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Overview

« Background

« Road map

« Detailed problem description
« Fracture mechanics approach

« Development of atest method for fracture toughness testing
— Coupon test standard development
— Single Cantilever Beam (SCB) specimen
— International test round robin
* Finite element modeling
— Analysis of a panel with circular disbond subjected to internal pressure
— Analysis development

« Closing remarks



BACKGROUND

* Problem

* In-service component failures associated with disbonding in unvented honeycomb
core sandwich

« Degradation due to disbonding affects operational safety

* Failures may discourage use of composites in ‘future’ vehicles

 Methods for assessing propensity of sandwich structures to disbonding not fully
matured, accepted and documented

* Methods development is currently being discussed within the
Disbond/Delamination Task Group in CMH-17

Space (X-33)

2 wlF 3
Sl ]

Marine Aviation*

¢ A(‘

*Focus of this presentation



ROAD MAP

« Methods development within the
Disbond/Delamination Task Group in Composite
Materials Handbook CMH-17

«  Current FAA initiative on Continuous Operational BT SIS M .

SRS
Safety (COS) A B
- Objective Siructural Sandwich
—  Develop a methodology for damage tolerance I;umnnsilas-

assessment of sandwich structure
—  Formalize research performed for X-33 and A-310
failures
Approach
—  Coupon test standard development
— Analysis development
—  Panel testing for analysis validation
—  Publication
« ASTM D30 fracture toughness standards

« CMH-17 Vol. 6 best practices, guidelines and case

studies
*Focus of this presentation




GROUND-AIR-GROUND CYCLE

Detailed Problem Description

 Pressure difference between the inside and .

. . Initial configuration at ground
outside of unvented sandwich structures J J

_ _ elevation
« Caused by alternating ambient pressure and
temperature changes disbond at face sheet/ face sheet
* Results in significant deformations and core core interface

volume increase
« Volume increase results in pressure decrease
based on the ideal gas law

pV=nRT
 Deformed configuration at
* Initial disbonds between face sheets and cruising altitude
core increase the peeling effect | -
. cavity created by bulging of disbonded
» Peel force causes damage propagation at section

every flight cycle

 Beyond critical damage size rapid
propagation occurred, demonstrated by
test




Fracture Mechanics Approach

« Coupon test standard development « SCB test schematic
o  Characterize properties of facesheet/core interface P
o  Measure fracture toughness G,
o  Single cantilever beam (SCB) type configuration lg,
was identified as the most appropriate test ‘Ha%T
« Analysis development
e ]E:ompute the energy release rate along the disbond . VCCT
ront

local system

o  Use the Virtual Crack Closure Technique (VCCT)
based on the results obtained from a finite element
analysis
— Provides mode separation
- Transformation of nodal forces and displacement into

deformed system for non-linear analysis N
- Computation along an arbitrarily shaped delamination _ _ ) .
. . a Aa Aa
path is possible o - = r global system
. . . :i. Ay . z’_.- -
« Propagation is predicted to occur once the © 200k elvev)
computed value exceeds the measured G = o Fir ()

fracture toughness G = o Fir(w, -w.




COUPON TEST STANDARD

DEVELOPMENT -1 OF 2

« Test standard development in ASTM committee D30 (WK 47682)

« Characterize properties of face sheet/core _ _
interface Loading offset fixture

 Mode-I disbond driving force assumed most Force, P
critical for fracture control

 Measure fracture toughness G,

» Single cantilever beam (SCB) type

configuration was identified as the most FaceSheat

appropriate test —e ag >

o Starter crack Core
o Teflon ///////////////////////////////////////////////////////////5/?/97?/?/5'/‘?/‘3}//////////
o Saw cut

o Simple loading fixture Translatable carriage fixture
o Loading offset fixture Force, P
o Translatable carriage fixture

o Loading at disbond front independent of
disbond length

o Disbonding along or near the face sheet/core Face sheet
interface (no kinking into the core) e 8o >

Core

o Disbond toughness can be calculated by using
a compliance calibration procedure for data
reduction

Face sheet




COUPON TEST STANDARD

DEVELOPMENT -2 OF 2

« ASTM Committee D30 (WK 47682)
« Standardized test method for peel-dominated Al st DRAFT NGt s ST S

