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EXECUTIVE SUMMARY 

Context 

Artificial Intelligence (AI) is becoming ubiquitous and many industrial domains, including aeronautics, 
aim to harness its promises to improve their performance. The most spectacular progress of 
contemporary AI comes from Machine Learning (ML). ML systems extract and learn behavioural 
patterns for a given task from data, which are samples of the operational context of the considered task. 
However, that same learning process can make it harder for those systems to be trusted in critical 
situations.  Hence, more adequate approaches need to be developed to build that trust.  
 
In the aeronautics domain, the European Union Aviation Safety Agency (EASA) published its Artificial 
Intelligence Roadmap in February 2020, followed by a first major deliverable, a Concept Paper ‘First 
usable guidance for level 1 machine learning applications’ in December 2021. This first document has 
been recently updated to a Proposed issue 02 which was published for consultation in February 2023 to 
cover level 2 AI applications. These iterative versions of the EASA AI concept paper lay down the 
basis of EASA future guidance for ML applications approval and identifies a number of areas in which 
further research is necessary to identify efficient and practicable means of compliance with the defined 
‘AI trustworthiness’ objectives. Recently EASA updated its Roadmap 2.0, confirming the framework 
of learning assurance that serves as reference for the Machine Learning Application Approval 
(MLEAP) project. 
 
The MLEAP project is one of the projects initiated by EASA towards those goals. This project is funded 
under the Horizon Europe framework. MLEAP has been tailored to investigate the challenging 
objectives of the W-shaped process included in the EASA AI Concept paper as per figure below: 

The MLEAP tasks are:  

• Task 1: Data completeness and representativity, with handling of the corner cases 
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• Task 2: Model development, through the handling of the generalization properties 

• Task 3: Model evaluation, in particular in terms of robustness and stability 
 
This interim report offers a set of anticipated concepts for the evaluation and certification of AI-based 
systems supporting the EASA roadmap deliverables, and help industry stakeholders in planning new 
strategies for deploying AI in their human and technical organisations. 

Report contents 

This report, built around six chapters, is the first public intermediate report issued by the MLEAP 
project.  A second and final version will be published in a year.  
 
The first chapter corresponds to the introduction. It provides a detailed description of the research 
directions issued in this project, while defining the boundaries of the expected work. Besides, it 
highlights the definitions and terminology the work is based upon, and also the performances evaluation 
metrics used in the following chapters. 
The second is dedicated to the use cases description. The selected use cases provide data and models 
for the evaluation purpose of the different MLEAP tasks. So far, the use cases have served the different 
tasks analysing the state of the art and the methods selection, as well as their applicability analysis. 
Finally, they will be used on the following steps to evaluate the project findings. 
Chapter 3 is dealing with the data management aspects of the learning assurance aspects. In particular, 
methodologies for trying to measure or ensure completeness and representativeness are presented and 
collated in a selection grid. In addition approaches to manage edge cases and corner cases are explored. 
The fourth chapter revolves about generalization properties at model development time. It includes 
model scaling and generalization assessment and evaluation. It concludes by proposing a projection of 
the different methods presented onto the W-shaped development process. 
Chapter 5 then explores the issues of robustness and stability with first a global view of evaluation 
approaches then a specific overview of formal and analytic methods as applied to models. 
The document ends with a global conclusion highlighting the main findings, which is summarised in 
the next section. 

Main results and perspectives 

Data quality is a difficult topic, science-wise, because of the inherent cost which comes with doing 

research in the field. Completeness and representativeness are usually not handled per se, and almost 

no dedicated tools exist. Thus there is a need to build indicators from more general metrics (such as 

entropy) or by leveraging different tools (like sample similarity). Intrinsically, the domain is a difficult 

one, because an objective estimation of completeness or representativeness requires knowing the exact 

extent and distributions of the phenomena to observe.  In addition there is a necessary tradeoff between 

representativity and diversity, since rare cases need to be amplified to be modelled correctly.  Hence, 

Chapter 3 provides analysis on the requirements for the operational design domain (ODD) to set the 

expectations for representativity-diversity tradeoff.  Hopefully, the array of tools and methods described 

in the selection grid should give AI developers a chance to document and justify if the tradeoff holds. 

  

The generalizability of trained models, assessment and evaluation is investigated, while analysing 

methods to avoid along the way under/over-fitting, taking into account the impact of the quality and 

volume of the data. We presented methodologies to right-scale the complexity and capacity of the 
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models depending on the scope of the task under development, and the volume and nature of input data, 

while measuring the level of generalization reached by a training session.  Chapter 4 ends with an 

operational proposal (figure below) on how to project these methods into the W-shaped approach, which 

should be extended to the whole set of tools and methods presented in the document for the next version. 

 
 

 A General Framework proposed in chapter 4 of this report to project the identified methods on the W-shaped process . 

 

Measuring the quality of the training step takes part in the larger question of the evaluation of the 

resulting trained and inference models. Such an evaluation is driven by a number of guarantees that 

need to be gained on the models to ensure an adequate level of confidence in its intended function at a 

given level of performance. Chapter 5 focuses on two specific guarantees of stability and robustness of 

machine learning models. We present multiple approaches, from pure performance measures with 

empirical, data-based approaches to the validation of explicit properties, in particular of stability, 

through an array of analytic or formal methods.  Those methods, while sometimes are difficult to put 

in practice, allow for very powerful analysis of the behaviour of the models, including at runtime, 

allowing monitoring of the whole system in a live setup.  Hence, these evaluation methods on the trained 

models robustness and performance stability can be leveraged in the pipeline developed in Chapter 4 

(figure above), to ensure better performances after implementation. 

 

The main results of EASA IPC ForMuLA report (EASA and Collins Aerospace, 2023) finalised in 

April 2023 will also be evaluated in the coming phase to assess how it can complement the results 

achieved so far by MLEAP project. 

 

An updated version of this public report is expected to be published in May 2024, and will allow 

validation of the applicability of the methods on the aviation use cases we presented in Chapter 2, and 

focus on the actual operational usability and scaling of the various tools identified.  
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Description of the consortium 

The consortium in charge of the project is a partnership of three entities, one of the aeronautics domains, 
Airbus Protect, and two transverse, LNE and Numalis. 
 
Airbus Protect is an Airbus independent subsidiary bringing together expertise in safety, cybersecurity, 
and sustainability-related services. As a risk management company, the aim of this entity is to offer 
end-to-end advisory, consulting services, training programmes and software solutions.  
Pairing expertise built through large-scale projects with the latest insights from on its own research 
programmes, it supports customers, partners and their ecosystem in different industrial domains. Airbus 
Protect is already a trusted partner of customers in high-tech industrial manufacturing, aerospace, 
transportation and future mobility, energy and utilities, financial services, critical infrastructure, 
governments, institutions and defence. The mission of Airbus Protect is to contribute to making its 
clients’ businesses and products safe, secure and sustainable. Airbus Protect brings together more than 
1,400 experts based in France, Germany, the UK, Spain and Belgium, to create a centre of excellence 
to meeting the clients evolving needs. Airbus Protect combines more than 35 years of experience with 
industry-leading expertise to deliver services in three areas: Cybersecurity, providing a consulting and 
managed security services to help our clients to establish and maintain persistent cyber resilience; Safe 
Mobility ensuring the safety of tomorrow’s smart mobility solutions and smart cities; Sustainability 
developing new ways of working, new products and zero-emission energy supplies.  
As part of these three pillars of Airbus Protect, the Digital Transformation Office (DTO) is in charge 
of the development of digital services, from digital transformation to Artificial Intelligence applications 
proposal. The DTO provides support through the services of Airbus Protect. Its activities concern 
software engineering for aeronautics, product support, and the research and development of new 
technologies and AI solutions, for various industrial issues. The DTO implements several 
Data/AI/engineering projects, including MLEAP: 

• SmartPlanif / MaiVA (Maintenance Virtual Assistant): an airline-centric tool, supporting 
customers by automating/providing an increased level of assistance to activities. 

• Climate and energy challenge: aims to provide structured and semantic access to a large 
amount of data on the climate and energy ecosystem.  

• eIODA (Environmental Industrial Operations DAta foundation): aims to create a single 
source of truth for all departments and Airbus divisions to enable Environmental Official 
Reporting as well as Environmental Performance Management.. 

 
The French National metrology and testing Laboratory (in French, “Laboratoire National de 
métrologie et d'Essais” or LNE) is a public industrial and commercial establishment (EPIC) attached 
to the Ministry of the Economy and Finance. It is the central support body for the public authorities in 
the field of testing, evaluation and metrology. Its action aims in particular to examine new products and 
assess their impact in order to inform, protect and meet the needs of consumers and national industry. 
In this context, it carries out measurement, testing, characterization and certification work on systems 
and technologies to support breakthrough innovations (artificial intelligence, cybersecurity, 
nanotechnologies, additive manufacturing, radioactivity measurement, hydrogen storage, etc.) for the 
benefit of the scientific, normative, regulatory and industrial communities. LNE has particular expertise 
in the evaluation of artificial intelligence (AI) systems. It has carried out more than 950 evaluations of 
AI systems since 2008, notably in language processing (translation, transcription, speaker recognition, 
etc.), image processing (person recognition, object recognition, etc.) and robotics (autonomous 
vehicles, service robots, agricultural robots, collaborative robots, intelligent medical devices, etc.). It 
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participates in the major challenges of AI by developing standards to guarantee and certify these 
technologies. The collaborative projects that it conducts at the national, European and international (in 
particular via its strategic partnership with NIST on AI and robotics), which aim first and foremost to 
define standards, protocols (using various conformity assessment methods: literature review, testing, 
on-site audits), metrics and testing environments (databases, simulators, physical or mixed test benches) 
for AI, are varied and involve it in almost all technical and socio-economic issues, ethical questions, 
and sociological issues and networks of institutional actors (programmatic collaborations with the 
OECD, the High Authority for Health, the Cofrac and the most French Ministries) and industrial 
partners (agreements with Thales, Dassault, Airbus, Facebook, CEA, etc.) in the field. In December 
2020, as an impartial and independent third party, it launched a working group to define in a consensual 
manner the first AI certification standard 
 

Numalis is a software editing company specialized in the topic of reliability of AI systems. The goal 

of Numalis is to allow companies to accelerate on the path to adoption of AI, by allowing its design, 

validation, integration and deployment to be more reliable. Numalis is involved in several industries 

such as the Defense, the Aeronautic, the Aerospace, the Railway. For them Numalis provides a unique 

set of tools and expertise in order to improve the maturity (and ultimately the adoption) of their use of 

AI technologies in their future systems. Currently Numalis has developed Saimple, a solution based on 

abstract interpretation. By using only formal analysis, Saimple allows to measure the robustness of 

neural network or support vector machines (SVM) models against specific types of perturbation tied to 

the domain of use employed, visualize in a human readable fashion the robustness across the input 

space and extract explainability components from the system. As robustness and explainability are key 

components in most software quality models as well for the future EU regulation (the AI Act), Numalis 

aims at develops also standards at the international level to bring uniformity to processes across all 

industries. These standards are written in order to bring good practices on the use of formal methods on 

AI and to that effect, Numalis is currently the editor of ISO/IEC standardization documents (the 

ISO/IEC 24029 series) related to the assessment of the robustness of neural networks. Founded in 2015 

in Montpellier, Numalis employs 18 persons which are mostly PhDs and engineers specialized in formal 

methods and software development. 
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1.  Introduction 

1.1 The MLEAP project 

Artificial Intelligence (AI) is becoming ubiquitous and many industrial domains, including aeronautics, 

aim to harness its promises to improve their performance. The most spectacular progress of 

contemporary AI comes from Machine Learning (ML). ML systems extract and learn behavioural 

patterns for a given task from data, which are samples of the operational context of the considered task. 

Their use in important or even critical systems poses not-yet solved problems, in particular in the field 

of aeronautics which is at the core of MLEAP project 
 

The MLEAP project is a two-year work initiated by the EASA to collate and evaluate the state of the 

art on three main topics: 

• Data: completeness and representativeness 

• Model development: Generalization properties 

• Evaluation: robustness and stability 

 

The aim is to build a reference document on those topics. This is the first public version of the document, 

a second and final version will be issued by May 2024. 

 

1.2 Core definitions 

Those topics happen to have variable definitions from one document to another. In order to clearly 

scope the boundaries of this document we will first refine which definitions we are going to base our 

work on. 

1.2.1 Data completeness and representativeness 

The objective of this present section is to analyse to what extent literature may diverge in the acceptation 

of the notions, or in the scope they cover. Indeed, the fact that some aspects related to quality attributes 

are not properly defined in the community considerably hinders the research for appropriate methods, 

in the present deliverable first, but also for the users of the DQRs relative to these notions. This section 

thus highlights what parts of the commonly found definitions are stable among the different studies, 

and what aspects may present difficulties and require more exploration and research results from the 

community. 

 

In (EASA, 2023), the notions are defined as follows in the section G. Annex 3 – Definitions and 

acronyms: 

• “Completeness — A data set is complete if it sufficiently (i.e. as specified in the DQRs) covers 

the entire space of the operational design domain for the intended application.” 

• “Representativeness (of a data set) — A data set is representative when the distribution of its 

key characteristics is similar to the actual input state space for the intended application.” 

 

The notions are further explained in the context of the points of verification of the EASA Concept 

Paper, which allows the reader of the guidance to deepen the understanding of each attribute. The 
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dedicated sections (“Anticipated MOC DM-13-1: Data completeness” and “Anticipated MOC DM-13-

2: Data representativeness”) offer operational methods and objectives. In addition, the reader can note 

that both attributes should be analysed “with respect to the ML requirements and the AI/ML constituent 

ODD” (section C.3.1.3), that “the assurance process should be shifted on the correctness and 

completeness/representativeness of the data (training/validation/test data sets) and on the learning and 

its verification” (section C.6.1), or that “[c]ompleteness and representativeness of the data sets are 

prerequisites to ensure performance on unseen data and to derive generalization guarantees for the 

trained model” (section C.3.1.3.8). 

 

In the following of this section, the term “EASA definition” will encompass both the definition from 

the section G of the Concept Paper and the descriptions provided throughout the document. 

1.2.1.1 Completeness 

➢ EASA definition of completeness is in line with literature and standards. However, all 

definitions include reference to notions linked to the operating conditions of the system, which 

are well defined in EASA's work (ODD) but seldom defined in literature (e.g. "context of use"), 

hence not allowing comparison on this aspect. 

➢ In EASA’s acceptation, completeness must be considered relatively to: Operational Design 

Domain (ODD); ML requirements; ConOps; intended application. However, ISO/IEC 

25012:2008 only refers to “a specific context of use”, which is not strictly defined in the 

standards nor in literature. 

➢ A challenge of the definition of completeness pertains to the identification and representation 

of the relevant scope of the system (ODD, context of use, intended application, etc.). 

 

ISO/IEC 25012:2008 provides a definition for completeness: “The degree to which subject data 

associated with an entity has values for all expected attributes and related entity instances in a specific 

context of use” (ISO/IEC 25012, 2008). 

 

Scientific literature does not always offer an explanation or definition of the attributes explored in the 

papers. In some cases, completeness is presented along with selected definitions – the article (Shrestha 

et al., 2022) on data analysis for urban infrastructure, for example, opts explicitly for a definition 

derived from (Veregin, 1999), stating that completeness is understood as “feature completeness, which 

refers to the known presence and location of all [infrastructure components], and attribute–value 

completeness, which refers to known attributes and values of each component”. In another paper 

dedicated to the assessment of completeness, availability and consistency of health record data (Nobles 

et al., 2015), no theoretical definition of completeness is provided. Instead, an operational definition of 

“presence of data” is proposed, as the percentage of visits to the medical facility which are stored in the 

database with all appropriate fields filled in. These studies highlight all the aspects presented in the ISO 

definition, namely the importance of the presence of values in the target context of use. 

 

The study “Data completeness measure” (Emran, 2015) provides an overview of the definitions and 

methods for computing completeness. The paper mentions the direct relation to missing information, 

and details four types of missing values: (i) null-based missing values - where missing values are 

represented by nulls; (ii) tuple-based missing values - the absence of “attribute-value” tuples; (iii) 

schema-based missing values - missing attributes and entities from the schema; (iv) population-based 
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missing values - missing individuals in comparison with a reference population1. The information from 

the study is more of a functional description of completeness than a definition per se. While the concepts 

addressed do not seem to contradict the ISO definition, the notion of context of use is not represented 

in the approach, or only indirectly. 

 

In general, one can understand that the community seems to agree that completeness assessment is 

linked to the study of missing information. However, the notion of context of use provided by the ISO 

definition is mostly implicit. The standard (ISO/IEC CD 5259-2, 202X) , in its present state, covers this 

notion quite remotely, by specifying that completeness should be tackled differently depending on 

specific usage contexts. It seems obvious that a first main step in the definition of operational methods 

of completeness assessment should encompass the formalized description of what are such specific 

usage contexts. Notwithstanding the vagueness of the notion of “context of use”, the ISO 25012 

definition seems coherent with EASA definition. 

1.2.1.2 Representativeness 

➢ EASA definition of representativeness is in line with literature and standards, with the exception 

of EASA covering learning, validation and test data sets, while the other sources only consider 

training data. 

➢ In literature, representativeness seems sometimes confused with the data quality attribute of 

relevance, which focuses on the goodness of data features as predictors for ML. 

 

Representativeness is not addressed in (ISO/IEC 25012, 2008). The standard (ISO/IEC CD 5259-2, 

202X), in its present state, refers to the degree to which a data set used for training reflects the target 

population under study. The target population is characterized through an analysis of the data expected 

in the target conditions of use of the AI system. 

 

Scientific literature does not provide strict definitions, but the works articulate around similar notions 

whatever the final use of the data (for analytics or data-based AI). An OECD working paper (Bajgar et 

al., 2020) presents an analysis of representativeness in the context of the Orbis private companies 

database. The document does not provide a definition of representativeness; however, the study shows 

that it is linked to the distribution of the population in terms of societal and demographic characteristics, 

a distribution that is deemed adapted to the object under study. This approach seems in line with the 

ISO approach. In another paper about AI fairness and inclusion, (Kamikubo et al., 2022) tackle the 

notion of representativeness in the sense that the data sets used for training should be representative of 

the target demographic groups (in terms of age, gender and race/ethnicity). The paper highlights some 

challenges for the design of representative data sets, including the fact that demographic variables are 

sensitive and complex to annotate, or the absence of certain elements normally present in the population 

but for which research does not provide enough tools for tracking them. 

             

One should note that the notion of representativeness is linked to the notion of relevance (see Section 

3.5.3), a data quality attribute that assesses (in ML) to what extent the features used for training are 

good predictors. (ISO/IEC 25012, 2008), that does not provide a strict definition of representativeness, 

 

 
1 One can note that this last point seems to refer to representativeness; however, the authors of the paper confirm that this 

aspect is under-addressed in the literature, and its relevance cannot be confirmed. 
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mentions the “goodness of fit of distributions” (in section 3.3.5 of the standard), which could correspond 

both to a reference to the quality of features as predictors as well as a good distribution in terms of 

target population of use. It seems then compulsory that the notions be distinguished, and that the 

intended scope of representativeness is confirmed. 

1.2.2 Generalization guarantees 

In this document, the following definitions, largely aligned with the literature, are used: 

 

Generalizability: Machine learning model generalization is the capacity of a ML model to keep an 
acceptable level of performance on unseen input data (during training phase) from the ODD. 

 

Overfitting: Overfitting is a concept in data science, which occurs when a statistical model fits exactly 
training data but fails to perform accurately against unseen data from the ODD. 

An overfitting model fails to generalize well, as it learns the noise and patterns of the training data to 

the point where it negatively impacts the performance of the model on new data. 

 

Underfitting: Underfitting occurs when a model doesn’t have the capacity to generalize well on new 
data or when the model is not able to create a mapping between the input and the target variable. 

 

In this document, the terminology related to models development and evaluation is based on the 

following definitions, largely used in the literature, and that we have adapted. More formal descriptions 

of these concepts can be found in chapter 4. 

  

Operational Domain (OD): As part of the ConOps definition, the OD corresponds to the complete 
description of the conditions on which the whole system (the AI part included) should operate, along 
with the operational scenarios (EASA, 2023). The specific operational limitations and assumptions 
should be defined as well as the already identified risks, associated mitigations and impacts on the AI 
component.   

 

Operational Design Domain (ODD): This is a part of the OD definition, and represents the operational 
conditions in which the ML constituent is designed to properly operate. For every application, the ODD 
is an abstraction of the operational context and needs to be known in order to state guarantees on 
performance and safety (Heyn et al., 2022). According to the EASA’s recommendation (EASA, 2023), 
the ODD should include a refinement of the OD into the AI/ML constituent. Hence, additional 
parameters can be identified and defined for the AI/ML constituent. Thus, their definition could vary 
from one use-case to another (e.g. data type, initial conditions, system requirements …), while the 
components remain the same. To cope with this, we need to define the technical requirements and initial 
conditions, under which the system is designed to function. 

 

Model architecture: Represents a set of design features characterizing the ML model, such as the type 
of the neural network, the ML model class or even some design related details (e.g. size and type of the 
different included functions).  
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Data Dimensionality: Based in statistical learning definitions of data dimensionality (Hastie et al., 
2009), this feature can be an influencing parameter on the choices made for AI-based systems. Hence, 
we rely on two levels to define the data dimensionality of the different use-cases: (1) High-dimensional 
data are defined as data in which the number of features (variables observed), are close to or larger than 
the number of observations (or data points); (2) The opposite is low-dimensional data in which the 
number of observations far outnumbers the number of features. A related concept is wide data, which 
refers to data with numerous features irrespective of the number of observations (similarly, tall data is 
often used to denote data with a large number of observations). Hence, analyses of high-dimensional 
data require consideration of potential problems that come from having more features than observations. 
Considering use-cases from both (1) and (2) data dimensionalities, one important issue is the impact on 
the ODD definition. Note that, while applications of class (2) seem to be easier to handle, compared to 
those of class (1), where many of the features cannot always be known (a priori, and very often a 
posteriori), which makes the definition of the ODD even more complex with such use cases. 

 

Model Complexity: it refers to the characteristic defining how sophisticated/complicated the model is 
(Verhagen, 2021). Several ways can be explored to define the model complexity, the main feature relies 
on the number of trainable variables and the required amount of data needed to train a performing 
model. 

1.2.3 System robustness and stability 

Robustness and stability do not necessarily constitute clear and unambiguous notions depending on 
which document the reader is referring to. In this section we consider both the literature coming from 
the EASA (and the WG114 2) and the one from ISO/IEC JTC 1/SC 42 3. By comparing the definition 
present in which we could first draw the following table of correspondence. 

  

 

 
2 https://www.eurocae.net/news/posts/2019/june/new-working-group-wg-114-artificial-intelligence/ 
3 For clarity the rest of the document will refer it at ISO/IEC instead of the full denomination ISO/IEC JTC 1/SC 42. When 

designing another subcommittee of the ISO or the IEC its full name will be used. 
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1.2.3.1 Robustness and stability 

Definition Stability Robustness 

ISO/IEC 

 

 

 

 

Despite having some documents mentioning 

the concept of stability (for example in 

(ISO/IEC 14496, 2019)), there is no proper 

definition of an algorithmic stability 

available in the ISO/IEC. 

ISO/IEC 22989:2022 (ISO/IEC, 2022a) and 

ISO/IEC 24029-1:2021 (ISO/IEC, 2022b) 

ability of a system to maintain its level of 

performance under any circumstances 

 

ISO/IEC TS 5723 

ability of a system to maintain its level of 

performance under a variety of circumstances 

 

ISO 18158:2016 

measure of the capacity of an analytical 

procedure to remain unaffected by small 

variations in method parameters and provides 

an indication of the method’s reliability during 

normal usage 

 

ISO/IEC/IEEE 24765:2017 

degree to which a system or component can 

function correctly in the presence of invalid 

inputs or stressful environmental conditions 

 

EASA CP Stability of the learning algorithm: 

Refers to ensuring that the produced model 
does not change a lot under perturbations of 
the training data set.  
 

Objective LM11: The applicant should provide 
an analysis on the stability of the learning 
algorithms.  
 
 

Stability of the trained model: 

Refers to keeping input-output relations of the 

model under small perturbations 

 

Objective LM12: The applicant should perform 

and document the verification of the stability 

of the trained model.  

General definition: Ability of a system to 

maintain its level of performance under all 

foreseeable conditions. At model level 

(trained or inference), the robustness 

objectives are further split into two groups: 

the ones pertaining to ‘model stability’ and the 

ones pertaining to ‘robustness in adverse 

conditions’. 

 

Robustness of the trained model 

Objective LM-13: The applicant should 
perform and document the verification of the 
robustness of the trained model in adverse 
conditions.  

 

Robustness of the inference model 
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Definition Stability Robustness 

 

Stability of the inference model: 

 

Objective IMP-08: The applicant should 

perform and document the verification of the 

stability of the inference model.  

 

Objective IMP-09: The applicant should 

perform and document the verification of the 

robustness of the inference model in adverse 

conditions.  

Table 1. Correspondence between high level concepts in EASA CP and ISO/IEC 

First, we have to observe that the concept of stability, in the sense of an algorithmic property, is largely 
absent in the ISO/IEC information technology technical sector literature (even outside the 
subcommittee studying AI). It refers most usually to a property of a material or a mechanical device 
which is not applicable in the current context of this document. 

Second, the different concepts (of the training algorithm, the trained model or the inference model) on 
robustness are more or less aligned between the two. They both refer to some degree to the performance 
of the ML model holding even in presence of changing input. EASA CP is analysing these changing 
inputs by exploring (in LM12) edge cases, corner cases, outliers, out of distribution or even adversarial 
cases, while the ISO/IEC does not overly detail those aspects. 

The main conceptual difference between the notion of stability and robustness in ISO/IEC and EASA 
CP, resides in the fact the EASA CP split them into two different concepts, whereas ISO/IEC tends to 
unify them under the same name of robustness. For EASA CP robustness resides in the notion of input 
adversity, whereas stability is more focused on normal inputs. ISO/IEC views them in the same way 
since the robustness has to be defined in “any” condition, so it is both true for adverse or normal inputs. 

In the rest of the document the term of Robustness when applied to a model is used in the sense of the 
‘robustness in adverse conditions’ definition. However, the general definition of Robustness 
corresponds to the notion of maintaining the performance in all foreseeable conditions which 
encompasses both stability and robustness of a model in adverse conditions. 

1.2.3.2 Corner and Edge Case Concepts 

In this section we start with introducing some definitions of concepts related to corner cases. Then we 
present a scale to classify the various kinds of corner cases. It is important to note that several 
terminologies are being used in the literature not always in the same ways. This is why in section 
1.2.3.2.4 the document will attempt to draw the relationship between the state of the art and the EASA 
Concept Paper definitions. Corner and edge cases are important to consider since the variety of use 
cases considered in the MLEAP project (see Chapter 0) will explore several types of them. 

1.2.3.2.1 Definitions from the EASA Concept Paper 

The EASA concept paper (EASA, 2023) uses several concept related that can be tied to the notion of 

corner cases. In particular it revolves around the following definitions: 

 

Corner case Relates to a situation that, considering at least two parameters of the AI/ML constituent 
ODD, occurs rarely on all of these parameters (i.e. low representation of the associated 
values in the distribution for those parameters). 
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Edge case Relates to a situation that, considering a given parameter of the AI/ML constituent ODD, 
occurs rarely (i.e. low representation of the associated value in the distribution for that 
parameter). 

ODD The ODD defines the set of operating parameters, together with the range and distribution 
within which the AI/ML constituent is designed to operate, and as such, will only operate 
nominally when the parameters described within the ODD are satisfied. The ODD also 
considers correlations between operating parameters in order to refine the ranges 
between these parameters when appropriate; in other words, the range(s) for one or 
several operating parameters could depend on the value or range of another parameter. 

Outlier Data which is outside the range of at least one AI/ML constituent ODD parameter. 

 

These definitions are then used in some of the requirements expressed in the EASA CP. For example, 
in DM01 (and its anticipated MOC DM-01-01) which states that during the different iterations which 
will happen during the learning phase, particular attention should be put on: 

• the definition of nominal data; 

• the identification of edge cases, corner cases data in preparation of stability of the model; 

• the definition of infeasible corner cases data; 

• the detection and removal of inliers; 

• the detection and management of novelties; 

• the definition of outliers for their detection and management. 

Several other requirements that are expressed in the EASA CP relate directly to this notion. For 
example, IMP-08 (and its anticipated MOC IMP-08-01) mentioned the verification of the inference 
model in adverse condition, which concerns also edge and corner cases. The requirement LM-13 (and 
its anticipated MOC LM-13-1), which is its symmetrical for the trained model which specify the same 
requirement. 

 

1.2.3.2.2 Vocabulary and Concepts for the State of the Art 

When dealing with corner cases, several words and concepts are commonly used in the bibliography 
and it is then necessary to make distinctions between corner cases and other terms used in the literature 
(Heidecker et al., 2021). First of all, in the context of software and hardware testing, the terms edge 
case is used. It can also refer to extreme values. 

Edge case: Edge cases are situations or parameters that occur rarely but are already taken into account 
during the development (Koopman et al., 2019). The concept of edge cases also covers extreme cases 
or boundary cases. When edge cases are taken into account by the designers of the system, they become 
normal cases and are not any longer considered as edge cases. 

Next, the terms outlier, novelty, anomaly are often used in ML literature. They are strongly related to 
corner cases and may have an overlapping meaning. A summary is given in Figure 1. Literature also 
offers a wide variety of approaches for the detection of anomalies and novelties (Hodge and Austin, 
2004; Kumar et al., 2009; Pimentel et al., 2013). 
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Figure 1. Relations between outliers, anomalies, novelties and corner cases (borrowed from (Heidecker et al., 2021)). 

