

TYPE-CERTIFICATE DATA SHEET

EASA.E.063

for Tay series engines

Type Certificate Holder Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11 Dahlewitz 15827 Blankenfelde-Mahlow Germany

For Models:

Tay 611-8 Tay 611-8C Tay 620-15 Tay 650-15

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 1 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Intentionally left blank

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 2 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

TABLE OF CONTENTS

I. General	
1. Type/ Model	. 4
2. Type Certificate Holder	. 4
3. Manufacturer	
4. Date of Application	
5. Certification Reference Date	. 5
6. EASA Type Certification Date	
II. Certification Basis	
1. EASA Certification Basis	
1.1. Airworthiness Standards	
1.2. Special Conditions (SC)	
1.3. Equivalent Safety Findings (ESF)	
1.4. Deviations	
1.5. Environmental Protection	. 7
III. Technical Characteristics	
1. Type Design Definition	
2. Description	
3. Equipment	. 8
4. Dimensions	
5. Dry Weight	. 9
6. Ratings	
7. Control System	
8. Fluids (Fuel, Oil, Coolant, Additives)	10
9. Aircraft Accessory Drives	10
10. Maximum Permissible Air Bleed Extraction	
IV. Operating Limitations	
1. Temperature Limits	12
1.1 Climatic Operating Envelope	12
1.2 Turbine Gas Temperature (TGT) – Trimmed	12
1.3 Fuel temperature	12
1.4 Oil temperature	13
2. Pressure Limits	13
2.1 Fuel pressure	13
2.2 Oil pressure	13
3. Maximum / Minimum Permissible Rotor Speeds	14
4. Installation Assumptions	16
5. Time Limited Dispatch	16
V. Operating and Service Instructions	
VI. Notes	
SECTION: ADMINISTRATIVE	
I. Acronyms and Abbreviations	
II. Type Certificate Holder Record	
III. Change Record	19

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 3 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

I. General

1. Type/ Model

Type: Tay Models:

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
-----------	------------	------------	------------

These models are approved for use on multi-engined civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the installation requirements appropriate to approved installations.

2. Type Certificate Holder

Rolls-Royce Deutschland Ltd & Co KG
Eschenweg 11
Dahlewitz
15827 Blankenfelde-Mahlow
Germany

DOA ref.: EASA.21J.065

3. Manufacturer

Tay 611-8 and Tay 611-8C: Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11, Dahlewitz 15827 Blankenfelde-Mahlow Germany

Tay 611-8, Tay 620-15, Tay 650-15 and Tay 611-8C: Rolls-Royce plc P.O. Box 31 Derby, DE24 8BJ United Kingdom

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified.Page 4 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4. Date of Application

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
29 July 1987	26 April 1983	13 February	12 December 2001
(CAA-UK)	(CAA-UK)	1986 (CAA-UK)	(LBA)

5. Certification Reference Date

26 April 1983

6. EASA Type Certification Date

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
23 September 1987	24 June 1986	21 June 1988	3 December 2002
(CAA-UK)	(CAA-UK)	(CAA-UK)	(LBA)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 5 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

II. Certification Basis

1. EASA Certification Basis

1.1. Airworthiness Standards

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
• JAR-E, Cha	ange 6		 JAR-E, Change 6 JAR-E, Change 10, E20 and E25 JAR-E, Change 10 for all new parts of the engine control system and its associated accessories

1.2. Special Conditions (SC)

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
•	798, C3-4, 6.6.4 – " peratures (Hot Oil F		 JAR-E790 at Change 10, Ingestion of Rain and Hail JAR-E540 and E800 at Amendment 11, Bird Strike / Ingestion JAR-E530(f) at Change 10 and AMJ 20X-1, EEC Fire & Overheat Protection

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 6 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1.3. Equivalent Safety Findings (ESF)

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
	N/A		 JAR-E, Change 6, C3-4, Paragraph 6, 150 hour Endurance Test
			 JAR-E, Change 6, C3-4, Paragraph 2.2.1 and JAR- E, Change 10, E640(b)(1), Static Pressure Tests
			 JAR-E, Change 6, C3-4, Paragraph 22, Compressor and Turbine Rotor Integrity Tests

1.4. Deviations

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
	N/A		 JAR-E, Change 6, C3-4, Paragraph 24.1, Engine Calibration in Reverse Thrust

1.5. Environmental Protection

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Emissions: ICAO A	nnex 16, Volume II,	, First Edition, 1981	 ICAO Annex 16, Volume II, Second Edition, July 1993 – Emissions and venting Later compliance has been shown with CS-34 iaw ICAO Annex 16, Volume II, Third Edition 2008 incl. Amendment 6 – Aircraft Engine Emissions (approved 29.06.2011)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 7 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

III. Technical Characteristics

1. Type Design Definition

The Engine Type Designs are defined in the following Drawing Introduction Sheets (DIS):

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
DIS 2078 ISSUE 1	DIS 2038 ISSUE 2	DIS 2075 ISSUE 2	DIS 2226 ISSUE 03
or later approved	or later approved	or later approved	or later approved
issues	issues	issues	issues

Changes to the Engine Type Design are introduced by approved Modification Bulletins.