Responsible People: James Ratcliffe (james.g.ratcliffe@nasa.gov)
Daniel Adams (adams@mech.utah.edu)

interfacial fracture toughness of sandwich

Standard Test Method for

C O n S t r u Ct i O n S (d r aft)* g;ir;arzigligr:cture Toughness of Peel Loaded Sandwich

This standard is issued under the fixed designation X XXXX; the number immediately following the designation
indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses
indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or

* Main partners University of Utah and NASA Langley

1. Scope
1.1 This test method describes the determination of the interfacial fracture toughness, G, associated with the

*  ASTM draft' includes procedure to determine the SCB o e o anassmle i parl et 2 e st irle e e

1.2 This test method is limited to use with sandwich composites consisting of facesheets with unidirectional
H - - H and/or fabric carbon fiber and glass fiber laminates with brittle and tough polymer matrices. Permissible core
specimen dimensions (specimen lenath. face sheet il fons Iclace 1105 Wit CORUNIOUS onGINg SLTace,such & blsaood an s, o wella 10 i
1) discontinuous bonding surfaces, such as honeycomb. This test method may prove useful for other types and classes
. . .. . of sandwich constructions; however, certain interferences have been noted (see 6.5).
1.3 The measured interfacial fracture toughness is a structural property that is a function of the test coupon
thickness, initial disbond length) e e
1.4 The values stated in SI units or inch-pound units are to be regarded as the standard. The values stated in
each system may not be exact equivalents; therefore, each system shall be used independently of the other
. = . . Combining values from the two systems may result in non-conformance of the standard.
[ ) t d b t t I h 1.4.1 Within the text the inch-pound units are shown in brackets..
Current round robin activity involves seven researc AL Witinthe et the inchrpoundurts st shoun I brackes. - omen,
1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the

1 1 responsibility of the user of this standard to establish appropriate safety and health practices and determine the
aporatories in tne an urope bl o eeulators imaionspio 0 e

2. Referenced Documents

2.1 ASTM Standards:

C 274 Standard Terminology of Structural Sandwich Construction

D 883 Standard Terminology Relating to Plastics

D 5528 Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced

Polymer Matrix Composites

D 2651 Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding

D 2734 Standard Test Methods for Void Content of Reinforced Plastics

D 3171 Standard Test Methods for Constituent Content of Composite Materials

D 3878 Standard Terminology for Composite Materials

D 5229/D 5229M Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of

Polymer Matrix Composite Materials

E 4 Standard Practices for Force Verification of Testing Machines

E 6 Standard Terminology Relating to Methods of Mechanical Testing

E 122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a
Characteristic of a Lot or Process

E 177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

1

it You agre ot
1o reprocuce @ v or st
intematone, he Chairman of

Jes of th document, Copyriht AST Inernationsl, 100 Bar Harbor Drive, We

the Scciety.
ohocken, PA 19425 A1l Rights Reserved.

*D. Adams and B. Kuramoto, "Development and Evaluation of Fracture Mechanics Test Methods for Sandwich Composites,” JAMS 2012 Technical Review, 2012.
*M. Rinker, J. Ratcliffe, D. Adams, and R. Krueger, "Characterizing Facesheet/Core Disbonding in Honeycomb," NASA/CR-2013-217959, 2013.




SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)
« Specimen dimensions sized to match known compliance solution and ensure

proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force
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SCB Specimen Parameter Limitation
g T
Intact portion of specimen L=L, =27 ttE,
' 3E,
Initial disbond length (bending bending 30Eft}
dominant deformation) Qo = yin = o 0.59L, .,

ao > aco.mpliance — L

min 'b,min

Final disbond length Ay 20+ 4,
4
3
Face sheet thickness for small ol disp a,,
deformations ty =zt = ; ¥
3a,  E A t.E %
200G, 3E,
. 1772
Face sheet thickness to 6E.G o £ (el FE 2
prevent flexural failure of face t, = t;’"’"g'h ~— ey | L 2L
sheet o; : 3E,

Specimen length +Ly

max

L = Lmin = Lhinge +a

Load application offset to

ensure vertical load application by 2l iy =1.064,,

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”

Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.



SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)

« Specimen dimensions sized to match known compliance solution and ensure
proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force

E SCB Specimen Parameter Limitation
I [ i t4E, ¢
ﬁ T ntact portion of specimen L=l =27 v
AYEaW o i .
l P l Initial disbond length (bending bending _ 30E,1; 0.501
& b dominant deformation) = =y 0
; a =z ag"™ =1,
e it -\ 2 . - - :
L Ap o L t Final disbond length a, =a+a,,
" h L b G N . prop .
1 3
B e T AT e Face sheet thickness for small B ;
deformations =t = e n
P 3alzme p tcE/ 4
200G, | | 3E,

-2

Z
%L - |
¥ — Face sheet thickness to 2 small disp |3
prevent flexural failure of face t, = t;’”’”g’h ~ 6E-f'G;a"W a,, + L )E,
k sheet op “ 3E,
a{] I—b SpeC|men Iength L = Lmin = Lhinge + amux + Lb,min

N e N " Load appllc_atlon offset tq _ hosh  ~1.06a
ensure vertical load application p = pmin max

1
4

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”
Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.




SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)

« Specimen dimensions sized to match known compliance solution and ensure
proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force

E SCB Specimen Parameter Limitation
. . tEE, |
ﬁ —1,— Intact portion of specimen L=L, =27 %
AYEaW o ¢
l p.min : Initial disbond length (bending s grene _ SOET o or
a tw dominant deformation) 0= Homin G., "7 b min
*[*‘ ap b L 1 . Final disbond length a,.=a,+a,,
h L b & N a prop .
¥ 3
[ .
B L L L e Face sheet thickness for small amal disp a,,
deformations t, =t = 0
P 3a),.E ) (tE, )
Z 200G, 3E,
n | o 2
. 1
% —x | Face sheet thlckngss to 6E.G o AL AT
prevent flexural failure of face TP 3o o R A S —
k sheet s op " 3E,

an I—b Specimen length LzL,, =Ly + 1L,
N 4 Load application offset to
ensure vertical load application

L 4

F

h,=h, ., ~1.06a,,

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”
Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.



SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)

« Specimen dimensions sized to match known compliance solution and ensure
proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force

E SCB Specimen Parameter Limitation
| . . tct} E, ¢
|D] —1,— ntact portion of specimen L=L, =27 S
~vh min :
l P, \L Initial disbond length (bending bending _ 30Eft} 0.55L
8 ‘ t[ ! dominant deformation) Qo = yin -~ = G., T min
|t o b » - -
I—h g Lb tt} Final disbond length Ay 20+ 4,
L r g
S R R Ry T R e TR P TR T T ey Face sheet thickness for small » g
deformations ozt = " n
P (3amef C(LE, Y

-2

1
4

Z 200G. 3E,
%L 5 -
X — | Face sheet thickness to 6E,G.d,, [ L PE,
’ amux + T

prevent flexural failure of face tp= " 5
k sheet O, 3E,
a{] I—b SpeC|men Iength L = Lmin = Lhinge + amux + Lb,min
Load application offset to h=h, . ~106a,,

ensure vertical load application

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”
Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.



SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)

« Specimen dimensions sized to match known compliance solution and ensure

proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force
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SCB Specimen Parameter Limitation
PR
Intact portion of specimen L=L, =27 1E
: 3E,
Initial disbond length (bending bonding 30Eft}
dominant deformation) Qo = yin -~ = G., -0.59L,
Final disbond length Ay 20+ 4,
4
3
Face sheet thickness for small ol disp a,,
deformations tpzt; = f
3a,, E, tE
200G, 3E,
-2
Face sheet thickness to 2 small disp 3 %
prevent flexural failure of face t, = t;’”’”g’h ~ OF, Gy a  + M
sheet o; " 3E,

Specimen length +Ly

max

L = Lmin = Lhinge +a

Coad application offset to

ensure vertical load application by 2l iy =1.064,,

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”

Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.