 

Outlier: An outlier can be defined as an observation that deviates so much from other observations that 
it suggests that it was generated by a different mechanism (Hawkins, 1980). In (Gruhl et al., 2021), an 
outlier is defined as a legitimate observation of a known process that occurs rarely and, for example, 
represents an extreme value. 

Novelty: Novelties appear as instances or objects not seen before (Kumar et al., 2009). In (Gruhl et al., 
2021), the definition of novelties is a bit broader. Novelties are described as a spatial or temporal 
agglomeration of anomalies or as a change in the distribution of an already known process. The 
occurrence of new situations, new objects and new movement patterns is an essential characteristic of 
corner cases, which does not simplify a clear distinction to novelties. 

Anomaly: Many definitions of anomalies can be found in the literature (Katsaggelos et al., 2010; 
Koopman et al., 2019; Kumar et al., 2009). Some definitions focus on anomalies as noisy data 
occurrences that prompt artifacts which in turn hinder data analysis (Pimentel et al., 2013). Other 
definitions first define normal events by a high frequency of occurrence and, consequently, anomalies 
are defined as the opposite (Katsaggelos et al., 2010). Yet other definitions consider anomalies as 
patterns that are not consistent with learned ones, or with general normal behaviour (Kumar et al., 2009; 
Popoola and Wang, 2012). A categorization of anomalies is given in (Kumar et al., 2009). 

Corner case: While many terms related to corner cases exist in the literature, as seen in the former 
paragraphs, a general definition and description is missing. The lack of a universally agreed technical 
terms and definitions also makes detection of corner cases cumbersome. Corner cases can be defined 
in one of the following ways. 

• A corner case may result from the combination of several normal situations or parameters that 

coincide simultaneously, thus representing a rare or never considered case or scene (Heidecker 

et al., 2021). 

• A corner case may result from an entirely new situation not just combinations of already known 

ones. 

• A corner cases may result from a deviation from normality that is manifested in non-conform 

behaviour or patterns. The terms anomaly and corner case are then almost used synonymously. 

Anomalies describe a deviation from normality. Hence, the term appears in the systematization 

of corner cases as well (Fingscheidt et al., 2020). 

• A corner case set has the potential to comprise data samples exhibiting erroneous and unforeseen 

behaviours, such as adversarial data on boundaries and misclassified data (outliers) (Tinghui 

Ouyang, 2021) as shown in Figure 2. 
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• Another definition is based on prediction: Following (Fingscheidt et al., 2019), a corner case 

arises if there is a relevant object in a relevant context that a modern system cannot predict. 

 
Figure 2 - Illustration taken from (Tinghui Ouyang, 2021) showing corner cases (green) which can be near the classification boundary 

and include both correct and incorrect classification. 

Similar to software testing, corner cases can cease to exist once an appropriate number of examples of 
a particular corner case have been added to the training and validation data of a perception method. In 
ML, corner cases help to validate, but also to improve the systems by re-training. The recorded data of 
such a situation can be used as part of the training data for the ML system which can use in the case of 
an active learning approach. 

1.2.3.2.3 Systematization of Corner Cases on Different Levels 

Interestingly, the authors of (Fingscheidt et al., 2020; Heidecker et al., 2021) propose a systematization 
of corner cases for visual perception in highly automated driving, where the special cases are classified 
by levels. While this work is dedicated to visual perception, it represents a strong basis for corner case 
systematization in other sectors. 
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Figure 3. Multiple corner cases: A winter scene with an icy, slippery, reflective road, combined with low winter sun and people on 

cross-country skis crossing the road (figure borrowed from (Heidecker et al., 2021).) 

These levels are based on the type of situation they encompass and ordered by their theoretical 
complexity of detection. The authors consider corner cases on the scene (see Figure 3 borrowed from 
(Heidecker et al., 2021)), object (e.g., people on cross-country skis), and domain level (e.g., snowy 
winter), which they summarize into the content layer. In addition, for corner cases at the scenario level, 
the authors define the temporal layer, e.g., the unusual movement of a person with cross-country skis 
compared to a pedestrian. They grouped the corner cases, depending on whether they concern single 
image frames and point clouds (content layer), or multiple consecutive ones (temporal layer.) As the 
goal is to provide a more comprehensive conceptualization of corner cases, including multi-modal 
sensor inputs, they distinguish on the lowest theoretical detection complexity between pixel-, and point-
cloud-level corner cases (the sensor layer.) 

Let us follow the order in Figure 4 (borrowed from (Fingscheidt et al., 2020)) by going from low to 
high complexity. 

• The pixel-level corner cases are caused by perceived errors in the data. This type of corner case 

is at the bottom of Figure 4 because the detection complexity is relatively low. At the pixel level, 

we distinguish two types of outliers. Global outliers occur when all or many of the pixels are 

outside the expected range of measurements. This is due to unnatural lighting conditions or 

overexposure, for example. Local outliers occur when one or a few pixel values fall outside the 

expected measurement range. 

• In the case of domain-level corner cases, the world model fails to explain its observations. 

Domain-level shifts are typically the cause of this type of corner case where a large and constant 

shift occurs in the appearance but not in the semantics. Methods for the detection of domain-

level corner cases are often related to the field of domain-level adaptation (Bolte et al., 2019). 

• At the object level, corner cases arise when instances that were not seen during training are 

perceived during inference. Single-point-anomalies or novelties are defined by unknown objects 
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in the observations. Object-level corner cases include any new object appearing in a normal 

scene, i.e. any unknown type of obstacle, or shadows of objects actually not visible in the image. 

• The scene-level corner cases do not conform to the expected patterns on individual images. The 

theoretical increase in detection complexity is induced by the need to understand the whole 

perceived scene. We distinguish two types of corner cases according to the type of 

understanding necessary for the detection. 

o Contextual anomalies are known objects, which appear in unusual locations of the scene. 

o Collective anomalies are known objects, which appear in an unusual quantity, for 

example a large gathering of people such as a demonstration or a traffic jam. 

• Scenario-level corner cases denote the observation of patterns with temporal context. In addition 

to scene understanding, temporal understanding is necessary as well, requiring an image 

sequence for detection. We consider three different cases. 

o Risky scenarios occur when a pattern observed in similar form during training appears 

again during inference and still contains a potential danger. 

o Novel scenarios occur when a pattern that was not observed during training appears 

during inference but does not increase the potential of danger. 

o Anomalous scenarios occur when a pattern, not observed during training, appears during 

inference and, additionally, increases the potential of danger drastically 

This approach is highly related to the vision context, but other approaches can be defined for different 

type of use case, Sections 3.4.8.8.2 and 3.4.8.8.3 provide more on the topic. 
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Corner cases  Description Examples Literature 

Scenario level 
Patterns are observed over 

the course of an image 

sequences 
 

Recognition requires scene 

understanding 

Anomalous Scenario 

Pattern that was not observed during 

the training process and has high 

potential for collision 

- Person suddenly walking onto the street 
- Car accident 

- Car or person breaks traffic rule 

 

(B. Barz and Denzler, 

2019; Chong and Tay, 

2017; Fingscheidt et al., 

2019; Hasan et al., 

2016; Xu et al., 2015) 

Novel Scenario 

Pattern that was not observed during 

the training process, but does not 

increase the potential for collision 

 

- Truck appears from a side road 
(but is going to stop) 

- Accessing the freeway 

 

(B. Barz and Denzler, 

2019; Chong and Tay, 

2017; Fingscheidt et 

al., 2019; Hasan et al., 

2016; Xu et al., 2015) 

Risky Scenario 

Pattern that was observed during 

the training process, but still 
contains potential for collision 

 

- A car is coming towards me 

(potentially short time to collision) 

- Overtaking a cyclist 
 

(B. Barz and Denzler, 

2019; Fingscheidt et 

al., 2019; Xu et al., 

2015) 

Scene Level 
Non-conformity 

with expected 

patterns in 
a single image 

 

Collective Anomaly 

Multiple known objects, but in an 

unseen quantity 

 

- Demonstration, e.g., critical mass ride 
- Traffic jam 

 

(Chalapathy et al., 

2018) 

Contextual Anomaly 

A known object, but in an unusual 
location 

 

- Tree on the street 

- Barrier, e.g., a fence on the street 
 

(D. Gong et al., 2019; 

Kendall et al., 2015; 

Lakshminarayanan et 

al., 2017; Perera and 

Patel, 2019; Ruff et 

al., 2018; Xia et al., 

2015) 

Object Level 
Instances that have 
not been seen before 

 

Single-Point Anomaly (Novelty) 

An unknown object 

 

- Bear, tiger, etc. 
- Lost objects 

- Rollator 

 

(Bendale and Boult, 

2015; Creusot and 

Munawa, 2015; Liang 

et al., 2017; Lis et al., 

2019; Oza and Patel, 

2019; Pham et al., 

2018; Yoshihashi et 

al., 2018; Zhai et al., 

2016)   

Domain Level 
World model fails to 
explain observations 

 

Domain level Shift 

A large, constant shift in appearance, 
but not in semantics 

 

- Weather conditions, rain, fog, snow 

- Traffic sign appearance 
- Location (Europe-USA) 

 

(Bolte et al., 2019; 

Chen et al., 2018; Dai 

and Van Gool, 2018; 

Shen et al., 2017; 

Valada et al., 2017; 

Vertens et al., 2020; 

Zou et al., 2018) 

Pixel Level 
(Perceived) errors 

in data 

 

Local Outlier 

One or few pixels fall outside of 

the expected range of measurement 

 

- Pixel errors (dead pixels) 
- Dirt on the windshield 

 

(An et al., 2007; 

Buczko and Willert, 

2017; Dong et al., 

2019) 

Global Outlier 

All or many pixels fall outside of 

the expected range of measurement 

 

- Lighting conditions 
- Overexposure 

 

(Jatzkowski et al., 

2018; Lee et al., 2014) 

Figure 4. Systematization of corner cases on different levels. The theoretical complexity of the detection typically increases from the 

bottom to the top (figure borrowed to (Fingscheidt et al., 2020).) 
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1.2.3.2.4 Comparison Literature and Concept Paper 

Table 2 present a comparison between the literature and the concept paper concepts revolving around 

the notion of corner cases. The definitions are extracted from the literature that was presented in the 

whole Section 1.2.3.2.2, the reader should refer to the previous sections to match it with its origin. In 

the following the document uses the definitions issued from the EASA CP. 

 

 Literature Concept paper 

Edge case “The concept of edge cases also covers 
extreme cases or boundary cases. When 
edge cases are taken into account by the 
designers of the system, they become 
normal cases and are not any longer 
considered as edge cases.” 

Relates to a situation that, considering a 
given parameter of the AI/ML constituent 
ODD, occurs rarely (i.e. low representation 
of the associated value in the distribution 
for that parameter). 

Corner case “While many terms related to corner cases 
exist in literature, as seen in the former 
paragraphs, a general definition and 
description is missing. The lack of agreed 
technical terms and definitions also makes 
detection of corner cases cumbersome.” 

Relates to a situation that, considering at 
least two parameters of the AI/ML 
constituent ODD, occurs rarely on all of 
these parameters (i.e. low representation of 
the associated values in the distribution for 
those parameters). 

Novelty “The definition of novelties is a bit broader. 
Novelties are described as a spatial or 
temporal agglomeration of anomalies or as 
a change in the distribution of an already 
known process.” 

“Data which is within the ML Model ODD 
according to the existing ML model ODD 
parameters, but which should have been 
considered outside the ML model ODD if it 
had been correctly described with the 
introduction of at least one new ML model 
ODD parameter. A novelty is in general due 
to a lack of characterization of the ML model 
ODD. It could be integrated to the ML model 
ODD after analysis following the upgrade 
policy of the ML model ODD. A novelty that 
is already outside the ML model ODD is 
therefore an outlier.” 

Outlier “An observation that deviates so much from 
other observations that it suggests that it 
was generated by a different mechanism.” 

“Data which is outside the ML model ODD.” 

Table 2. Comparison between the literature and the EASA concept paper on topics related to corner cases. 

 

1.3 Evaluation metrics 

Machine learning models are evaluated using metrics to analyse their performance on top of the loss 

function which is used to optimize the model during the training phase. Hence, different metrics can be 
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used to evaluate both: the generalization performances to unseen data during training, and the 

performances stability and robustness toward data and/or environment changes. The outputs of the 

metrics can reveal different aspects, depending on the data being used: the generalizability is assessed 

based on unseen data samples during training, and the robustness can be assessed based on corrupted 

data samples. Both generalization and robustness assessment can be performed using the same metrics, 

that can be divided in the two main problem categories: classification and regression. 

1.3.1 Regression 

Regression methods deal with predicting a target value using independent variables. Either based on 

deep or shallow neural networks or classical ML algorithms, metrics grouped herein are based on point 

distance computation methods. These metrics contain fundamental operations and the absolute or 

squared value of their result can be used to provide performance values. Let 𝑦 be the predicted 

(computed) output value (scalar or vector) by the model 𝑓, and �̂� is the expected output (truth). The 

classical error value 𝐸 is computed by (�̂� − 𝑦), for every instance in the data set of 𝑛 training samples. 

As mentioned before, both robustness and generalization performance indicators could be assessed 

using same metrics. Table 3 shows an overview of the most popular evaluation metrics, based on 𝐸,  

for different ML applications. For these metrics, the generalization refers to the ability of the model to 

produce closer values to the target ones ensuring a right ranking of results (e.g. in question answering, 

the rank of the right answer is highly dependent on the score value computed by the trained model. 

Hence, the model generalizing better is the one that returns a good answer in the good ranking). While 

the robustness in these cases aims to ensure the correct sorting of results regardless of noise and/or 

corruption in the input data.    

 
Metric Formula Description 

Mean Error (ME) 
𝑀𝐸 =

∑ 𝐸𝑖
𝑛
𝑖=1

𝑛
 

It is the average of the simple amount of 
differences between a distribution and its true 
values. It is easy to apply and works with numeric 
data. 

Max Error 𝑀𝑎𝑥(|𝐸𝑖|, 𝑖 = 1…𝑛) Max Error is either an absolute or a relative 
metric calculating a value in the input data and 
the corresponding value in the prediction from 
the AI system. The absolute Max Error is the 
maximal signed difference between a value in the 
input data and the corresponding value in the 
prediction from the AI system. The relative Max 
Error is the percentage of the width of the 
variation domain on which the AI system 
operates. 

Mean Absolute 
Error (MAE) 𝑀𝐴𝐸 =

∑ |𝐸𝑖|
𝑛
𝑖=1

𝑛
 

It measures the difference between two 
continuous variables. Uses a similar scale to 
input data and can be used to compare a series 
of different scales too. 

Relative Absolute 
Error (RAE) 𝑅𝐴𝐸 =∑

|𝐸𝑖|

|𝑦�̂� − �̂�𝑚𝑒𝑎𝑛|

𝑛

𝑖=1
 

Where �̂�𝑚𝑒𝑎𝑛 is the average value of 
the true labels. 

Based on errors produced by a trivial model and 
works with numeric data. Need to handle 
carefully, since divisions by zero may occur (if 
true labels contain zeros). 
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Metric Formula Description 
Mean Relative 
Absolute Error 
(MRAE) 

𝑀𝑅𝐴𝐸 =
1

𝑛
∑

|𝐸𝑖|

|𝑦�̂� − �̂�𝑚𝑒𝑎𝑛|

𝑛

𝑖=1
 

Based on absolute errors, it is more sensitive to 
outliers (especially of low values). Need to 
handle carefully, since divisions by zero may 
occur (if true labels contain zeros). 

Mean Squared 
Error (MSE) 𝑀𝑆𝐸 =

∑ 𝐸𝑖
2𝑛

𝑖=1

𝑛
 

Both MSE and RMSE are scale dependent. 
Models whose values are closer to zero present 
an adequate state. They are highly dependent on 
fraction of data that is used (low reliability). 

Root Mean 
Squared Error 
(RMSE) 

𝑅𝑀𝑆𝐸 = √
∑ 𝐸𝑖

2𝑛
𝑖=1

𝑛
 

Geometric Root 
Mean Squared 
Error (GRMSE) 

𝐺𝑅𝑀𝑆𝐸 = √∏ 𝐸𝑖
2

𝑛

𝑖=1

2𝑛

 

GRMSE is also scale dependent. However, 
differently than MSE and RMSE, it is less 
sensitive to outliners. 

Correlation 
coefficient (R) 

𝑅 =
∑ (𝑦�̂�−�̂�𝑚𝑒𝑎𝑛)(𝑦𝑖−𝑦𝑚𝑒𝑎𝑛)
𝑛
𝑖=1

√∑ (𝑦�̂�−�̂�𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1 ∑ (𝑦𝑖−𝑦𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

  𝑅 measures the strength of association 
between variables. Such that values higher than 
0.8 implies stronger correlations. As for 𝑅2, it is 
related to 𝑅, as it is the squared one, its values 
that are close to 1 indicate stronger correlations 
too.  Both 𝑅2  and 𝑅 work with numeric data. 

Coefficient of 
Determination 
(R2) 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦�̂�)
𝑛
𝑖=1

2

∑ (𝑦�̂� − �̂�𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

 
 

Scatter index (SI) 

𝑆𝐼 =

√∑ (𝑦max(�̂�) − 𝑦max(𝑦))
𝑛
𝑖=1

2

𝑛

𝑦max(𝑦)
 

Applied to examine whether RMSE is good or 

not (Mentaschi et al., 2013), if its value is less 

than 1, then estimations are acceptable. It 

shows “excellent performance” when 

SI < 0.1 and “poor performance” when 

SI > 0.3 
Performance 
index (PI) 

𝑃𝐼 =
√1
𝑛
∑(�̂� − 𝑦)2

1 + 𝑅
 

It is an indicator for the evaluation of 

predictivity of a model. Lower PI values result 

in more accurate model predictions (Rifai, 

2021). 
Table 3. List of commonly used performance evaluation measures for ML regression models. 

 

Most ML/DL applications continue to incorporate traditional metrics such as 𝑅, 𝑅2, MAE, and RMSE 

as primary indicators of adequacy of the regression-based ML models. This seems to stem from our 

familiarity with these metrics, as opposed to others; such as Golbraikh and Tropsha’s (Golbraikh et al., 

2003) criterion, QSAR model by Roy and Roy (Roy and Roy, 2008), Frank and Todeschini (Frank and 

Todeschini, 1994), and specifically designed objective functions, often used in other fields. The works 

of Gandomi et al. (Gandomi et al., 2010), Golafshani and Behnood (Golafshani and Behnood, 2018) as 

well as Cheng et al. (Cheng et al., 2014) applied a multi-criteria verification process that incorporated 

the use of traditional as well as modern measures. Utilizing a multi-criteria process is not only beneficial 

to ensure the validity of a particular ML model, but it is also recommended to overcome some of the 

identified limitations of traditional metrics. For example, the Actual/Predicted correlation, that 

corresponds to the linear correlation (in the statistical sense) between the actual values and the predicted 

values for every value considered in a set, must be used with another metric, RMSE, MAE or Max 

Error. 
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1.3.2 Classification 

Classification applications aim at categorizing data into distinct classes. This is a supervised learning 

approach where machines learn to classify observations into binary or multi-classes.  

A set of data samples can have the following characteristics: 

● Total population: the total number of samples in the data (input data with corresponding 

class); 

● Condition positive: the number of real positive cases in the data; 

● Condition negative: the number of real negative cases in the data; 

● Prediction positive: the number of samples classified as positive; 

● Prediction negative: the number of samples classified as negative; 

● Prevalence: the proportion of a particular class in the total number of samples. 

For simpler evaluation purpose, each instance in the set of samples, being classified by the system, is 

evaluated in one of the following ways: 

● True positive (hit): instance belongs to the class and is predicted as belonging to the class; 

● True negative (correct rejection): instance does not belong to the class and is predicted as not 

belonging to the class; 

● False positive (false alarm, Type I error): instance does not belong to the class and is predicted 

as belonging to the class; 

● False negative (miss, Type II error): instance belongs to the class and is predicted as not 

belonging to the class. 

 

Based on this class-evaluation, a confusion matrix (shown in Figure 5) allows a detailed analysis of the 

performance of a classifier and is helpful to circumvent or uncover the weaknesses of individual metrics 

as it achieves a more rigorous and well-rounded analysis of classifier performance (this can be 

computed for every candidate class, if not binary classification). By contrast, using a single metric to 

express classifier performance is not informative enough to conduct this analysis, as it does not indicate 

which classes are best recognized or the type of errors committed by the classifier. 

The confusion matrix  is a square matrix where entry e, at row  and column ] are the number of instances 

belonging to the ¼ class or category that are labelled by the classifier as having the ]¼ Class. 

Confusion matrices include counts of true positives, true negatives, false positives, and false negatives: 

metrics such as accuracy, per-class recall, and per-class precision can be calculated from these. Further 

metrics can be derived from confusion matrix elements, such as entropy of the histogram represented 

by the matrix. 

 

 
Recall 
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Figure 5. Construction of a confusion matrix4 for a binary (false, true) classification. 

The confusion matrix sets the foundations necessary to understand performance measurements for a 

specific classifier, for which the columns of the matrix correspond to the predicted class labels, while 

the rows correspond to the actual ones. The best classifier is the one having the maximum diagonal 

values. Based on this concept, several performance evaluation metrics have been defined to assess a 

classifier’s ability to put every input instance in the corresponding target class. Hence, classification 

metrics are based on the number of instances that are correctly classified as positive or negative. In 

Table 4, most of the measures described work with categorical data. Furthermore, the generalizability 

and robustness of the model can be evaluated using the same metrics, where the well-generalized model 

is the one able to predict right classes for instances unseen during training, while a robust model is the 

one that keeps right classification scheme regardless a corrupted or noisy data samples. 

  

 
Metric Formula Description 

True Positive Rate 
(TPR): Recall 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures the proportion of actual positives 
that are correctly identified as positives. It does 
not account for indeterminate results.  

True Negative Rate 
(TNR): Selectivity 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Measures the proportion of actual negatives 
that are correctly identified negatives.  

Positive Predictive 
Value (PPV): 
Precision 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The proportions of positive observations that 
are true positives. The best model is the one 
with a precision value closer to 1 and the worst 
one has a value of zero. 

Negative Predictive 
Value (NPV) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

The proportions of negative observations that 
are true positives. Has an ideal value of 1 and 
the worst value of zero. 

Positive likelihood 
ratio (LR+) 

𝐿𝑅+ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The LR+ evaluates the change in the odds of 
having a diagnosis with a positive test, it 
presents the likelihood ratio for increasing 
certainty about a positive diagnosis. While the 
LR-  focuses on the negative tests instead.   

Negative likelihood 
ratio (LR-) 𝐿𝑅− =

𝐹𝑁
(𝑇𝑃 + 𝐹𝑁)

𝑇𝑁
(𝑇𝑁 + 𝐹𝑃)

 

Accuracy (ACC) 
𝐴𝑐𝑐 =

𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

Evaluates the ratio of number of correct 
predictions to the total number of samples 
(P+N). 

Fβ scores 𝐹β
= 1

+ β2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

β2 × precision + recall
 

Computes a weighted harmonic mean of 
Precision and Recall, where: 
- F1 (β=1): Balances the weight on precision and 
recall. 
- F2 (β=2): Puts less weight on precision, and 
more weight on recall. 

Matthews 
Correlation 
Coefficient (MCC) 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)+(𝑇𝑁+𝐹𝑃)+(𝑇𝑁+𝑃𝑁)
  

Measures the quality of binary & multi-class 
classifications analysis. It can be used in classes 
with different sizes. Its best values are closer to 
1, worst ones are closer to -1, and when 

 

 
4 https://www.guru99.com/confusion-matrix-machine-learning-example.html  

https://www.guru99.com/confusion-matrix-machine-learning-example.html
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Metric Formula Description 
𝑀𝐶𝐶 ≅ 0, the model tends to make random 
predictions instead. 

Average precision 
(AP) 

𝐴𝑃 = ∑ (𝑟𝑒𝑐𝑎𝑙𝑙𝑟 − 𝑟𝑒𝑐𝑎𝑙𝑙𝑟−1) ×𝑟

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟  
Where 𝑟 is the rank position of the 
result in the list. 

Combines recall and precision for ranking. It 
describes the weighted mean of precision in 
each threshold with the increase in recall from 
the previous threshold used. 

Area under the ROC 
curve (AUC) 

𝐴𝑈𝐶 = ∑
1

2
(𝐹𝑃𝑖+1 −

𝑛−1
𝑖=1

𝐹𝑃𝑖)(𝑇𝑃𝑖+1 − 𝑇𝑃𝑖)  

The ROC (Receiver Operating Characteristic) 
plots the diagnostic ability of a binary classifier 
as its discrimination threshold is varied. The 
AUC measures the two-dimensional area 
underneath the entire ROC curve. Works with 
categorical data. 

Log Loss Error (LLE) 𝐿𝐿𝐸 = −∑ ci log(𝑦𝑐𝑖) + (1 −
𝑀
𝑖=1

ci)log(1 − 𝑦𝑐𝑖)  

Where 𝑀 is the number of classes, 
ci ∈ {0,1} if the current class is the 
correct one, and 𝑦𝑐𝑖 is the output 

model probability corresponding the 
current class. 

Measures the uncertainty of the probabilities 
by comparing predictions to the true labels. 
Values are between 0 and 1, and it penalizes for 
being too confident in wrong prediction. Where 
the perfect model has 𝐿𝐿𝐸 = 0. 
 

Hinge Loss Error 
(HLE) 

𝐻𝐿𝐸 = max(0, 1 − 𝛼𝑦) 
Where 𝛼 = ± and 𝑦 is the computed 
output probability. 

It incorporates a margin or distance from the 
classification boundary into the cost 
calculation. Linearly penalizes incorrect 
predictions, even if new observations are 
classified correctly, they can incur a penalty if 
the margin from the decision boundary is not 
large enough. 

Lift 

𝑙𝑖𝑓𝑡 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑃
𝑇𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

Measures the performance of a model at 
predicting or classifying cases. Formally, it is the 
ratio of correctly predicted positive examples 
and the actual positive examples in the test data 
set. 

Mean Cross 
Entropy (MXE) 

𝑀𝑋𝐸 = −
1

𝑛
∑ �̂�ciln(𝑦𝑐𝑖) + (1 −
𝑀
𝑖=1

�̂�ci)ln(1 −𝑦𝑐𝑖)  

Where �̂�ci and 𝑦𝑐𝑖  are respectively 

the expected and predicted 
probabilities corresponding to the 
current class label ci. 

Measures the performance of a model where 
the output is a probability between 0 and 1. The 
objective in general is to minimize this value to 
get a better likelihood. 

Table 4. List of commonly used performance evaluation measures for ML classifiers. 

 

The reader can refer to ISO/IEC 24029-1 for more details on some metrics. 
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1.4 Document structure 

Following this introduction, which defines the scope of the studies, the next chapter presents the use 

cases that will be used to illustrate the described methods during the next phase of MLEAP project 

(from May 2023 to May 2024). Then the three following chapters are the main work on the three data, 

model and evaluation aspects. The document ends with a global conclusion summarizing the main 

findings. 
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2. Use cases description 

2.1 Summary of the UCs      

In this section, we provide an overall description of the different use-cases chosen for the evaluation 

part on the MLEAP project. These use-cases may be used as sandboxes for testing some of the 

methodologies identified in following chapters.  Table 5 provides an overview of the main technical 

details, in terms of domain definition, intended tasks, models architecture, data, and system 

description, corresponding to three different applications: speech to text for air-traffic control (ATC-

STT), collision avoidance (ACAS Xu), and automatic visual inspection (AVI). Note that, all images, 

results, models, and illustrative examples that do not belong to the consortium, are provided with 

references to proprietary public sources. While confidential details have been omitted and replaced by 

open-source examples (models and data sets), to allow the reproducibility of some results by audience 

of this deliverable.  Last, there is also no conflict of interest with the proposed use cases. These have 

not been submitted to EASA for approval by any of the consortium companies prior to the MLEAP 

project. 

 

With respect to the recommendations in the concept paper by EASA (EASA, 2023), to guarantee 

compliance with the objectives of the AI reliability guidelines, an overview of concept of operations 

(ConOps), describing precisely how the system will be operated is expected to be established, including 

the task allocation and operating conditions of the AI-based system. Hence, in this section, we consider 

the definition of several aspects related to every AI-based application for the different  use cases: 

 

● ML Target tasks: Refers to the intended function that the system is made to perform. In 

machine learning (ML), almost all automated tasks can be designed as a function. 

● System description: represents a set of functional and technical characteristics that could help 

for better understanding the structure of the designed system. 

● ML component description: this part will describe more precisely the ML component (the 

model and its in/out-puts). 

● Data type: this could be even text, signal, time series, scalar data … this part gives precisions 

about the data type involved in the use case. 

● Data management: finally, this will provide some details about how the data is fed to the 

system to perform the intended task. 

  

https://docs.google.com/spreadsheets/d/1gJVORTEDd8HC6_Adxj-gdMmiXgzTQ5PiHmXxejmpICM/edit#gid=0
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 ATC-STT ACAS Xu AVI 

High-level 
description 
of the ODD  

To correctly detect the spoken 
instructions, the acoustic and 
language models should be 
trained on complete data sets. 
Full data completeness is defined 
by several speech-related 
features that are targeted for an 
intended system performance: 
noise types, airports with specific 
checkpoints names, accents, and 
speech rates. 
 

