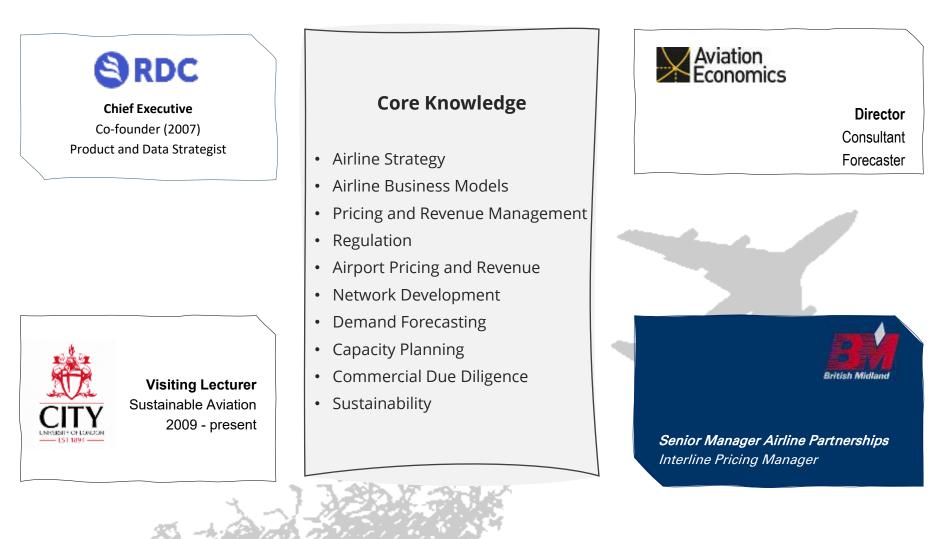
Introduction to Sustainability

EASA Sustainable Pilot Training Webinar 14-Jun-22

Peter Hind

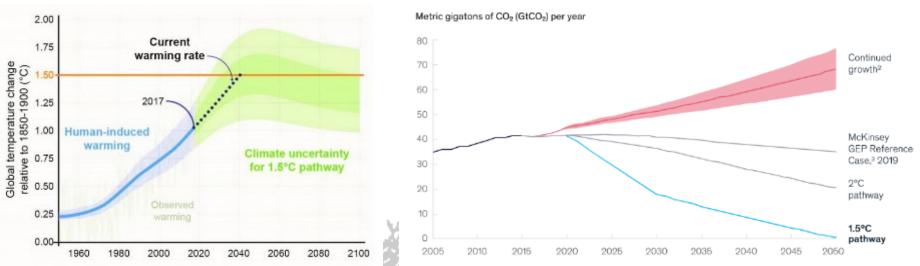


Introduction

About

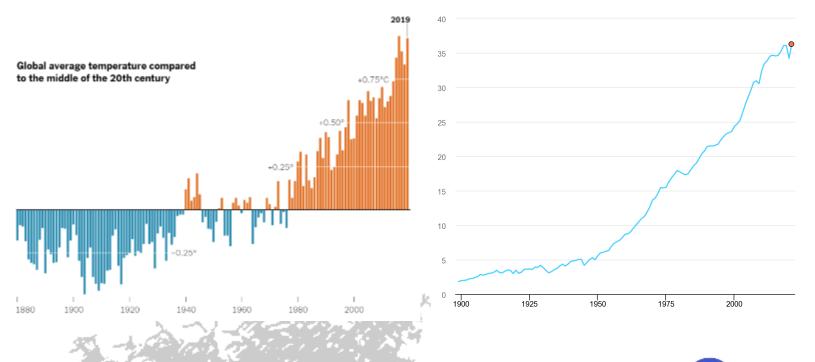
"Sustainability" is alive!

- A rare crossroads where air transport is part of a wider global effort to combat climate change, sustainability is the most rapidly evolving topic in the industry
- Multiple touch-points shaping the next generation of developments
 - Airports, noise and ground emissions
 - Airline carbon and other GHG emissions
 - OEMs
 - Regulators, policy makers
 - Training approaches
 - Corporates and investors
 - Consumer preference



Why the need to reduce emissions?