SINGLE CANTILEVER BEAM (SCB)

TEST SPECIMEN

« Beam sandwich laminate with pre-implanted starter disbond (Teflon, saw cut)

« Specimen dimensions sized to match known compliance solution and ensure
proper specimen behavior*

« Test configured to yield mode-l dominated disbond driving force

E SCB Specimen Parameter Limitation
Intact portion of speci L, |
lﬂl —1,— ntact portion of specimen L=L, =27|-L
A ' 3E,
Initial disbond length (bending pending | 30E1;
& J‘ 8 tw dominant deformation) Qo = yin -~ = G., -0.59L,
|t o b » - -
I—h aﬂ L Lb tt} Final disbond length Ay 20+ 4, :
T g
o E T LT PR L TR R L EER T F LT FEL A EE LA EEERPEEF R A Face sheet thickness for small i a
deformations =zt = T 0
P 3a),.E ) (tE, )
Z 200G, 3E,
n ' o i)
. 1
|_., x —a | Face Sheet th|CkneSS to 6E G a2 t (l:mall disp )SE |4
prevent flexural failure of face TP 3o o R A S —
k sheet s o " 3E,
an I—b Specimen length L2l =Ly +a,+L,,

F 1
v
F 3
L J

Load application offset to

ensure vertical load application by 2l iy =1.064,,

*J. G. Ratcliffe and J. R. Reeder, "Sizing a single cantilever beam specimen for characterizing facesheet-core debonding in sandwich structure,”
Journal of Composite Materials, vol. 45, pp. 2669-2684, 2011.
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initiation 1 (n growth
increments)
3
4
du
1/C

Single Cantilever

Beam (SCB)
Specimen

Load Point Displacement, &
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|
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Disbond length, a

Load specimen (stroke control) and unload after required amount of
disbonding

Record load/displacement response
Document changes in specimen compliance with disbond growth
Compute interfacial fracture toughness, G, (initiation and propagation
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SCB TEST APPARATUS e

. AEROSPACE
Overview

Load frame

Test fixture

SCB
Specimen

Disbond
Tracking station




SCB TEST APPARATUS

Detailed Views

» Offest test fixture « Base plate

-~

* Closeup of baseline test

-
. ;

A:}:-L REE:




SCB TEST ROUND ROBIN

Test configuration

SCB specimen*

Baseline Specimen parameters

12.7 mm (0.5”)
a9
Wi 50.8 mm (2.0”)
500 mm (20”)
hp,min
L 305 mm (127)
25.4 mm (1.0”)
I-hinge
25.4 mm (1.0”)
tC
¢ 0.772 mm (0.0304")
f
T650/5320 PW
Face sheet Layup (4 plies): [45/0]
0-dir along specimen length
HRH-10:
Core Cell size = 3.2 mm (0.125”)

Density = 3lb/ft3 (48kg/m?3)

*manufactured at NIAR, Wichita State University, Kansas, USA

Two loading fixture types considered
to force a peel dominated behavior

Loading offset fixture

Force, P

T

WV h

p,min
| 1
/JQ e .
L»x %+ Face sheet

aO >l < |_b

‘Lhinge Core .
< L >

A\ 4
Face sheet
[T T T 7777 7 T 7] 777 T 7 7 77T 77777 7777 771777 7777 77777777777 T 77777