The data5 represents input points of 
the lookup tables from the RTCA SC-

147 resources6. This latter provides 
the Minimum Operational 
Performance Standards (MOPS) for 
ACAS-Xu. The ODD is divided into 
sub-ODDs to fit 45 ML model 
elements of the ML model 
architecture. 

The ODD is defined by the 
set of all pictures of airframe 
structures in acceptable 
lighting & blur conditions. 
There may be indoors or 
outdoors pictures. If it is 
outdoors the weather 
conditions can influence the 
lighting & blur state. 

ML Target tasks Extract useful information for the 
pilot from ATC exchanges 

Each NN shall replicate the LUT 
prediction in its allocated ODD (LUT 
property) 
100% accuracy in the allocated ODD 
for each ML model 

Automatic damage 
detection based on high 
resolution pictures. 
The target accuracy for the 
ML item is the same than for 
a human inspection 

Model 
architecture 

Different architectures: LSTM, 
CNN, TDNN implemented 
within an open-source toolkit 
called KALDI 
The one used for experiments is 
a TDNN-HMM 

L-Lipschitz Neural Networks CNN & Incremental learning 

Data 
Dimensionality 
 
 
 
Model 
Complexity 

 
High Dimension 
 

 
Low dimension 

 
High Dimension 

The models are made of different 
deep neural network 
architectures, and shallow 
classical ML (Kaldi models). 
Hence, methods based on NN 
architecture, for identifying the 
model complexity (cf. section 
4.4.1) apply for this.  

The models are made of simple 
(shallow) neural network 
architectures. Hence, methods 
based on NN architecture, for 
identifying the model complexity 
apply for this.  

The models are made of 
deep CNN architectures 
dealing with high quality 
images. Methods based on 
NN architecture, for 
identifying the model 
complexity apply for this.  

 

 
5
 https://hal.archives-ouvertes.fr/hal-03355299/document  

6 https://my.rtca.org/productdetails?id=a1B1R00000LoYKtUAN 

https://hal.archives-ouvertes.fr/hal-03355299/document
https://my.rtca.org/productdetails?id=a1B1R00000LoYKtUAN
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 ATC-STT ACAS Xu AVI 

System 
description 

- The model is made of 4 main 
components: 
- Feature extractor: Mel filter-
bank coefficients (MFCC) are 
used as input features along with 
i-vectors 
- Acoustic model: 2 models have 
been compared, a Hidden 
Markov Model (HMM), and a 
TDNN/LSTM 
for linking phonemes and audio 
signals. 
- Language model: gives the 
probability distribution over a 
sequence of words. 
- Decoder: beam-pruned Viterbi 
search (LOWERRE, 1976) that 
conducts a best-path 
approximation 
inside the decoding graph. 
- A final softmax layer 
discriminates, according to the 
input, what the heard phoneme 
is. 

1) Identification - All the input 
situations where the NN and the 
LUT predictions are different, are 
considered as incorrect (the NN 
does not preserve the LUT 
property). 
2) Mitigation - This part is already 
addressed per the subsystem 
architecture design: the ACAS-Xu 
hybrid ML-based controller 
switches from the ML model (NNs) 
to the LUTs (Safety Net) when 
incorrect situations are detected 
(this is already described in the 
ACAS-Xu sub-system architecture 
document). 

The inference model is a 
pipeline made of: 
. The damage detector 
. The automated generation 
of windows 
. The classifier 
The damage detector can be 
seen as a data pre-
processing stage before the 
classifier which is the AI/ML 
constituent. 

ML component 
description 

Audio input as a sequence of 
20ms frame TDNN layers scans 
its input according to a splicing 
parameter; 
Final softmax layer discriminate, 
according to the input, what is 
the heard phoneme 

the ML model is composed of 
several elements more precisely, 45 
NNs  
 

Transfer learning using 
already trained network 
from ImageNet project (e.g. 
VGG16); 
Completion of the transfer 
learning network with a 
couple layers with a couple 
of hidden layers; 
Final layer is a cross-entropy 
layer; 
Adam optimizer is used for 
the training 

Data type Annotated corpus with different 
accents (French and Chinese) 

LUTs binary data Any type of image standard 
shall be addressed (.jpg, 
.bmp, .gif, …) 

Data 
management 

-  The data corresponds ATC 
communications, recorded for 
normal situations (no abnormal 
or emergency communications 
have been recorded) 
- The annotated corpus of 
recorded real-life speech 
contains 114.8h, along with 
corresponding text manually 
transcripted 
- Audio input as a sequence of 
20ms frame 

The full raw LUTs are used Acquisition of pictures: 
from cameras downloaded 
to design/deployment 
environment 
Labelling is done using VOTT 
tool; 
Every image can contain 
several damages of different 
classes 
Typical example using VOTT: 
The image is not modified, 
the labelling is supported by 
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 ATC-STT ACAS Xu AVI 

- Not subject to distribution or 
sharing for non-involved third 
parties 

a metadata file presented as 
a json file 
- Not subject to distribution 
or sharing for non-involved 
third parties 

Performances 
and safety 
requirements 
derived from 
design & 

safety
7

 

processes 

System requirements – Complex 

background noise PESQ8 
evaluation score representative 
of operational conditions. PESQ 

returns9 a score from 1 to 4.5, 
with higher scores indicating 
better quality. 3.8 is the 
acceptable score for the 
telephone voice. 
System requirements – High 
speech rate The speech rate in 
ATC is higher than that of speech 
in daily life since ATC requires 
high timeliness 
System requirements – Accents 
The system must operate with 
French and Chinese accent 

System requirements – real-time 1 
The controller must execute with a 
period of 1s. 
System requirements – anti-
collision performance 1 Any 
implementation must behave 
similarly as the reference 
architecture 
System requirements – ODD 1 The 
controller must operate on the 
ranges of the LUTs, i.e. 

 

- ML-based requirements: 

First targeted performance: 

focus on true positives ~ 

80% accuracy. Detection 

accuracy needs to be tested 

across different conditions: 

variations in surface 

structure, camera position 

and viewing angle, and 

object obstruction. 

- System requirements: 

Solutions need to 

accommodate both indoor 

and outdoor environments, 

including night time and 

changing weather 

conditions, while extracting 

unnecessary information 

from the background of the 

aircraft. In addition to the 

ability to detect both 

identified types of damage 

(lightening and trick). 

 

 
Table 5. Overview of the main technical information corresponding to the different use cases chosen for the MLEAP project 

evaluations. For more details, refer to the corresponding section for every use case description. 

2.2 Speech-To-Text for Air Traffic Control  

Automatic Speech Recognition (ASR), also known as Speech to Text (STT), is the task of transcribing 

a given audio signal to a corresponding text. ASR means a machine will automatically recognize what 

a person speaks, and the STT refers to the fact that it can convert speech into text (Mittal and Sharma, 

 

 
7 Corresponds to the requirements that are applicable at AI/ML model level and that have been postulated based on 

engineering judgement, assuming that the model is part of a system and that at system level, the necessary architecture 

mitigation are in place to ensure that applicable safety objectives are met. 
8 PESQ stands for Perceptual Evaluation of Speech Quality. It helps evaluating  

https://en.wikipedia.org/wiki/Perceptual_Evaluation_of_Speech_Quality 
9 Based on the state-of-the-art of ATC-STT (Lin et al., 2019) 
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2023). It has many applications, such as voice user interfaces (Fernandes et al., 2019). Several recently 

trained models and benchmarks are publicly available for testing use10. In this chapter, we consider 

models and approaches developed in the scope of air traffic control (ATC). First, we provide a review 

of some background information about the ATC-STT application, then discuss the related challenges 

to this use-case. 

2.2.1 Background and ATC-STT Description 

In ATC, the ASR-STT application is more than important to handle several daily challenges and 

problems (Lin, 2021). Provided that the spoken instruction is transmitted in an analog manner and can 

be easily impacted by environmental factors (such as communication conditions, equipment error, radio 

interference, etc), it contains a wealth of contextual situational dynamics that indicates the evolutions 

of the flight and traffic in the near-future. These information pieces are highly significant to the air 

traffic operation and to detect the communication errors that may cause potential safety risks. One of 

the most known applications is the spoken instruction understanding (SIU) (Lin, 2021), during radio 

transmissions, where the spoken instructions represent a basic information source. In order to support 

the ATC communications and provide reliable warnings, before the pilot performs the incorrect 

instruction, a SIU system is used. To do so, a wide range of research work is done to come up with 

better ASR models. A wide empirical study of different ASR solutions is made by (Nassif et al., 2019). 

The main components that constitute a generic ASR application are highlighted in Figure 6. This latter 

shows the general framework for speech recognition and textual transcription, where main modules that 

constitute an ASR application can be defined11 as follows: 

 

- Speech signal acquisition: as a first step, the speech data is first recorded using a module that 

receives the speech signal (e.g. a microphone) and store it to utterance12 files; 

- Feature extraction: refers to the mapping of the input acoustic signal to a vector representation, 

using a specific encoder (model). Speech is a 1D signal which is converted into 2D signal and 

chopped into 20-25ms sized frames with 10ms shift. In ASR, feature extraction is a process of 

converting those speech frames into feature vectors (Ashok Kumar et al., 2021). The purpose of 

this step is mainly to identify the components of the audio signal that are good for identifying 

the linguistic content and discarding all the other ones carrying useless things: background 

noise, emotion...; 

- Acoustic model (AM): responsible for the accuracy of the ASR system, it maps the acoustic 

feature to corresponding basic linguistic units called Phonemes corresponding to the hypothesis 

sentence. A recent review of the most used models for feature extraction can be found in (Malik 

and Khanam, 2022); 

- Lexical model (LxM): gives the general structure of the language elements and attribute-value 

structures in a formal lexicon. It specifies the types of lexical object and structure of lexical 

entries, the information associated with them, and the relations between lexical objects. 

- Language model (LM): gives the probability distribution over a sequence of generated words 

(Shinde and Shah, 2018).   

 

 
10

 Check HuggingFace models 
11

 A set of basic ASR definitions are provided in the WIKI-Speech Recognition HOWTO.  
12

 An utterance is the vocalization (speaking) of a word or words that represent a single meaning to the computer. Utterances 

can be a single word, a few words, a sentence, or even multiple sentences. 

https://huggingface.co/tasks/automatic-speech-recognition#:~:text=Automatic%20Speech%20Recognition%20(ASR)%2C,such%20as%20voice%20user%20interfaces.
http://www.iitk.ac.in/LDP/HOWTO/Speech-Recognition-HOWTO/introduction.html#:~:text=The%20following%20definitions%20are%20the,sentence%2C%20or%20even%20multiple%20sentences
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Figure 6. A domain-independent pipeline for ASR applications (Nguyen and Holone, 2015) 

 

In order to develop an ASR system, one needs to deal with several challenges related to the input data 

samples. For instance, when speech has two or more languages within an utterance, it becomes more 

difficult to be understood and correctly interpreted. Known as code-switching (CS) (Mustafa et al., 

2022), this challenge in spoken languages needs to be addressed in ASR systems to recognize speech 

in bilingual and multilingual settings, where the accuracy of the system declines with CS due to 

pronunciation variation. The diagram in Figure 7 shows the different research directions and taxonomy 

of models dedicated to different ASR applications in ATC. In the main tasks that can be addressed in 

this use-case are three folds: 

● Language Understanding (LU): (Raju et al., 2021) where the systems extract both text 

transcripts and semantics associated with intents and slots from input speech utterances. 

● Spoken Instruction Understanding (SIU): (Lin, 2021) where the objective is to correctly 

interpret the instructions communicated between the control tower and the pilots. 

● VoicePrint Recognition (VPR): (Saquib et al., 2011), also known as a Speaker Recognition 

Systems (SRS), their objective is the validation of a user's claimed identity using characteristics 

extracted from their voices. 

  

In the scope of the MLEAP project, the ATC-STT use case is promoted by the work done in an Airbus 

project called BoostHLT13. This latter includes several topics related to ATC speech recognition, 

including the study of the “callsign extraction” (Gupta et al., 2019) challenge, which represents only 

one issue in ATC-STT objectives and challenges. Other problems, such as Speech to intent extraction 

(Ohneiser et al., 2014) and Command Extraction (Helmke et al., 2020) can be addressed, where the aim 

is to correctly recognize all the communicated information pieces, such as those describing movements 

and manoeuvre instructions received from the AT controllers (ATCO). A more extensive taxonomy of 

different research objectives and design on the topic of ATC-STT is provided in (Lin, 2021), showing 

different directions to develop and/or enhance STT systems designed for ATC objectives, and where 

the vocabulary and language elements are domain specific. 

 

 
13

 Similar application designed by Airbus, for a knowledge extraction from aeronautical messages (NOTAMs) with self-

supervised language models for aircraft pilots, can be found in (Arnold et al., 2022).  
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2.2.2 Speech Data 

In the scope of the MLEAP project, we are provided with several datasets of discussions (manually 

annotated) for the evaluation of the different methods. The speech data are made of ATC interactions, 

in English, and containing: 

- 100h discussion, using a French accent; 

- 50h discussion, using a Chinese accent; 

For more flexibility in the development and evaluation process corresponding to different tasks of the 

MLEAP project, open data samples with different accents are being collected. One of the recent works 

by (Lin et al., 2021a) has also provided analysis on different speech data using several accents. The 

objective is to enable public sharing of experimental results within the MLEAP’s consortium and the 

EASA’s publishable documents. Table 4. provides a set of open-source datasets for the ATC-STT use 

case implementation: 

 

Data set  Link 

Number of  

samples 

(utterances) 

Whole Duration Spoken Accent 

ATCO2 - ASR https://www.atco2.org/data 560 1h 6 min 

Yes : Czech, Slovak, 

German, French, 

Australian 

UWB 

https://lindat.mff.cuni.cz/repository/x

mlui/handle/11858/00-097C-0000-

0001-CCA1-0 

2657 20h 35 min Yes : Czech 

NIST LDC - Air 

Traffic Control 

Complete 

https://catalog.ldc.upenn.edu/LDC94S

14A 
1 2h 02 min No : US 

ATCOSIM 

https://www.spsc.tugraz.at/databases-

and-tools/atcosim-air-traffic-control-

simulation-speech-corpus.html 

10078 10h 42 min Yes : German, French 

Table 6. Open-source ATC-STT data sets with provided text transcriptions for training and testing. 

2.2.3 STT Model 

As mentioned before, we rely on provided models that are already developed and trained in the scope 

of the BoostHLT project. The development and evaluation of the models have been performed using 

an open source library called Kaldi14 (Povey et al., 2011). Several automatic speech recognition engines 

have been built and tested, where the acoustic model is made of a Hidden Markov Model (HMM)15. 

The global architecture, presented in Figure 5, follows three main steps, as follows: 

 

 
14

 https://kaldi-asr.org/  
15

 Hidden Markov Model is a statistical model based on the Markov chain, for analyzing probabilities of sequences of 

random variables (Elliott et al., 1995). 

https://www.atco2.org/data
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0
https://catalog.ldc.upenn.edu/LDC94S14A
https://catalog.ldc.upenn.edu/LDC94S14A
https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
https://www.spsc.tugraz.at/databases-and-tools/atcosim-air-traffic-control-simulation-speech-corpus.html
https://kaldi-asr.org/


 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 41 

 

● Mel filter-bank and Cepstral coefficients (MFCC)16 as input features along with i-vectors 

representations; 

● Kaldi with HMM and TDNN17/LSTM18-HMM chain system used to build the acoustic model; 

● The SRILM19 toolkit is used to build the 5-gram language model; 

More precisely, the language model is built using a 5-gram model using Kneser-Ney smoothing in order 

to assign a probability for each word sequence (Chen and Goodman, 1999). The phonetic dictionary 

comes from the Carnegie Mellon University Pronouncing Dictionary20 (CMU). In the context of ATC 

communication, some specific preprocessing is adopted in order to deal with named entities (typically 

city names) when they do not appear in the CMU dictionary to automatically output the pronunciation 

of out-of-vocabulary words.  

Before decoding, knowledge learned in both AM and LM is combined in a Weighted Finite-State 

Transducer (WFST) (Mohri et al., 2002) based graph. Decoding consists in applying a beam-pruned 

Viterbi search (Lowerre, 1976) that conducts a best-path approximation inside the decoding graph. 

The acoustic model is an HMM monophonic model, where each hidden state represents a monophonic. 

Alignments between the audio and the reference transcript are computed and used to further train the 

HMM. The TDNN/LSTM-HMM system adopts the same general architecture used in traditional speech 

recognition engines (cf. Figure 7) using hybrid DNN-HMM acoustic modelling. This deep network 

consists of a particular combination of TDNN21 and LSTM layers, called TDNN/LSTM, and is made 

of the following bricks as described above: 

1. Speech signal acquisition: aims to collect the data for training, and while system running; 

2. Preprocessing and Feature extraction: after splitting the speech into a 2D signal and chopped 

into 20-25ms sized frames with 10ms shift, it encoded into vectors using MFCC input features 

extraction; 

3. Acoustic model: to map the acoustic feature to corresponding Phonemes an HMM and 

TDNN/LSTM-HMM chain system is used; 

4. Lexical model: to structure the language elements lexical objects a phonetic CMU dictionary is 

used; 

5. Language model: a 5-gram model using Kneser-Ney smoothing is used. 

 

 

 
16

 Represents a set of features that correspond to the useful data signals 

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/  
17

 Time-Delay Neural Network (Waibel et al., 1989) is a NN that introduces a time-delay arrangement to take into account 

temporal relationship between its inputs in the same unit.  
18

 https://intellipaat.com/blog/what-is-lstm/#no1  
19

 http://www.speech.sri.com/projects/srilm/  
20

 http://www.speech.cs.cmu.edu/cgi-bin/cmudict  
21

 https://kaleidoescape.github.io/tdnn/  

http://practicalcryptography.com/miscellaneous/machine-learning/guide-mel-frequency-cepstral-coefficients-mfccs/
https://intellipaat.com/blog/what-is-lstm/#no1
http://www.speech.sri.com/projects/srilm/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://kaleidoescape.github.io/tdnn/
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Figure 7. Abstraction22 of the ATC-STT system developed in the BoostHLT project. 

 

Given the different technical requirements related to the ASR applications development, in general, and 

the ATC-STT application specifically, this use-case is considered to be of a high dimension in terms of 

data volume that will be processed and the complexity of the models to be evaluated. Hence, this use 

case is very useful for the evaluation of the methods and tools to be built in the scope of the MLEAP 

project, and that will be meant for machine learning applicability approval. The ATC-STT use case 

aims to correctly transcript the spoken instructions during the interactions between the control tower 

and the crew.  

2.2.4 Challenges and Issues 

In the scope of the MLEAP project, the research work concerned by the ATC-STT use-case is 

the evaluation of different methods and tools designed for the speech recognition involving two main 

directions: 

- Production mechanisms (Sohai, 2022): where the background noise and speech rate represent 

important issues for the acoustic models. 

- Language and accent handling (Lin et al., 2021b): where several accents, French and Chinese 

among others, of spoken English need to be handled. 

Hence, one of the targeted objectives of the evaluation is based on the PESQ Algorithm . This latter is 

designed to predict subjective opinion scores of a degraded audio sample, then returns a score from (-

0.5) or 1 to 4.5, with higher scores indicating better quality of the audio (Lin et al., 2019). PESQ is also 

designed to analyse specific parameters of audio, including time warping, variable delays, transcoding, 

and noise. Therefore, this measure represents a relevant tool to evaluate the ATC-STT performances.  

 

 
22

 To protect Airbus Intellectual properties, we designed this figure to give a schematic description of the system. Note that 

this is not the same figure provided by Airbus teams, it's not the same diagram, and nevertheless, it follows the same process.  
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Figure 8. The ASR research design concerned by the MLEAP project, as part of a larger taxonomy provided in (Lin, 2021) 

 

As for any ASR application, the main challenges to be addressed in the ATC-STT use case are related 

to the generalization to unseen data (e.g. the same speech can be said by different voices), how to 

achieve high recognition accuracy for new utterances, and the robustness of the trained models to 

several impacting elements (e.g. variable accent, speech rate, different pronunciations …). In order to 

develop a performant and trustable STT system, the model needs to deal with the following, but not 

only, issues: 

● Speech is highly variable (different accents and speech rates) analysing records of different 

speaking people, 

● Data sparseness problem (unbalanced in terms of voice gender, and accent), 

● Adaptable methods to train and adapt acoustic models using limited/unbalanced data, 

● The intended information to be recognized (all the speech, specific intents, …) 

● The choice of adequate LM w.r.t. the acoustic model. The phoneme’s recognition must be 

followed by a performant language model that would construct coherent phrases (this is a more 

critical issue in the context of ATC applications since the phrases are kind of semi-controlled 

language) 

● General ML/DL issues in evaluation and implementation, including: 

○ Misunderstanding and choice of the generalization bounds, the training objectives, and 

data outliers, 

○ Inappropriate regularization and data representation models, 

○ High/low model complexity compared to the recognition task,  

○ Missing alignment between the industrial KPIs and evaluation measures in general ASR 

development models.  

 

In (Lin, 2021), these issues are divided into ten (10) main challenges, in the scope of ATC application 

objectives: 

1. Data Collection and Annotation. Costly and laborious work in terms of correctly annotating. It 

is easier to be collected than efficiently annotated.  

2. Volatile Background Noise and Inferior Intelligibility.  

3. Unstable Speech Rate. The rate of ATC speech is generally higher than that of in daily life. This 

is due to traffic situations, the spoken language and emotion. 
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4. Multilingual and Accented Speech. Sometimes non-English companies communicate with 

ATCOs in their local language, including English, which involves the handling of multilingual 

content and dealing with several English accents. 

5. Code Switching. This refers to the published standard pronunciation of the vocabulary words, 

by the international civil aviation organization (ICAO), that aims to switch the homophones and 

near-syllable words. Compared to the pronunciations recommended by the ATC department of 

the different countries.  

6. Vocabulary Imbalance. Refers to the OOV words w.r.t. the published standards by ICAO and 

which precise the recommended vocabulary to be used in ATC communications. Since in 

practice, ATCOs tend to use different words, these latter need to be handled carefully. 

7. Generalization of Unseen Samples. Including several variable parameters in ASR such as the 

distribution of speech features, the vocabulary of the different ATC centres and/or locations and 

the different previous variation factors are key elements to be taken into account. 

8. Ambiguous Word Meaning. Same words, different meanings and uses. Which includes: the 

distributions or the contextual correlations between digits and other words that are extremely 

similar, the tagging which is used in language units (LU) recognition are ambiguous (e.g. 

pronounced digits will be tagged as “digit” or something else such as flight number and else?). 

9. Role Recognition. The role of the speaker is important to better analyse the recognized text. 

Indeed, the resource conflict check is designed for ATCO speech, while the repetition check is 

for pilot’s speech. The ICAO requested that the ATCO instruction starts with a valid aircraft 

identification (ACID) to specify the communication object, while the pilot instruction must end 

with their ACID during the repetition. However, in practice, some pilots ignore the ATC rules, 

whose instruction even starts with an ACID. 

10. Contextual Information. In the spoken instruction understanding (SIU). The acoustic model 

recognizes different phonemes, and the LM is applied to correct the results based on semantic 

meanings. Hence, the standardized phraseology plays a significant role in improving the LM 

effectiveness. These computational parts are important to handle the contextual situational 

information provided from other information sources (such as radar, flight plan, etc.). This latter 

provides a more accurate and targeted reference for the ASR research. 

 

In the Boost-HLT project, the speech rate is not evaluated, and the vocabulary has not been balanced. 

Some Chinese terms are simply omitted. The vocabulary is not standardized either. Since phraseology 

is different from one airport to another, these processing steps are crucial. Besides, the accent is a part 

of the speech that can be taken into account to help an ASR system to transcribe a given speech. Indeed, 

French people won’t speak most of the words the same as if they were English. There are several 

pronunciations of words included in the ATC vocabulary that are different according to the speaker's 

native language. Hence, it is preferable to indicate to the ASR engine the correct transcription of the 

pronounced word in a given accent. The ASR engine will then consider that the audio linked to the 

transcription is spoken with the corresponding accent and the pronunciation is not systematically 

common to all accents (French, English or Chinese).Based on these hypotheses, the ML/DL models are 

meant to use the accent annotation of the speech-ATC corpus, especially by using it with a frame-level 

accent embedding and in a multi-task model training.  

Finally, the callsign extraction from the transcribed text is one of the most important issues in STT-

ATC. It is a combination of identifying codes, letters and numbers assigned to a flight, hence its correct 

extraction is highly important. Several solutions to perform information extraction within the text have 

been compared in the BoostHLT project, and could be evaluated in the scope of the MLEAP project.   
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2.3 Automated Visual Inspection (AVI) 

As for the ATC-STT use case, the materials used in the AVI evaluation are provided by an internal 

Airbus project, and that aims to assist inspectors on the inspection of an airplane surface and reduce the 

duration. In the scope of the MLEAP project, we use the provided models and data for evaluation 

purposes of selected methods, for all tasks of the project. First, we provide an overview of the AVI 

applications, and then focus on the challenges related to this use case in the context of MLEAP. 

2.3.1 Description of the AVI application 

Visual inspection is nowadays widely used in different industries including aircraft maintenance (Duvar 

et al., 2021). It is one of the most commonly used approaches in the production process, but not only. 

It entails visually inspecting the components of an assembly line to detect and repair problems. A wide 

analysis of AVI-related applications, for the 21 century, is provided and discussed in (See et al., 2017), 

showing the main role of AVI and how it enhanced several social, environmental, organizational and 

industrial tasks. However, when describing AI-based visual inspection, it is frequently about some form 

of optical inspection technique based on deep learning and computer vision. It is the process of 

monitoring and inspecting a manufacturing or service operation to ensure that products meet 

predetermined specifications, but not only.  

Aircraft inspection is crucial for safe flight operations and is predominantly performed by human 

operators, who are sometimes unreliable since they can be subjective and prone to error. Thus, a recent 

analysis by (Aust and Pons, 2022) compares the performance of human operators with image 

processing, artificial intelligence software and 3D scanning for different types of inspection. 

Additionally, other factors relevant to operations were assessed using the weighted factor analysis. The 

results show that operators’ performance in screen-based inspection tasks was superior to inspection 

software due to their strong cognitive abilities, decision-making capabilities, versatility and adaptability 

to changing conditions.  

Another work by (Kähler et al., 2022) has analysed the ability of such applications to detect surface 

defects on aircraft landing gear components. This task represents a deviation from a normal state. Visual 

inspection is a safety-critical, but recurring task with automation aspiration through machine vision. 

Various rare occurring faults make acquisition of appropriate training data difficult, which represents a 

major challenge for artificial intelligence-based optical inspection. The authors have applied an 

anomaly detection approach based on a convolutional autoencoder for defect detection during 

inspection to encounter the challenge of lacking and biased training data. Results indicated the potential 

of this approach to assist the inspector, but improvements are required for a deployment.  

The main goal is to assist inspectors to reduce the inspection duration, which is in line with the common 

use of these applications in the state-of-the-art (DING et al., 2022). Specifically, the aim of the system 

under development by Airbus is the in-service damage detection with the following technical 

objectives:  

- Diagnostic assistance for inspectors to reduce the aircraft maintenance duration, for scheduled 

and unscheduled events; 

- Automatic external damage detection and classification into two types: lighting strike impacts 

and dents; 

- Detection of dents and lightning strikes using a combination of pictures and videos; 

- The major point is to find acceptable metrics to bring computer vision closer to classical 

problems such as model development for surface damage detection. 
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In the MLEAP project, the targeted domain is the in-service damage detection with two main kinds of 

damages addressed: lighting strike impacts and dents, as shown in Figure 9: 

 

 

  

Lightning Strike impacts23 Dents Damages24 
Figure 9. Images showing example damages on an airplane skin. 

 

 

2.3.2 Provided Data Sets 

The Operational Design Domain is defined by the set of all pictures of airframe structures in acceptable 

lighting and blur conditions. There may be indoors or outdoors pictures. If it is outdoors the weather 

conditions can influence the lighting & blur state. 

Initial input Data details: 

● Data set is made of two main parts, lightning strikes and dent impacts, with data augmentation 

(Changyu et al., 2014); 

● Acquisition of pictures is done from cameras and downloaded to the design/deployment 

environment; 

● Labelling is done using the VOTT tool25, where every image can contain several damages of 

different classes; 

● Weighting samples to cope with imbalanced data sets where some classes are overrepresented 

compared to others. Hence it is necessary to weight the images with the reciprocal of their 

frequency in the training data set to balance the training and avoid overfitting for some classes. 

 

2.3.3 Model and Approach Description 

The model selected was built using a transfer learning approach, the architecture is based on VGG1626 

(Simonyan et al., 2014) pre-trained networks on ImageNet27. Specifically, a Siamese network is 

constructed for a multitasking framework, of which the aim is to detect both the damage type (dent 

 

 
23

https://www.researchgate.net/figure/Structural-damage-in-the-outer-skin-in-the-Airbus-A400-M-airplane-after-the-

lightning_fig8_305817924  
24

 https://www.researchgate.net/figure/Wing-skin-metal-dent-examples_fig3_331961295  
25

 https://sourceforge.net/projects/vott.mirror/  
26

 More technical details can be found in this blog: https://www.mygreatlearning.com/blog/introduction-to-vgg16/  
27

 https://www.image-net.org/  

https://www.researchgate.net/figure/Structural-damage-in-the-outer-skin-in-the-Airbus-A400-M-airplane-after-the-lightning_fig8_305817924
https://www.researchgate.net/figure/Structural-damage-in-the-outer-skin-in-the-Airbus-A400-M-airplane-after-the-lightning_fig8_305817924
https://www.researchgate.net/figure/Wing-skin-metal-dent-examples_fig3_331961295
https://sourceforge.net/projects/vott.mirror/
https://www.mygreatlearning.com/blog/introduction-to-vgg16/
https://www.image-net.org/
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impact or lightning strike) and its characterization (corresponding severity level), to further determine 

its reparability. To do so, the following main steps are implemented: 

● Using openCV28 library for image stain detection. The Siamese model’s parts are meant to 

perform: 

o Stain detection using a binary classification; 

o Detection of the type of damage (multi-class damages classification) 

● Completion of the transfer learning network with some layers 

● Final layer is a cross-entropy layer 

● Adam optimizer is used for the training. 