- Multiple studies across many indicators show evidence the climate is changing
 - Atmospheric concentration of CO2 is increasing, trapping heat which is leading to sea and air temperature increasing, arctic ice minima reducing, sea level rising, extreme weather events etc
- Without aggressive measures across multiple sectors, we are heading into a very uncertain future
- Governments and regulators are committed to reducing emissions



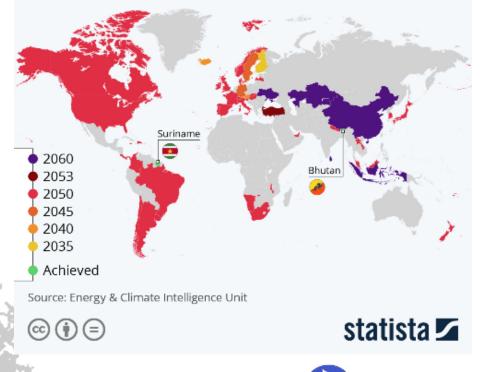
Projected global CO₂ emissions per scenario¹

Source: IPCC (left) and McKinsey (right) https://www.mckinsey.com/business-functions/sustainability/our-insights/climate-math-what-a-1-point-5degree-pathway-would-take

Global CO2 Emissions 1900 to 2021

- To limit global warming to 2% or below requires serious action
- 2020 saw a fall in CO2 emissions for the first time since 2008 and by the most significant amount since records started
- But overall emissions remained higher than 2009 and have begun to climb again

IEA, CO2 emissions from energy combustion and industrial processes, 1900-2021, IEA, Paris https://www.iea.org/data-and-statistics/charts/co2-emissions-from-energy-combustion-and-industrial-processes-1900-2021

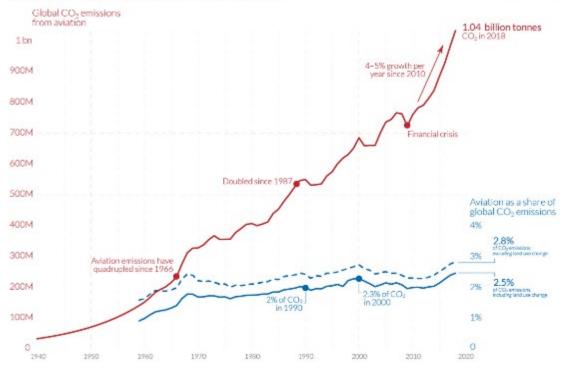

Net Zero and why it matters

What is Net Zero?

- *Net Zero* has become a commonly used phrase in relation to climate policy
- It is an aiming point where the *amount* of CO2 emitted into the atmosphere minus the amount of CO2 removed equals zero
 - Net zero doesn't mean zero emissions
 - But any emissions need to have an equivalent removal mechanic (and removal is difficult)
- Most of the world's major emitting nations have committed to a timeline to achieve net zero
 - Including legally binding policy frameworks

The Road to Net Zero

Countries with concrete laws or policy documents for carbon neutrality by target year



Spotlight on aviation

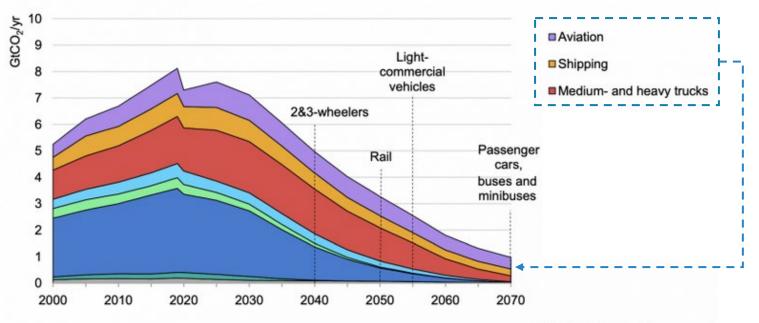
 Despite a decade of awareness and discussion, emissions from global air transport have continued to grow at over 4% per annum and are slowly becoming a greater proportion of the world's total CO2 inventory

Global carbon dioxide emissions from aviation

Aviation emissions includes passenger air travel, freight and military operations. It does not include non-CO₂ climate forcings, or a multiplier for warming effects at altitude.

