Pratt & Whitney Canada Corp. PW800 Series Engines

Date: 29 June 2023

TCDS No.: IM.E.096 Issue: 06

TYPE-CERTIFICATE DATA SHEET

No. IM.E.096

for PW800 Series Engines

Type Certificate Holder
Pratt & Whitney Canada Corp.
1000 Marie-Victorin
Longueuil, Quebec J4G1A1
Canada

For Models:

PW814GA PW815GA PW812D

PW800 Series Engines

Date: 29 June 2023

TCDS No.: IM.E.096 Pratt & Whitney Canada Corp. Issue: 06

Intentionally left blank

TABLE OF CONTENTS

ı.	General.		4		
1. Type/Model					
	2. Type C	Certificate Holder	4		
	3. Manufacturer4				
	4. Date o	of Application	4		
	5. EASA 1	Type Certification Date	4		
II.		tion Basis			
		of Design Authority Certification Basis			
		ence Date for determining the applicable airworthiness requirements			
		Certification Basis			
		Airworthiness Standards			
	3.2	Special Conditions (SC)	5		
		Equivalent Safety Findings			
		Deviations			
	3.5	Environmental Protection	6		
III.		l Characteristics			
	1. Type Design Definition6				
	2. Description				
		ment			
		nsions			
	-	/eight			
	_	3s			
		ol System			
		(Fuel, Oil, Coolant, Additives)			
		ft Accessory Drives			
		aximum Permissible Air Bleed Extraction			
IV.	•	g Limitations			
	-	erature Limits			
	2. Speed Limits				
	3. Torque Limits				
	4. Pressure Limits				
		Limited Dispatch (TLD)			
.,		and Coming last westing			
	•	g and Service Instructions			
		MINISTRATIVE			
		ns and Abbreviations			
		tificate Holder Record			
	• •	Record			
ш.	Citatige F	NECUIU	. 13		

I. General

1. Type/Model

Туре	Models	
	PW814GA	
PW800	PW815GA	
	PW812D	

These models are approved for use on multi-engine civil aircraft at the ratings and within the operating limitations specified below, subject to compliance with the aircraft powerplant installation requirements.

2. Type Certificate Holder

Pratt & Whitney Canada Corp. 1000 Marie-Victorin Longueuil, Quebec J4G1A1 Canada

3. Manufacturer

Pratt & Whitney Canada Corp. 1000 Marie-Victorin Longueuil, Quebec J4G1A1 Canada

4. Date of Application

Models	Application Date	
PW814GA	8 March 2013	
PW815GA	8 March 2013	
PW812D	11 February 2019	

5. EASA Type Certification Date

Models	EASA Certification Date	
PW814GA	31 August 2017	
PW815GA		
PW812D	05 August 2022	

II. Certification Basis

1. State of Design Authority Certification Basis

Models	State of Design Authority Certification Basis (see also Canadian TC E-39)		
PW814GA	AWM Chapter 533 at Change 533-13; and		
PW815GA	Subchapter B of AWM Chapter 516 – Aircraft Engine Emissions, which refers to ICAO Annex 16, Volume II		
PW812D	AWM Chapter 533 at Change 533-16; and Subchapter B of AWM Chapter 516 – Aircraft Engine Emissions at Change 516-15; including ICAO annex 16 Volume II – Aircraft Engine Emissions, as amended up to and including Amendment 10 (CAEP/11).		

2. Reference Date for determining the applicable airworthiness requirements

Models	Reference Date for Applicable Airworthiness Requirements		
PW814GA	24.14		
PW815GA	31 March 2012		
PW812D	30 November 2018		

3. EASA Certification Basis

3.1 Airworthiness Standards

Models EASA Airworthiness Standards		
PW814GA	CS-E Amendment 3, dated 23 December 2010 (Decision No. 2010/015/R of the	
PW815GA	Executive Director of the European Aviation Safety Agency)	
PW812D	CS-E Amendment 4, dated 12 March 2015.	

3.2 Special Conditions (SC)

None

3.3 Equivalent Safety Findings

CS-E 810 ESF - Compressor and Turbine Blade Failure / Fan Integrally-Bladed Rotor (IBR) Airfoil release.