● First targeted performance: >95% accuracy and recall (for the purpose of this study) 

 

2.3.4 Challenges 

This use case is considered as high dimension. It will be the opportunity to test different evaluation 

techniques concerning: the data completeness and relevance. e.g. quality of inspection input images, 

data augmentation and training data set size (Goodfellow et al., 2016; Keskar et al., 2016; LeCun et al., 

2012; Masters and Luschi, 2018). Besides, the diversity of input data and considered tasks is important 

for the assessment of the applicability of the models in terms of generalization ability and robustness 

characteristics. Hence, in the scope of the AVI use case, several issues are addressed and will be 

considered as part of the MLEAP project experimentations, including:  

- Evaluation of load and stress elements, which is part of the engineering of an aircraft 

development process, based on the severity level detection for the different considered damages 

; 

- No final model has been chosen yet, experiments are still in progress, several models are being 

compared in order to ; 

- Visual inspection related challenges need to be handled too, independently of the object being 

inspected (e.g. airplanes in this project). The paragraph below highlights some of the most 

encountered issues with AVI applications in aeronautics. While empirical research on the 

automated inspection of aircraft seems to be limited (Rice et al., 2018), there are clearly other 

technical challenges in the deployment of real-world vision systems, including: 

● AVI systems can provide accurate and timely results that are at least as good as traditional 

techniques. Without this, it is difficult to justify the implementation and maintenance costs of 

using the technology. 

● An AVI system needs to be robust enough to detect a wide range of surface defects. Technically, 

this is challenging given the varying physical characteristics of surface defects on an aircraft. In 

addition to the variability of the paints and structure finishing that are used (e.g. different 

material, paint colors, brightness …) 

● A usable visual inspection system needs to be scalable and deployed across different aircraft 

types, and sizes, which will vary in the engines used, winglets and body shape, etc. 

● Detection accuracy needs to be tested across different conditions, such as variations in surface 

structure, camera position and viewing angle, and object obstruction to determine their 

effectiveness. 

 

 
28

 https://opencv.org/  

https://opencv.org/


 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 48 

 

● Solutions need to accommodate both indoor and outdoor environments, including night time 

and changing weather conditions, while extracting unnecessary information from the 

background of the aircraft. 

● Appropriate visual feedback needs to be provided to the ground crew, with features that can 

allow engineers to filter results, re-classify and archive relevant information. As such, user 

interfaces should be intuitive to use, while serving a practical purpose. 

 

 

 

2.4 ACAS Xu 

This use case deals with publicly available data and models developed for flying objects monitoring 

and directions/decisions definition, in order to avoid potential collisions. For the development and 

evaluation purposes of the selected methods in the MLEAP project, we rely on the data and models 

provided in the framework of the project DEEL29 and activities related to the working group in 

EUROCAE 202030.  In the following sections, we first describe the main objectives of an ACAS Xu 

system, and where it comes from, then explore the main challenges and targeted objectives by including 

this use case in the MLEAP project. 

2.4.1 Description 

ACAS31 stands for Airborne Collision Avoidance System, it is a universal system-to-system collision 

avoidance. It issues horizontal turn advisories to avoid an intruder aircraft. ACAS X stands for Next-

Generation Airborne Collision Avoidance System. There are many variants such ACAS Xa for large 

aircrafts, ACAS Xo for special operations, ACAS Xu for unmanned aircrafts or ACAS sXu for small 

unmanned aircrafts. The ACAS Xu is an air-to-air collision avoidance system designed for unmanned 

aircraft (drone), several evaluations have been made in the literature to evaluate avionic systems 

(Gabreau et al., 2022). In addition to the Minimum Operational Performance Standards (MOPS) by 

EUROCAE 2020, promoting an implementation relying on lookup tables (LUT) without any ML 

constituent, recent studies by (Bak and Tran, 2022) have shown the performance of NNs in solving the 

collision avoidance issue, where the objective is to reduce the size of the embedded code and improve 

the anti-collision performance. 
The purpose of an ACAS Xu system is to keep any intruder outside of the desired envelope of the 

ownship as illustrated in  

 

 

Figure 10. 

 

 

 

 

 
29

 https://www.deel.ai/  
30

 https://www.eurocae.net/about-us/working-groups/  
31

 https://www.eurocontrol.int/publication/airborne-collision-avoidance-system-acas-guide  

https://aniti.univ-toulouse.fr/en/2022/01/13/ia-et-systemes-critiques-en-aerospatiale-transports-et-mobilites-deel-une-collaboration-internationale/
https://www.eurocae.net/news/posts/2020/april/ed-236a-minimum-operational-performance-standards-mops-for-flight-deck-interval-management-fim/
https://www.eurocae.net/news/posts/2020/april/ed-236a-minimum-operational-performance-standards-mops-for-flight-deck-interval-management-fim/
https://www.deel.ai/
https://www.eurocae.net/about-us/working-groups/
https://www.eurocontrol.int/publication/airborne-collision-avoidance-system-acas-guide
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Figure 10.  Horizontal ACAS Xu geometry 

In  

 

 

Figure 10, the collaboration between the ownship and intruder is based on a set of parameters that are 

computed to update the trajectories of the vehicles. The ownship computes six parameters that enable 

access to the costs tables which give an estimation of the probability to have a collision. The chosen 

action shall minimize the probability of collision: 

● ρ (ft): Distance from ownship to intruder 

● θ (rad): Angle to intruder relative to ownship heading 

● ψ (rad) : Heading angle of intruder relative to ownship heading direction 

● vown (ft/s) : Speed of ownship 

● vint (ft/s) : Speed of intruder 

● τ (s) : Time until loss of vertical separation 

 

The ACAS Xu system does not need any communication between vehicles. The collision detection and 

advisories could be generated only using the ownship sensors. It enables the detection of cooperative 

traffic (other vehicles also equipped with the system), but also non cooperative traffic, such as vehicles 

without ACAS Xu (small drones), birds or ground obstacles. 

 

2.4.2 Data 

The data consists of different entries of the LUTs from the RTCA SC-147 Minimum Operational 

Performance Standards (MOPS)32 for ACAS-Xu. The ODD is divided into sub-ODDs to fit the 45 ML 

model elements of the ML model architecture. Based on the different features defined in the previous 

section, different directions and movements in the space are defined. Hence, the methods using ML/DM 

models are provided with a complete ODD definition. 

 

2.4.3 Model 

The ML model is broken down into model elements and the architecture is validated (compatibility, 

consistency, verifiability and conformance to ML design standards). Interfaces between ML model 

elements, in the form of data flow and control flow, are defined to be consistent between the elements. 

 

 
32

 https://my.rtca.org/productdetails?id=a1B1R00000LoYKtUAN  

https://my.rtca.org/productdetails?id=a1B1R00000LoYKtUAN
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Specific ML techniques are defined or selected from the analysis of ML Model requirements and the 

ML datasets. Inadequate or incorrect inputs detected during the ML Model architecture activity are 

provided to the system life-cycle processes and/or the ML requirements process as feedback for 

clarification or correction. This architecture is identified as an element of context of the main goal, so 

that the argumentation can be based on each model element identified by the architecture. A specific 

goal has been added to verify the integrated ML model. Each ML model element is trained, validated 

and verified using the related datasets.  

      

[ACAS-XU instance] The ML model is broken down into XML model elements, as shown in Figure 

11. Specifically, it is verified that the union of the ODDs of all ML model elements makes the ML 

Controller ODD. The ML model description document is created with the NNs architecture and 

validated. The XML model elements are trained, validated and verified. Each ML model element 

description is added to the ML model description.  

 

Figure 11. ML model elements of the ACAS Xu system. 

 

2.4.4 Objective and Challenges 

In this use-case, the objective is to produce an ML/DL model that is able to completely fit the discrete 

input LU tables. As opposed to one of the objectives of the experimental part of this project and which 

is to verify the generalization of the trained models. This aspect implies good performance using data 

not encountered during training. Hence, one of the main challenges of the ACAS Xu use case is the fact 

that using the LUT as ground truth relies on their completeness and correctness (cf. section 3). Another 

issue is that this use case presents a risk of simplification of the generalization problem. Differently 

from the other use-cases, in terms of input data type and the objective of training, it represents another 

way to validate the proposed approaches in the MLEAP project, where the generalization and 

robustness can be evaluated in a different way, and both aim to verify that the input space is fully 

known.    

A deep neural network representation was trained to approximate the LU tables, maintaining optimal 

advisories while also approximating table values. The ODD is fully known and it will be a good 

opportunity to test the different methods to assess the representativeness and completeness, 

generalization and validation on top of the segmentation strategy versus different sub domains of the 

ODD.  
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2.5 Conclusion 

In this section, we provided a detailed analysis of three different use-cases selected for the evaluation 

purpose of the different methods and tools that are developed in the scope of the MLEAP project. These 

use cases address different types of data, which provide an extensive benchmark for the approval and 

certification of the applicability related to ML/DL models development and evaluation pipelines.  

More precisely, STT-ATC deals with speech utterances (for a speech to text transcription) and text data 

analysis (for a correct callsign and intents analysis in the spoken instructions); AVI deals with high 

quality images with two main objectives, detection of damages and their classification; ACAS Xu deals 

with lookup tables where entries are well defined, and hence the aim is to compress their content in a 

shallow NN. As we can notice, these use-cases address different levels of complexity, in terms of data 

dimensionality and ML models complexity.  

Finally, for all use-cases, we provided an overall state-of-the-art review, defining the objectives of the 

application and the concerned challenges. A high-level ODD definition is also provided, along with the 

data sets’ statistics and models to be evaluate, an overall review of the safety assessment (when 

applicable), and references to open-source data that could be used for publication purposes.  
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3. Data: representativeness and completeness 

3.1 Introduction 

This chapter aims to provide in-depth information on how the data requirements related to completeness 

and representativeness can be reinforced and structured, in a way that broadly covers the different 

relationships that these attributes have with the wider Artificial Intelligence (AI) system environment 

(specifications, processes and activities, etc.). 

 

The AI ecosystem presents an extremely shifting framework whose directions are dictated by the 

economic imperatives of the industrial AI producers or users, the progress of the state of the art, the 

different application areas involved requiring different types of approaches to AI verification and 

validation, and the European scene organizing a regulatory framework harmonizing both horizontal 

(AI-specific) and vertical (Sector-specific) needs. In such a context, the plethora of information and 

innovations brings as much confusion as progress in the concepts dealt with, and the present document 

serves the purpose of setting out definitions and identify the topics of interest whose contours are mature 

enough to design robust requirements. 

 

The chapter is structured as follows. Section 3.2 presents and defines the main concepts to be used, in 

particular data quality requirements. The aspects the AI system environment that are relevant for the 

assessment of completeness and representativeness are presented in three categories: 

• Technical requirements, related to the technical specifications of the AI solution to implement 

(section 3.3).  

• Processes of data management, in which activities may affect both attributes (section 3.4). 

• Other data requirements that may conflict with requirements on completeness and 

representativeness (section 3.5). 

 

Each of the three categories listed above include definitions of the aspects addressed, an explanation of 

the relationship between this aspect and completeness/representativeness, and an identification of 

available tools and methods for the assessment (or for the control of their impact). 

 

Section 3.6 summarizes the information provided in the document, by presenting a first version of the 

selection grid allowing the identification of methods and tools for the assessment (or control) of the 

impact of each aspect in the three categories. 

 

Section 3.7 then details the preliminary experimentations that have been conducted to test the methods 

and tools presented in the selection grid in order to evaluate their usability in a practical manner. 

 

Section 3.8 proposes some conclusions on the topic.  
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3.2 Concepts 

3.2.1 Introduction 

This section offers an overview of the concepts of data quality, completeness and representativeness. 

This section is meant to introduce the overall observations that are performed throughout the document, 

where most of the limitations encountered are relative to an absence of consistency or consensus in the 

community, and a lack of maturity in several aspects of data quality. Here, the idea is not to suggest the 

most suitable definitions, but to present the potential variations in the acceptations and raise awareness 

about the usability of methods and tools in areas where even the root notions are sometimes under-

defined or considered slightly differently among the stakeholders. This section can be understood as a 

general introduction to the topics addressed in the following sections of the document. 

3.2.2 Generalities on data quality requirements 

     

While noting that it is not exhaustive, (EASA, 2023) identifies a list of Data Quality Requirements 

(DQRs): 

• “the data needed to support the intended use”; 

• “the ability to determine the origin of the data”; 

• “the requirements related to the annotation process”; 

• “the format, accuracy and resolution of the data”; 

• “the traceability of the data from their origin to their final operation through the whole pipeline 

of operations”; 

• “the mechanisms ensuring that the data will not be corrupted while stored or processed”; 

• “the completeness and representativeness of the data sets”; 

• “the level of independence between the training, validation and test data sets”. 

         

Data quality is composed of a number of attributes33. The scientific community generally agrees on the 

existence and relevance of a number of them, such as “Accuracy” or “Completeness”. However, 

depending on the data quality model, some other attributes may be included, such as “Conciseness” or 

“Clarity”. Although there is some consistency among data quality models, the lack of international 

consensus on terminology, definitions and groupings by category creates confusion in establishing 

unified methods for qualification. 

 

Table 7 presents an overview of data quality attributes. In (Mahanti, 2019), the list consists of the most 

commonly cited data quality attributes. (Batini et al., 2015), among numerous papers and books the 

authors produced on the topic, offers a list of data quality attributes presented in categories. The series 

of international standards SQuaRE provides a data quality model in (ISO/IEC 25012, 2008) based on 

fifteen attributes, articulated according to their nature (inherent data quality, system-dependent data 

quality, or both inherent and system-dependent). The status of international standard makes it liable to 

serve as a reference, since standards rely on international consensus and are mainly designed for 

 

 
33 The present chapter does not develop on the selection of the best term; literature uses “property”, “characteristic”, 

“principle”, “dimension”, “attribute”, etc. The EASA refers to Data Quality Requirements, which is understandable in the 

context of (EASA, 2023) but does not apply to the present analysis of completeness/representativeness. The term “property” 

has been selected and remains consistent throughout the chapter. 
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industrial use, rather than for research. However, the model presented in this standard concerns data in 

the software sciences in general. In this regard, the standard misses some specific aspects pertaining to 

machine learning, first in the way the quality attributes are addressed, and secondly in the list of 

attributes itself (for example, data relevance and representativeness are not present). 

 

Several works have been launched at the ISO level to fill this gap, through the 5259 series on “Data 

quality for analytics and machine learning”. In particular, the standard (ISO/IEC CD 5259-2, 202X) 

provides a set of data quality attributes, which are leveraged in this chapter. In the series of international 

standards SquaRE (Systems and software Quality Requirements and Evaluation), the standard 

(ISO/IEC DIS 25059, 202X) aims at expanding the scope of the framework to AI specificity, by 

analysing AI system quality in the light of data characteristics. Since the standards are still work in 

progress and not published yet, the information provided here should be considered as relevant 

guidelines to follow, but they are not yet confirmed through publication of the standards. In this context, 

a full list of attributes is not provided, nor the exact definitions, but rather an explanation of the overall 

directions taken by the standard. 

 
Table 7. Several examples of data quality attributes. 

(Mahanti, 2019) 

Accuracy Clarity Comparability Completeness Conciseness 

Consistency Content Currency Efficiency Format 

Freedom from bias Importance Informativeness Interpretability Level of detail 

Precision Quantitativeness Relevance Reliability Scope 

Sufficiency Timeliness Understandability Useableness Usefulness 

(Batini et al., 
2015) 

Accessibility Accuracy Availability Believability Clarity 

Coherence Cohesion Compactness Completeness Comprehensibility 

Conciseness Consistency Correctness Minimality Pertinence 

Precision Readability Redundancy Relevance Reliability 

Reputation Simplicity Trust Validity  

(ISO/IEC 25012, 
2008) 

Accessibility Accuracy Availability Completeness Compliance 

Confidentiality Consistency Credibility Currentness Efficiency 

Portability Precision Recoverability Traceability Understandability 

 

3.2.3 Definitions of completeness and representativeness 

In this chapter, in line with the conclusions of Sections 1.2.1.1 and 1.2.1.2, completeness and 

representativeness (respectively) will be used in the same sense than EASA’s Concept Paper. Unless 

explicitly stated otherwise, core concepts of other tasks such as stability will be used in the acceptation 

defined in the corresponding chapters. 

3.2.4 Considerations on data dimensionality 

At this stage, little to no work could be found that tackles explicitly the notions of completeness and 

representativeness in their relationship with high-dimensionality data. The challenges of high 

dimensionality data are not addressed in the ISO/IEC 5259-2 definitions of completeness and 

representativeness; the examples currently provided in the standard focus on single isolated features of 

the data (e.g. the tone of individuals’ skin in images, postal codes). Dimensionality is only addressed in 

the context of similarity, a quality attribute of the data set that relates to the similarity between samples 

in terms of interesting features. Similarity can be computed through the assessment of sample 

independency, through statistical measures such as the ratio of PCA and dataset dimension. 
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Scientific literature addressing the topic of high dimensionality in data makes a focus on the challenges 

relative to dimension reduction, namely the usability and validity of the techniques and the impact on 

performance. 

 

In a survey of PCA techniques and their applicability to forensic studies, where data are of high 

dimensionality, (Lee and Jemain, 2021) note the importance of isolating the most relevant features for 

the analysis. The study notes that PCA is a powerful exploration tool but the interpretation derives 

mostly from visual inspection of the PCA plots, hence prone to cognitive bias. However, the study does 

not dwell into a use for representativeness and completeness analysis. 

 

(Liu and Gillies, 2016) present a study on dimensionality reduction, performed to improve the 

performance of classification while still preserving some properties of the data. The paper argues that 

inter-class discrimination should minimized rather than maximized, since maximization in the context 

of high-dimensional datasets may lead to severe overfitting. They demonstrate the efficiency of a 

method called Soft Discriminant Maps that provides an acceptable level of inter-class discrimination, 

namely more discriminative than PCA and less than Linear Discriminant Analysis (LDA). One should 

note however that the authors work on the concepts of data being “efficiently represented” and “well-

represented”. “Efficiently represented” is characterized as “the dimensionality of the data points is 

sufficiently small so that classification, regression or other manipulation of the data can be done 

quickly”; this definition can be linked to the ISO/IEC 5259-2 acceptation of “data efficiency”. The 

second concept, “well-represented”, is characterized as “little or no useful information is lost during 

the dimensionality reduction process, and redundant information is pruned out”, which implies the 

absence of missing values as in completeness, but also mixes concept that may pertain to the notion of 

similarity (redundant information would result in a level of similarity that would impact performance). 

The concepts tackled in the paper are thus slightly different from the acceptation of completeness and 

representativeness as defined in this chapter. 

 

(Tsai and Sung, 2020) compare the performance of a classifier when feature selection is applied through 

PCA, GA (Genetic Algorithm) or C4.5 decision tree methods, in the context of data sets with high 

number of dimensions and low number of samples. However, the paper does not provide relevant tools 

for the assessment of representativeness of data following feature selection, since one can observe that 

the paper considers representativeness as “representative features”, which is linked in the paper to 

features with the highest discriminative power, i.e. rather linked to the data quality attribute of diversity, 

as explained in section 3.5.4. 

 

Literature seems scarce in offering studies that directly deals with completeness and representativeness 

in their relationship with high-dimensionality data, since one can observe that the concepts presented 

in literature do not seem to follow strictly the definition of the concepts defended in the project. The 

relationship with data dimensionality, and its impact on completeness and representativeness, is 

explored further in section 3.3.4. 
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3.3 Technical requirements 

3.3.1 Introduction 

The complexity of the task (or function) to be achieved by an AI system determines several technical 

aspects of the solutions to implement. In turn, the increasing complexity or sophistication of the target 

solution influences factors such as the quality and quantity of data required. Most technical 

requirements discussed hereafter can influence the definition of the ODD, making it a central document 

in tackling questions relative to completeness and representativeness. In this section, we identify the 

technical requirements that may impact data completeness or representativeness. Each requirement is 

presented with its definition and source (if a reference definition could be found), and its relationship 

with representativeness and completeness. Finally, existing methods and tools for the assessment of 

completeness and representativeness w.r.t these technical requirements are presented. The overall 

objective of the discussion is to highlight the maturity of the field, and the feasibility of employing such 

tools or methods to address the technical requirement. 

 

The literature on the assessment of completeness and representativeness of a data set is modest, as data 

quality in general is still an emerging research domain (P. Li et al., 2021). Even though the factors of 

influence discussed here are known, they are rarely used to structure assessment approaches. Moreover, 

tools and methods designed to assess the quality of a data set generally address several aspects of data 

quality at once, without focusing on completeness or representativeness specifically. Considering these 

factors, it seemed preferable to have separate discussions on the factors of influence on one hand and 

the methods and tools on the other. 

3.3.2 Intended behaviour 

3.3.2.1 Definition 

The function, or task the AI/ML application has to perform.  

3.3.2.2 Influence on completeness and representativeness 

The intended behaviour of an AI/ML system is first modelled by the operating parameters of the 

application, i.e. the information that will be gathered to form the data set. These operating parameters 

may undergo several transformations (e.g. data augmentation, feature engineering) before yielding the 

input and output spaces that will actually be used by the model. The completeness and 

representativeness of the data set, i.e. operating parameters, must be ensured before any transformation, 

and must then be reconfirmed at each step, so that the input space on which the model will learn enforces 

these attributes. 

 

Moreover, the dimensionality of these spaces (i.e. number of features) and their size (i.e. the range of 

each feature) influence the volume of data required to efficiently train a model, which in turn affects 

the requirements for ensuring completeness and representativeness. 

 

The degree of structure of the input also affects volumetry, as a more structured input is generally easier 

to handle for ML models. Consequently, as the degree of structure decreases, the number of data points 

required to guarantee completeness and representativeness increases, making data collection more 

difficult. Finally, even in a given domain, e.g. computer vision, different tasks may have uneven state-



 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 57 

 

of-the-art performance, which may be an indication for the designer to be more or less vigilant about 

the properties of the data set they use, including completeness and representativeness.   

 

3.3.3 Model architecture 

3.3.3.1 Definition 

The model architecture refers to the type of Machine Learning algorithm chosen to embody the AI/ML 

application achieving the intended behaviour. Popular architectures include Linear Regression, Naive 

Bayes, Maximum Entropy or Transformers. 

3.3.3.2 Influence on completeness and representativeness 

The architecture of a model determines in large part its capacity, i.e. how much information it can learn 

and retain34. In turn, capacity has a direct impact on the amount of data required; a model with more 

capacity will require more data to reach a level of performance similar to a model with lesser capacity. 

However, the model with more capacity will be able to capture more information and thus exploit a 

larger data set better. Therefore, choosing a model with adequate capacity w.r.t the task at hand will 

limit the data collection effort and the subsequent difficulty of ensuring the completeness and 

representativeness of the data set. 

3.3.4 Data dimensionality 

3.3.4.1 Definition 

Data dimensionality refers to the number of dimensions of the input space.  

3.3.4.2 Influence on completeness and representativeness 

On most quantitative data sets, data dimensionality corresponds to the number of features defining a 

typical sample. On unstructured data such as audio, text or images, defining the dimensionality of an 

input is an important design choice in the task of representation learning. It is defined as the task of 

learning representations of the data that make it easier to extract useful information when building 

classifiers or other predictors by (Bengio et al., 2013), and related to feature engineering and feature 

extraction by the authors. 

 

When samples are defined by individual features, dimensionality reduction techniques as well as feature 

selection and feature engineering may be used as preprocessing to help fit the data to the system and 

improve performance. However, removing or transforming features must be done with caution as it 

may lead to an input space inconsistent with functional conditions, detrimental to completeness, and a 

loss of information detrimental to representativeness. 

 

On the contrary, it is possible to seek to enrich a data set with more features to improve its 

representativeness of the complexity of the intended behaviour. However, such strategy must also be 

 

 
34 Capacity is discussed in more detail in Chapter 4. 
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used cautiously, as an increase in dimensionality may lead to all samples being at comparable distances 

in the input space. This phenomenon, called “Curse of Dimensionality” (CoD), vastly impedes the 

learning process, leading to poor performance of the trained model. 

 

Estimating the right number of dimensions to consider for the intended behaviour pertains to the 

assessment of the data quality attribute of relevance, which, as described in section 3.5.3, can impact 

representativeness and completeness. The section provides methods for the assessment of relevance, 

but highlights the absence of standard methods to ensure a balance between the three attributes, meaning 

that defining the most adapted number of dimensions can only be the result of an expert trade-off. 

 

Thus, data dimensionality is an important dimensioning factor of an ML problem. Moreover, it is also 

the main limitation of most data quality assessment method, as they usually specialize in one particular 

kind of data (low- or high- dimensional, structured or unstructured).  

3.3.5 Intended level of autonomy 

3.3.5.1 Definition 

In (EASA, 2023), the EASA distinguishes three levels of AI/ML applications, based on the degree of 

human oversight exercised. It is further divided into six total sub-levels from “human augmentation” 

(highest level of oversight) to “AI-based system performs non-overridable decisions and actions ” 

(lowest level of oversight). 

3.3.5.2 Influence on completeness and representativeness 

As the autonomy of an AI/ML application increases, its task allocation broadens. In turn, the volume 

and variety of data required to ensure its performance requirements (including robustness, resilience 

and stability, discussed below) increase, and with it the spectrum of data needed to ensure completeness 

and representativeness of the data set. 

3.3.6 Intended level of performance 

3.3.6.1 Definition 

(ISO/IEC 22989, 2022) defines performance as “measurable results”. However, this definition is too 

vague in the context of this work, and other sources can be leveraged to complement the definition. 

(LNE, 2021) defines performance as “The degree to which a system or component performs its 

designated functions within a given set of constraints, such as speed, accuracy or memory usage, etc.”. 

The notion of “designated functions” may be understood in the sense of “Performance requirement” as 

defined in the standard (ED-79A, 2010): “Performance requirement define those attributes of the 

function or system that make it useful to the aircraft and its operation. In addition to defining the type 

of performance expected, performance requirement includes function specifics such as: accuracy, 

fidelity, range, resolution, speed and response time”. 

3.3.6.2 Influence on completeness and representativeness 

Assuming a model capacity consistent with the complexity of the task, reaching a higher performance 

level, especially in the context of robustness requirements, will usually require more data, . Moreover, 
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even considering performance solely from a system prediction quality standpoint, and using a single 

evaluation metric, it is possible to divide the development and test sets into subsets with particular, out-

of-task characteristics (e.g. meteorological conditions for object segmentation), and perform individual 

evaluation of each subset to further refine the analysis. Such fine-grained evaluation may intersect with 

constraints related to robustness and resilience, and will therefore similarly increase the need for more 

numerous and varied samples to ensure completeness and representativeness of the data set. 

 

3.3.7 Intended levels of robustness and resilience 

3.3.7.1 Definition 

The definitions of robustness and resilience from (EASA, 2023) are used, respectively: 

• “Ability of a system to maintain its level of performance under all foreseeable conditions. At 

model level (trained or inference), the robustness objectives are further split into two groups: 

the ones pertaining to ‘model stability’ and the ones pertaining to ‘robustness in adverse 

conditions’”; 

• “The ability of a system to continue to operate while an error or a fault has occurred”. 

3.3.7.2 Influence on completeness and representativeness 

As discussed for the intended level of human oversight, increasing the requirements regarding 

robustness and resilience also broadens the spectrum of the phenomena to be covered by the data set, 

which in turn broadens the input space, requiring more samples (in terms of sheer quantity) and more 

diversity (in accordance with the phenomena of interest). 

 

The level of oversight is not the only factor that can influence specifications regarding robustness and 

resilience. Higher safety requirements, related to the criticality of the AI/ML applications, are also to 

be considered, with the same effects on the data collection effort. 

 

Finally, robustness encompasses adversarial attacks (among other cases). However, specifying 

robustness requirements regarding adversarial attacks is difficult, as it is by essence hard to anticipate 

their form, let alone devise dedicated sets of samples that could help the system resist them. Therefore, 

adversarial attacks are left out of the scope of this chapter.  

3.3.8 Intended levels of stability 

3.3.8.1 Definition 

EUROCAE WG 114 and SAE G-34 are working on a definition of stability as the ability “to provide 

equivalent response within the neighbourhood of an input”. This definition is in line with the definition 

of “model stability” in (EASA, 2023), which distinguishes “model stability” from “algorithm stability”. 

In this work, stability will be considered exclusively from the “model stability” perspective. 

3.3.8.2 Influence on completeness and representativeness 

In this chapter, stability is distinguished from robustness and resilience for different reasons. First, it is 

still a fuzzy concept without a standard definition, though efforts are ongoing by groups like the 
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WG114, G-34 or the ISO. Second, stability relates more to performance than to robustness or resilience, 

without being explicitly encompassed. Third, its influence on completeness and representativeness is 

different, with a stronger impact on volumetry: as stability requires a consistent behaviour for similar 

input, a need arises for a finer-grained coverage of the input space (all other requirements being equal). 

This is achievable only with the collection of a larger volume of quality samples35. 