2. Description

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
three-stage axial flow flow high pressure (w intermediate pres HP) compressor, tub age axial flow high pi	ne single stage low pre sure (IP) compressor, t o-annular combustion ressure (HP) turbine, th	welve-stage axial chamber with 10

3. Equipment

Approved equipment is listed in the following Documents:

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
DIS 2078 ISSUE 1 or later approved issues	DIS 2038 ISSUE 2 or later approved issues	DIS 2075 ISSUE 2 or later approved issues	DNS 73078 E-TR914/02 ISS01 or later approved issues

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 8 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4. Dimensions

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Overall Length	2407 mm			
Maximum Diameter		1796	mm	

5. Dry Weight

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Dry engine weight	1476 kg	1501 kg	1595 kg	1538 kg

6. Ratings

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Take off	61,61 kN		67,17 kN	61,61 kN
Maximum Continuous	55,25 kN	59,94 kN	62,28 kN	55,25 kN

See Note VI.3

7. Control System

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Туре	Hydromed	FADEC Control System		
Part Number	Lucas CASC 504, or later approved standards	Lucas CASC 501, or later approved standards	Lucas CASC 506, or later approved standards	TEEC2000- 04-AE, or later approved standards

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 9 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

8. Fluids (Fuel, Oil, Coolant, Additives)

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Operating Instructions	F-TAY-1RR	F-TAY-2RR	F-TAY-3RR	F-TAY-6RR

9. Aircraft Accessory Drives

Tay 611-8C	Gear Ratio (HP rotor)	Direction of Rotation	Static Overhang Moment Nm (in.lb)	Shear Neck Torque Value Nm (in.lb)	Continuous Torque Nm (in.lb)
Hydraulic Pump	0.26146	Counter Clockwise	15.8 (140)	339 (3000)	82.7 (732)
IDG	0.5088	Clockwise	83.9 (743)	807 (7140)	74.5 (659)
Starter	1.0398	Clockwise	17.3 (153)	337 (2981)	292.9 (2592)

The direction of rotation is given looking on to the appropriate gearbox drive facing.

10. Maximum Permissible Air Bleed Extraction

The compressor air bleeds may be used in accordance with the table providing that this does not result in any operating limitations being exceeded.

Maximum air delivery for aircraft services shall be such that the individual or total non-dimensional bleed flows listed are not exceeded.

Tay 611-8	HP Comp.St.7	HP Comp.St.12	HP Comp.Total	Fan Delivery
	$\frac{M_7\sqrt{T_1}}{P_1}$	$\frac{M_{12}\sqrt{T_1}}{P_1}$	$\frac{M_T\sqrt{T_1}}{P_1}$	$\frac{M_F\sqrt{T_1}}{P_1}$
Take-off	0,46 (7,0)	N/A	N/A	0,69 (10,5)
Max. Continuous and below	0,46 (7,0)	0,66 (10)	0,66 (10)	0,69 (10,5)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 10 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Tay 620-15	HP Comp.St.7	HP Comp.St.12	HP Comp.Total
Tay 650-15	$M_7\sqrt{T_1}$	$M_{12}\sqrt{T_1}$	$M_T \sqrt{T_1}$
	P ₁	P ₁	P ₁
Take-off	0,46 (7,0)	N/A	N/A
Max. Continuous	0,46 (7,0)	0,66 (10)	0,66 (10)
and below			

Tay 611-8C	HP Comp.St.7	HP Comp.St.12	HP Comp.Total	Fan Delivery
	$\frac{M_7\sqrt{T_1}}{P_1}$	$\frac{M_{12}\sqrt{T_1}}{P_1}$	$\frac{M_T\sqrt{T_1}}{P_1}$	$\frac{M_F\sqrt{T_1}}{P_1}$
Take-off (Normal Operation)	0,46 (7.0)	N/A	N/A	0,69 (10.5)
Max. Continuous and below (Normal Operation)	0,46 (7.0)	0,45 (6.9)	0,66 (10.0)	0,69 (10.5)
Take-off (Single Engine Operation)	0,60 (9.1)	0,25 (3.8)	0,85 (12.9)	0,69 (10.5)
Max. Continuous and below (Single Engine Operation)	0,60 (9.1)	0,73 (11.1)	1,33 (20.2)	0,69 (10.5)

