Hydrogen as aviation fuel - Workshop 2023
Aircraft Certification
Fire and Explosion challenges

Linda Brussaard, Remi Deletain, Enzo Canari
EASA Certification Directorate

Cologne, 12 June 2023

Your safety is our mission.
An Agency of the European Union
H2 Challenges
Hydrogen, a new substance on board

→ With the need and wish for more sustainable flying, Hydrogen is considered to be a very promising candidate:
→ Either as reactant in a Fuel Cell System
→ Or as a combustive fuel an engine
Hydrogen, a new substance on board

→ Hydrogen (H2) has specific hazards, with own characteristics.
→ Predominant (mostly feared) are fire or explosion.
→ Others include:
 → Mechanical/material hazards (i.e. embrittlement, or failure storage systems)
 → Crashworthiness
 → Physiological hazards
 → Cryogenic (for the use of Liquid H2 (LH2))
 → Fueling and handling hazards
Different possible utilisations of H_2 foreseen

→ As reactant in a fuel cell, generating electrical power for, i.e.:
 → Energy for Propulsion
 → Aircraft Galley Power Trolley Cart
 → Emergency Power (e.g. replace main battery, RAT)
 → Stand Alone Power:
 → Medical evacuation
 → Electronic warfare
 → Maritime surveillance
 → Auxiliary Power System
→ As combustion fuel in stead of jet fuel.
Storage and distribution

Pure Hydrogen:
→ Liquid
→ Gaseous

Examples of other storage possibilities:
→ Hydrocarbons (reforming)
→ Solids (Metal Hydrides, on surfaces, etc)
→ Water (electrolyse)
Liquid H2 storage

Liquid storage

- H₂ is liquid T<20°K (-253°C), cryogenic
- At ca. 1 bar 5 kg H₂ is stored in 75 litre tank
- Currently used in space propulsion
Liquid H2 storage

- Liquid storage is a mature solution
- Relatively low pressures (<12 bar)
- Liquefying H₂ requires:
 - very pure H₂
 - ortho to para conversion (@20K 99% para)
- Expensive both in costs and energy
Gaseous H2 storage

- Different pressure vessel types, III and IV light weight and high pressure vessel

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Pressure vessel made of metal (mainly for stationary application (SA))</td>
</tr>
<tr>
<td>Type II</td>
<td>Thick metallic liner wrapped with a fiber-resin composite (SA)</td>
</tr>
<tr>
<td>Type III</td>
<td>Load-sharing liner fully-wrapped with a fiber-resin composite (portable applications (PA))</td>
</tr>
<tr>
<td>Type IV</td>
<td>Non load-sharing liner fully-wrapped with a fiber-resin composite.</td>
</tr>
</tbody>
</table>
Gaseous H2 storage

Compressed gaseous

→ At 700 bar, density of H₂ is 42 kg/m³: 5 kg H₂ fits in 125 litre tank
→ Cars use this technology, giving a range of 600 km
H2 Turbofan/Turbopropeller

→ H2 can directly feed turbofan/turbopropeller engine combustion chamber
Fire and explosion risks

Hydrogen Combustion
→ 3 elements needed
→ Auto-ignition T: 538 °C
→ Wide flammability range vs concentration
→ Low ignition energy
Fire and explosion risks

→ Hydrogen flame is pale blue

→ Adiabatic flame T:
 → H2/Air -> 2045 °C
 → H2/O2 -> 3200 °C

→ Little infrared heat, but substantial ultraviolet radiation:
 → Even close, only little sensation of heat for a human being
Hazards summary

→ H2 fire and explosion hazards:
 → H2 ignition
 → H2 combustion
 → H2 fires: microflames, H2 deflagration, H2 detonation

→ Flammable mixture ignition:
 → Due to electrical sources
 → Due to mechanical sources
 → Due to thermal sources
 → Resonance ignition
 → Flammability limits
H2 Fire/Explosion Challenges
Product Safety Objectives

→ Example for assessing (CS-25) regulatory impacts:
 → Maintain the same level of safety achieved by circa 70 years of fire/explosion regulatory evolutions for large airplane commercial transport: H2 presence shall not degrade this achieved level.