3.4 Deviations

None

Issue: 06

3.5 Environmental Protection

Models	Environmental Protection Requirements			
PW814GA	CS-34 Amendment 4 as implemented by ED Decision 2021/011/R (applicable 25 July 2021), ICAO Annex 16 Volume II, Amendment 10 applicable 1 January 2021 as			
PW815GA	implemented into EU legislation 27 April 2021. NOx standard in accordance with ICAO Annex 16 Volume II, Part III, Chapter 2, § 2.3.2 e) (CAEP/8). Maximum nvPM mass concentration levels in compliance with Part III, Chapter 4, paragraph 4.2.2.1. nvPM mass and number emissions in compliance with Part III, Chapter 4, paragraph 4.2.2.2			
PW812D	a) 1) and 4.2.2.2 b) 1) (CAEP/11 In-Production standard).			

III. <u>Technical Characteristics</u>

1. Type Design Definition

Models	Type Design Definition		
PW814GA	Configuration of the PW814GA and PW815GA engine is defined by Engine Assembly		
PW815GA	Drawing 33B1170*		
PW812D	Configuration of the PW812D engine is defined by Engine Assembly Drawing 33B9100*		

^{*} and subsequent approved revisions

2. Description

PW814GA and PW8145GA

The PW814GA and PW815GA engine models are high bypass ratio two spool turbofan engines, straddle mounted across two bearings and consisting of an eight-stage axial High-Pressure Compressor (HPC), a straight flow annular low emission combustor and a two-stage High Pressure Turbine (HPT). The lowpressure rotor consists of a fan, two boost stages and an axial five-stage Low Pressure Turbine (LPT) connected by a one-piece shaft. The engine is controlled by an engine mounted dual channel engine control (FADEC). The only difference between the PW814GA and the PW815GA is thrust de-rate by means of software selection.

PW812D

The PW812D engine model is a scaled down version of the PW814GA and PW815 GA engine. It's a high bypass ratio two spool turbofan engines, straddle mounted across two bearings and consisting of an eight-stage axial High-Pressure Compressor (HPC), a straight flow annular low emission combustor and a two-stage High Pressure Turbine (HPT). The low-pressure rotor consists of a fan, two boost stages and an axial four-stage Low Pressure Turbine (LPT) connected by a one-piece shaft. The engine is controlled by an engine mounted dual channel engine control (FADEC).

3. Equipment

See III. 1. Type Design Definition. See also Note 1.

4. Dimensions

	Dimensions (m)			
Models	Overall Length (flange to flange)	Overall Length (fan spinner face to aft tail cone)	Nominal Diameter (fan case)	Maximum Radial Projection (at drain mast)
PW814GA	2 695	2 242	1 255	0.000
PW815GA	2.685	3.313	1.255	0.990
PW812D	2608	2.874	1.109	0.930

5. Dry Weight

Models	Dry Weight kg (<i>lbs</i>)	
PW814GA	1400* kg (2105 lbs)	
PW815GA	1408* kg (<i>3105 lbs</i>)	
PW812D	1237* (2727 lbs)	

The above dry weight value applies to the basic engine and includes standard equipment.

6. Ratings

See Notes 2 and 3.

	Sea Level Static Thrust			
	Take-off (5 minutes)		Maximum Continuous	
Models	Thrust - see Note 3 - daN (lbf)	Ambient Limit Temperature °C (°F)	Thrust daN (<i>lbf</i>)	Ambient Limit Temperature °C (°F)
PW814GA	6863 (<i>15,429</i>)	33 (91.4)	6296 (14,155)	28 (82.4)
PW815GA	7122 (16,011)	33 (91.4)	6925 (<i>15,568</i>)	28 (82.4)
PW812D	6161 (<i>13.850</i>)	35 (<i>95</i>)	5778 (<i>12,989</i>)	25 (<i>77</i>)

7. Control System

Models	FADEC Hardware P/N
PW814GA	2202707*
PW815GA	33B3787*
PW812D	33B7751*

^{*} and subsequent released part number extensions

^{*} This is the weight at time of certification, subject to change \pm 2% max

TCDS No.: IM.E.096 Issue: 06

8. Fluids (Fuel, Oil, Coolant, Additives)

Fuel: Refer to the Engine Maintenance Manual for the list of approved fuels and fuel additives.

Oil: Refer to the Engine Maintenance Manual for the list of approved oils.

9. Aircraft Accessory Drives

Refer to the Installation and Operating Manual Section 11 for additional information on provisions and connections for airframe provided components.

10. Maximum Permissible Air Bleed Extraction

Customer ECS/WAI + Nacelle Anti Ice: 24% and 23.5% of core flow P2.8/P3.1 combined for PW814GA/PW815GA and PW812D, respectively.