t,
Translatable carriage fixture

Force, P

|
£ J I
L»x t+ Facesheet
< ag i< Lb 1
J-hinge Core .
< L T
Face sheet




SCB TEST ROUND ROBIN

International Partners

NASA Langley, DTU, Copenhagen, Denmark
Hampton, Virginia, USA

Airbus, Hamburg
FhG, Halle
Germany

-

University of Utah
Salt Lake City

Utah, USA DuPont, Geneva

Switzerland
NIAR

Wichita, Kansas
USA




SCB TEST ROUND ROBIN

Test Matrix

Number of Specimens Additional Studies
Test Speed
Lab # .
Baseline Additional L/W Sc;t?;f:el(r Doubler | Fixture Unloadmg |0ading un|0ading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 10 0 mm 30 30
Lab 2 (NIAR) 5A 10 S T
Lab 3 (DuPont) X 5A 10 W 0 mm 20+ 30
Lab 4 (NASA) X 5A 10 Y 0 mm 5 5
Lab 5 (Airbus) X 5A 10 w 0 mm 20 30
Lab 6 (Fraunhofer) X 5A 10 S Y 0 mm
Lab 7 (DTU) X 5A 10 Y T
Specimen Category Baseline Additional
Dimensions 2 x 12-inch
Crack Direction L W Dimensional Nomenclature
Starter Crack Teflon (T) Saw Cut (S) .
" T = Thickness, or cell depth
Insert Length 1.5-inch . — Hexagonal Cell
Doublers NoO (N) Yes (Y) L = Ribbon direction .z _ﬁ,\,
- - W = Long direction, or direction & —
Fixture Fixed (F) Translate (T) perpendicular to the ribbon 2% d:;ctlon
Test Speed "19?1
loading 5 mm/min 20,30 mm/min Y
unloading 30 mm/min 30, 5 mm/min
Aa for loop 10 mm
(>3 cells)
# of loops/cycles >5
Unloading 0N 0 mm




SCB TEST ROUND ROBIN

Test Matrix

Test Number of Specimens
protocol
Lab # _ . Starter _ Unloadin .Test Speed _
Baseline Additional Crack Doubler Fixture g |0ad|ng un|0ad|ng
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 10 0 mm 30 30
Lab 2 (NIAR) 5A 10 S T
Lab 3 (DuPont) X 5A 10 W 0 mm 20+ 30
Lab 4 (NASA) X 5A 10 Y 0 mm 5 5
Lab 5 (Airbus) X 5A 10 w 0 mm 20 30
Lab 6 (Fraunhofer) X 5A 10 S Y 0 mm
Lab 7 (DTU) X 5A Y T
Specimen Category Baseline Additional
Dimensions 2 x 12-inch
Crack Direction L W Dimensional Nomenclature
Starter Crack Teflon (T) Saw Cut (S) .
" T = Thickness, or cell depth
Insert Length 1.5-inch . o Hexagonal Cell
Doublers No (N) Yes (Y) L = Ribbon direction TZ A
- - W = Long direction, or direction é
Fixture Fixed (F) Translate (T) perpendicular to the ribbon
Test Speed
loading 5 mm/min 20,30 mm/min : )
unloading 30 mm/min [ 30, 5 mm/min dim‘%ﬁﬁ
Aa for loop 10 mm
(>3 cells)
# of loops/cycles >5
Unloading ON 0 mm




SCB TEST ROUND ROBIN

Test Matrix

Test Number of Specimens
g protocol e S - . Unloadin .Test Speed _
Crack ubler | Fixture 9 loading unloading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 0 mm 30 30
Lab 2 (NIAR) 5A T
Lab 3 (DuPont) X 5A 0 mm 20+ 30
Lab 4 (NASA) X 5A Y 0 mm 5 5
Lab 5 (Airbus) X 5A 0 mm 20 30
Lab 6 (Fraunhofer) X 5A Y 0 mm
Lab 7 (DTU) X 5A Y T
Specimen Category Baseline Additional
Dimensions 2 x 12-inch
Crack Direction L W
Starter Crack Teflon (T) Saw Cut (S)
Insert Length 1.5-inch
Doublers No (N) Yes (Y)
Fixture Fixed (F) Translate (T)
Test Speed
loading 5 mm/min 20,30 mm/min
unloading 30 mm/min 30, 5 mm/min
Aafor loop (jg g;ﬂ”s) Teflon or
# of loops/cycles >5 saw cut
Unloading 0N 0 mm




SCB TEST ROUND ROBIN

Test Matrix

Test Number of Specimens
protocol D
Lab # Baseline | Additional | L/W %t;riir Doubler | Fixture | Unloading loading punloading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 0 mm 30 30
Lab 2 (NIAR) 5A T
Lab 3 (DuPont) X 5A 0 mm 20+ 30
Lab 4 (NASA) X 5A 0 mm 5 5
Lab 5 (Airbus) X 5A 0 mm 20 30
Lab 6 (Fraunhofer) X 5A Y 0 mm
Lab 7 (DTU) X 5A Y T
Spe‘gﬂiﬁls‘“}jﬁg"’y Base“nze » 12_mg? diiona Thin face sheet Thin face sheet tested with
Crack Direction L W teSted WI'[hOUt dOUb|eI’
Starter Crack Teflon (T) Saw Cut (S) doubler * Reduces face sheet damage
Insert Length 1.5-inch + Creates unwanted core facture
Doublers No (N) Yes (Y) due to shear component
Fixture Fixed (F) Translate (T)
Test Speed
loading 5 mm/min 20,30 mm/min
unloading 30 mm/min 30, 5 mm/min
Aa for loop 10 mm
(>3 cells)
# of loops/cycles >5
Unloading 0N 0 mm