→ Keep the spirit of CS-25 Fire & Explosion Safety requirements that are:

→ PRESCRIPTIVE and DESIGN ROBUSTNESS oriented
→ NUMEROUS: in all CS-25 subparts with:
 → GENERAL rules (i.e CS 25.1309 CCA with FESRA PRA’s, minimization with CS 25.863,...)
→ MULTI-LAYERS rules
 Supplementing : CS 25.981 over CS 25.1309
 Overlapping: Requirement for DFZ, FFLZ, FZ...
A few fire/explosion problematics

→ Zone Concept Issue: H2 presence on-board aircraft is impacting existing fire/explosion requirements and already defined fire/explosion risk zoning. Possible new concept to address specificities.
 → Impact onto Designated Fire Zone (DFZ), Flammable fluid Leakage Zone (FFLZ), Fire Zone (FZ), zone adjacent to DFZ (xx.1182), 2D-Nacelle, ...
 → Impact on Fuel Tank Safety (FTS) perimeter applicability:
 → H2 distribution is likely to be treated as an H2 tank is to be treated
 → A flammable fluid leak is supposed to be a failure condition not a nominal condition (porosity). Strategy to be defined but likely to be treated under fuel tank safety rather than an FFLZ (leak is a failure).
 → New zone for electrical fire threat: Electrical Fire Withstanding Zone (EFWZ)
 → New zone for fuel cell fire threat: Fuel Cell Fire Withstanding Zone (FCFWZ)
A few fire/explosion problematics

→ H2 Fire Extinguishing
 → Issue: Potential loss of one fire layer of protection with no (H2) performant fire extinguishing agent/system
 → Today CS-25 requires 2 shots capability

→ Do not imply that fire extinguishing agent/system will not be necessary
 → Presence of other flammable fluids (oil, hydraulics)
 → Residual burning from H2 fire exposure

→ Is reliance placed on H2 supply shutting off sufficiently balancing the loss of that fire protection layer?
A few fire/explosion problematics

→ H2 Fuel Tank Safety

→ Issue: CS 25.981 is a 2 layers, self sustained rule concept
 → The intent of the 2 layers probably need to be redistributed
 → Whereas there was some different treatment between classic fuel distribution and classic fuel storage (ullage presence): it may no longer be true for H2 distribution/storage

→ Inversed concept:

<table>
<thead>
<tr>
<th></th>
<th>Classic Fuel Tank</th>
<th>H2 Tank + Distrib.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention</td>
<td>Ignition source prevention with low probability</td>
<td>Minimize ignition risk</td>
</tr>
<tr>
<td>Minimization</td>
<td>Minimized exposure to flammability range</td>
<td>Prevent exposure to flammability range with low probability</td>
</tr>
</tbody>
</table>
A few fire/explosion problematics

→ H2 Explosion
 → Fuel Tank Safety: Is a tank explosion “containment” and Continued Safe Flight and Landing (CSFL) path still an option?
 → General: Is it one explosion problematic or 2 problematics with deflagration and detonation to be addressed?
 → Possibly a design robustness intent for deflagration
 → Possibly a minimum design features and a low probability approach for detonation
 → Will have to play on prevention from moving from deflagration to detonation
A few fire/explosion problematics

→ H2 Combustor Burnthrough
 → CS-2x makes some assumptions that a flame can exit the turbine engine combustion chamber (CS 2x.903)

 ➢ Flame: 3min, 1700°C (3000°F), 350-550 psi, 1-inch diameter.

→ Issue:
 → What sort of H2 flame to deal with?
 → How do we come to a standard?
A few fire/explosion problematics

→ H2 Fire in a powerplant environment
 → CS-Definition
 → Assumes:
 → A temperature
 → A heat flux
 → 2 time durations
 → Recognizes:
 → Steel (Titanium) and Aluminum material equivalency to fire exposure duration
 → Issue:
 → Need to understand how those assumptions could be invalidated with H2 and what could be the new one
 → Note: that notion of fire size does not exist, neither distance at which the fire is standardized: does it need to be defined in the context of H2?
 → Note: H2 Fire presence duration is a minimum of 5min (based on crew reaction – same assumption as for classics fuel installation). Plus a certain duration - to be determined - for fire presence after crew reaction/procedure intiation.
A few fire/explosion problematics

→ H2 Fire in a powerplant environment: getting a standard
→ How was it done for ISO2685/AC 20-135?
 ➢ Historic - Genesis of ISO2685 / AC 20-135 for Powerplant (jet fuel) Fire Testing

➢ In summary:
 ➢ Prompted by in-service issues with an urgent need for a fire test program. (1939)
 ➢ DC-3 Pratt & Whitney 1830-B (Wasp) from 1939 to 1941.
 ➢ Curtiss Wright CW-20 installation with the engine and Waco YKS-37. Ending around 1943.
 ➢ Lot of full scale testing
 ➢ Progress with time