3.3.9 Methods and tools for assessment 

3.3.9.1 Methods related to technical requirements 

A number of identified methods use the model's behaviour during training to infer information from the 

data set. Consequently, model architecture is implicitly considered. In these approaches, coverage, i.e. 

the model's completeness of representation, is used as a proxy for the data set's intrinsic completeness. 

Despite their subsequent limitations, these approaches enable a dynamic, model-driven process of data 

set improvement with a minimal number of additional samples36 (those needed to improve model 

coverage). 

 

An added advantage of using the model for the characterization of the training data set, it becomes 

possible to assess the adequation between the chosen model architecture and the data set. The overall 

methodology is close to instance completion (Dhurandhar and Sankaranarayanan, 2015), used to 

improve a model's performance by identifying test samples that may help complete the representation 

of a given input sample. However, using the model for the characterization of a data set should not be 

done at the expense of the independence of the validation and most importantly of the test data set. Such 

a method can similarly be used to get insight on the distribution of the phenomena in the data set and 

improve representativeness or completeness, though this is always done through the lens of the model's 

learning process. 

3.3.9.1.1 Feature set characterization 

A more favored angle is to use the model as a tool to characterize the data set. For example, (Mani et 

al., 2019) propose a methodology for Deep Learning models, based on the idea that supervised models 

define a feature set for each class to predict. The limit of a class is defined by the extrema of the features 

ranges. Beyond these boundaries, the model either changes class or is incapable of taking a decision. 

The authors hypothesize that it is possible to use the trained model as a generator to explore the feature 

set and use it to characterize the data set. To this end, they devise four metrics: 

• Equivalence partitioning: check that all classes are evenly represented in the data set. 

• Centroid positioning: the percentage of samples in a given radius of the centroid. 

• Boundary positioning: the percentage of samples close to the class decision boundary, the 

samples at the boundary being the less confident decisions. 

• Pair-wise boundary conditioning: the percentage of samples fulfilling a boundary conditioning 

constraint, for any pair of two classes. 

 

 

 
35 Chapter 4 discusses formal methods for stability, which may temper the need for supplementary data but still shows the 

influence of stability requirements over the data set, as these methods form an additional and non-trivial process.  
36 Such process might feel reminiscent of active learning, though the logic is different because in active learning, the model 

embeds an ability to identify the most suited sample to maximize its learning phase, while in the discussed methods, the 

model remains passive and the feedback has no incidence on the current learning process. 
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However, though it is not discussed in the paper, Equivalence partitioning introduces a bias by imposing 

class balance, which is a strong constraint for data collection and has a strong influence on the model's 

learning process. Bias mitigation must be enforced, especially as it is usually a direct condition for 

meeting performance and robustness requirements on rare cases, but it must be so while respecting the 

larger distribution of phenomena of interest in operating condition. 

 

In a supervised setting, this method is more of a fine-grained model performance diagnostic tool. To be 

relevant as a data set characterization tool, it is preferable to apply it on unsupervised models. 

Nonetheless, the chosen model remains a proxy with lots of potential caveats that must be anticipated 

and kept in mind when performing analysis.  

3.3.9.1.2 Performance monitoring 

Another approach, by (Tae and Whang, 2021) is called Slice Tuner, a tool for maximizing accuracy and 

fairness of prediction by identifying the most suited samples to present to a learning model at a given 

point during training. 

 

A slice is defined as a subset of samples, identified by a conjunction of features. While the method 

seems agnostic to data dimensionality, the authors do not discuss strategies to select slices on 

unstructured data such as images. Slice Tuner works by monitoring the learning curve of the model for 

each slice. It is based on the idea that the overall learning process of a model for a given loss function 

follows a decreasing power law. Slice Tuner feeds the model with a first slice, and changes slice when 

the model's learning curve starts to flatten. Moreover, fairness is embodied by enforcing Equalized 

Error Rate over all slices, which can be extended to other forms on constraints on the learning process, 

making Slice Tuner a seemingly flexible tool. Beside raw performance, the speed at which the learning 

curve decreases may be indicative of certain slice-wise specificities of the data set. Such mechanisms 

can also be leveraged to monitor per-class or per-sub-class prediction performance and identify, all of 

these observations being useful for the characterization of the completeness and representativeness of 

the data set. 

3.3.9.1.3 Neuron activity monitoring 

The approach described by (Pei et al., 2017), called DeepXplore, is tailored for neural networks and 

aims at monitoring its learning process based on neuron activation. The core idea derives from code 

coverage in software engineering and is called neuron coverage. It rests on the idea that an input 

activating all neurons (i.e. full neuron coverage) has been fully exploited by the model. Conversely, 

low input coverage shows a weakness of the model and might be used to identify low quality samples, 

i.e. samples containing either little to no information (which could indicate a sample too hard, or too 

easy, or missing values) or conflicting information (e.g. between the input and its label, which could be 

indicative of a mislabelling). Identifying these may help improve the completeness and 

representativeness of the data set. A limitation of the approach is that it works on a white-box 

assumption, assuming full knowledge and access to the model, as its initial aim is to serve as a joint 

training constraint. 

 

A similar approach is presented by (Lei et al., 2018). Their tool, called Deepgauge, characterizes a data 

set through the behaviour of a model. This is done via two observations: 

• Major function regions are characterized by ensuring that the activation values of the neurons 

at evaluation time (on the dev set) are in the min/max range of values obtained at training time. 

In addition, K-multi-section neuron coverage is used: the spectrum of activation value is binned 

and Deepgauge monitors that the entire spectrum of bins is used.  
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• Corner case regions identification consists in checking if the activation values are over a given 

threshold. The idea behind that is to explore the decision boundary at the neuron level. 

 

A model displaying consistent major function and corner case activation is indicative of both good 

learning and good adequation between the training and validation data set. Similar to DeepXplore, these 

criteria may be leveraged to identify low quality samples. 

3.3.9.1.4 Human-in-the-loop approaches 

(Kiela et al., 2021) describe a tool specifically aimed at addressing the problematic of adversarial 

attacks. The tool, Dynabench, aims at iteratively improving a model by enriching its training data set 

with handcrafted adverse examples. To this purpose, Dynabench allows a user to benchmark models 

against data sets and provides an interface for submitting handmade adverse example in order to fool 

the models. This framework could be extended to be used as a tool to incorporate new samples 

improving any dimension of the completeness and representativeness of the data set (not just adversarial 

attacks). A case of particular interest would be if technical specifications are very precise and automated 

collection of corresponding samples is hard, or when there are strong control requirements over the 

types of samples that must be added to a data set regarding a particular technical requirement. 

 

The Dynabench framework was initially designed for a specific set of tasks, and was not flexible enough 

to allow extension to new tasks. This functionality was introduced by Dynatask (Thrush et al., 2022), 

allowing any user to incorporate new tasks in the framework. 

3.3.9.2 General methods 

Apart from the methods that could be related to the models’ architecture and were introduced in the 

previous section, the technical requirements identified as influence factors here are rarely used as 

structuring elements in the design of assessment methods for a data set’s completeness and 

representativeness. This is mostly because quantifying each of these attributes is a task by itself, and 

works in this area are scarce. To support this argument, the remaining of this section will focus on the 

methods found for assessing some of these attributes, to bring an idea of the state of the art in this 

domain. 

 

As an example, as stated in 3.3.3, model architecture influences the model's capacity, which is a 

dimensioning factor for completeness and representativeness. However, capacity itself is hard to assess: 

the linearity or non-linearity of the model and its number of parameters are well-known factors37, but a 

single formal capacity metric does not exist. Attempts at measuring capacity include (Raghu et al., 

2017). The authors devise a method to assess the capacity (called expressiveness in the paper) of a 

neural network through three indicators: 

• Transitions are defined as a neuron switch from one regime to another, depending on the 

activation function (ReLU transitions are the switch between 0 and the linear regime, for hard 

tanh when it switches from its saturated (positive or negative) regime to its unsaturated regime). 

• Activation patterns extend transitions of a single neuron to all neuron in the network. Thus, a 

specific activation pattern can be mapped for each input going through the network. 

 

 
37 All things being equal, a non-linear model has more capacity than a linear model, and more parameters also means 

increased capacity. A model with more capacity will be able to capture more phenomena but will generally require more 

data to do so, setting a different scale on the task of assessing completeness and representativeness. 
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• Dichotomies is a dual formulation of expressiveness. Transitions and Activation patterns focus 

on expressiveness relative to an input, while dichotomies focus on the weights to infer how 

heterogeneous the general function of the network is. 

 

The study shows that expressiveness mostly increases exponentially with the depth of the network while 

the width has little impact. It also shows that the first layers of a neural network tend to act as controlling 

parameters for the deeper layers. Both conclusions are consistent with empirical observations but do 

not really go beyond a more formal description of these phenomena. These methods can be used for 

corner case construction, see Section 3.4.8.8 for more. 

 

Other strategies such as ensemble learning, fine-tuning of pre-trained models or regularization also 

affect the capacity of a model and the volume of data required to reach a given level of performance, 

which affects the conditions to be met to ensure the completeness and representativeness of the data 

set38. However, no method has been found to quantify their impact. Overall, such limitations hinder the 

development of methods leveraging capacity as a clear variable in the assessment of completeness and 

representativeness. 

 

The same dynamic holds true for other factors such as the intended behaviour: it would be interesting 

to be able to quantify the difficulty of a task, which in turn would enable the sizing of the model's 

capacity, but such framework does not exist. The closest estimator of task difficulty is intra- and inter-

annotator agreement, which is too distant a proxy to be used efficiently in a quantitative approach. 

 

On the other hand, factors like the intended levels of performance, robustness, resilience or stability can 

be quantified. As an example, (Almeida and Vieira, 2011) highlights that robustness and resilience can 

be evaluated by using the performance metrics and degrading the operational condition of the system 

(with noisy inputs). (Sáez et al., 2016) even propose to integrate robustness within the performance 

metric with their Equalized Loss of Accuracy (ELA) whose strength is to account for the initial accuracy 

of the classifier, in contrast to earlier works. Yet, no work has been found that tried to leverage such 

objectives for the assessment of a data set's quality. 

 

More general tools such as whylogs39, cleanlab40 (Northcutt et al., 2021) or JENGA (Schelter et al., 

2021) are available. Whylogs is designed to provide a dashboard of general information about the 

distribution of a data set and enable data quality monitoring and other workflow around data exploration 

and maintenance. Cleanlab aims at identifying noisy and mislabelled samples in a data set, while 

JENGA is a framework to generate synthetic samples emulating common data errors (such as missing 

values, outliers and other noisy inputs) and evaluation tools to assess their impact on model 

performance. Further testing of whylogs and cleanlab is required to get more insight on how these tools 

can be related to the technical requirements discussed here, which is why they will be part of the tools 

selected for the next phases of the MLEAP project (JENGA will not be tested as data synthesis is 

considered out of the scope of the project).  

 

 
38 Fine-tuning and regularization are generally used to obtain good performance from a model with important capacity using 

a smaller data set, implying less constraints on the completeness and representativeness of the data set, and also a less 

intensive effort to assess it. 
39 https://whylabs.ai/ 
40 https://github.com/cleanlab/cleanlab 

https://whylabs.ai/
https://github.com/cleanlab/cleanlab
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3.3.9.3 Conclusions 

In light of the literature, it seems that technical requirements are rarely used as a prism for the 

assessment of a data set's completeness and representativeness. Current developments mostly focus on 

building systems that can compensate imperfect data set rather than devising good data curation 

solutions41 (Biessmann et al., 2021). 

 

While most of these factors all tend to increase the need for data to achieve completeness, their effect 

on representativeness is more ambivalent. Indeed, higher intended levels of performance will require 

more (representative) data. In the meantime, achieving better robustness and resilience will require 

focusing on rare phenomena and corner cases, which may result in the use of oversampling strategies 

and other techniques that significantly alters the distribution of phenomena of interest and therefore the 

representativeness of the data set. In a similar reasoning, (Rao and Frtunikj, 2018) highlight that in 

autonomous driving, the raw volume of the data set is less significant than the volume of data describing 

anomalous events. In a sense, factors like robustness tend to shift the focus from the statistical modelling 

of the phenomena at hand toward the representativeness of the model in terms of expected behaviour 

(also referred to as coverage). Therefore, there is a trade-off to consider between the representativeness 

of the data set w.r.t the distribution of the phenomena of interest, and the model’s coverage of these 

phenomena. Improvements obtained on rare cases, regardless of their criticality, must not be detrimental 

to the more common situations. 

  

 

 
41 This does not preclude the proper application of all the processes and good practices of data management. However, as 

the shortcomings of the data set cannot be entirely characterized, they remain a limiting factor for the model's performance. 
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3.4 Processes 

3.4.1 Introduction 

Most learning systems42 require data in order to identify patterns used to infer behaviours, which means 

data need to be collected beforehand to enable the learning and evaluation of the system. 

Therefore, several processes must or may be performed before the data are usable, each of which 

constituting a potential point of alteration of the data that will bias the system's learned behaviour. Some 

of these biases may be introduced in a voluntary and controlled way, in order to enhance the system 

understanding of specific cases (such as rare but critical events). Others must be avoided or at least 

identified, documented and their impact minimized. 

 

The processes presented in this section do not have the same granularity as in (EASA, 2023). Where 

required, the related step of data management from the Concept Paper is indicated in brackets in the 

title. 

 

This section details processes in the design and implementation of an AI/ML system where the 

completeness and representativeness of a data set may be altered or otherwise not satisfied. Each 

process is defined; then its potential influence on completeness and representativeness is explained. 

Finally, existing methods and tools for assessment are discussed. 

3.4.2 Data management requirements 

3.4.2.1 Definition 

Data management (as defined in (EASA, 2023)) is the process of designing the specification of the 

required data set. 

3.4.2.2 Influence on completeness and representativeness 

Data management requirements encompass a variety of aspects that need to be considered to ensure 

that data is of quality and adapted to the intended application. Among these aspects: data must be 

collected from trustworthy and quality sources; dubious sources may induce data poisoning or backdoor 

to adversarial attacks; the quality and volume of data should comply with the task complexity and 

capacity of the selected AI model; the content of data should accurately represent the applicative input 

space. The definition of the system's data management requirements is then a fundamental stage during 

which specifications may conflict with completeness and representativeness, which may encompass 

requirements linked to all factors of influence identified in this chapter. 

3.4.3 Data quality improvement (in Data preparation) 

3.4.3.1 Definition 

Data quality improvement, as currently specified in (ISO/IEC CD 5259-2, 202X), consists in 

manipulating the original data to increase their amount or allow them to fulfil some requirements. 

 

 
42 This document leaves out AI systems based on reinforcement learning. 
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Among the techniques associated to data quality improvement, this chapter will discuss in particular 

data augmentation and data imputation. Data augmentation consists in taking samples from the data set 

and applying one or more transformations in order to create a set of “new” samples. Data imputation 

designates methods to replace missing values in the data with inferred values in order to improve the 

dataset’s completeness. 

3.4.3.2 Influence on completeness and representativeness 

Data augmentation is at its core a strategy to improve the completeness and representativeness on 

factors that have been identified as insufficiently represented. It can also be used to improve the 

robustness, resilience and stability of an AI/ML application. However, to work properly, the relevance 

of the augmentation treatments (i.e. the augmentation effectively contributes to improving a specific 

technical requirement) and their quality (i.e. the augmented sample may be considered realistic w.r.t 

the original input space) must be ensured. Additionally, as discussed in 3.4.2, each sample may satisfy 

several technical specifications at a time, it is therefore important to ensure the completeness and 

representativeness of the data set are maintained when introducing augmented samples. 

 

Data imputation improves a data set’s completeness at the cost of representativeness. Indeed, ablative 

methods (i.e. removing features for which samples have missing values) remove learning material and 

may hide correlations with other variables, altering the distributions of latent phenomena of interest. 

On the other hand, filling the missing values with statistical estimates may misrepresent and bias said 

distributions, e.g. by shifting common correlations toward rare cases and vice-versa. 

 

3.4.4 Data synthesis (in Data preparation) 

3.4.4.1 Definition 

Contrary to data augmentation where new samples are created from existing ones, data synthesis is the 

process of generating new samples from scratch. That is, data synthesis helps extend the input space 

covered (in contrast to data augmentation which can only improve the already covered input space). 

The created samples are “realistic”, i.e. their properties and content match those of an authentic sample, 

which makes them usable for training the AI/ML application.  

 

3.4.4.2 Influence on completeness and representativeness 

As for data augmentation, data synthesis is a strategy to improve the completeness and 

representativeness of a data set. The quality of synthetic samples is then key to the relevance of this 

approach, for the same reasons discussed in 3.4.2 and 3.4.3, i.e. to ensure these new samples preserve 

the completeness and representativeness of the data set.  

3.4.5 Data sampling (in Data preparation) 

3.4.5.1 Definition 

Data sampling covers the methods and tools used to select a subset of datapoints from a larger set of 

datapoints following a sampling rule. Usually, these rules are specified so that the sampled data set has 



 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 67 

 

the same distribution as the original data set. It is used when the input space is too large to be processed 

by an AI Model in reasonable time and resources.  

3.4.5.2 Influence on completeness and representativeness 

Data sampling can impact both the completeness and representativeness of a data set, either in a positive 

or negative way. A very large data set may display strong biases, such as class imbalance (see section 

3.5.2 on balance). In such cases, data sampling enables the AI/ML application designers to mitigate this 

bias w.r.t the real-life distributions of phenomena of interest as well as the technical requirements of 

the application. Data sampling strategies may also be used to mitigate biases in more modest-sized data 

set, but this should be done in accordance with the capacity of the chosen model architecture, to ensure 

sufficient overall volumetry. 

3.4.6 Labelling (in Data preparation) 

3.4.6.1 Definition 

Labelling consists in annotating samples in order to train and evaluate a supervised AI/ML application. 

Labelling can also be used for the evaluation of unsupervised AI/ML applications. 

3.4.6.2 Influence on completeness and representativeness 

Data labelling can be performed through expert annotation, semi-automatic annotation or automatic 

annotation, the former being the most expensive and the latter being more cost-efficient. In any case, it 

remains a generally costly and time-consuming process, as it requires some degree of human 

verification. Therefore, the time dedicated to this task, the quality of the annotation guidelines (either 

for annotation or verification of the annotations), the number of annotators tasked (allowing for a more 

robust cross-verification of their work) and their competence (either degree of expertise or incentive to 

perform the task, especially in the case of crowdsourcing) all influence the quality of the resulting 

annotations. Thus, sketchy guidelines, loose annotation consistency across annotators (due to fuzzy 

guidelines, hurried or unqualified annotators) lead to errors that may compromise the representativeness 

of the data. More specifically, either phenomena of interest that are explicitly labelled will be so 

incorrectly, or latent phenomena will be associated with the wrong class, hindering pattern recognition 

by the model. 

 

3.4.7 Pre-processing 

3.4.7.1 Definition 

Pre-processing encompasses any treatment modifying the data in order to facilitate its processing by 

the AI/ML applications, as well as to encourage desired behaviours to emerge during the learning phase. 

Common pre-processing in NLP (Natural Language Processing) includes normalization (i.e. 

harmonizing type case and punctuation) or lemmatization. In computer vision, images are frequently 

grayscaled and rescaled to a unique format. Finally, pre-processing also includes feature engineering. 
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3.4.7.2 Influence on completeness and representativeness 

Certain preprocessing operations may reduce the amount of information available for learning. While 

it is acceptable and sometimes necessary to encourage generalization or robustness, the influence of 

such information loss must be monitored to not degrade the distribution of phenomena of interest in the 

data set to the point of compromising its completeness and representativeness. 

 

3.4.8 Methods and tools for assessment 

3.4.8.1 Generalities 

As highlighted by (Mountrakis and Xi, 2013), the data set quality may have a more significant impact 

on the final model’s performance than any model design choice. This is because data management 

implies many steps before the data even arrive to the model, and all pipeline approaches are bound to 

error propagation, a phenomenon discussed in (Sambasivan et al., 2021) as “Data cascade” and 

identified as a weak point of many AI/ML application development, because it is regarded as a tedious 

and less rewarding activity. Yet, data curation approaches (including some of those discussed in this 

chapter) are usually empirical and multifactorial, i.e. they address several aspects of data quality at 

once. 

 

General methods to obtain an overview of the representativeness or completeness of the data usually 

rest on statistical indicators, such as the R-indicator (Schouten et al., 2009). However, these indicators 

are generally not adapted to unstructured data. Moreover, a limitation of completeness and 

representativeness assessment, especially using statistical tools, is that it usually requires knowing the 

actual real-life distribution of phenomena of interest, which is generally not possible (Ramsey and 

Hewitt, 2005). This relates to the work of (Cabitza et al., 2021), where it is pointed out that data 

similarity is central for ML generalization: dissimilar data sets tend to come from different underlying 

distributions. Consequently, being able to gather contrastive information of distributions can be 

insightful for performance improvements. To do so, they extend existing work by devising a 

representativeness metric based on Data Agreement Criterion and Data Representativeness Criterion. 

Both metrics are based on KL-divergence and require a priori estimated parameters to compute the 

similarity between 2 distributions. The authors' contribution is to introduce a meta-validation method 

making the process non-parametric and thus not requiring a priori knowledge of the reference 

distribution. 

 

Additionally, (Catania et al., 2022) suggest that confidence interval as well as monitoring a system's 

learning curve, especially coupled with techniques like cross-validation, may be useful to detect local 

lacks of representativeness or completeness in any type of data by the notable decrease in performance 

they would highlight. They also discuss strategies to circumvent such lack of representativeness, 

including data stratification, which is slightly outside the scope of this work. Class-wise evaluation may 

also refine the performance analysis and get insight on possible weaknesses in the data set's properties 

and be exploited as a more precise feedback for the development of the model. 
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3.4.8.2 Data management requirements 

The volume of data must not only be considered at data set scale, but from the technical specifications 

standpoint as well. In particular, the ODD will specify a range of operating conditions with general 

performance objectives, which to be met will require ensuring that a sufficient volume of samples is 

collected w.r.t each requirement. In addition, it is unlikely that each example would cover a single 

requirement. It is then important to ensure completeness and representativeness are achieved given the 

combination of requirements satisfied by the samples in the data set. Tools like Whylogs (discussed in 

3.3.9.3) can provide a coarse-grain monitoring of the data set after collection, possibly motivating 

additional efforts. 

 

More in-depth methods for characterizing data sets exist, with their limitations. (Asudeh et al., 2019) 

describe an approach to exhaustively identify the combinations of features patterns represented in a 

data set. The method works best with low-dimensional, categorical feature sets, though the authors 

indicate that it can scale to higher-dimensional, continuous inputs by preprocessing such as binning. 

Assuming an example data set where each sample is an individual, defined by three features: sex (M/F), 

race (B/H/A/W), age class (A: 0-30; B: 31-60; C: 61+), the method rests on the construction of a tree-

like structure where: 

• Leaves are actual datapoints (individuals). 

• A node is a combination of features, the values of which are either fixed or left variable. The 

combination is called a pattern. For example, FBX is the pattern encompassing all black 

females, regardless of their age. 

• Hence, the root is a pattern of only variable features (here, XXX) while a leaf is a pattern of 

only fixed features. 

• A given pattern P has parent pattern P' if P has one more fixed feature than P'. For example, 

FXX (all Females) is a parent pattern of FBX (Black Females). 

 

The concept of Maximum Uncovered Pattern (MUP) is then introduced. A given pattern P is a MUP if 

its coverage, i.e. the number of samples matching its combination of features, is less than a set threshold 

𝑡 while all its parent patterns have a coverage greater than 𝑡. Thus, the identification of MUPs is a direct 

mean of assessing the completeness of a data set, while the threshold allows a fine study of its 

representativeness. 

 

The authors present three exploration algorithms to identify MUPs in a data set: 

• Pattern Breaker is a top-down Breadth-First-Search approach. It works by exploring the covered 

regions of the graph first. Consequently, it is rather inefficient in data set with few uncovered 

regions. 

• Pattern Combiner is the converse, Breadth-First-Search bottom-up method of exploration, 

prioritizing the exploration of the uncovered region. It therefore exhibits the opposite weakness 

of Pattern breaker, being inefficient on mostly incomplete data sets. 

• Deepdiver is the last strategy, aiming at mitigating the two previous ones and providing an 

algorithm with more stable performance w.r.t data set coverage by using a Depth-First-Search 

approach. 
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However, the overall method seems impractical on unstructured data such as text or images. 

Nonetheless, for data fitting these constraints, it is one of the most exhaustive tools found at the time of 

writing. 

 

Another aspect to consider is whether the data set collection will happen from scratch, if a single pre-

existing data set will be retrieved or if the data set will be assembled from several distinct data sets. The 

latter is called data integration and is discussed by (Paganelli et al., 2022). Their method aims at 

maximizing data completeness when integrating text data sets, by leveraging word frequencies. Another 

method, presented by (Trinh et al., 2018) evaluates completeness from an end-user perspective rather 

than a data-specialist perspective. It is composed of two metrics: 

• Data Source: a score between 0 and 3 where: 

o 0: no data; 

o 1: adapted from other references using the same nanomaterial and experimental 

conditions; 

o 2: adapted from manufacturer specification; 

o 3: experimentally measured by the authors. 

• Measurement method: a score between 0 and 2 where: 

o 0: no information on the measurement method; 

o 1: non-standardized and less commonly used method; 

o 2: commonly used and standardized method. 

 

A completeness score is computed as the mean of both scores for each sample in the data sets. 

 

Other experts leverage simple metrics to assess the completeness of their data set. Notably, (C. Liu et 

al., 2017) provide an overview of the notion of completeness in the medical domain. It is shown that 

completeness is generally defined as the ratio of samples bearing the desired features in the data set 

over the total of samples, with variations on the counting methods based on specialties and objectives 

of the studies. These definitions can be implemented into algorithms that can in turn automatically 

gather data sets while ensuring its completeness on the fly. 

 

Similarly, in their review, (Heinrich et al., 2018) compare different metrics for data quality, including 

completeness but not representativeness, with the objective of identifying those that can contribute to 

the system's performance and be economically sound. To do so, they define 5 requirements: 

• Existence of minimum and maximum metric values. 

• Interval scaling of the metric values. 

• Quality of the configuration parameters and the determination of the metric values. 

• Soundness of the aggregation of the metric value. 

• Economic efficiency of the metric. 

 

From these requirements, they conclude that the completeness metric fulfilling all requirements is 

simply: C= 1 −
𝑇𝑅

𝑁𝑅
 where TR is the number of samples with at least one missing feature, and NR is total 

number of samples. 

 

Another data quality evaluation framework is proposed by (Even and Shankaranarayanan, 2007). The 

authors aim at assessing the quality of each sample by taking the applicative context into account, rather 

than an absolute measure of quality. Their method consists in a utility function integrating several data 
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quality dimension, including completeness. Its computation provides insight on the individual impact 

of each sample on the utility function. 

3.4.8.3 Data quality improvement 

As discussed in 3.4.3, data quality improvement encompasses data augmentation and data imputation. 

Data augmentation may rely either on “non-learnable methods”43, i.e. metamorphic transformations 

such as cropping or rotation (to encourage the learning of position-independent features) or by 

introducing some black or white pixels or gaussian noise, to create samples simulating electromagnetic 

noises (dead pixels or parasite noise, respectively). Alternatively, “learnable methods” using ML 

models may be deployed to generate more complex transformations (e.g. simulating meteorological 

alterations such as snow). 

 

In the case of absent or non-usable elements (for example “NaN” values), data imputation may also be 

performed, for example by deleting the features containing such element, or by replacing the absent or 

non-usable features with statistical estimations of the appropriate values (mean, median, fixed value, 

etc.). 

 

Both techniques work on the completeness and representativeness of the data set, though their 

assessment prior to implementing these strategies is not the usual process. Rather, data augmentation 

and imputation are more usually used in a performance-driven iterative process where the improvement 

of the evaluation metric motivates additional augmentation or imputation effort. 

 

As an example, (Setiawan et al., 2021) describe a Generative Adversarial Network (GAN) that 

generates augmented samples of sensor signals and quantify their impact by measuring the 

improvement of the evaluation metric of their target system compared to the performance on the raw, 

non-augmented data set. This is an instance of learnable method. GANs are also used for data 

augmentation of image data sets by (J. Lee et al., 2020) with the same quality assessment protocol, 

along with visual assessment on the realism of the augmented samples. Similarly, (Abidin et al., 2018) 

benchmark several ML models for data imputation and measure their performance on the improvement 

they enable on the downstream classifier. 

 

On the contrary, (Caiafa et al., 2020) apply decomposition and dimensional reduction (e.g. Principal 

Component Analysis or PCA) beforehand to get a better understanding of the weaknesses of the data 

set and orient the imputation and augmentation strategies. 

 

Similarly, (Catania et al., 2022) also use PCA to observe the distribution of the samples in the subspace, 

considering that the more homogeneous the distribution, the more representative the data set. While 

this is a more structured process than previous works, it still lacks a formal protocol for the assessment 

of completeness or representativeness. 

 

Another upstream approach is described by (Dourado Filho and Calumby, 2022) with a focus on 

computer vision. In this work, the authors distinguish 2 notions of class imbalance: 

 

 
43 « non-learnable » and « learnable » methods are concepts developed in Sections 4.5.4.3 et 4.5.4.4.   
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• Sampling imbalance is defined as what is most commonly referred as class imbalance, i.e. the 

difference between the number of samples for each class. 

• Content imbalance focuses on the difference between the number of samples of specific sub-

types inside a given class. 

 

Imbalance is characterized at sub-type level by computing the entropy of the sub-types in each class. 

Then, sub-types are binned by entropy value, allowing the comparison of distributions for sub-types 

and classes. Data augmentation or imputation can be applied and a new round of computation is 

performed to assess improvements. A limitation of this method is the need to characterize sub-types, as 

it requires additional annotation effort that are generally costly and sometimes hard or impossible 

outside image data. 