SCB TEST ROUND ROBIN

Test Matrix

Test Number of Specimens | Additional Studies
Lab # e Baseline | Additional || Lw | SR | g i Unloadin L
Crack ubler § Fixture 9 loading unloading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 0 mm 30 30
Lab 2 (NIAR) 5A
Lab 3 (DuPont) X 5A 0 mm 20+ 30
Lab 4 (NASA) X 5A 0 mm 5 5
Lab 5 (Airbus) X 5A 0 mm 20 30
Lab 6 (Fraunhofer) X 5A 0 mm
Lab 7 (DTU) X 5A
Specimen Category Baseline Additional
Dimensions 2 x 12-inch
Crack Direction L W
Starter Crack Teflon (T) Saw Cut (S)
Insert Length 1.5-inch
Doublers No (N) Yes (Y)
Fixture Fixed (F) Translate (T)
Test Speed
loading 5 mm/min 20,30 mm/min
unloading 30 mm/min 30, 5 mm/min
Aa for loop 10 mm
(>3 cells)
# of loops/cycles >5
Unloading 0N 0 mm




SCB TEST ROUND ROBIN

Test Matrix

Test
Lab # protocol | S . _ Test Speed
Baseline LW | "Grack | Doubler | Fixture Unloading loading unloading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 0 mm 30 30
Lab 2 (NIAR) 5A
Lab 3 (DuPont) X 5A w 0 mm 20+ 30
Lab 4 (NASA) X 5A Y 0 mm 5 5
Lab 5 (Airbus) X 5A w 0 mm 20 30
Lab 6 (Fraunhofer) X 5A S Y 0 mm
Lab 7 (DTU) X 5A Y T
Specimen Category Baseline Additional
Dimensions 2 x 12-inch Load
Crack Direction L W P
Starter Crack Teflon (T) Saw Cut (S) loading
Insert Length 1.5-inch
Doublers No (N) Yes (Y)
Fixture Fixed (F) Translate (T)
Test Speed
loading 5 mm/min 20,30 mm/min
unloading 30 mm/min 30, 5 mm/min
Aa for loop (>1§ g;'ﬂ]s) unloading
# of loops/cycles >5 o
Unloading ON 0mm Load Point Displacement, &




SCB TEST ROUND ROBIN

Test Matrix

Test Number of Specimens | Additional Studies
Lab # e Baseline | Additional | Lw | S22 | po i Unloadin o5
Crack ubler [ Fixture 9 loading  unloading
(mm/min) (mm/min)
Lab 1 (Univ. Utah) 5A 0 mm 30 30
Lab 2 (NIAR) 5A
Lab 3 (DuPont) X 5A w 0 mm 20+ 30
Lab 4 (NASA) X 5A Y 0 mm 5 5
Lab 5 (Airbus) X 5A w 0 mm 20 30
Lab 6 (Fraunhofer) X 5A S Y 0 mm
Lab 7 (DTU) X 5A Y T
Specimen Category Baseline Additional Will unloadin g to O mm create dam ag e?
Dimensions 2 x 12-inch 300 L
Crack Direction L W 200 %:g:z::gczziz; —
Starter Crack Teflon (T) Saw Cut (S) 240 % N )
Insert Length 1.5-inch 253 R ° -
Doublers No (N) Yes (Y) 180 L AN i:g‘jgm il ]
Fixture Fixed (F) Translate (T) = ﬁg bt 2 ot 15228 a5
Test Speed g 120
loading 5 mm/min 20,30 mm/min ~ 100 b :
unloading 30 mm/min 30, 5 mm/min Zg v P s
Aa for loop 10 mm NI i
(>3 cells) 20 o0 e : —
# of loops/cycles >5 _28
Unloadlng O N m' 40 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Displacement [mm]