<table>
<thead>
<tr>
<th>Organization / Time Frame</th>
<th>Development Test Reports</th>
<th>Powerplant Regulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAA; 1939 to 1950s</td>
<td>• Engine/nacelle fire tests
• TD No. 31 & No. 33, 1943
• Various other test reports</td>
<td>• CARs 4 (aircraft) & 13 (engine), 1946
• SRR No. 259, 1947</td>
</tr>
<tr>
<td>FAA; 1960s-1980s</td>
<td>• Power plant Installation fire tests
• Oil burner Resealition (RD-76-213, 1976)
• Various other test reports (Power plant Report 3A, etc...)</td>
<td>• SRR No. 453, 1961
• FAR regulations
• AC 20-135 Draft (1988)</td>
</tr>
<tr>
<td>FAA; 1990 to current</td>
<td>• Next Gen burner test reports (various)
• Propane vs kerosene comparison test reports (various)</td>
<td>• 14 CFR regulations
• AC 20-135 (1990)
• AC 33.17-1 (2002); 33.17-1A (2009)
• AC 20-135 Change 1 (2018)</td>
</tr>
</tbody>
</table>
A few fire/explosion problematics

→ H2 Fire in a powerplant environment: getting a standard

→ How to do it?
 ➢ Will not wait in-service issues
 ➢ Full scale testing is part of the process
 ➢ Progress with time

→ Could be a progression from basics understanding and characterization supplemented with data from project blocks and dedicated standard testing activities, all with support of modelling.
A few fire/explosion problematics

→ H2 Fire in a powerplant environment: getting a standard

Step 1: Basics

Step 2: Project Block 1 → Project Block 2 → Project Block 3 → Project Block n

Step 3: Standard

Modeling → Basics

Modeling → Project Block 1

Modeling → Project Block 2

Modeling → Project Block 3

Modeling → Project Block n

Modeling → Standard
A few fire/explosion problematics

- **Testing - BASICS**
 - **H2 flame**
 - **Litterature Review**
 - **Assumptions - Analysis - BASICS**
 - H2 Flow
 - Free
 - Explore
 - Measure
 - Temperature
 - Heat Flux
 - Size vs f(flow)
 - T mapping (x,y,z)
 - HF mapping (x,y,z)
 - Repeatability

- **H2 flame duration**
 - **Litterature Review**
 - **Assumptions - Analysis - BASICS**
 - f(trapped volume, leak rate)

- **H2 material withstanding capability**
 - **Litterature Review**
 - **Testing - BASICS**
 - Coupons testing
 - Sheets
 - Tubes
 - Different Material - Aviation
 - Steel
 - Titanium
 - Aluminum
 - Composite, Elastomeric
 - Thickness
 - Standard (vs known FR/FP)
 - Explore (till 5min / 15min)
 - Measure
 - Melting duration
 - Burnthrough duration
 - Skin temperature
 - Repeatability

- **Flame-to-specimen distance**
 - **Testing - BASICS**
 - Distance
 - Standard (vs known fire testing conditions)
 - Explore
 - Repeatability
A few fire/explosion problematics

PROJECT BLOCK

<table>
<thead>
<tr>
<th>H2 Leak</th>
<th>H2 flame</th>
<th>H2 flame duration</th>
<th>H2 material withstanding capability</th>
</tr>
</thead>
</table>

Failure Combination

- Assumptions

FMEA (design dependent)

Leak Characterization

- Defect database
- From FMEA
- Simulated defects
- Defect variation
- Leak rate: f(defect, flow conditions)

Full Scale Testing (design dependent)

- Flame
 - Free
 - Closed
- H2 Flow
 - From Leak Characterization

Measure

- Temperature
- Heat Flux
- Size vs f(flow)
 - T mapping (x,y,z)
 - HF mapping (x,y,z)

Full Scale Testing (design dependent)

- f(trapped volume, leak rate) from design and leak characterization.