OurWorldinDatalorg - Research and data to make progress against the world's largest problems.

¹⁰ Source: Lee et al. (2020). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018, based on Sauson and Schumann (2000) & IEA. Share of global emissions calculated based on total CO₂ data from the Global Carbon Project.

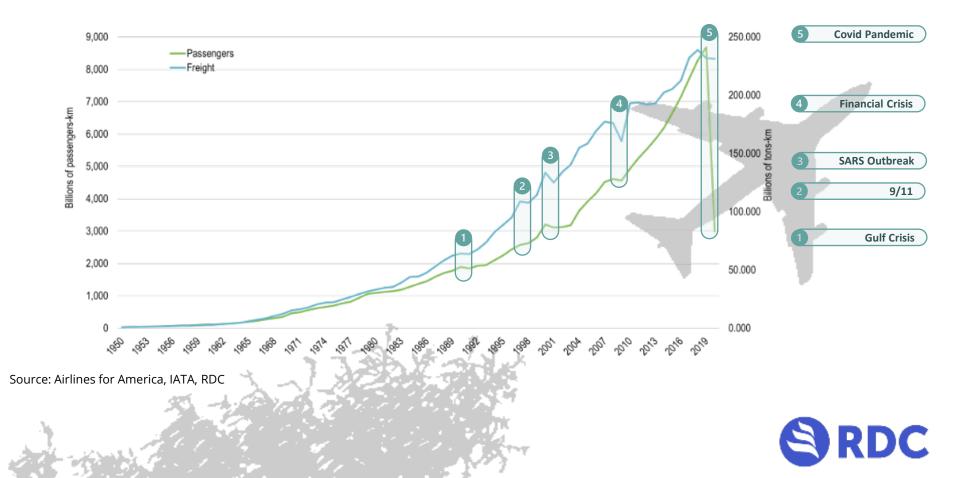


Dur World

in Data

Transport Emissions since 2000

- Transport emissions increased by 60% this century, up to the pandemic, driven primarily by road vehicle emissions
- Aviation emissions have grown steadily and account for about 12% of all transport emissions today
- However, the sector is the hardest to de-carbonise, which could lead to flying accounting for a much greater proportions of transport emissions in the future


Source: https://ourworldindata.org/co2-emissions-from-transport

IEA 2020. All rights reserved.

Growth in Air Transport

- Passenger traffic and freight tonnage is resilient to shocks and generally correlates with GDP
- Growth in flight activity leads to an increase in fuel burn and CO2 emissions

The Growth Equation

ENABLERS	INHIBITORS
Demand Side	Demand Side
 National / international GDP 	Policy
 Disposable income 	Protectionism
 "Desire" to fly 	• Taxation
Historic trade links	Economic uncertainty
Historic VFR links	• Cost
Price/cost	
Supply Side	Supply Side
• Slots	Capacity
• Aircraft	Congestion
Seat capacity	Skills shortages
Start Carl Contract Contract	Aircraft availability

IATA and ICAO

- ICAO (UN Agency) and IATA (airline trade association) moved slowly in the 2010s, playing catch-up now
- IATA goals for the industry:
 - **1.5% p/a fuel efficiency** programme 2009 to 2020
 - **Carbon neutral** growth from 2020
 - **50% reduction** in CO2 by 2050 versus 2005 baseline
 - Revised to Net Zero by 2050 in late 2021
 - Support C S RSIA
- Implementation of a global CO2 certification standard for aircraft
- A four pillar strategy
 - 1. Technology
 - 2. Infrastructure
 - 3. Operations
 - 4. Economic Measures

?

How to do it?