T₁= Total temperature at engine intake (°K)

M₇= Stage 7 bleed mass flow kg/s (lb/s)

 $M_{T} = M_{7} + M_{12} \text{ kg/s} (\text{lb/s})$

P₁= Total pressure at engine intake kPa (psia)

M₁₂= Stage 12 bleed mass flow kg/s (lb/s)

M_F = Fan take-off mass flow kg/s (lb/s)

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 11 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

IV. Operating Limitations

1. Temperature Limits

1.1 Climatic Operating Envelope

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
The engine is approved for use up to:		ISA + 40°C		see IV.5 Installation Assumptions
The engine is flat- rated for Take-off to:		ISA +	- 15°C	

1.2 Turbine Gas Temperature (TGT)

Turbine Gas Temperatures (indicated)	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Starting on ground*	70	0°C	740°C	700°C
Starting in flight*	7		780°C	
Take-off**	800°C		850°C	800°C
Maximum Continuous	715°C	735°C	795°C	715°C
Maximum Overtemperature (20 sec.)	820°		870°C	820°C

* Time limited as defined in the Maintenance Manuals (see section V)

** Limited to 5 minutes and to max. 10 minutes after one engine has failed

1.3 Fuel Temperature

Fuel Temperatures:	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
LP Pump Inlet, minimum	N/A			-40°C
LP Pump Inlet, maximum	54°C			
HP Pump Inlet, Unrestricted	90°C		95	°C
HP Pump Inlet, Transient (15 min Limit)	120°C		130°C	

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 12 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1.4 Oil Temperature

Oil Temperatures:	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Minimum for Starting	-40°C	-40°C -50°C		
Minimum for Acceleration for Take- off	-30°C			
Maximum for unrestricted use	105°C			
Maximum Transient (15 min limit)		12	20°C	

2. Pressure Limits

2.1 Fuel Pressure

Fuel Pressures:	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Minimum Fuel Inlet Pressure	With the engine running, the minimum requirement is 83 kPa (absolute) (12 Psia) or 41 kPa (6psi) above the tank pressure, whichever is lower. These are subject to an overriding minimum of 14 kPa (gauge) (2 psig). During engine starts the minimum requirement is 69 kPa			
Maximum Fuel Inlet Pressure	(absolute) (10psia). 276 kPa above ambient atmospheric pressure (40 psig)			

2.2 Oil Pressure

Oil Pressures:	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Minimum acceptable for flight:	Low idle to 8500 HP rpm 117 kPa above ambient atmospheric pressure (17psig), linear to 200 kPa above ambient atmospheric pressure (29psig) at 12500 HP rpm			
Minimum to complete flight:	Low idle to 9500 HP rpm 110 kPa above ambient atmospheric pressure (16psig), linear to 172 kPa above ambient atmospheric pressure (25psig) at Maximum Continuous			

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 13 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

3. Maximum / Minimum Permissible Rotor Speeds

Low Pressure Rotor (N1):	Tay 611-8	Tay 620- 15	Tay 650-15	Tay 611-8C
Maximum Take-off	8015rpm 8100rpm 8015r (95,5%) (96,5%) (95,5			•
Maximum Continuous	8015rpm 8100rpm 8015r (95,5%) (96,5%) (95,5			•
Minimum in Flight	N/A			1770rpm (21,1%)
Minimum on Ground		N/A		
Maximum Overspeed (20 sec.)	8250rpm 8343rpm 8250rpm (98,3%) (99,4%) (98,3%)			8100rpm (96,5%)
Reverse Thrust (maximum 30 sec.)	N/A			5457rpm (65%)

Note: 100% N1 rpm = 8393 rpm

High Pressure Rotor (N2):	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Maximum Take-off	12446rpm (99,7%)	12560rpn	12560rpm (103,5%)	
Maximum	12172rpm	12197rpm (100,5%)		12172rpm
Continuous	(97,5%)			(97,5%)
Minimum Low Idle	5818rpm (46,6%)	5813rpm (47,9%)		6130rpm (49,1%)
Maximum	12809rpm	12937rpm (106,6%)		12684rpm
Overspeed (20 sec.)	(102,6%)			(101,6%)
Reverse Thrust	11485rpm	11935rpm	11310rpm	N/A
(maximum 60 sec.)*	(92%)	(95,6%)**	(93,2%)***	