 

Finally, (Osman et al., 2018) offers a survey on data imputation techniques, which are considered by 

the authors quick and easy to implement, although they note that feature deletion, by decreasing sample 

size, may affect latent correlations, and lead to reduced statistical power of the data, which is also 

highlighted by (Lu et al., 2021). Modern techniques may seem advantageous, due to the existence of 

many libraries and packages, ease of understanding and implementation. Moreover, some of them 

preserve sample size and statistical power. However, some processes are highly complex and require 

complex mathematical integration that may hinder understandability and control over the underlying 

factors. Users should then pay specific attention to the choice of data imputation technique, and find 

the most adapted trade-off to limit the impacts on completeness and representativeness. The authors of 

the paper do not explore further the way such trade-off can be attained. 

 

3.4.8.4 Data synthesis 

For complex task such as NLP or Computer Vision applications, data synthesis can be achieved using 

ML or rule based simulators. Image and video data may be gathered from tools such as 3D simulators, 

as is the case in the aeronautics industry when gathering in-situ video feeds is prohibitively expensive. 

However, since it rests on the concept of generating samples from scratch, it requires additional 

precautions to ensure the degree of simulation (i.e. accuracy of the rules, quality of the generated 

images) is compatible with the ODD of the system, as synthetic data will never equate the complexity 

of real-life settings.  

 

Oversampling (i.e. generating more samples in the underrepresented classes) may be done by data 

augmentation but is not always possible, for example when there is too little diversity in the 

underrepresented samples and overrepresented classes cannot be leveraged for augmentation strategies 

(because classes are exclusive, e.g. to classify different types of animals). In this case, another 

possibility to rebalance a class-imbalanced data set is undersampling (i.e. deleting samples in 

overrepresented classes). However, undersampling may also be problematic because it may reduce the 

statistical power of the data set (Osman et al., 2018). In such cases, data synthesis offers an alternative 

way of performing oversampling.  

 

In their work, (Goodman et al., 2022) highlight the negative effects of undersampling are especially 

visible if the number of samples in the majority class is modest in absolute value. From this observation, 

the authors favor oversampling using data synthesis, of which they identify 2 types: 

• structural methods favor the synthesis of example improving class separation; 



 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 73 

 

• statistical methods aim at modelling the underlying per-class sample distribution to guide 

sample generation. 

 

Their approach leverages the KL-divergence and the distance to k-nearest neighbors to generate 

synthetic samples. The idea is to integrate a structural and a statistical component in a single method. 

However, the generative process follows the distributions of the classes in the data set, so it is most 

useful on small-scale data set where representativeness has been ensured. 

 

Regarding data imputation, (Santos et al., 2019) present a review of synthetic data generation techniques 

for missing sample values, according to the missing data mechanism involved: Missing Completely At 

Random (MCAR), Missing At Random (MAR), Missing Not At Random (MNAR). The survey 

distinguishes between univariate configurations (a single feature has missing values), and multivariate 

configurations (missing values are present in all features). The authors analyse the issues and 

restrictions, for both configurations, of the approaches meant to address a type of missing data 

mechanisms. Among the highlighted issues, they note that MCAR approaches may tend to produce 

different results according to the runs, leading to an important variability of the generated data sets. In 

addition, the authors point out the lack of investigation of the approaches in comparison with real-world 

data sets, which may limit the guarantee that data synthesis is a fully reliable approach to tackle missing 

data issues. 

 

3.4.8.5 Data sampling 

While the limitations of undersampling (i.e. loss of statistical power) and oversampling (i.e. degradation 

of representativeness) have been mentioned, data sampling methods to ensure the completeness and 

representativeness of a data set have been proposed. As an example, in (Celis et al., 2016), the authors' 

aim is, from a large data set D1, to extract a smaller data set D2 that is as much diverse and fair (i.e. 

balanced) as possible. The paper distinguishes 2 kinds of diversity: 

• Combinatorial diversity applies to low dimensional categorical data. It is based on computing 

Shannon entropy on every subset of samples where each given feature 𝑓 has value 𝑣. Reusing 

the example developed for (Asudeh et al., 2019), it consists in computing Shannon entropy for 

every sample of Female vs. Male (and can be applied on smaller subsets such as White Females 

vs. Black Females, etc). The intuition is that the larger the entropy, the more diverse the subset. 

• Geometric diversity on the other hand is aimed at high dimensional data such as images or texts. 

The idea is, for a set of k-dimensional samples, to compute the squared volume of the k-

dimensional parallelepiped formed by all samples in the data set. The larger the volume, the 

more diverse the data set. 

 

A limitation of combinatorial diversity (as is it the case for most method discussed so far) is that it 

works mostly for the assessment of completeness and requires explicit labelling of the attributes that 

define it. These attributes might go beyond the task-related labels. Therefore, it requires an additional 

and potentially important annotation effort, with associated cost and delay. A similarly limited but 

complementary approach is proposed by (A. Wang et al., 2020), that specializes in processing images. 

 

These methods combine sampling to identify the best-suited samples for a data imputation, 

augmentation or synthesis strategy. The approach discussed in (Blatchford et al., 2021) is based on the 

estimation of a confidence interval and the entropy for each sample in a continuous-valued data set. 
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The computation of both the interval and the entropy is performed iteratively over the data set, a 

technique called progressive sampling, and used as separate performance metrics. Both metrics are 

combined in a Probably Close Enough (PCE) criterion, to analyse quality: as the criterion converges 

towards a set value, it is not necessary to add samples, as they would not bring more information. The 

authors report the creation of a data set with the same PCE value but only 1% of the data volume than 

their original data set. This technique is particularly useful to sample a small, representative data set 

from a very large data set in the perspective of prototyping and exploratory research (such small-scale 

data set being easier and quicker to compute on a variety of models while staying informative of the 

performance to expect). 

 

Another distance-based contrastive method is introduced by (Mountrakis and Xi, 2013). In this work, 

the objective consists in comparing the representativeness of a “reference” data set D1 to another data 

set D2. The method can thus be applied to compare a subsampled data set, or two separate data sets 

(e.g. train and dev). The method is also model-agnostic and does not rely on labels. However, it is 

presented on multi-spectral images, i.e. RGB + NIR, and its portability to other data types such as text 

is not discussed. The Euclidean distance between the samples in the reference data set and each sample 

of the assessed data set is computed. The more neighbors an assessed sample has in a sphere of radius 

𝑟, the more representative of this part of the space it is considered. A general metric is derived for the 

whole data set. The authors do not point an implementation of their method. 

 

Another type of sampling strategy consists in weighting inputs. This strategy comes from the statistical 

survey domain and aims at rebalancing the representativeness of response data sets. For example, 

(Brubaker et al., 2021) use linear regression to estimate the weights of each input in a data set of 

respondents regarding COVID-19 surveys in Africa, at the household and individual levels. The authors 

use classic statistical representativeness methods applied on pre-COVID-19 surveys to weight 

household-level samples from the COVID-19 surveys, which introduces a selection bias. To alleviate 

it, these results are combined using linear regression on the individual-level response. 

 

Other work uses weighting as a sampling strategy, including (Kohut et al., 2012), who exploits reference 

demographic statistics to weight households (by size), response method (cellphone vs landline) and 

respondents (gender, age, etc). Additionally, (Macgregor et al., 2017) highlight the importance of 

confidence interval when using weighting strategies. Indeed, for a set confidence interval value, the 

more variability in the data set, the more samples will be required to reach the desired value, making a 

formal dimensioning factor for representativeness. 

 

(Keskes et al., 2022) adopt a different strategy by devising a method to filter out samples from a data 

set to improve representativeness. Starting from a data set of electrocardiograms (ECG) labelled by two 

classes A and B, and of varying quality, they aim at identifying and eliminating the worse quality 

samples while preserving the initial distribution of classes. The approach is realized in 3 steps: 

• training a classifier discriminating good and bad quality samples; 

• benchmarking different resampling methods; 

• selecting the method that yields the best result w.r.t the performance improvements obtained by 

the downstream classifier (working on the ECG). 
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The representativeness criterion is based on a quality metric defined as: 

𝐷𝐶𝑞𝑢𝑎𝑙𝑖𝑡𝑦 =
TP + FP

TN + FN
 

 

After a first round of classification, they keep only the positively predicted samples, redefining the 

representativeness metric: 

 

𝐷𝐶𝑐𝑙𝑎𝑠𝑠𝑒𝑠 =
𝑇𝑃1 +𝐹𝑃1
𝑇𝑃2 + 𝐹𝑃2

 

 

where: 

• TP1: True Positive samples of C1 (samples correctly predicted as good quality). 

• TP2: True Positive samples of C2 (samples correctly predicted as good quality). 

• FP1: False Positive samples of C1 (predicted as good but actually bad quality samples). 

• FP2: False Positive samples of C2 (predicted as good but actually bad quality samples). 

 

This metric is used as the objective function of the quality classifier. The benchmark is performed to 

find the best suited target value. 

  

Unstructured data are especially hard to process at most steps of designing an AI/ML application. 

(Paganelli et al., 2022) focus on text data and devise a sampling procedure in the perspective of data 

integration, i.e. when assembling a data set from different pre-existing sources. On the same theme, 

(Simão et al., 2015) assess the completeness of genetic data by comparing the length of the genes to the 

mean length of a larger group, and describe a framework to automate this task. Their method rests on 

modelling the distribution of word frequencies across the data sets and maintaining it in the integrated 

data set. For time series, (Anttila et al., 2012) use Moving Block Bootstrapping to select temporally 

representative samples. The method focuses on the temporal aspect and is independent of the 

distribution of the data. 

3.4.8.6 Labelling 

So far, many identified assessment methods rest on explicit meta-data, which can be included during a 

tagging phase, complementary to labelling. However, in this section, tagging will not be considered and 

the focus will be put on labelling as the process of annotating samples with ground truth. Additionally, 

in this chapter, “labelling” encompasses all the phases related to the annotation of a data set built from 

scratch (i.e. design of the annotation guide, labelling) or retrieved from an existing source (i.e. by 

partially or completely reannotating the data or integrating several data sets with different annotation 

schemas). Despite the additional complexities and associated externalities, labelling may be a critical 

phase for assessing and monitoring the completeness and representativeness of a data set. During these 

phases, the data set can be monitored using tools such as Cleanlab44 (Northcutt et al., 2021). Similarly 

(Sánchez et al., 2019) present a framework to explore the missing values in a data set, according to 

defined axis such as labels, features or time. In their case study, they highlight the importance to 

distinguish the sample-level analysis from the class-level analysis. 

 

 
44 https://github.com/cleanlab/cleanlab 

https://github.com/cleanlab/cleanlab


 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 76 

 

Besides, annotation quality is estimated through the intra- and inter-annotator agreement rates. Intra-

annotator agreement assesses the consistency of a given annotator when annotating the same sample 

multiple times, which is particularly interesting in subjective tasks such as sentiment analysis. On the 

other hand, inter-annotator agreement assesses the consensus of multiple annotators on a given sample. 

Both agreement metrics are useful to identify annotation difficulties at small scale, be it particularly 

bad annotators, or a particularly difficult class. Moreover, an overall low agreement may indicate a 

particularly difficult or ill-defined task. Annotator agreements are usually computed using Kappas 

(Cohen Kappa for pairs of annotators, Fleisch Kappa for more), but can alternatively be computed on 

the same metric used for system evaluation, especially if one of the annotators may be considered 

particularly competent. 

 

Overall, few methods have been found that assess data completeness during the labelling phase. A 

related problematic has been identified in the knowledge base community, where the content of data is 

used to assess the completeness of the bases. For example, (Balaraman et al., 2018) propose a 

framework around the notion of relative completeness: the content of similar instances in the database 

is compared and scored. The score quantifies the relative completeness of the instance. Therefore, the 

framework rests on two components: 

• A similarity function that uses the labels of each instance and the frequency of their properties 

to match similar instance. 

• A scoring function for assessing the relative completeness of a set of instances, based on the 

number of common properties. 

 

(Issa et al., 2021) explore in more depth the matching and scoring of instances, by reviewing the 

literature of such approach applied to linked databases. They distinguish four aspects of completeness: 

• Schema completeness; 

• Property completeness; 

• Population completeness; 

• Interlinking completeness. 

 

Each aspect is then quantified using simple ratios, in line with the work of (Heinrich et al., 2018). 

Though the four aspects discussed could be conceptualized in a more general ML context (with 

population completeness being seemingly the closest to the notion of completeness as discussed in this 

document), the approach is too specialized to be extended outside the domain of linked databases.  

 

3.4.8.7 Preprocessing 

 

As preprocessing transforms data and assuming the original data set has been curated for completeness 

and representativeness, a first consideration is to apply the same methods for curation after each 

preprocessing step. The remainder of this section describes preprocessing steps, i.e. transformations 

that will be used by the model, that specifically aim at addressing completeness or representativeness. 

 

For example, (Chehreghan and Ali Abbaspour, 2018) seek to transform cartographic data (from Open 

Street map) to better match a reference data (from a national cartographic institute). In a first phase, 

preprocessing steps are applied to align both data sets: the formats and coordinates systems are 

harmonized, topographical errors are removed and the maps are converted to a graph representation. 
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Then, a training area is selected, in which topographical objects of interest are detected and an algorithm 

tries to match objects from the reference and candidate maps. This matching depends on two parameters 

that need to be optimized, so the matching operation is repeated for several combinations of values of 

both parameters. Performance of each combination is evaluated by computing the F-score of the 

matching and the combination of values yielding the best F-score is selected for the next phase. In this 

second phase, these values are used to run the matching algorithm on the rest of the data, matching the 

rest of both maps. Finally, completeness of the matching is computed through a combination of 

similarity measures based on geometric properties such as object length, orientation, area, etc. Although 

this approach may be too distant from the context of the MLEAP project to be used as is in its next 

phases, the general methodology is presented to be used as higher-level indications of what 

preprocessing for the completeness and representativeness of the data set (and its assessment) could 

look like. 

 

On text data, (Y. Hu et al., 2020) improve the completeness of a corpus of literary works by binning 

data in time groups of 5, 10 and 20 years and cutting off the size of the bin at the smallest one. Though 

they report satisfactory results for their application, this method basically rests on data deletion, which 

has been already discussed as a less than desirable solution. As in the previous work presented, the 

approach in itself should not be applied directly, but could serve as inspiration for the development of 

more adapted methodologies. 

 

Finally, no substantial work has been found that leverages feature engineering methods for the 

improvement or assessment of completeness or representativeness, though (Almaimouni et al., 2018) 

use a combination of PCA and K-means to group and select the most salient features of the dataset for 

representative sample selection in the context of power system modelling. As for both previous 

methods, this work is presented for exhaustivity purposes and general ideas but is not exploitable for 

testing in the context of the MLEAP project. 

3.4.8.8 Corner case and edge case detection for ML models 

3.4.8.8.1 Prediction based methods for the vision domain 

Following the definition introduced in 1.2.3.2.2 prediction-based approaches can be found mainly at 
scenario level. Typically, they predict a future frame and then compare it with the true frame to detect 
any anomalies. Thus, they can be trained in a supervised manner, assuming that all training samples are 
normal. Such a method has been applied by (Fingscheidt et al., 2019) specifically for the detection of 
corner cases in automated driving. Another approach predicts future images in videos using a generative 
adversarial network architecture while guaranteeing appearance and motion constraints (W. Liu et al., 
2017). 

Another prediction-based method relies on the notion of surprise adequacy (Kim et al., 2019; Ouyang 
et al., 2021), which can be used as a test adequacy tool. Surprise adequacy’s initial property is to 
describe the surprise of testing data with respect to the training data, namely to describe 
difference/similarity between testing and training data (Kim et al., 2020, 2019; Kim and Yoo, 2020). 

Hereafter, this section introduces first a corner case detection method based on unpredictable situations 
detection and then summarizes methods based on surprise adequacy. 

Corner Cases as Unpredictable Situations 

In (Fingscheidt et al., 2019), the authors identify corner cases as technically unpredictable situations. 
However, it is important to note that not each unpredictable situation in the field of autonomous driving 
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is necessarily a corner case. An aircraft that suddenly enters the camera image in the sky may not be 
predictable, but luckily in most cases it will be irrelevant for the driving task. Following (Fingscheidt 
et al., 2019), a corner case is detected if there is 1) a non-predictable, 2) relevant object or class in 3) a 
relevant location. 

More precisely: 

1. The method describe in (Fingscheidt et al., 2019) uses an image prediction component that gives 

us the prediction errors for each new image. Many autonomous driving systems already predict 

trajectories of other traffic participants. To identify corner cases in video streams, it is essential 

to understand the underlying states and dynamics within the given situations. This high-level 

abstraction can be learned by predictive models. For the image prediction approach, we can train 

a model that receives 𝑛 consecutive frames 𝑥(𝑡 − 1, 𝑡 − 𝑛): (𝑥𝑡−𝑛, 𝑥𝑡−𝑛+1, … , 𝑥𝑡−1) to compute 

a prediction 𝑥𝑡 of the current frame. As a metric for the corner case, we may now calculate an 

error 𝑒𝑡 = 𝑥𝑡 − 𝑥𝑡, between the predicted image and the actual image 𝑥𝑡. The metrics of 

(Mathieu et al., 2015) can be used (see Figure 12). 

2. This method described in (Fingscheidt et al., 2019) uses a semantic segmentation of the input 

frame that allows us to classify and localize the objects in the scene, with moving objects being 

considered as relevant. For the semantics segmentation, the training protocol from (Chen et al., 

n.d.) can be used. 

3. Finaly the method described in (Fingscheidt et al., 2019) needs a detection system that processes 

the information from both image prediction and semantic segmentation by information fusion, 

comprising a check, whether the non-predictable relevant class is in a relevant location. For the 

image prediction examples of models are the well-known PredNet (Lotter et al., 2016) and the 

network proposed by (Hasan et al., 2016). 

 

 
Figure 12. High-level block diagram of the corner case detector (borrowed from (Fingscheidt et al., 2019)). 

Corner Case Detection Based on Surprise Adequacy 

Following (Ouyang et al., 2021), a good way to evaluate surprise adequacy is to study neurons 
behaviour in terms of a given deep learning (DL) model. The authors emphasize that the more the 
diversity of neuron behaviours, the better the quality of testing data. For example, metrics for neuron 
coverage were proposed in (Pei et al., 2017), as well as for neurons’ activation behaviours (Sun et al., 
2018). The reader can refer to Section 3.3.9.2 for more. While, compared with those metrics reflecting 
independent behaviours of testing and training sets, in (Kim et al., 2019) an interesting idea was 
proposed to describe the difference between the testing set’s behaviours and that of the whole training 
set. 
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Let 𝑋 = {𝑥1, 𝑥2, … } be a set of inputs and let 𝑀 be a trained DL model made of a set of neurons 𝑁 =
{𝑛1, 𝑛2, … }. For a given testing data 𝑥 ∈ 𝑋 and an ordered (sub)set of neurons 𝑁 ⊆ 𝑁, the activation 
behaviour (namely activation trace) of 𝑥 on 𝑁 is expressed by the vector of activation values and it 
denoted as: 

𝛼𝑁(𝑥) = [𝑎1(𝑥),… , 𝑎𝑁(𝑥)]
𝑇 

where each element an(x) corresponds to the activation value of x with respect to an individual neuron 
n in N. Hence, the set of activation traces for X is denoted as 𝐴𝑁(𝑋) = {𝛼𝑁(𝑥)|𝑥 ∈ 𝑋}. 

Then, 𝐴𝑁(𝑇𝑟) is calculated based on the training dataset Tr, which records neurons’ activation 
behaviours on all samples in 𝑇𝑟. Similarly, the activation behaviour of testing data 𝑇𝑒 is also obtained 
as 𝐴𝑁(𝑇𝑒). Finally, combining 𝐴𝑁(𝑇𝑟) and 𝐴𝑁(𝑇𝑒), surprise adequacy (SA) is defined to describe the 
relative novelty of testing inputs with respect to the training data. It is actually denoted as the 
quantitative similarity measure between 𝐴𝑁(𝑇𝑟) and 𝐴𝑁(𝑇𝑒): 

SA = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑦𝑀𝑒𝑎𝑠𝑢𝑟𝑒(𝐴𝑁(𝑇𝑒), 𝐴𝑁(𝑇𝑟)) 

Two kinds of similarity measurement are proposed in (Kim et al., 2019) to formalize SA, based on the 
likelihood-based SA (LSA), and on distance-based SA (DSA). 

Improvements are proposed in (Ouyang et al., 2021; Tinghui Ouyang, 2021), where SA is applied for 
data description, especially for corner case data description. In addition, three kinds of modification on 
DSA definitions are developed. Finally, based on DSA, a novel corner case data detection method is 
proposed. Different from most of corner case study, the proposed method can be utilized as a tool in 
recognition of corner case data. 

The tool related above is: 

• In python: dnn-tip 0.145. 

 

Likelihood-based Surprise Adequacy 

In (Kim et al., 2019) the authors uses the Kernel Density Estimation (KDE) to estimate the probability 

density of each activation value 𝐴𝑁(𝑇), and obtains the surprise of the new input with respect to the 

estimated density. 

The KDE produces density function 𝑓 as follows: 

 

𝑓(𝑥) =
1

|𝐴𝑁𝐿(𝑇)|
∑ 𝐾𝐻 (𝛼𝑁𝐿(𝑥) − 𝛼𝑁𝐿(𝑥𝑖))

𝑥𝑖∈𝑇

 

With:  

• 𝑁𝐿 is part of 𝑁where N is set of neurons of the DL model 

• 𝐻 denotes the bandwidth matrix  

• 𝐾is a Gaussian kernel function 

• 𝑥 is a new input  

 

 
45 https://pypi.org/project/dnn-tip/  

https://pypi.org/project/dnn-tip/
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The LSA is defined to be the negative of the log of density: 

𝐿𝑆𝐴(𝑥) = −𝑙𝑜𝑔 (𝑓(𝑥)) 

 

Distance-based Surprise Adequacy 

In (Ouyang et al., 2021) the author introduce the Distance-based Surprise Adequacy (DSA) which uses 

the Euclidean distance for each novelty within the data test  

𝐷𝑆𝐴(𝑥) =
𝑑𝑖𝑠𝑡𝑎
𝑑𝑖𝑠𝑡𝑏

 

With: 

• 𝑑𝑖𝑠𝑡𝑎 = ‖𝛼𝑁(𝑥) − 𝛼𝑁(𝑥𝑎)‖ where 𝑥𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐷(𝑥𝑖)=𝐶𝑥

‖𝛼𝑁(𝑥) − 𝛼𝑁(𝑥𝑖)‖ 

• 𝑑𝑖𝑠𝑡𝑎 = ‖𝛼𝑁(𝑥𝑎) − 𝛼𝑁(𝑥𝑏)‖ where 𝑥𝑏 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐷(𝑥𝑖)∈𝐶𝐶𝑥}‖𝛼𝑁(𝑥)−𝛼𝑁(𝑥𝑖)‖

 

• 𝑐𝑥 ∈ 𝐶 predicted class of the new input 

This method uses different distance like Mahalanobis distance. 

𝑀𝐷𝑆𝐴(𝑥) = √(𝛼𝑁(𝑥) − 𝜇𝑇)𝑇𝑆𝑇
−1(𝛼𝑁(𝑥) − 𝜇𝑇) 

With: 

• 𝜇𝑇 mean and 𝑆𝑇 covariance matrix 

The tool in the section is: 

• In python: dnn-tip 0.146. 

 

Summary of Methods Available 

 

Corner case level Methods available 

Scenario level • In the paper (Erdogan et al., 2019) the authors compare a rule-based:  

o Unsupervised clustering 

o Supervised deep learning approach for maneuver extraction on scenario 
level 

• Dangerous-driving classifiers for anomalous driving behaviour based on random 
forest and recurrent neural networks (Alvarez-Coello et al., 2019) 

• Long short-term memory and replicator neural networks (Matousek et al., 2019) 

• Reconstruction-based autoencoders trained on handcrafted spatio-temporal 
features and end-to-end implementations (Hasan et al., 2016) 

 

 
46 https://pypi.org/project/dnn-tip/  

https://pypi.org/project/dnn-tip/
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Corner case level Methods available 

Scene level • Reconstruction-based method (Xia et al., 2015) 

• Learn normality with autoencoders (D. Gong et al., 2019)  

• Monte Carlo dropout (Gal and Ghahramani, 2016) 

• Bayesian SegNet uses Monte Carlo dropout for semantic segmentation (Kendall 
et al., 2015) 

• Deep ensembles for uncertainty estimation (Lakshminarayanan et al., 2017) 

Object level • Open-set recognition (Scheirer et al., 2013) 

• Stereo-based geometric modelling (Cordts et al., 2016) 

• A combination of object detection and segmentation (Pham et al., 2018) 

• The other methods provide per-image scores (Lis et al., 2019) 

Domain Level • Measure of the domain gap between source and target distribution (Bolte et al., 
2019)  

• Minimize cross-entropy-based metrics between the distribution (Dai and Van 
Gool, 2018; Zou et al., 2018) 

• 𝐻-divergence (Chen et al., 2018)  

• Wasserstein distance (Shen et al., 2017) 

Pixel level • Edge-adaptive method (An et al., 2007) 

• Estimation of rotation of optical flow (Buczko and Willert, 2017) 

• U-Net to extract features for a random forest classifier (Dong et al., 2019) 

 

Figure 13 presents a summary of the section, where we denote, which type of method has been applied 
to detect which corner case level. A * symbol denotes the suggested approaches to detect corner cases 
on that level. 
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Figure 13 – The summary of approaches to detect corner case (Breitenstein et al., 2021). 

 

3.4.8.8.2 Corner Cases in NLP 

The methods for corner case detection discussed in the former sections are dedicated image and video 
streams. Indeed, most of the state of the art on the subject is dedicated to the kind of task associated to 
computed vision, especially with application to vehicles and driving. Nevertheless, corner cases do exist 
in other domains. For example, in NLP, consider a scenario where the CEO of a company states in an 
audio conference, “Now investments will be made in Asia”. The system instead could transcribes, “No 
investments will be made in Asia”. There is a meaningful difference in the implication of the two 
statements that could greatly influence the analysis and future direction of the company (Nourbakhsh 
and Bang, 2019). A few approaches have been proposed for corner case detection out of the vision 
domain. This section explores first the case of natural language processing (NLP) and then focuses on 
time series. 

In the domain of NLP, some research focused on anomaly detection, for example in (Nourbakhsh and 
Bang, 2019). Unsupervised clustering methods have been applied to documents in order to identify 
outliers and emerging topics (Cheng, 2013). Deviation analysis has been applied to text in order to 
identify errors in spelling (Samanta and Chaudhuri, 2013) and tagging of documents (Eskin, 2000). 
Recent popularity of distributional semantics (Turney and Pantel, 2010) has led to further advances in 
semantic deviation analysis (Vecchi et al., 2011). 

In (Nourbakhsh and Bang, 2019), the authors enumerate major applications of anomaly detection from 
text in the financial domain, and contextualize them within current research topics in Natural Language 
Processing. They lay out five perspectives on how textual anomaly detection can be applied in the 
context of finance: 

1. Anomaly as error: Some studies have used anomaly detection to identify and correct errors 
in text (Eskin, 2000; Samanta and Chaudhuri, 2013). These are often unintentional errors 
that occur as a result of some form of data transfer, e.g. from audio to text, from image to 
text, or from one language to another. 

2. Anomaly as irregularity: Anomaly in the semantic space might reflect irregularities that 
are intentional or emergent, signaling risky behaviour or phenomena. A sudden change in 
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the tone and vocabulary of a company’s leadership in their earnings calls or financial reports 
can signal risk (Nourbakhsh et al., 2017; Wendlandt et al., 2018; Zhao, 2017). 

3. Anomaly as novelty: Anomaly can indicate a novel event or phenomenon that may or may 
not be risky. Breaking news stories often emerge as anomalous trends on social media. 
Novelty detection can also be used to detect emerging trends on social media, e.g. 
controversies that engulf various brands often start as small local events that are shared on 
social media and attract attention over a short period of time (Li et al., 2017; Liu et al., 2015; 
Nourbakhsh et al., 2015). 

4. Anomaly as semantic richness: A large portion of text documents that analysts and 
researchers in the financial sectors consume have a regulatory nature. Annual financial 
reports, credit agreements are some of these types of documents. These documents can be 
tens or hundreds of pages long, and often include boilerplate language that the readers might 
need to skip or ignore in order to get to the “meat” of the content. Often, the abnormal 
clauses found in these documents are buried in standard text so as not to attract attention to 
the unique phrases (Sameena Shah and Sisk, n.d.). 

5. Anomaly as contextual relevance: Certain types of documents include universal as well as 
context specific signals. As an example, consider a given company’s financial reports. The 
reports may include standard financial metrics such as total revenue, net sales, net income, 
etc. In addition to these universal metrics, businesses often report their performance in terms 
of the performance of their operating segments. These segments can be business divisions, 
products, services, or regional operations. Since these segments are often specific to each 
business, supervised models that are trained on a diverse set of companies cannot capture 
them without over-fitting to certain companies. Instead, these segments can be treated as 
company-specific anomalies. 

Let us note that unlike numeric data, text data is not directly machine-readable, and requires some form 

of transformation as a pre-processing step. A comprehensive survey of different technique available is 

presented in (Naseem et al., 2021). For example, in “bag-of-words” methods, this transformation can 

take place by assigning an index number to each word, and representing any block of text as an 

unordered set of these words (Howard and Ruder, 2018). In sentence boundary disambiguation methods 

(Palmer and Hearst, 1994) the text is split into sentences before being processed. In (Wu et al., 2016a) 

the authors propose another algorithm to process the sentences and the word within called WordPiece. 