IATA FOUR PILLAR STRATEGY

IMPROVED TECHNOLOGY

- Fleet Renewal
- Bio Fuels
- Radical New
 Engine Advances

EFFECTIVE OPERATIONS

- Improved operational practices
- Efficien aircraft operations

EFFICIENT INFRASTRUCTURE

- Implementation of ATM (Air Traffic Management)
- Airport Infrastructure

POSITIVE ECONOMIC MEASURES

- Carbon Offset &
 Trading
- Carbon Incentives

Source of Emissions

Almost entirely through aircraft fuel burn

- Burning fossil fuel creates (among other things) CO2, NOx, soot, particulate emissions, water vapour etc
- 1 tonne of JetA/A1 emits 3.15 tonnes of CO2 (referred to as t/CO2e)
- Debate over the effects of non CO2 emissions such as
 - High altitude effects
 - Contrails
 - Particulates and oxides of nitrogen
- Radiative Forcing Index (RFI) can be applied as a multiplier to CO2 emissions to account for the non-CO2 effects

Options for Cutting Emissions

1. Compensate

Continue producing CO2 and use offsets to cover the annual emissions

• Within aviation this means voluntary or compliance-led offsetting

2. Substitute

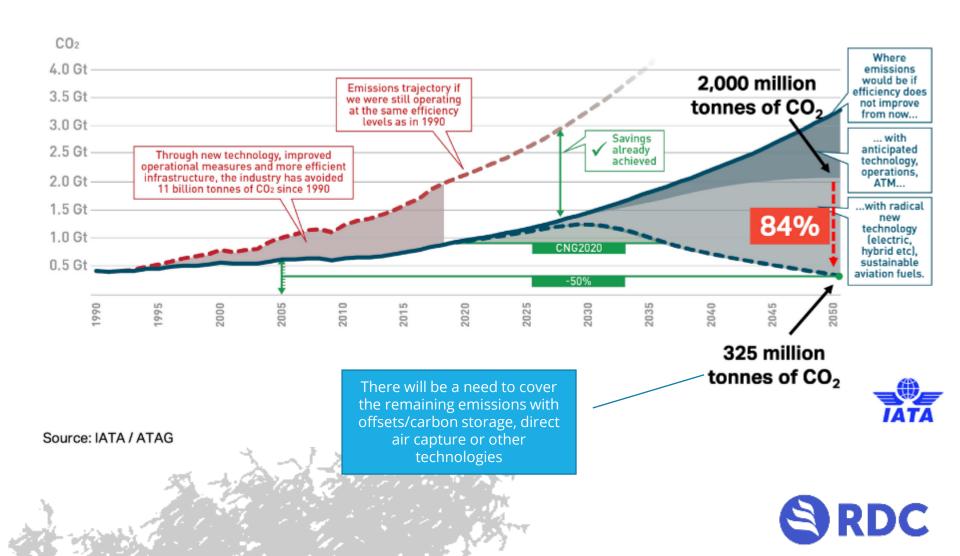
Continue with emission-generating activities but switch to lower carbon materials or process, e.g. alternative fuels

• Within aviation this means use of sustainable alternative fuels (SAF)

3. Reduce

Reduce emissions through change of process or business model

• Within aviation this means flying more efficiently, flying less or use of completely new technology


IATA Four Pillar Strategy

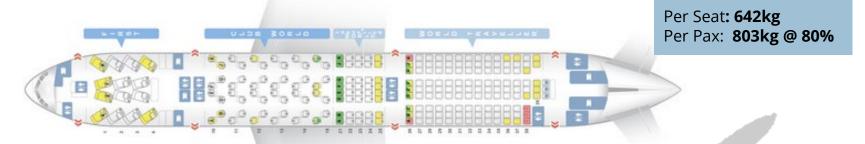
	Compensate	Substitute	Reduce	
Technology				
Operations				
Infrastructure				
Economic				

How to hit Net Zero in 2050

How can Fuel Efficiency be improved?

5 Key Drivers:

- 1. Aircraft fuel economy (i.e. technology / performance)
- 2. Seat density
- 3. Passenger load factor (PLF / SLF)
- 4. Freight share
- 5. Flight distance