Note: 100% N2 rpm = 12484 rpm (Tay 611-8, Tay 611-8C) 100% N2 rpm = 12136 rpm (Tay 620-15, Tay 650-15)

*Note: The limit quoted is relative to an engine fitted with:

- **Note: Tay 620-15: A value of 12136rpm (100%) HP spool speed for reverse thrust operation is applicable to engines with modification 73-1315 incorporated and fitted with thrust reversers identified by aircraft modification number SBPD 9302 (ref: Fokker SBF100-78-010).
- ***Note: Tay 650-15: A value of 12039rpm (99,2%) HP spool speed for reverse thrust operation is applicable to engines with modification 73-1315 incorporated and fitted with thrust reversers identified by aircraft modification number SBPD 9302 (ref: Fokker SBF100-78-010).

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 14 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

F	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Reverser C	159P41460 1/-2 of Grumman Aerospace	1159P41530 - 1/ -2/-9/-10 or RDP41530-51/ -52 of Grumman Aerospace	1159P41530 - 7/ -8/-9/-10 of Grumman Aerospace	08ND78006-1 (for left hand installation) and 08ND78006-2 (for right hand installation) of Nordam

Note: This approval for operation in Reverse Thrust does not imply approval of the Thrust Reverser itself.

Operational Limitations:

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Static Ground Running and Taxiing			Stabilised operation is not permitted in the Low Pressure rotor speed (N1) range 57% to 75% LP during all static ground running operations in forward thrust, and during taxiing. It is permitted to pass through this range whilst increasing or decreasing thrust.	During static ground running the park brake must be used. For ground checks with the aircraft stationary and during taxiing the use of reverse thrust is limited to idle.
Reverse Thrust		Stabilised operation is not permitted in the Low Pressure rotor speed (N1) range 54% to 72%	Stabilised operation is not permitted in the Low Pressure rotor speed (N1) range 57% to 75%	
Powerback		The us	e of powerback is prohibited	

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 15 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4. Oil Capacity

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Total Oil System Capacity	13.6 litres (24 imp pts)			
Total Oil Tank Capacity	6.8 litres (12 imp pts)			
Usable Oil	5.1 litres (9 imp pts)			
Max. Oil Consumption	0.355 l/h (0.625 imp pts/h)	0.43 l/h (0.7	57 imp pts/h)	0.355 l/h (0.625 imp pts/h)

5. Installation Assumptions

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Report	MDR 19800 Issue 2	MDR 19926 Issue 4	MDR 19757 Issue 2	O-TR0817/03 or later
	or later approved isssues	or later approved isssues	or later approved isssues	approved isssues

Note: The reports define the installation requirements that must be fulfilled by the Aircraft Constructor when installing the engine.

6. Time Limited Dispatch

For the Tay 611-8C information on engine operation with FADEC system dispatch limitations is contained in the Time Limits Manual T-TAY-6RR chapter 95-20-03.

7. Fuel System Limitations:

Minimum drainage period from closing fuel cock after a false start:

Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
	N/A		

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 16 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

V. Operating and Service Instructions

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Installation Manual	EL 2825	EL 1716	EL 2823	N/A
Operating Instructions	F-TAY-1RR	F-TAY-2RR (Fokker 100) F-TAY(70)- 2RR (Fokker70)	F-TAY-3RR	F-TAY-6RR
Maintenance Manual	M-TAY-1RR	M-TAY-2RR	M-TAY-3RR	M-TAY-6RR
Engine Manual	E-TAY-1RR	E-TAY-2RR	E-TAY-3RR	E-TAY-6RR
Time Limits Manual	T-TAY-1RR	T-TAY-2RR	T-TAY-3RR	T-TAY-6RR
Service Bulletins	As issued by Rolls-Royce Deutschland Ltd & Co KG or before January 2001 by Rolls-Royce plc			

VI. Notes

- 1. For the Tay 611-8C engine the EEC software has been developed and verified in accordance with RTCA/DO-178B /EUROCAE ED-12B level A.
- 2. Life limited critical parts are included in the respective Time Limits Manuals.
- 3. The ratings shown under III. 6 are static ratings achieved at the following conditions:
 - Sea level and ISA standard day conditions
 - Compressor bleeds closed
 - Auxiliary gearbox drives unloaded
 - using slave intakes and jet pipe nozzles as defined in reports:

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Test Bed Flaremeter P/No.:	ATFSc	h15661	ATF 10173	ATFSch10173
Jet Pipe / Final Nozzle Assy, P/No.:	ATF 9786		ATF 9786	BRE010F2386