For detailed information see Installation and Operating Manual, Section 11.2

IV. Operating Limitations

1. Temperature Limits

	Maximum Permissible Indicated Turbine Temperature (ITT)			
Models	Take-off (5 minutes) - see Note 3 -	Maximum Continuous	Maximum Starting	
	°C (° <i>F</i>)	°C (° <i>F</i>)	°C (°F)	
PW814GA	005 (4700)	056 (4752)		
PW815GA	965 (<i>1769</i>)	956 (<i>1753</i>)	975 (<i>1787</i>)	
PW812D	985 (1805)	920 (1688)		

Fuel Temperatures:

Refer to of the Installation and Operating Manual Section 6 for fuel temperature limits.

Oil Temperatures:

Refer to Installation and Operating Manual Section 2 for oil temperature limits.

2. Speed Limits

	Maximum Permissible Speeds			
	Low Pressure Spool (N1)		High Pressure Spool (N2)	
Models	Take-off (5 minutes) - see Note 3 - rpm	Maximum Continuous rpm	Take-off (5 minutes) - see Note 3 - rpm	Maximum Continuous rpm
PW814GA	6315		246	142
PW815GA			24043	
PW812D	7572		24919	

Note:

Power setting, power checks, and control of engine thrust output in all operations are based on Low Rotor Speed (N1).

3. Torque Limits

Not applicable

4. Pressure Limits

Fuel Pressures:

Refer to Installation and Operating Manual, Section 6 for fuel pressure limits.

Oil Pressures:

Refer to Installation and Operating Manual, Section 2 for oil pressure limits.

Oil pressure is measured relative to #4 bearing compartment pressure. Temporary interruption associated with negative "g" operation is limited to 7 seconds maximum. Normal oil pressure will be restored rapidly once the negative "g" effect has been eliminated.

5. Time Limited Dispatch (TLD)

The PW814GA engines and PW815GA engines, equipped with EEC Part number 33B3787-08 and subsequent part numbers, are approved for Time Limited Dispatch (TLD) capability in accordance with CS-E 1030. The dispatch status is referred in the Airworthiness Limitations Manual (ALM) 33B1391 Engine Systems Faults Time Limited Dispatch.

The PW812D engines, equipped with EEC Part number 33B7751-04 and subsequent part numbers, are approved for Time Limited Dispatch (TLD) capability in accordance with CS-E 1030. The dispatch status is referred in the Airworthiness Limitations Manual (ALM) 33B7516 Engine Systems Faults Time Limited Dispatch.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified.

6. ETOPS

The PW800 series engines are not approved for Extended Twin Engine Operations (ETOPS) capability in accordance with CS-E 1040.

V. Operating and Service Instructions

Manuals	PW814GA/PW815GA	PW812D
Engine Installation and Operating Manual	P/N 33B1410*	P/N 33B9460*
Control System Interface Control	P/N 33B1286*	P/N 33B7438*
Document (CSICD)		

^{*} and subsequent approved amendments or issues

Instructions for Continued Airworthiness	PW814GA/PW815GA	PW812D
(ICA)		
Airworthiness Limitations Manual (ALM)**	P/N 33B1391	P/N 33B7516
Engine Maintenance Manual	P/N 33B1390	P/N 33B7515
Engine Shop Manual	P/N 33B1393	P/N 33B7518
Clean, Inspect and Repair Manual	P/N 33B1401	P/N 33B1401
Components Maintenance Manuals	As published by P&WC	
Service Bulletins (SB)	As published by P&WC	

^{**} The EASA approved Airworthiness Limitation Section of the Instructions for Continued Airworthiness is the Airworthiness Limitations Manual.

VI. Notes

Note 1: The following are standard equipment as itemized in the engine type design definition.

- Full authority digital engine control system comprising electronic engine control with dedicated power source from a permanent magnetic alternator/generator; integrated fuel pump and associated fuel flow metering, filtering with bypass indication, and flow transmission; bleed valve and variable compressor vane actuation; engine harnesses; and speed, temperature, and pressure sensors.
- Dual igniters and dual channel ignition exciter using airframe supplied power.
- Oil and fuel temperature management comprising fuel-oil heat exchanger, air-oil cooler. PW814GA/PW815GA engines also include an integrated drive generator airoil cooler.
- Lubrication system comprising oil supply and scavenge pump, variable oil pressure valve; temperature, pressure, and level sensors; oil filtering with bypass indication; and chip detection.
- Air Turbine and Starter
- Vibration sensors

Refer to the Installation and Operating Manual Section 11 for accessory power extraction provisions and additional information on provisions and connections for airframe provided components.