How to 'increase' fuel efficiency

British Airways B777-200

First 14 Business 48 Premium 40 Economy 122 = 224

Emirates B777-200ER

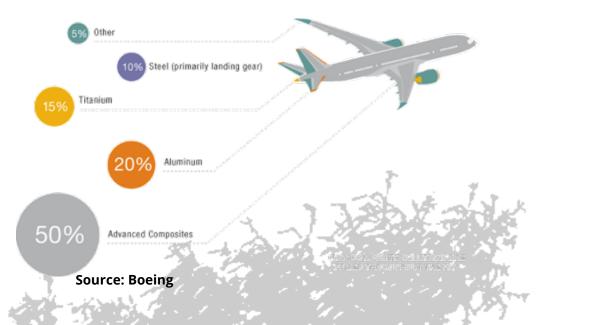
First 12 Business 42 Economy 236 = 290

Per Pax: 584kg @ 85% Image source: Seatguru

Trip Fuel: 46t Trip CO2: 144t

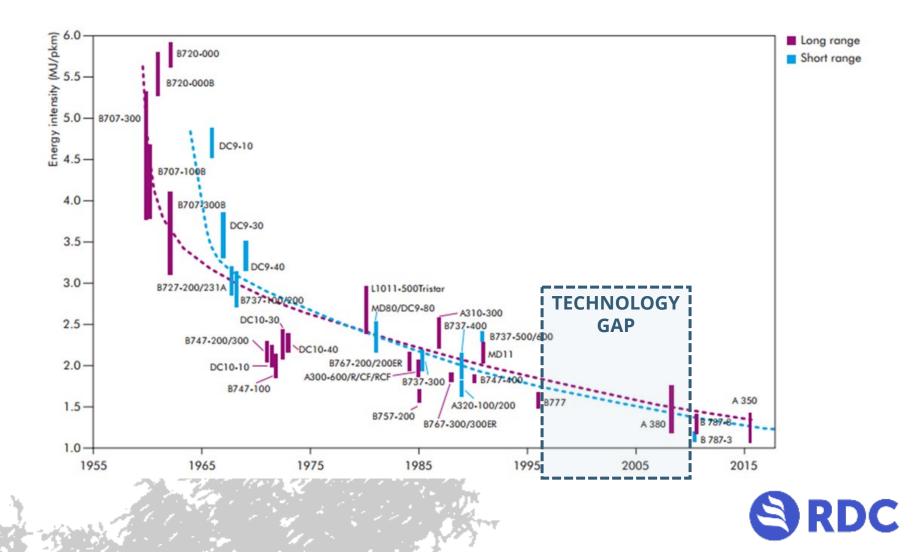
Compensation Options

- Passenger voluntary offsetting
- Corporate offsetting
- Participation in an emissions trading scheme
 - Usually legally mandated
 - EU ETS and CORSIA are the major emissions schemes in place today
 - EU ETS is a trading scheme
 - CORSIA is an offset scheme


Substitution Options

Sustainable Alternative Fuels (SAF)

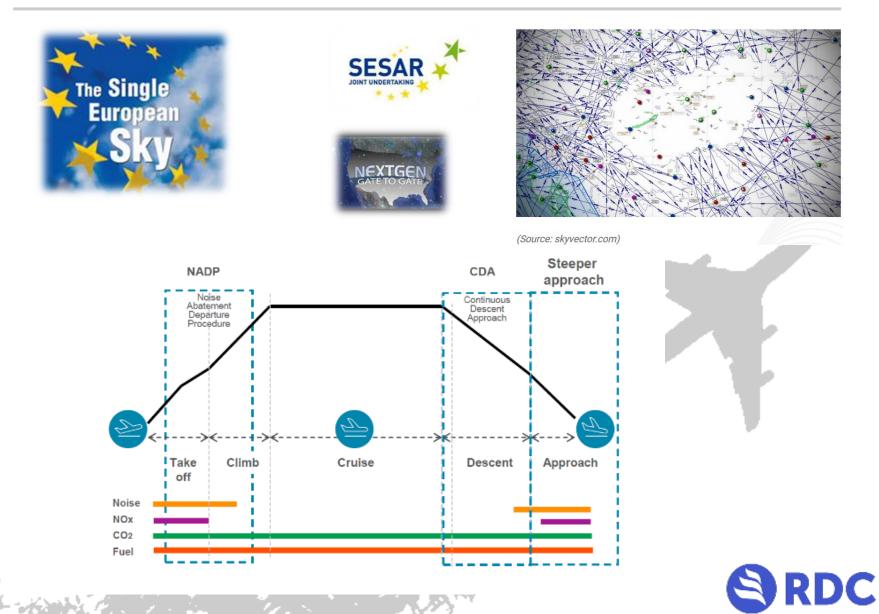
- Cleaner than Jet Kerosene, up to 80% lower emissions
- Local availability less transportation, less geo-political risk
- Possible ecological and social benefits
- Potentially more stable prices
- Smaller scale for aviation than for other modes of transportation (e.g. land transportation)
- ...but challenging. Must have:
 - Drop-in properties interchangeability with JetA/A1
 - Compatibility with airframe and engines, fuel farms etc
 - Scalability to produce large quantities
 - Similar price-point
 - Certification