FE MODEL OF A PANEL WITH

DISBOND -1 of 4

* Aquarter section of aflat panel was 3D model of a disbonded flat panel
modeled upper
— Circular disbond radius: 152.4 mm (6”) facesheet
— Square section side dimension: 304.8 mm (12”):
— Abaqus/Standard® was used (C3D20 element)

o Boundary conditions applied at symmetry
planes

o Surface contact used between top facesheet
and core in the disbonded section

« Sandwich properties
- Thin facesheet: 0.772 mm (0.03”)
o CYCOM 5320PW plain weave fabric
o [45/0/90/-45] quasi-isotropic layup

lower facesheet

honeycomb core

Detail near disbond front

- Thick core: 76.5 mm (3.0”) e A =~
o Hexcel HRH-10® honeycomb intact =
o NOMEX® paper with 48 kg/m? (3.0 lb/ft) | =" =i llll
density and 3.175 mm (1/8”) cell size disbgnQed ﬁwH\u J} ‘I} W;};;‘.
o Modeled as an orthotropic, homogeneous Sa”dw";h \Jﬁmw’{ 4 W,' !/!
continuum , i k] n".
‘&' i i




FE MODEL OF A PANEL WITH

DISBOND - 2 of 4

« Pressure deformation coupling was Top view on disbonded flat panel
simulated using fluid-filled cavities cavity for intact

sandwich

— Abaqus/Standard® feature enabled the
definition of fluid-filled cavities enclosed
by structural elements

disbond front

cavity for disbonded

— Theideal gas law is solved within each candwich
increment until equilibrium is found y B

— The volume of the fluid cavities was T
assumed to be equal to that of the entire X
sandwich core

Detail near disbond front

— Two separate cavities were defined

o One cavity was used to simulate the O cavi(;y fo;]intact
. sandawic
intact part

o The other cavity included only the
disbonded section disbond front

o The disbonded cavity extended by one

cell size, 3.175 mm (1/8"), ahead of the cavity for disbonded
disbond front sandwich




displacement to simulate
0.2% in-plane strain

applied end
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3D model of a disbonded flat panel
3D model of a disbonded curved panel
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FE MODEL OF A PANEL WITH

DISBOND -4 of 4

* Internal pressurization of the

disbond
— Commercial jetliner ascent
igelngaglo ‘E"Oas CA?on?)IOdoeF;d from 0 to Decrease of temperature and pressure
,192m (0 to 40, t with increasing altitude
— The pressure and temperature 200
values were taken from the _ 12.200 m
International Standard Atmosphere 280} (40,000 ft) ]
ISO 2533 270 |
— The temperature in the core was : !
. . 260 [
defined to be equal to the ambient 1,k |
temperature 250 | )
— Pressure and volume inside the 240
cavities were calculated during the : 0.0188 MPa |
analysis i T /
. . 220 ~-E--pIMPal 9T
« Additional load conditions ? 016,65 K ——=
. .. o« o e e e e e e e
— 0.2% (2000 pe) strain condition 0 2000 4000 6000 8000 10000 12000 140
on Iy altitude h, m

— 0.2% (2000 peg) strain condition
plus GAG cycle

0.12

0.1
0.08
p, MPa

0.06

0.04

1 0.02

lo

00



FLAT PANEL SUBJECTED TO INTERNAL_;,.

PRESSURE LOADING -1 of 2

« Parametric study

— Variation of
o Facesheet thickness, number of
plies
o Disbond radius: 50.8 — 762 mm
(2.0” — 30.0”)

o Core density: 29 kg/m3, 48 kg/m3,
80 kg/m?3 (1.8 - 5.0 Ib/ft3)

o Core thickness: 12.5 mm,
25.4 mm, 50.8 mm, 76.5 mm
(0.5” - 3.0")

— Results

o Variation of core density does not
have a significant effect on
computed Gy

o Large disbond radius and thin
facesheets result in maximum G

 Following studies

- Dimensions based on results from
parametric study

Averaged Gy along crack front
3.275 mm (1/8”) cell size, 48 kg/m?3 (3.0 Ib/ft3) core density