4. The operating limitations under IV. are only applicable when the accuracy of installed engine instrumentation is in accordance with Rolls-Royce reports or later approved issues:

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Report	APS 1049	APS 1042 or APS 1045	APS 1046	E-TR0895/06- ISS01

The operating limitations for temperatures under IV. 1. are only valid when TGT trimming is established in accordance with reports or later approved issues:

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 17 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

	Tay 611-8	Tay 620-15	Tay 650-15	Tay 611-8C
Report	O-TR0916/03-	O-TR0917/02-	O-TR0918/03-	DHU113605
	ISS01	ISS01	ISS01	Issue 2

- 5. Tay 611-8 and Tay 620-15 were previously covered under CAA-UK Type Certificate Data Sheets 1045 and Tay 650-15 were previously covered under CAA-UK Type Certificate Data Sheets 1047. Tay 611-8, Tay 620-15 and Tay 611-8C were subsequently covered under LBA Engine Type Certificate 6327 and Tay 650-15 were subsequently covered under LBA Type Certificate Data Sheets 6328 prior to being superseded by the EASA Type Certificate and Type Certificate Data Sheet.
- 6. EASA considers that all Airworthiness Directives (ADs) issued by CAA-UK and LBA-Germany related to these products are still applicable unless EASA replaces or cancels them.

At the time of issuance of Engine Type Certificate Data Sheet Issue 1 the following CAA-UK Airworthiness Directives were applicable. The engine is approved only when these and the associated Mandatory Rolls-Royce Service Bulletins have been complied with.

			1	1	
CAA-UK AD No.	Service Bulletin	Title	Tay 611-8	Tay 620- 15	Tay 650- 15
002-03-88	76-1083R1	Engine controls – Emergency fuel shut down system – Rear cable guide plate in stainless steel	Yes	Yes	N/A
016-09-87	72-1069	Engine – Nose cone spinner – Inspection of spinner fairing to nose cone spinner radial gaps	N/A	Yes	N/A
002-02-88	75-1055	Engine – Air tubes and fittings – Introduction of 'non flowing' EPR manifold system and modified pressure rakes	N/A	Yes	N/A
027-04-90	73-1207	Engine – Fuel and control – Fuel flow regulator – Revised variable metering orifice (VMO) by-pass adjuster	N/A	N/A	Yes
017-10-90	73-1220	Engine – Fuel and control – Inspection of fuel flow regulator for pilot burner simulator fault	N/A	N/A	Yes
002-01-99	73-1459	Engine – Fuel and control – Revision of the in-service life of the fuel flow regulator	N/A	N/A	Yes
003-03-98	76-1434R3	Emergency fuel shut off system – Inspection of emergency fuel shut off cable	N/A	Yes	Yes
006-04-2000	72-1492	Engine – Auxiliary gearbox assembly	N/A	N/A	N/A

7. Tay 650-15/10 and Tay 620-15/20 engines are approved configuration specific build standards of the Tay 650-15 and Tay 620-15 engines respectively.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 18 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

SECTION: ADMINISTRATIVE

I. Acronyms and Abbreviations

- EASA European Union Aviation Safety Agency
- EEC Electronic Engine Controller
- ESF Equivalent Safety Finding
- FADEC Full Authority Digital Engine Control
- HP High Pressure
- ICAO International Civil Aviation Organisation
- IP Intermediate Pressure
- LP Low Pressure
- SC Special Condition

II. Type Certificate Holder Record

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11 Dahlewitz 15827 Blankenfelde-Mahlow Germany Design Organisation Approval No.: EASA.21J.065

III. Change Record

Issue	Date	Changes	TC issue
Issue 01	24 November 2008	Initial Issue	24 November
			2008
Issue 02	8 April 2011	Changes to the rotor speed limitation of the	N/A
		Operating Limitations section for the Tay 650-15	
		and Tay 651-54 engines (EASA Major Change	
		Approval 10034468)	
Issue 03	30 June 2011	Compliance with newer emission requirements	N/A
		(EASA Major Change Approval 10035422)	
Issue 04	19 June 2013	Tay 620-15 model introduction of Keep Out Zone	N/A
		for Reverse Thrust operations (EASA Major	
		Change Approval 10045280)	
Issue 05	14 January 2021	- New TCDS format	14 January 2021
		- Deletion of the Tay 651-54 model	
Issue 06	20 February 2024	- Correction of data in IV. Operating Instructions,	N/A
		Item 3, Low Pressure Rotor (N1) and item 4, Oil	
		Capacity for Tay 611-8C engine model.	
		- Minor administrative corrections	

-END-

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2024. All rights reserved. ISO9001 Certified. Page 19 of 19 Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.