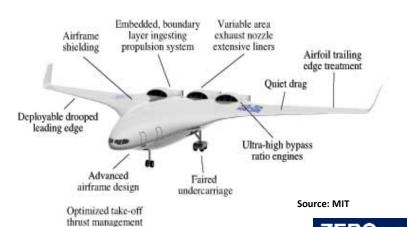

Technology Options

- Laminar flow control technology (natural and hybrid)
- Active load alleviation and variable aerodynamic camber
- Winglets and riblets
- Structural health monitoring
- Composite structures for wings and fuselage
- Engine architectures: geared turbofan, advanced turbofan, open rotor

Aircraft Fuel Economy Improvements

Operations

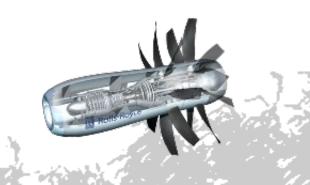

- Airport operations
 - $_{\circ}$ Single engine taxi
 - Low emissions ground power (FEGP, eGPU)
 - Taxi-bots and other e-vehicles
- Fleet Upgrade
 - o Completely new aircraft
 - Retrofits to existing airframes
 - Winglets, sharklets, raked wingtips
 - Drag reducing coatings, riblets, graphic films
 - Zonal dryers
- Climate friendly routings



Infrastructure Improvements

Radical Technologies

 Everything is under evaluation from blended wing and open-rotor to electric and hydrogen propulsion systems



ZEROe concept aircraft

Turbofan

Turboprop

Two hybrid-hydrogen hurboprop enginee, which drive eight-bladed propellers, provide finant. The liquid hydrogen stronge and distributio system is located befind the rear pressure bulkhead.

Blended-Wing Body (BWB)

The exceptionally used interver opens up multiple options for hydrogen strongs out distribution. I see, the liquid hydrogen strongs tarks are strong underseals the wega. The hydrol hydrogen tarbolan angines provide strong.

Timeline for Change

	2020	2025	2030	2035	2040	2045	2050
Commuter » 9-19 seats » < 60 minute flights » <1% of industry CO2	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Regional » 50-100 seats » 30-90 minute flights » ~3% of industry CO ₂	SAF	SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF	Electric or Hydrogen fuel cell and/or SAF
Short haul » 100-150 seats » 45-120 minute flights » ~24% of industry CO ₂	SAF	SAF	SAF	SAF potentially some Hydrogen	Hydrogen and/or SAF	Hydrogen and/or SAF	Hydrogen and/or SAF
Medium haul » 100-250 seats » 60-150 minute flights » ~43% of industry CO ₂	SAF	SAF	SAF	SAF	SAF potentially some Hydrogen	SAF potentially some Hydrogen	SAF potentially some Hydrogen
Long haul » 250+ seats » 150 minute + flights » ~30% of industry CO ₂	SAF	SAF	SAF	SAF	SAF	SAF	SAF

Summary

- Air transport growth correlates with global GDP and despite the crisis in 2020, substantial future growth very likely
- Relatively limited options to reduce fuel burn (and therefore emissions) in the short-term – mostly about **efficiency**
- For some flight segments, particularly intercontinental long-haul, the only option to reduce emissions is probably SAF
- Without radical technologies, at some stage growth is likely to slow down as flying becomes more expensive
- Long term approach needed to noise, local air quality and carbon emissions
- Are the flying public interested in anything other than a cheap fare? Will tomorrow's consumer have a greener outlook?

Thank You