1000
0.5” core thickness  + 388
1.0” core thickness = 700
2.0” core thickness &00
3.0” core thickness o 500

400
300
200
100
0

G+, J/m?
1000

500 |

40

30

100

disbond '
radius, mm

140 number of

facesheet plies



FLAT PANEL SUBJECTED TONNEERISRE

PRESSURE LOADING - 2 of 2

« Conditions « Conditions
— 12,192 m altitude (40,000 ft) — 0m-12,192 m altitude
o p=0.0188 MPa (2.73 Ibs/in?) — Sea level to cruising altitude

« Results for max G; at $=45°

T=216.65 K (-69.7° F, -56.5° C _ . :
© ( ) G+ increases monotonically with

* Result . . .
o increasing altitude
« Max G; observed at ¢p=45
Energy release rate along the disbond front Energy release rate dependence on altitude
0.60 0.6 r
SRt os | 70
055 L max. GT, at 45" [
| 0.4 [
G'r’ - G, I
, 050 | T 03}
fed/m [ kJ/m _
[ 02 |
0.45 [ .
01 |
0.00 L S— — 0.0 ¢
0 45 90 0 2000 4000 6000 8000 10000 12000
circumferential location angle ¢, degrees altitude h, m



FLAT PANEL SUBJECTED TO [N-

PLANE AND COMBINED LOADING

- Conditions _ Distribution of energy release rate along
— 12,192 m altitude (40,000 ft) the disbond front

o External pressure p=0.0188 MPa
o External temperature T=216.65 K

- 0.2% (2000 pe) applied in-plane strain
to simulate service loads on a flat
control surface

- Combined internal pressure + 0.2%

(2000 |J£) In_plane strain [ | —=— internal pressure only
1.60 || —=— 2% applied strain only
b ReS u ItS [ | —+— internal pressure
140 - + 2% in-plane strain

- Out-of-plane deformation of the

1.20 |

disbonded section changes
- Leads to achange in the G, G, 100 N
distribution kym? 080 |

- Addition of in-plane strain leads to 0.60 |
an increase in G;

040 [

- Due to non-linearity superposition of :
the results is not possible 020 |

0.00 =

0 45 90
circumferential location angle ¢, degrees



ANALYSIS OF A CURVED PANEL

« Conditions
— 12,192 m altitude (40,000 ft)
o External pressure p=0.0188 MPa
o External temperature T=216.65 K
- Flat panel
- Curved panel with 3 m radius

Distribution of energy release rate
along the disbond front

U
+ Result Q
- Symmetry of the G, distribution is M
lost for the curved panel 0.60 .
- Locally and on average the '
computed G;is higher than the
result obtained from the flat panel
- Result is unexpected _
- In-plane strain may lead to a further B 0.50

2

0.55

increase in computed G; dim
- Additional analyses with different .
radii and more refined mesh should 045 |- — flat panol
be performed before a definite ; —=— curved panel
statement is made oan—. . L
0 45 90

cireumferential location angle ¢, degrees



ONGOING ANALYSIS DEVELOPMENT

« Current work
« Studying honeycomb core idealization
used in modeling approach

« Validating models by comparing to detailed |
results from panel testing

» Studying effects of disbond location on
convex and concave sides of curved
panels

« Analyzing disbond migration into the core
« Studying fatigue and environmental effects

Pressurized panel
test at NIAR
(Wichita State)*

Schematic of a pressurized panel test

e p, is known - created by a compressor
e Ap=p,-p, can be directly used as input to
a FE model




CLOSING REMARKS

« Face sheet/core disbonding is a significant damage mode of
sandwich composites

« A methodology similar to delamination modeling in composites is
being developed to assess facesheet/core disbonding

« Mode-I disbond driving force assumed to be most critical

 Test method for measuring mode-I interfacial fracture toughness
was developed into a draft ASTM test standard

« Round robin exercise composed of 7 international laboratories
being conducted to evaluate draft standard

« Sandwich panel containing a circular disbond at the facesheet/core
interface was studied using pressure-deformation coupling

 Large disbonds, thin facesheets, and thick cores are most critical

 Work ties in with activities in the broader community concerned
with sandwich disbonding