Some methods focus on the representation at the document level, for example in (Cohan et al., 2020; 

Z. Liu et al., 2020). Or others, can operate in a semantic indexing space like in (Rosario, 2001; Sharma 

and Kumar, 2023). 

 

The article (Kopf and Huh-Yoo, 2023) discusses the user-centered design approach in developing a 
voice monitoring system for occupational voice users (OVUs) to prevent voice disorders. It explores 
the current long-term voice monitoring systems available and their limitations, as well as the potential 
of biofeedback in VDP. The study demonstrates a UCD approach to designing an intuitive feedback 
display for OVUs, with the aim of creating a real-time VDP system to support proactive behaviour 
change for OVUs. 

This article (Yan et al., 2011) proposes a new information retrieval model that takes into account 
similarity, popularity, and semantic granularity for domain-specific search. A concept-based 
computational model is developed to estimate the semantic granularity of documents, and the proposed 
model outperforms the similarity-based baseline in benchmark experiments. The study suggests that 
the proposed model resembles the implicit ranking functions exercised by humans, and its perceived 
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relevance is significantly higher than that produced by a popular search engine for domain-specific 
search tasks. 

This paper (Z. Shi et al., 2020) proposes the first robustness verification algorithm for transformers, 
which have complex self-attention layers that pose challenges for verification. The certified robustness 
bounds computed by the method are significantly tighter than those by naive interval bound propagation 
and shed light on interpreting transformers. 

This paper (Wenqi Wang et al., 2019) presents a survey of adversarial techniques for generating 
adversarial texts in both English and Chinese characters and the corresponding defense methods, with 
the goal of inspiring future studies to develop more robust DNN-based text analysers against known 
and unknown adversarial techniques. 

This paper (T. (Sherry) Wu et al., 2019) presents Errudite47, an interactive tool for error analysis in NLP 
that codifies model and task agnostic principles, such as precisely defining error groups, analysing a 
large set of instances, and explicitly testing hypotheses about error causes. A user study shows that 
Errudite enables high-quality, reproducible error analysis with less effort and reveals ambiguities in 
prior error analysis practices. 

 

In this section, the academic papers are referencing only prototypes that are not always available to be 
tested. 

 

3.4.8.8.3 Corner cases in time series 

As it is the case for NLP, little work has been done concerning corner case detection in time series. The 
most related work is about methods of outlier detection in medical diagnoses (Chrominski and Tkacz, 
2010). The authors investigated several outlier detection methods listed hereafter: 

• Grubb’s test 

o Method: Grubb’s Test is a test based on normal distribution, the effects of which are that 
the data analysed with this method should have normal distribution (Fallon A., n.d.). 

o Tools:  

▪ Python: from PyPI, outlier_utils 

▪ R: from outliers, grubbs.test 

• Dixon’s test 

o Method: Dixon’s Test begins by organizing the data in an ascending order, the next step 
is to count some parameter 𝑄 (more details in (Chrominski and Tkacz, 2010)). When the 
calculated value of parameter 𝑄 is bigger than the critical value then it is possible to 
accept the data from the data set as an outlier (Fallon A., n.d.; J.R, 1999; Konieczka P., 
2007). 

o Tools: 

▪ Python: outlier-detector 0.0.3 

▪ R: from outliers, dixon.test 

 

 
47 https://github.com/uwdata/errudite 
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• Hampel’s Test 

o Method: For this test, one has to calculate the median 𝑀𝑒 for the whole data set and, 
next, to calculate the value of deviation 𝑟𝑖 from the median value for each element 𝑖. 
When |𝑟𝑖| > 4.5𝑀𝑒𝑟𝑖, the deviation is greater than 4.5 times the median for the current 
deviation, the value from the data set can be accepted as an outlier (Ben-Gal, 2005; C, 
2001). 

o Tools: 

▪ Python: pyhampel 0.3.7 

• Quartile Method: In this method, one has to find the upper quartile 𝑄3 (75% of data in the data 
set are lower than this) and the lower quartile 𝑄1 (25% of data in the data set are higher than 
this). Values lower than 𝑄1 − 1.5𝐻 and greater than 𝑄3 + 1.5𝐻 can be considered as outlier, 
where 𝐻 = 𝑄3 − 𝑄1 (Filzmoser, 2004). 

 

3.4.8.8.4 Conclusion and Applicability 

While corner and edge cases pose some serious challenges to the design and the validation of system, 
the current literature is still exploring new ways to tackle all of these challenges. Most of the current 
state of the art is currently focus on the topic of computer vision, and thus images and video streams 
corner and edge cases. This is in part pushed by the need to develop rapidly self-driving vehicles. The 
state of the art is thinner on other type of application (NLP and time series types of data) but still present 
some options. The current maturity of approaches is still mostly at the research level, some of them 
have allow some academic prototypes to be made publicly available. However, each academic tool 
allows to implement one approach tied to a specific research paper. No consolidation inside commercial 
tools or even through a standardization document had been done so far. This leaves the industry in a 
state where the state of the art is largely in flux, and can change in the near future, until some 
consolidation actions occurred. System designers can use these techniques (provided they can scale to 
industrial problem, which is not always the case), but would have to justify its choice under the 
subjective opinion they used. 

In all the techniques available it can be noted that test-based methods have (at least until now) the 
highest degree of generalization to other use case outside computer vision. They might be the most 
advanced in terms of software available, and are likely to be usable at the industrial level in the short 
term. 

However, the techniques related to prediction based methods and especially those studying 
unpredictable situation, are the closest to the (EASA, 2023) framework of ODD. Indeed, these 
techniques works under the assumptions that every scene or scenario can be decomposed in several 
domain (some of which contained in others). This decomposition is suitable under the requirement of 
EASA CP since it allows a better characterization of the attributes of the OD and ODD, as well as a 
description of their distribution. 

3.4.8.9 Conclusions 

In general, and as is the case in Section 3.3, there exists a wide variety of methods integrating the 

assessment of completeness and representativeness into different processes of the data life cycle. 

However, these methods lack genericity, and their transferability (in terms of both technical feasibility 

and interest) to other use cases, even for the same task, is often unclear. 
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Nonetheless, the literature seems to indicate that well-proven tools such as dimension reduction are still 

relevant for today's massive data sets, even though this kind of upstream analysis tends to be forgotten 

in modern work. Moreover, as pointed out in (Zhang and Zhu, 2018) at the end of their review and in 

multiple work throughout this section, an intrinsic weakness of assessing representativeness, in 

particular using data sampling methods, is that it requires knowing the distribution of the phenomena 

of interest. This is generally hard to ascertain. Therefore, well-known, time-proven tools such as PCA 

and other appropriate variation (depending on the nature of the data) may be reasonable rules of thumb 

to gather as much knowledge of the data set's limitations as possible to outline expectations about the 

downstream model's performance, as hinted by (Caiafa et al., 2020) and (Catania et al., 2022). 

 

Data improvement methods also appear to be an interesting way to tackle completeness and 

representativeness. Indeed, despite the limitations inherent to data synthesis and the specific weaknesses 

of the methods, (Salamon et al., 2017) highlights that even though synthesized data may not reflect real-

world phenomena and thus allow reliable conclusions of the behaviour to expect from the model in its 

operational context, data synthesis allows for detailed and controlled evaluation. Moreover, data 

synthesis enables the creation of vast amounts of data that by sheer number may provide insight on the 

performance of different models. 

 

Finally, in highly constrained contexts such as using data for an AI/ML application requiring high level 

of data trustworthiness with only few sources available, data augmentation and data synthesis may be 

central to increase completeness and representativeness. While it shows the developments of such 

methods should be encouraged, the ability to evaluate their quality (accuracy, consistency, etc.) must 

remain an important concern. 

 

3.5 Relation to other data quality requirements 

3.5.1 Introduction 

The literature extensively highlights the influence of certain quality attributes on each other. In its 

current state, the standard on data quality for AI and analytics (ISO/IEC CD 5259-2, 202X) mentions 

the existence of conflicts between data quality attributes. Therefore, trade-offs must be made to estimate 

which attributes should prevail in the context of use. 

 

This section lists and analyses the relationships as follows: 

• A definition of the attribute and, when existing, methods for computing the value of the attribute. 

• A description of how the attribute (representativeness, completeness, or both) is impacted. 

• The existence of methods and tools for controlling this impact. 

• A summary of the importance of the impact and the extent to which this can be controlled 

(depending for example on the maturity of the methods). 

 

Coupled to an analysis of the functional requirements, this analysis shall provide the baseline for the 

definition of a strategy for establishing DQRs that encompasses, in an extensive manner, the whole 

environment of the assessment. 
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3.5.2 Balance 

3.5.2.1 Definition and assessment of the value 

The standard (ISO/IEC CD 5259-2, 202X) defines that balance refers to the distribution of the data 

samples for all dimensions of the data set. This attribute should be checked on training, validation and 

test data. 

 

The assessment of balance can be performed, according to (ISO/IEC CD 5259-2, 202X), through 

computing the reciprocal of the maximal ratio of the difference of a feature 𝐹impacting ML 

performance of a sample 𝑠, over the averaged value of the parameter for all the samples of a data set 𝐷. 

 

As an example, the balance on the feature of brightness of images can be computed with: 

𝑋𝐹 =MAX(
|𝐴𝑠 −𝐵𝐷|

𝐵𝐷
)

−1

 

where 𝐴𝑠 is the brightness of an image sample and 𝐵𝐷 the averaged brightness for all the samples of 

the data set 𝐷. 

 

The features that impact ML performance should be defined according to business logics and expert 

knowledge of the domain of application of the ML system. (ISO/IEC CD 5259-2, 202X) uses the 

example of image data sets for an ML application, which may require the exploration of features such 

as brightness, resolution, size of the categories, bounding box height to width ratio, bounding box area, 

and category bounding box area (averaged bounding box area of the samples in a category over the 

averaged area of all the samples in the data set). 

 

As depicted in (Yu, 2021), balance can also be assessed through a comparison between the performance 

of the model on the whole data set (through for example accuracy and F1 score) and the performance 

obtained on the categories of samples representing “minority classes” (samples for which the absence 

or underrepresentation of values of sensitive attributes48 may impact the fairness of the ML system). 

The comparison relies on nonparametric null-hypothesis significance testing (Mann–Whitney U test) 

and nonparametric effect size testing (Cliff’s delta). Performance is considered significantly different 

if the null-hypothesis is rejected in the Mann–Whitney U test and the effect size in Cliff’s delta is 

medium or large. 

3.5.2.2 Influence on completeness and representativeness 

The balance data quality attribute, as described in (ISO/IEC CD 5259-2, 202X), encourages a 

homogeneous distribution of the values of the data items influencing the performance of the ML model. 

This approach allows in particular limiting the risk of biases of the data set, and may present benefits 

for safety, since edge cases are expected to be present in the data set in significant proportions, and may 

contribute to the fairness of the system by limiting the risk of underrepresentation of certain populations. 

However, a balanced distribution of phenomena directly impacts representativeness of the data set, 

 

 
48 In the study (Yu, 2021), “sensitive attributes” are the features that may impact the suitability or acceptability of the model 

(sex, age, work experience, etc.). 
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since representativeness implies that the data set matches the statistical distribution of the phenomena 

in operational conditions. 

3.5.2.3 Methods and tools for assessment 

Balance and representativeness are two attributes that seem to coexist in ML studies, but only certain 

aspects of the attributes are covered, for example by ensuring balance on specific aspects (such as 

gender), and ensuring representativeness of other aspects. Several studies address the effect of balance 

on the performance of the models, without considering the articulation with representativeness - for 

example, (Kumar et al., 2021), (Yu, 2021), (Leavy, 2018). In sociology, (Dickinson et al., 2012) address 

the relationship between balance and representativeness. They take the example of a survey conducted 

in a predominantly female company that will naturally be unbalanced in terms of gender, but 

representative of the target population. Additional male samples could be collected to reach balance, or 

female samples could be deleted, but at the expense of representativeness. The study suggests relying 

on power analysis to determine the minimum male sample size needed for an appropriate observation 

of interactions between gender and the independent variables. The authors also suggest using techniques 

such as bootstrapping to generate standard error estimates not relying on parametric assumptions, which 

may increase statistical power; the authors note that such technique should only be used on variables 

presenting normal distributions. The study highlights that reaching a trade-off between balance and 

representativeness requires subtle exploration of the data, and that impacts on either of the attributes 

should be documented by the data analyst. 

 

Many works on ML argue about the importance of balanced data, regardless of the AI field or industry 

sector. For example, (Bilgic et al., 2021) offers a bibliographical analysis in AI for surgical education 

that highlights unbalanced data as one of the limiting factors for the development or implementation of 

efficient AI in the sector. (Leavy, 2018) highlights the importance of data balance for the specific factor 

of gender, in all types of ML applications. (Zhang and Zhou, 2019) addresses unbalanced data in the 

context of fairness assessment in financial industry. (de la Fuente Garcia et al., 2020), in the context of 

a study on the collection of language data samples for Alzheimer diagnosis, identifies data balance as 

one of the factors for the selection of data for AI systems. However, the bibliographic survey did not 

uncover a reference presenting how to attain balanced data for all influencing factors while still 

maintaining representativeness.  

3.5.2.4 Impact and observability 

Representativeness may be strongly impacted by the decisions made to enhance balance, which could 

lead to a redistribution of the items in some classes. The analysis did not reveal any standard methods 

to manage the articulation between the two attributes in the context of machine learning. Control should 

be based on expert analysis and only a trade-off can be obtained. 

3.5.3 Relevance 

3.5.3.1 Definition and assessment of the value 

According to (ISO/IEC CD 5259-2, 202X), relevance represents the degree to which a data set is 

suitable for a given context – the notion is refined by explaining that all features of the data used for 
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training are good predictors. This attribute should be checked on training, validation, test and production 

data. 

 

(ISO/IEC CD 5259-2, 202X) proposes to compute relevance through feature relevance and record 

relevance. Feature relevance consists in analysing the ratio of the number of relevant features in a data 

set (𝐴)over the total number of features (𝐵), thus 𝑋 = 𝐴 𝐵⁄ . One should note that this method implies 

that the “relevant” features have been identified. This can be done through statistical testing to identify 

the correlations between a feature and the outputs of the model, combined with expert analysis of the 

feature – for example, the weight of an individual should not be taken into account for a credit grant. 

The identification and determination of relevant features thus do not rely on a systematic and formal 

approach, which may hinder the ability to discriminate irrelevant features exhaustively. Record 

relevance represents the ratio of relevant data records49 (𝐴)over the total number of records in the data 

set (𝐵), thus 𝑋 = 𝐴 𝐵⁄ . This approach requires determining what “relevant” data records are, but no 

specific method for their identification is proposed in the standard. 

 

The assessment of data relevance relies mostly on expert analysis of the data in order to highlight what 

is relevant for the application. Studies such as (Van Vleck et al., 2007) presents a study in a clinical 

context meant to determine, through structured interviews, the sentences and topics in the medical 

records that are perceived to be relevant for describing the patient’s medical history. This approach 

allows leveraging the human’s broad understanding of the situation when labelling the data. Although 

the authors highlight the relevance for a use of the output labelled data in ML, since it spots both relevant 

data and features (tagged as topics in the study), the cost of proceeding to a systematic review of data 

sets would not be realistic. In the domain of big data, (Doku et al., 2019) explores the determination of 

relevant data in an approach that relies on the voluntary actions from users who save on their mobile 

devices the data they find relevant to a specific domain of interest (sports, stock exchange, etc.). Topic 

Modelling, a NLP approach, is then applied in order to extract the abstract topics from the data. The 

topics are shared between all the members of the group belonging to this domain of interest, where a 

federated learning model coupled to blockchain updates its parameters based on the inputs received 

from all the users, in order to retain only relevant data. This approach, while having the advantage of 

limiting the need for human expertise (only a part of the whole data set is analysed by a human), is not 

a method for data relevance quantification per se. Moreover, this mode of operation cannot be 

generalized to all configurations of AI use, since it requires a vast quantity of different users to generate 

and combine data. 

3.5.3.2 Influence on completeness and representativeness 

In its section on relevance, (ISO/IEC CD 5259-2, 202X) indicates a tenuous link between relevance, 

and completeness and representativeness, in the sense that the assessment of relevance is pertinent only 

on data that have been verified on several other attributes (among which these two attributes). 

 

(EASA, 2023) also highlights indirectly this link, in section 3.3.2 Data collection, where the document 

notes that “data collection should identify the different sources of data of relevance to the training”, 

and that in case of lack of completeness or representativeness the data may be augmented. However, 

 

 
49 “Data record – set of related data items treated as a unit” (ISO/IEC CD 5259-2, 202X) 
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the document does not warn about some pitfalls linked to the subtle balance between the three attributes, 

and that trade-offs must be found. 

 

The curation of a data set in view of increasing its relevance has an impact on data dimensionality, 

which may in turn affect completeness and representativeness. Indeed, since relevance enhancing may 

lead to the deletion of features, this may lead to an inconsistency of the data set features with the input 

space, thus affecting completeness, which would in turn lead to a loss of information that would be 

detrimental to representativeness. 

 

Although the ISO/IEC 5259-2 standard seems to recommend that relevance be analysed on data that 

has been validated in terms of completeness and representativeness, the strategy for managing irrelevant 

features without invalidating the decisions made to ensure completeness and representativeness is not 

straightforward. On the other side of the spectrum, one should be aware of the “Curse of 

Dimensionality”: the enhancement of completeness and representativeness, by providing additional 

dimensions to attain the precision of the input space and functional requirements, may lead to an 

increase in the complexity of the data that may result in performance limitation. Indeed, as the number 

of dimensions increases, datapoints tend to become equidistant in the resulting space as there is  always 

neighbor matching a given subset of dimensions. The estimation of data relevance should be based on 

a wise trade-off in the selection of the required dimensions: enough dimensions so as to fulfill 

completeness and representativeness requirements, but not too many in order to both match relevance 

requirements and avoid high-dimensional data “curse”. 

3.5.3.3 Methods and tools for assessment 

Literature is scarce about methods for the assessment of relevance. The current lack of consensual and 

internationally validated definitions tends to reinforce the confusion about the scope of each data quality 

characteristic. For example, (Yang et al., 2018) study the “relevance” of training data sets through 

indicators of model accuracy, which suggests that the term is used with the general intent of checking 

that it is “fit-for-purpose”. 

 

Given the links explained earlier between relevance and completeness/representativeness, and the 

implications in terms of data dimensionality, two types of methods may enable an estimation of the 

above-mentioned trade-off: 

• First, using Explainable Artificial Intelligence (XAI) solutions (Arrieta et al., 2020). As an 

example, decision trees can allow spotting features that are no relevant predictors. An expert 

comparison between the resulting model-relevant features and the functional requirements may 

lead to a redefinition of the most suited dimensions for the data set. 

• Second, the CoD could be prevented or limited through such approaches: 

o For deep neural networks: (Poggio et al., 2017b) summarize theorems highlighting why 

compositional functions may prevent the CoD; 

o For classifiers: (Baggenstoss, 2004) offers a probabilistic method allowing to build 

classifiers without a common feature space, hence avoiding the CoD; 

o For filtering algorithms: (Surace et al., 2019) offer a feedback particle filter based on 

optimal feedback control that circumvents the use of importance weights; 

o For high-dimensional nonlinear non-parametric systems: a method can consist in 

averaging derivatives and relying on one dimensional estimates of the density function 

and its derivative (Bai et al., 2019). 
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3.5.3.4 Impact and observability 

Enhancing relevance of the data may impact both representativeness and completeness, and a trade-off 

should be found by the data scientist. The analysis did not reveal any standard methods to achieve an 

appropriate balance between the three attributes, and the methods offered here, at the academic research 

level, are only meant to control some aspects of the issue. Control should be based on expert analysis 

and only a trade-off can be obtained. 

3.5.4 Diversity 

3.5.4.1 Definition and assessment of the value 

3.5.4.1.1 Diversity as “discriminative power” 

The standard (ISO/IEC CD 5259-2, 202X) introduces diversity as an attribute that reflects to what 

extent the elements in the sample are different from each other. In (Z. Gong et al., 2019), data diversity 

refers to training data that “provide more discriminative information for the model”. In (Zeng et al., 

2021), data diversity is defined as “the difference between data samples” meant to characterize the 

usefulness of data samples. In the following of the chapter, this notion refers to “diversity 

(discriminative power)”. 

 

Data diversity (discriminative power) can be measured by the Euclidian distance between data samples. 

For any data samples 𝑠1 and 𝑠2, their diversity can be computed by 𝑑2(𝑠1, 𝑠2) = ||𝑠2 − 𝑠1||2
2 (Zeng et 

al., 2021). (ISO/IEC CD 5259-2, 202X) proposes to compute data diversity through the indicators of 

label richness, relative label abundance and component richness. Label richness is the number of 

different labels in a data set. Relative label abundance is the ratio of the number of individual data 

samples having a similar label over the total number of samples in the data set. Component richness is 

the number of different trends in time series. 

3.5.4.1.2 Diversity as “absence of non-representative sampling bias” 

Another trend of studies depicts diversity as a lever for reducing bias, including ensuring appropriate 

representation of demographic groups. For example, the study (Leavy, 2018) promotes data diversity 

to reduce gender bias in machine learning. The Assessment List for Trusworthy Artificial Intelligence 

(ALTAI) delivered in 2020 by the High-Level Expert Group on Artificial Intelligence commissioned by 

the European Commission (HLEG, 2020) mentions the respect for diversity, non-discrimination and 

fairness in all stages of the AI system’s life cycle, which entails the avoidance of unfair bias, the search 

for accessibility and universal design, and the participation of stakeholders in the design. The ALTAI 

does not provide a definition of the notion of diversity, but highlights a link between diversity and 

absence of bias, which is named “non-representative sampling bias” in the ISO/IEC standard on AI bias 

(ISO/IEC TR 24027, 2021). In order to distinguish this notion from diversity in the “discriminative 

power” sense, this acceptation will refer to “diversity (absence of non-representative sampling bias)” 

in the following of the document. 

 

The absence of non-representative sampling bias can be verified by performing a comparison between 

the performance of the model on the whole data set and the performance obtained on the categories of 

samples of each identified demographic group (BSA, 2021). This study offers a framework for AI bias 

risk management that recommends, at the stage of data acquisition, to compare the demographic 

distribution of the training data to the target population in the operational context, and verify that 



 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 92 

 

subgroups of populations are sufficiently represented. At the verification and validation stages, the 

framework recommends testing for bias by estimating the error rates across the identified demographic 

groups. The approach presented here does not refer to explicit techniques for the identification and 

quantification of the elements of interest, but it provides however highly relevant pointers in view of 

performing a risk assessment based on expert knowledge – which is a valid approach in the sense of the 

IEC standard on risk assessment techniques (IEC 31010, 2019). AI bias risk management can then 

constitute an adequate method for ML designers in order to limit the emergence of risks of non-

representative sampling bias. The standard (ISO/IEC DIS 42001, 202X) provides a methodological 

approach to addressing management system in the context of AI products, and tackles the question of 

AI risk management. The standard requires the identification of risks of different nature, including risks 

for health and safety, but also risks of biases and absence of respect of human values. However, 

although the standard considers the importance of data resources, it does not go into detail about the 

quality requirements of the data. 

 

The ALTAI (HLEG, 2020) offers a list of questions for self-assessment that is expected to drive expert 

analysis of AI systems and data sets in view of ensuring diversity. The document does not offer methods 

to solve the issues raised, but a list of checkpoints meant to raise awareness on the topics that need to 

be covered. For example, the document requires that adapted procedures to avoid biases in the use of 

input data are chosen and applied by the ML designer, that the diversity of end-users and subjects is 

characterized, and that the system’s behaviour facing data related to problematic use cases is tested and 

monitored. Several questions overlap with other notions covered by the chapter, such as fairness in 

general, inclusivity or representativeness. One can consider that addressing all the questions presented 

in the chapter may ensure that the topic of diversity is covered. 

 

The standard (ISO/IEC TR 24027, 2021) presents several steps to follow for the identification and 

assessment of non-representative sampling bias, including: the determination of relevant demographic 

characteristics, the selection of adapted “fairness metrics to be used in detecting bias”, and the definition 

of acceptable margin of difference. The data can then be divided according to the values of the identified 

characteristics and compared with each other on the basis of the selected metrics and fixed difference. 

Although the standard does not provide details of adequate metrics, one can consider performance a 

relevant indicator in certain contexts of application (the system must work for all populations). 

3.5.4.1.3 Other acceptation of diversity 

The term “diversity” is also sometimes treated in a general way and not as a quality attribute in its own 

right. For example, (Zhan et al., 2021), a work on benchmarking for Pool-based Active Learning, use 

the term as a synonym for the expression “representative sampling”, and diversity is rather used in its 

vernacular acceptation. This acceptation of the term diversity is discarded in the following of the 

chapter. 

3.5.4.2 Influence on completeness and representativeness 

The standard (ISO/IEC CD 5259-2, 202X) only notes that diversity is closely related to the notions of 

representativeness and balance. Understandably, the quest for diversity has an impact on 

representativeness – a sample that is diverse enough to be discriminating may not be a true 

representation of the target population. 
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As for diversity (absence of non-representative bias), the study (Leavy, 2018) promotes data diversity 

to reduce gender bias in machine learning; however, it does not tackle the issue of representativeness. 

The ALTAI (HLEG, 2020) highlights a relationship between diversity and representativeness (“Did 

you consider diversity and representativeness of end-users and/or subjects in the data?”), but without 

providing explanation of the nuance or the nature of the link between the two notions. However, one 

can easily understand that ensuring the absence of non-representative biases may positively impact 

representativeness. 

3.5.4.3 Methods and tools for assessment 

In the context of diversity as “discriminative power”, the relationship with representativeness is hardly 

explored by the scientific community. For example, in their overview of diversity in the context of 

machine learning, (Z. Gong et al., 2019) address the importance of data diversification, for which they 

present several methods in supervised and unsupervised learning, and in active learning. However, they 

only scratch the surface of the impact on representativeness or completeness of the data sets. (Hyontai, 

2018) provides an analysis of the impact of data diversity on machine learning performance, without 

any mention of the impact on representativeness or completeness. 

 

In the case of diversity as “absence of non-representative sampling bias”, since controlling diversity 

(absence of non-representative bias) may positively impact representativeness, the methods for 

diversity assessment presented in Section 3.5.4.1 may be applied. 

3.5.4.4 Impact and observability 

Data diversity is defined in terms of discriminative power of the data, and the quest for diversity may 

alter completeness and representativeness. However, in this acceptation, literature does not offer 

methods to address this relationship. In other trends relative to AI fairness, data diversity is presented 

as a crucial topic for non-representative sampling bias limitation. Due to these differences in acceptation 

of the notion, the topic of data diversity seems still quite immature, and one can only understand a 

remote link between diversity, AI bias and representativeness of the data set. In this context, the 

identification and assessment of non-representative sampling bias may contribute to enhancing 

representativeness. 

3.5.5 Currentness 

3.5.5.1 Definition and assessment of the value 

From the SQuaRE standard (ISO/IEC 25012, 2008), “The degree to which data has attributes that are 

of the right age in a specific context of use”, with “context of use” defined as “users, tasks, equipment 

(hardware, software and materials), and the physical and social environments in which a product is 

used” 

 

The assessment of the currentness of data may be performed by establishing some preliminary 

statements about the data composing the data set, which relies heavily on an expert analysis of the data 

items. (Iphar et al., 2015) note that a distinction should be done according to the likelihood of the data 

changing over time: data evolving by nature; data likely to evolve; data that may change; data unlikely 

to change; permanent data. The identification of such types of data can allow computing a probability 
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that the data remains up-to-date in a certain time range, which can lead to an estimation of the data set's 

currentness. 

 

The standard (ISO/IEC CD 5259-2, 202X) suggests two indicators for data currentness: feature 

currentness and record currentness. Both indicators are ratios of elements that fall within a required age 

range. The standard notes, through examples, that the required age range should be defined based on 

expert analysis of the data set and the intended application. Feature currentness is described as 𝑋 =
𝐴 𝐵⁄ , where 𝐴 is the number of data samples for a specific feature that fall within the required age 

range, and 𝐵 the total number of data samples for the feature. Record currentness is defined by 𝑋 =
𝐴 𝐵⁄ , where 𝐴 is the number of data records50 that fall within the required age range, and 𝐵 the total 

number of data records ina the data set. 

 

Literature highlights some conceptual relation between the attribute of timeliness and currentness, in 

the sense that the two attributes sometimes overlap in their definition. For example, (Juddoo, 2015),in 

an overview of data quality attributes for Big Data, summarizes different trends of research that offer 

contradictory definitions of timeliness: “[e]xtent to which data is sufficiently up-to-date” and 

“[e]xpresses how current the data is for the task at hand; involves currency measurement and check 

whether data is available before planned usage time”. The first definition is quite general and may be 

equivalent to the ISO/IEC 25012 definition of currentness. However, the second definition is rather 

linked to the time when the data recorded is available for use by the system. Also in the context of Big 

Data, (Jesmeen et al., 2018) seem to refer to timeliness – yet without offering a strict definition – as 

relative to the availability for use. In a paper on data quality for MLOps, (Renggli et al., 2021) defines 

timeliness as “the extent to which data are up-to-date for a task”, which seems similar to ISO/IEC 

25012 definition of currentness, and consider timeliness as a synonym for “currency” and “volatility”. 

The current absence of homogeneity of definitions in the domain should involve, before selecting works 

as reference, ensuring of the appropriateness of the concept under exploration. 