TC design

Measure

- Melting duration
- Burnthrough duration
- Skin temperature

Flame-to-specimen distance

Full Scale Testing (design dependent)

- From design
A few fire/explosion problematics

- **STANDARD**
 - Scaling Down
 - Specimen Definition
 - Apparatus Standardization
 - Operating Instructions
 - Material Recognition
 - Test Duration
 - Repeatability
 - Determine Max & Average with deviations (temp.)
 - Determine Max & Average with deviations (heat flux)
 - Determine Min, Max & Average with deviations (specimen to leak distance)
 - Review Events and Reliability / Maturity
 - Determine Min, Max & Average with deviations (leak flow)
 - Testing Supplement as necessary (representative population)

Events
- Free Closed Flame Testing
- Full Scale Testing
- Leak Characterization

Project Blocks
- Project Block 1
- Project Block 2
- Project Block 3
- Basic
- Modelling

Reliability & Tracking Plan
A few fire/explosion problematics

In-flight fires: zonal analysis

→ H2 leak in pressurized areas:
 → increased risk of explosions
 → even concentrations of hydrogen below the lower flammability limit could adversely affect the flammability performance of materials and constructions
 → higher level of severity of the fire threats in critical zones: inaccessible areas, cargo compartments, but also in occupied areas

→ Mitigating measures:
 → Prevent leakage from hydrogen systems to other non-powerplant zones
 → Ventilation / detection / isolation
A few fire/explosion problematics

Post Crash fire

When using Hydrogen as fuel, the fire hazard resulting from a Hydrogen leak after a crash may be very different compared to that resulting from traditional types of fuel, due to the Hydrogen phenomenology:

- LH2 “instantaneous” evaporation upon leaking
- LH2 interaction with Air
- Gaseous H2 lighter than air
- H2 ignition can lead to Jet flame or explosion (deflagration / detonation)
- H2 Bleve risk (inside the tank)
- H2 flame is barely visible
A few fire/explosion problematics

Post Crash fire

→ Need to reconsider flammability standards:
 → Burnthrough protection achieved through CS 25.856(b) may be inadequate: new performance based requirements need to be specified
 → Meeting current certification specifications (e.g. for Large Aeroplanes CS 25.853 and CS-25 App. F Parts II, IV and V) may not be sufficient to maintain survivable conditions in the cabin until safe evacuation is achieved.
 → Minimum performance standards for flammability of materials used in the construction of escape slides (ref. ETSO-C69c and Chapter 9 of Aircraft Materials Fire Test Handbook) may not be adequate to withstand a hydrogen fire.
A few fire/explosion problematics

Post Crash fire

→ CS 25.803(a):

Each crew and passenger area must have emergency means to allow rapid evacuation in crash landings, with the landing gear extended as well as with the landing gear retracted, considering the possibility of the aeroplane being on fire.
A few fire/explosion problematics

Post Crash fire

→ Before launching the emergency evacuation, the crew should have a means to detect the presence of a fire that may affect evacuation from the aircraft: it should be possible to identify a hydrogen fire in any light condition.

→ The location and the level of performance of the available emergency exits, as well as the design and performance of the associated egress assist means, should ensure that evacuees are not directed towards areas inside the cabin or on the ground with risk of lethal injury due to H2 hazard.
A few fire/explosion problematics

Post Crash fire

It may be necessary to replace existing CS-25 requirements and/or, whenever appropriate, to introduce special conditions.

→ CS 25.807(e):

Emergency exits must be distributed as uniformly as practical, *taking into account passenger seat distribution.*

→ CS 25.807(f)(3):

If more than one floor-level exit per side is prescribed, and the aeroplane does not have a combination cargo and passenger configuration, at least one floor-level exit must be located on each side near each end of the cabin.
A few fire/explosion problematics

Post Crash fire

→ Depending on the design of the aircraft, it may be preferrable to concentrate exits in areas that minimize exposure to any hazards generated by the hydrogen systems installation.

→ Evacuees should be directed to safe areas after reaching the ground, at sufficient distance from the aircraft to mitigate the risk of exposure to explosions.
A few fire/explosion problematics

Definition of **Hazard areas** following a similar approach as already proposed by EASA for VTOL aircraft (ref. MOC-2 SC-VTOL Issue 3):

Hazard areas: Areas around the aircraft where a hazard to persons or equipment may exist, for example due to moving surfaces, engine exhaust or battery venting in case of fire, should be identified and depicted in the AFM. Corresponding hazard markings should be present on the aircraft.
A few fire/explosion problematics

→ Certainly not exhaustive list of problematics ...
 → Batteries fire/explosion risk...

→ Looking forward to the discussion:
 → Any missing problematics,
 → priority,
 → working groups initiation...
Thank you!

Please share proposals/concerns:

Hydrogen_12June2023@easa.europa.eu