TE.CERT.00052-001 © European Union Aviation Safety Agency, 2019. All rights reserved. ISO9001 Certified.

- **Note 2:** The engine ratings declared in the TCDS and Installation Manual are based on:
 - ICAO standard atmospheric conditions
 - Sea level static conditions, ISA ambient temperature
 - No customer bleed power extraction.
 - Ideal inlet (100% recovery)
 - Exhaust nozzle with no leakage and with velocity coefficient equal to 1.0.
- **Note 3:** The take-off ratings that are nominally limited to 5 minutes duration may be used for up to 10 minutes for one engine inoperative operations without adverse effects upon engine airworthiness. Such operations are anticipated on an infrequent basis (as engine failure events during take-off are uncommon) and no limits or special inspections have been imposed.
- **Note 4:** Oil Capacity:

PW814GA/PW815GA				
	Litres	Imp. Gallons	U.S. Gallons	
Total	9.5	2.09	2.51	
Useable	3.6	0.79	0.95	

PW812D				
	Litres	Imp. Gallons	U.S. Gallons	
Total	10.6	2.33	2.80	
Useable	4.6	1.01	1.22	

- **Note 5:** Refer to Installation and Operating Manual Section 7 for High Intensity Radiated Fields (HIRF) and Lightning qualification and conformance. Refer to Electrical drawing referred to in the Installation and Operating Manual and Control System Interface Control Document (CSICD) for functional and electrical descriptions.
- **Note 6:** Engine mount system provisions are specified in Installation Drawing (PW812GA/PW815GA: P/N 33B1172 and PW812D: P/N 33B7509) and Installation and Operating Manual Section 5.
- **Note 7:** Requirements and limitations for ground operation in icing conditions are specified in the Installation and Operating Manual.
- **Note 8:** The engine bill of material does not include a thrust reverser. Considerations for installation of a thrust reverser are contained in the Installation and Operating Manual.
- **Note 9:** The EEC software has been developed and verified in accordance with RTCA/DO-178C respectively ED-12B, Level A, with system Development assurance carried out in accordance with ED79A/ARP4754A.

For PW812D, compliance with ED-202A/DO-326A and ED-204/DO-355 was demonstrated (airworthiness information security).

Pratt & Whitney Canada Corp. PW800 Series Engines

Date: 29 June 2023

TCDS No.: IM.E.096 Issue: 06

SECTION ADMINISTRATIVE

I. Acronyms and Abbreviations

AEO All Engines Operative

CS-E Certification Specifications for Engines

CW Clockwise

EASA European Union Aviation Safety Agency

EBU Engine Build-up Unit

ECS Environmental Control System
FADEC Full Authority Digital Engine Control

HP High Pressure

ICAO International Civil Aviation Organisation

LP Low Pressure

N1 Rotational Speed of the Low-Pressure RotorN2 Rotational Speed of the High-Pressure Rotor

OEI One Engine Inoperative P&WC Pratt & Whitney Canada

PN Part Number

psi Pounds per square inch
psia Pounds per square ambient
psig Pounds per Square inch gauge

rpm Revolutions per Minute

TCCA Transport Canada Civil AviationTCDS Type Certificate Data SheetW25 Core Engine Air Mass Flow

WAI Wing Anti-Ice

II. Type Certificate Holder Record

Not applicable

Pratt & Whitney Canada Corp. PW800 Series Engines

Date: 29 June 2023

TCDS No.: IM.E.096 Issue: 06

III. Change Record

Issue	Date	Changes	TC issue
Issue 01	31 August 2017	Initial Issue	31 August 2017
Issue 02	23 August 2019	Introduction of an ESF to CS-E 810; increase of N1 speed; increase of the max ITT for Max Continuous Thrust and introduction of TLD according to CS-E 1030 (EASA Major Change Approvals 10070794 & 10070796); as well as several administrative corrections	
Issue 03	11 December 2019	Introduction of CAEP/10 for nvPM compliance (EASA Major Change approval 10071972)	
Issue 04	05 August 2022	Adding PW812D model to TC, minor updates to PW814GA/PW815GA	05 August 2022
Issue 05	17 January 2023	Introduction of CAEP/11 for nvPM compliance (EASA Major Change approvals 10080808 and 10080811)	05 August 2022
Issue 06	29 June 2023	Introduction of EEC software 6.3.0.3 according to EASA Major Change approval 10082263 and some corrections.	

-END-