3.5.5.2 Influence on completeness and representativeness 

The standard (ISO/IEC CD 5259-2, 202X) highlights a potential relationship between 

representativeness and currentness. Indeed, due to the evolving nature of certain types of data, the 

distribution in a data set collected at a certain point in time may not correspond to the intended 

conditions of operation of the system, which would directly impact the representativeness of the final 

data set. 

 

Many studies mention the importance of data currentness as a contributor to data quality for machine 

learning (Siebert et al., 2020), (Frye and Schmitt, 2020), (Challa et al., 2020), (Nitesh Varma Rudraraju 

and Varun Boyanapally, 2019), and no study could be found that warned of any potential conflict 

between representativeness and operations performed in view of enhancing currentness.  

 

Ensuring the currentness of a data set may thus positively contribute to representativeness. 

 

 
50 “Data record – set of related data items treated as a unit” (ISO/IEC CD 5259-2, 202X) 
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3.5.5.3 Methods and tools for assessment 

The assessment of currentness of the data set can be considered as an additional tool to ensure the 

representativeness of the data set. 

3.5.5.4 Impact and observability 

Currentness seems to be a prerequisite to representativeness rather than a conflicting attribute. The 

currentness of the data sets should be assessed along with their representativeness. 

3.5.6 Other aspects of data quality 

The analysis revealed a number of other attributes that could potentially present a link with the 

assessment of the attributes of completeness and representativeness. However, these attributes are either 

only marginally explored by the community and their lack of maturity makes it difficult to confidently 

link these elements to precise notions, or the relationship only pertains to highly specific domains of 

study. These attributes are cited in this paper in order to be comprehensive about other data quality 

attributes that may impact, but only aim at designing an informed view of the situation. 

         

• Data fidelity is described in (ISO/IEC CD 5259-2, 202X) as a group of data quality attributes 

including (among other attributes) representativeness, completeness and balance. The 

exploration of the topic is still under discussion in the standardization committee, but it seems 

to refer to all attributes that may be affected by data sampling. No scientific publication could 

be found to explore this aspect further, but such a trend could provide interesting tracks to follow 

for the determination of the best trade-off among all the attributes' constraints. 

 

• Data availability is seen as an important lever for completeness. Data availability is defined in 

(ISO/IEC 25012, 2008) as “The degree to which data has attributes that enable it to be retrieved 

by authorized users and/or applications in a specific context of use”. The standard (ISO/IEC 

CD 5259-2, 202X) dedicated to AI, however, does not include this concept in its list of 

attributes. This aspect is mentioned for example in (C. Liu et al., 2017) (healthcare, not ML), 

and (Nobles et al., 2015) (big data) notes that “data quality measure of availability is dependent 

on completeness and consistency” and that the “[l]ack of completeness was the largest 

contributor to reduced availability of data”. Some techniques can be applied to enhance data 

availability, as suggested by (Willemink et al., 2020) (ML): federated learning, and interactive 

and synoptic reporting; however, the cost and effort associated to data preparation may present 

a barrier. The lack of studies about the interdependence between completeness and availability 

leads to the latter being mentioned as an attribute of interest, without providing specific 

instructions for the management of the articulation of the two attributes. 

 

• Data integrity is mentioned in the standard (ISO/IEC 27000, 2018) on information security 

management systems as the “[p]roperty of accuracy and completeness”. Integrity is also 

mentioned in the SQuaRE standard (ISO/IEC 25012, 2008), with the definition “property of 

safeguarding the accuracy and completeness of assets”, but the concept is only used to describe 

the data quality attribute of confidentiality (without any explicit links to completeness). The 

standard on data quality for ML (ISO/IEC CD 5259-2, 202X) does not mention integrity in its 

present state. Some bibliographical references on the topic of outsourcing data to cloud confirm 

a relationship between integrity and completeness (Niaz and Saake, 2015), (Zhou et al., 2018). 
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Although literature highlights a relationship, this remains confined to the domain of information 

security management. 

3.5.7 Conclusion 

Ensuring all data quality attributes of a data set may strongly impact completeness and 

representativeness. Figure 14 summarizes the interdependences highlighted by literature, and the way 

it may affect the two attributes. 

 

 
Figure 14. Interdependence between other DQRs and data completeness/representativeness. 

Especially for balance, relevance and diversity, their enhancement encompasses operations meant to 

modify the volume and nature of the data samples or their features. This means that in essence, the 

attributes operate on the same type of entity than completeness and representativeness, which may 

weaken the overall quality of the data used in the context of ML and supervised learning. 

 

The main findings from literature are that there is no standard method to reach a perfect state, where all 

attributes may be respected. Overall, literature seems to often discard the challenges related to the 

conflicts between the quality attributes; the few papers dealing with the challenges tend to recommend 

an expert trade-off, which means that depending on the context of use, technical constraints or business 

logics, human analysis may lead to estimating what can be an acceptable level of quality. However, as 

mentioned previously, no guidance for a comprehensive analysis is offered. In addition to this lack of 

tools, literature shows an absence of homogeneity in the definitions and the nature of the concepts under 

study, which can impede the search for approaches to tackle the problem. Exploratory works should be 

performed, along with the determination of a best strategy for the implementation of a trade-off. 
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3.6 Selection grid 

3.6.1 Introduction 

This section offers an operational synthesis of the methods discussed in the previous sections. A first 
table recapitulates all the methods presented, along with a recommendation on whether they should be 
integrated to the selection grid (and thus tested in the future phases of the MLEAP project). The grid 
presents, for each selected method, the type of data it could be applied on, and to which factor of 
influence it relates.  

Then, a series of tables summarize the discussions of the document: for all factors of influence identified 
and detailed in the previous sections, their impact on data completeness or representativeness as well 
as the existence of tools for assessing or controlling this impact is summarized. 

These last tables allow a quick overview of two elements of information: 

• Understanding what type of activity51 may impact the completeness and/or representativeness 
of data, to ensure that future DQRs on completeness and representativeness contain all the 
required checkpoints (relative to technical requirements, processes, and other data quality 
properties requirements); 

• Estimating to what extent methods and tools may allow controlling this impact. This information 
would temper the selection and definition of new DQR. It seems reasonable to envision that, in 
context where no tools or methods seem to exist, DQRs may be presented as attention point, 
without specific DQRs being formally prescribed. 

The three overview tables are presented as follows: 

• Factor: the factor of influence considered. 

• Impacted property: the property (Completeness and/or Representativeness) that is impacted by 
this influencing factor. 

• Impact of the factor on C/R: the nature of the impact this factor has on Completeness and/or 
Representativeness. 

• Impact of C/R enhancement: can the manipulations performed in order to enhance 
Completeness and/or Representativeness have an impact on the factor of influence? This may 
mean that the ML designer needs to perform trade-offs between respecting the requirements of 
the factor of influence and the completeness or representativeness of the data set. 

• Externalities: consequence of the factor on the data set (its quality, nature or content) or on other 
requirements to improve the data set quality.  

• Tools/methods: a summary of the conclusions on the availability of tools and methods related 
to the factor. These conclusions are drawn in a general sense, cited papers may not correspond 
to the selected works, and work that require exploratory testing were not considered substantial 
enough to change a conclusion stating that no method stood out during the analysis. 

 

 

51 The factors of influence are all relative to an activity performed in the context of ML or data engineering (specification 

of the ODD, data quality enhancement, etc.). 



 

 
MLEAP deliverable Phase 2 - Interim Public Report 
 

PAGE 98 

 

3.6.2 Methods summary 

Bibliographical references 
Document 
references 

Decision 

 (Mani et al., 2019) 3.3.9.1.1 
Selected. A ponderation of the four metrics will probably be explored, as strict Equivalence partitioning may be too 

strong a condition. 

 (Tae and Whang, 2021) 3.3.9.1.2 Selected. Extension of Slice Tuner to unstructured data is unclear and could be explored. 

(Pei et al., 2017) 
3.3.9.1.3 

Selected. Neuron coverage will be explored as a complementary observation tool but is not expected to be a strong 
solution on its own. 

(Lei et al., 2018) Discarded. One method based on neuron coverage is enough, and the previous one is simpler. 

(Kiela et al., 2021), (Thrush et al., 2022) 3.3.9.1.4 
Discarded. Adversarial examples are too narrow a problematic, and manual addition of samples is too tedious for the 

solution to be explored. 

(Raghu et al., 2017) 

3.3.9.2 

Discarded. The method might be too tedious to deploy w.r.t its interest for representativeness and completeness 
assessment. It is preferable to allocate more time to ensure in-depth work on other methods.   

(Almeida and Vieira, 2011) Selected. The approach is simple but robust, and will at minimum be a viable baseline.  

(Sáez et al., 2016) Discarded. The method is interesting but external assessment tools will be preferred. 

https://whylabs.ai/ 
Selected. Whylogs is an off-the-shelf tool with interesting features, testing it should be simple and insightful for 

different use cases. 

https://github.com/cleanlab/cleanlab 
Selected. Cleanlab is an off-the-shelf tool with interesting features, testing it should be simple and insightful for 

different use cases. 

(Schelter et al., 2021) 
Discarded. JENGA focuses on data synthesis, with is not directly link to the objectives of the project, similar to 

Dynabench. 

(Schouten et al., 2009) 

3.4.8.1 

Discarded. R-Indicator would require adaptations to be usable in the context of assessing the completeness and 
representativeness of a data set, which is out of the scope and time frame of the project. 

(Cabitza et al., 2021) Selected. 

(Catania et al., 2022) 
Selected. The approach described mixes ML good practice and ideas from (Almeida and Vieira, 2011) as well as Slice 

Tuner. Its testing may be synergetic with the testing of these other methods and thus not too time-consuming or 
complex. 

(Asudeh et al., 2019) 

3.4.8.2 

Selected. Despite its limitations in terms of data dimensionality, it is the only exhaustive method found. 

(Paganelli et al., 2022) Discarded. The MLEAP project has no text use case, which would complicate the testing of this very specific method. 

(Trinh et al., 2018) 
Discarded. It is an end-user methodology based on the presence or absence of descriptors of the source quality. The 

testing of more operational methods should be prioritized in the context of the project. 

https://whylabs.ai/
https://github.com/cleanlab/cleanlab
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Bibliographical references 
Document 
references 

Decision 

(C. Liu et al., 2017) 
Selected. The method may require adjustments but seems simple yet insightful enough to be considered for 

exploratory work. 

(Heinrich et al., 2018) Discarded. The metric is essentially included in the exploration of (C. Liu et al., 2017). 

(Even and Shankaranarayanan, 2007) Discarded. The method is related to (C. Liu et al., 2017). 

(Setiawan et al., 2021) 

3.4.8.3 

Discarded. The assessment method in itself is based on ML good practice. 

(J. Lee et al., 2020) Discarded. The assessment method in itself is based on ML good practice. 

(Abidin et al., 2018) 
Discarded. The method is based on benchmarking models, which is too complex and slightly off-topic for the later 

stages of the MLEAP project. The testing of other methods should be prioritized. 

(Caiafa et al., 2020) 
Selected. PCA and other dimension reduction techniques are basics that should make for relevant baselines and may 

have even more potential. 

(Catania et al., 2022)  Selected. The method is another interpretation of PCA and is thus completely synergetic with the previous one. 

(Dourado Filho and Calumby, 2022) Selected. 

(Osman et al., 2018) 
Discarded. The authors survey data imputation techniques without enough detail to narrow down the exploration 

work, which would be too time-consuming for the MLEAP project, with unclear results perspectives. 

(Goodman et al., 2022) 

3.4.8.4 

Discarded. The method focuses on data synthesis and its results would not be the most interesting for the objectives 
of the MLEAP project. 

(Santos et al., 2019) 
Selected. Though there is no method to apply per se, the framework of MAR/MNAR/MCAR may be useful in later 

work 

(Celis et al., 2016) 

3.4.8.5 

Discarded. The method is complex and its results perspective are unclear. Other methods should be prioritized. 

(A. Wang et al., 2020) Discarded. The method is related to the previous one. 

(Blatchford et al., 2021) Discarded. Requires a continuous-valued data set, which is not included in the use cases of the project. 

(Mountrakis and Xi, 2013) 
Selected. Testing may be limited to the comparison of train vs validation vs test sets, due to the contrastive nature of 

the method.  

(Brubaker et al., 2021) 
Discarded. The method may require too much adjustment w.r.t the constraint of the project. Other methods should 

be prioritized. 

(Kohut et al., 2012) 
Discarded. The method may require too much adjustment w.r.t the constraint of the project. Other methods should 

be prioritized. 

(Keskes et al., 2022) 
Discarded. The method relies on data ablation (i.e. removing samples), which is generally discouraged in the 

literature. Moreover, the method is too complex to be tested for exhaustivity. 
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Bibliographical references 
Document 
references 

Decision 

(Simão et al., 2015) 
Discarded. Adaptations to make the method work on text data in general could be explored, but there is no such use 

case in the MLEAP project. 

(Anttila et al., 2012) Discarded. The method focuses on temporal representativeness, which is of limited interest in the MLEAP project. 

(Sánchez et al., 2019) Error! 
Reference 

source 
not 

found. 

Selected. 

(Balaraman et al., 2018) Selected, although it may be a limited work due to the need to adapt the method. 

(Issa et al., 2021) Discarded. The approach is too narrow, focusing on linked databases. 

(Chehreghan and Ali Abbaspour, 2018) 

3.4.8.7 

Discarded, as mentioned in the document. 

(Y. Hu et al., 2020) Discarded, as mentioned in the document. 

(Almaimouni et al., 2018) Discarded. Overlaps with (Caiafa et al., 2020) 

 (Kumar et al., 2021) 

3.5.2.3 

Discarded. The work does not focus on the link with representativeness. 

(Yu, 2021) Discarded. The work does not focus on the link with representativeness. 

(Leavy, 2018) Discarded. The work does not focus on the link with representativeness, and is rather a position paper on balance. 

(Dickinson et al., 2012) 
Selected, although a part of the method consists in documenting data without being explicit on the criteria for 

selection of the elements to document. 

(Van Vleck et al., 2007) 

3.5.3.1, 
3.5.3.3 

Discarded. The approach requires an exhaustive review of data by human experts, which would not be realistic on 
large data sets in the MLEAP project, and do not seem realistic in real settings of ML design. 

(Doku et al., 2019) Discarded. The study is highly specific to a domain of application that takes its foundation in crowdsourced big data. 

(Yang et al., 2018) Discarded. Potential inconsistency with the object under study in the work. 

(Arrieta et al., 2020) 
Discarded. The application of, for example, a decision tree to highlight relevant predictors in view of estimating 

relevance may be explored. However, the relationship between relevance and representativeness is not well 
founded in literature.  

(Poggio et al., 2017b) 
Discarded. Focus on deep neural network and the positive impact of CoD limitation on representativeness is still 

unclear, results may not be easily exploitable. 

(Baggenstoss, 2004) Discarded. The positive impact of CoD limitation of representativeness is still unclear. 

(Surace et al., 2019) Discarded. The positive impact of CoD limitation of representativeness is still unclear. 

(Bai et al., 2019) Discarded. The method is specific to high-dimensional nonlinear non-parametric systems. 

(Z. Gong et al., 2019) 3.5.4.1, 
3.5.4.3 

Discarded. The methods do not address the link with completeness or representativeness. 

(Hyontai, 2018) Discarded. The method does not address the link with completeness or representativeness 
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Bibliographical references 
Document 
references 

Decision 

(Leavy, 2018) Discarded. The work does not focus on the link with representativeness, and do not offer concrete methods. 

(HLEG, 2020) 
Discarded. The checkpoints are high level and need to be complemented with concrete methods and a systematic 

approach. 

(BSA, 2021) 
Selected (for diversity as “absence of non-representative sampling bias”). The document offers checkpoints that 

remain slightly high level, but the approach is systematic enough to ensure a good coverage of the topic, and may 
provide relevant results. 

(Iphar et al., 2015) 3.5.5.3 
Selected. However, this approach to computing currentness must be completed with expert knowledge on the data 

sets and their application, as suggested by the other references cited in the section. 
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3.6.3 Selection grid 
Bibliographical references Data type Related factor of influence 

(Mani et al., 2019) 
Any. The method fits any classification task (it is based on output labels 
observation). 

Not related to a particular factor (3.3.9.1.1) 

(Tae and Whang, 2021) 
Any. The method monitors a system’s learning curve. However, “slicing” the data 
set might require exploratory work, especially on unstructured data. 

Not related to a particular factor (3.3.9.1.2) 

(Pei et al., 2017) 

Any. The method rests on observation of neuron activation at learning time. It is 
however restricted to neural networks, and it is not clear whether complex 
architecture such as attention networks would respond well, which may indirectly 
limit the spectrum of use cases covered. 

Not related to a particular factor (3.3.9.1.3) 

(Almeida and Vieira, 2011) 

Any. The method rests on the downstream evaluation metric and the use of samples 
replicating degraded operational conditions. Obtaining such samples (either 
through collection or data set improvement methods, e.g. data augmentation), may 
require additional work. Not related to a particular factor (3.3.9.2) 

https://whylabs.ai/ Unclear. Exploratory work on Whylogs will aim at identifying the limits of the suite. 

https://github.com/cleanlab/cleanlab 
Any. The paper explicitly state that Confident Learning is not coupled to any data 
modality or model. It is however limited to labelled data. 

(Cabitza et al., 2021) 

Any. The method rests on the comparison of two data distributions. However, 
defining the events in the distribution may require exploratory work. Moreover, 
obtaining a reference distribution (e.g. to compare the data set to real-life) may be 
difficult or impossible, limiting the testing of the method. 

Not related to a particular factor (3.4.8.1) 

(Catania et al., 2022) Any. Method related to (Tae and Whang, 2021). 

(Asudeh et al., 2019) 
Low-dimensional. The method is best fitted for categorical (i.e. qualitative) data but 
it is possible to categorize quantitative data. 

Data Management requirements (3.4.8.2) 
(C. Liu et al., 2017) 

Any. Using ratios is limited by the information they require. If completeness is 
defined w.r.t features (i.e. usually for low dimensional), any type of data can be 
assessed. If completeness is defined w.r.t characteristics other than features, which 
is common for high dimensional data and necessary for unstructured data, it may 
require preliminary human assessment, which may be more complex. 

(Caiafa et al., 2020) 

PCA applies to quantitative variables (i.e. features), though it is possible to introduce 
some correlated qualitative variables. If working with qualitative variables, Multiple 
Correspondence Analysis (MCA) should be preferred. Factor Analysis of Mixed Data 
(FAMD) combines both methods to enable the study of mixed samples. 

Data quality improvement (3.4.8.3) 
(Catania et al., 2022) 

The method uses PCA and other variations, like (Caiafa et al., 2020), but for other 
purposes. 

(Dourado Filho and Calumby, 2022) 
Images. Exploratory work may investigate extension of the method to other data 
types, especially unstructured ones. 

https://whylabs.ai/
https://github.com/cleanlab/cleanlab
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(Santos et al., 2019) 
The paper does not describe a method but rather a typology of data that it may be 
interesting to try and apply in the context of the MLEAP project. 

Data synthesis (3.4.8.4) 

(Mountrakis and Xi, 2013) 
Images. Exploratory work may investigate extension to other types of data, 
especially unstructured ones. 

Data sampling (3.4.8.5) 

(Sánchez et al., 2019) 
Most data types seem compatible with the method (axis are explicitly flexible and 
include labels, features and time). Exploratory work may be performed to confirm 
this. 

Labelling (Error! Reference source not found.) 

(Balaraman et al., 2018) 
The framework described is rather high level and seems able to accommodate most 
data types. However, high-dimensional and unstructured data may require more 
upstream work to fit the framework requirements. 

(Dickinson et al., 2012) 

Although the method is not dedicated to AI, it provides relevant statistical methods 
to enhance balance, which can be explored for AI applications. Although the method 
focuses on the balance of a specific dimension in the data set, it takes into account 
interactions with other variables and may thus be explored in the context of high-
dimensionality data. 

Balance (3.5.2.3) 

(BSA, 2021) 
Virtually any; the document does not present a limitation depending on the type of 
data. An exploration of the adaptability of the framework to high-dimensionality 
may be relevant. 

Diversity (3.5.4.3) 

(Iphar et al., 2015) 

The method seems to be applicable to any type of data. The paper seems however 
to consider currentness of samples, but not currentness of the values of specific 
dimensions. An exploration would be required on the feasibility of assessing 
currentness of high-dimensionality data. 

Currentness (3.5.5.3) 
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3.6.4 Technical requirements 

Factor (sections in 
the document) 

Impacted 
attribute 

Impact of the factor on C / R 
Impact of C/R 
enhancement 

Externalities Existence of tools/methods  

Intended behaviour 
(3.3.2) 

C / R 
The more complex the task, the more data points will be 

required to guarantee C/R. 
Yes Volume of data 

No methods or tools. Some methods may be tailored for certain AI tasks 
through the type of data available. 

Model architecture 
(3.3.3, 3.3.9.1.1, 

3.3.9.1.3) 
C / R 

Models with large capacity will require amounts of data 
that may hinder C/R. 

Yes Volume of data 

Methods are usually bound by the architecture, not leveraging it. 

(Mani et al., 2019), (Pei et al., 2017), (Lei et al., 2018) are designed 

specifically for neural networks. 
No methods targeting specific architectures have been identified.  

Data dimensionality 
(3.3.4, 3.4.8.2, 

3.5.3.3) 
C / R 

Dimensionality influences the size of the input space. The 
larger the input space, the more data are required to 

achieve C/R. 
No 

Features used by the model 
and/or number of 

attributes in the data set 

Methods are bound by the dimensionality, not leveraging it. 

(Asudeh et al., 2019) is relevant for low-dimensional, structured, qualitative 

data, and may scale to high dimensional, structured, quantitative data. 
No method stood out for unstructured data. 
Assessment of data relevance is required to determine the most adapted 
number of dimensions, but only a trade-off between C, R and relevance can 
be attained.  

Intended level of 
autonomy (3.3.5) 

C / R 
The level of autonomy can impact the required amounts 

of data needed to ensure robustness, resilience and 
adaptability of the system. 

Yes 

Volume of data 

Variety of data 
Robustness, resilience and 
adaptability attributes of 

the system 

No method taking oversight into account has been found. 

Intended level of 
performance (3.3.6, 

3.3.9.1.2, 3.4.8.1) 
C / R 

A high level of performance imposes constraints on 
robustness and resilience, which can in turn impact the 

nature and volume of data required to ensure C/R. 
Yes 

Volume of data 

Variety of data 
Robustness and resilience 

(Tae and Whang, 2021), or evaluation methods such as cross-validation and 
others discussed in (Catania et al., 2022), unify the observation of the data set 
and the performance of the system at training time. 

Intended levels of 
robustness and 

resilience (3.3.7) 
C / R 

Higher intended levels of robustness and resilience can 
require data whose nature and volume are not consistent 

with C/R requirements. 
Yes Volume of data 

Variety of data 
No method based on improving robustness or resilience has been found. 

Intended level of 
stability (3.3.8) 

C / R 
Stability requires a constant behaviour for similar outputs, 
which requires collecting large volumes of quality samples. 

Yes Volume of data 
Quality of data 

No method based on improving robustness or resilience has been found. 
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3.6.5 Processes 

Factor (sections in 
the document) 

Impacted 
attribute 

Impact of the factor on C / R 
Impact of C/R 
enhancement 

Externalities Existence of tools/methods  

Data management 
requirements (3.4.2, 

3.4.8.2) 
C / R 

Specifications of the data sets can directly impact R and C. 
This step is central and should encompass requirements 

linked to all the factors of influence of this document. 

Since all requirements are encompassed, 
externalities and impacts include each 

individual requirement. 

(Caiafa et al., 2020) and (Catania et al., 2022) use dimension reduction methods 
to get general insight on the data set. 
Whylogs and Cleanlab are two off-the-shelf tools for the observation of data 
sets. 

Data quality 
improvement (3.4.3, 

3.4.8.3) 
C / R 

These strategies are meant to enhance R and C, the 
intended impact is then positive. However, R and C should 

be verified upon each data improvement manipulation 
(deletion, imputation, augmentation). 

No Volume of data 
Content of data 

(Setiawan et al., 2021) and (J. Lee et al., 2020) describe GANs for data 
augmentation. 

Data synthesis (3.4.4) C / R 
Data synthesis is meant to enhance R and C, the intended 

impact is then positive. This positive impact should be 
verified at the end of the process. 

No Volume of data 
Content of data 

No data synthesis method linking C/R assessment stood out upon analysis. 

Data sampling (3.4.5, 
3.4.8.5) 

C / R 
Data sampling can be used to enhance R and C. However, 

its use for other objectives can impact R and C. The impact 
should be verified at the end of the process. 

No Volume of data 
Content of data 

(Mountrakis and Xi, 2013) allows the comparison of C/R between train, dev 

and test sets. 
Without external information on the real-life distributions of the phenomena 
to capture, no method enables the absolute assessment of a data set. 

Labelling (3.4.6, 

Error! Reference 
source not found.) 

C / R 
Coarse granularity of labels, or a low quality, may limit the 

assessment of R and C. 
No 

Resources dedicated to 
labelling 

Complexity of the labelling 
task 

(Balaraman et al., 2018) may be used for exploratory work on unstructured 
data, also leveraging the approaches by (Paganelli et al., 2022) and (Simão et 
al., 2015) for text. 

Pre-processing (3.4.7) C / R 
Activities reducing the amount of information may affect R 

and C. 
No 

Correspondence between 
the function and the task 

No preprocessing method enabling the assessment of C&R stood out upon 
analysis. 
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3.6.6 Other data quality requirements 

 
Factor (sections in 

the document) 
Impacted 
attribute 

Impact of the factor on C / R 
Impact of C/R 
enhancement 

Externalities Existence of tools/methods  

Balance (3.5.2) R 
Strong interdependence between balance and 

representativeness. Enhancing any of the attribute may 
impact the other. 

Yes 

Volume of data 

Content of data 

Only a trade-off can be 
reached 

Statistical tests for balance enhancement to estimate the minimum sample size 
before performing data re-sampling (power analysis, bootstrapping, etc.). 
Limitations should be documented (description of the data sets, description of 
the values modified to enhance either balance or representativeness, 
description of limitations observed, etc.). 

Relevance (3.5.3) C / R 
Enhancing relevance can negatively impact 

representativeness and completeness. 
No 

Volume of data 

Content of data 

Dimensionality of data 

Only a trade-off can be 
reached 

The methods are at a research level. 
XAI for relevance enhancement. 
Methods to avoid Curse of Dimensionality: 
(Poggio et al., 2017b) for deep neural networks; (Baggenstoss, 2004) for 
classifiers; (Surace et al., 2019) for filtering algorithms; (Bai et al., 2019) for 
high-dimensional nonlinear non-parametric systems. 

Diversity 
(discriminative 
power) (3.5.4) 

R 
If diversity enhancement is performed in view of 

maximizing the discriminative power of the sample, it may 
negatively affect representativeness. 

No 
Volume of data 

Content of data 
No tools or methods. 

Diversity 
(non-representative 

sampling bias) (3.5.4) 
R 

If diversity enhancement is performed in view of 
controlling non-representative sampling bias or to ensure 

fairness, it may positively affect representativeness. 
No 

Volume of data 

Content of data 

Similar levels of AI 
performance for all 

subgroups 

AI bias risk management should be performed (e.g. comparison of the 
demographic distribution and ensuring subgroups are sufficiently 
represented). 
Verification that the system presents similar levels of performance for all 
subgroups. 

Currentness (3.5.5) R 
Currentness is one of the prerequisites for data 

representativeness. 
No / 

Ensure currentess, e.g. by computing a probability that the data remains up-
to-date in a certain time range (Iphar et al., 2015). 
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3.7 Preliminary experimentations 

This section reports on the first round of experimentations on the methods identified in the selection 
grid. 

3.7.1 Experimental setup 

For the first round of experiments, the methods identified in the selection grid were first re-ranked by 
order of priority. Indeed, many methods need to be tested but each testing round should be anticipated 
to be time-consuming. It was deemed important to define strategies that would allow for testing as much 
methods as possible in minimum time. 

Priority was defined as a mix of ease to test the method and interest w.r.t the MLEAP project objectives. 

After defining the order in which the identified methods were going to be explored, the data sets on 
which they would be applied had to be defined. It was decided to select data sets for tasks related to the 
MLEAP project, i.e. computer vision, speech-to-text (STT) and multi-class classification, 
corresponding to the AVI, ATC-STT and ACAS-Xu use cases, respectively. 

The selected computer vision data set was the ROSE data set. ROSE was an agricultural robotics 
challenge52 organized by LNE between 2018 and 2022. The associated task was object detection and 
classification. The ROSE data set is comprised of 111 190 images, collected by four different teams 
participating in the challenge. The data set of only two teams will be used in the experiments, as the 
other resources are of lesser quality due to technical difficulties during the acquisition. The total of 
images available is 20 438 from one team and 28 555 for the other. Each image is a capture of the soil 
of a field, with crops and weeds plants annotated by polygonal bounding boxes. Each bounding box is 
also labelled with the species of the plant. 

The ROSE dataset was selected because it covered the same task than the AVI use case, i.e. defining a 
bounding box around the target object and labelling it.  

Regarding the ATC-STT use case, it was replaced by the STT task of the REPERE campaign, organized 
by LNE between 2012 and 2014. This data set contains 60h of recordings of French TV channels 
BFMTV and LCP. The sample durations range from 1min to 1h but mostly hover around 15mn. It is 
mostly news and debates with clearer sound than what should be expected in the ATC-STT use case, 
but this should not influence the experiments, especially at this early stage. 

In both cases, these data sets were selected because LNE had extensive experience with them, which 
would reduce the time needed to get them up and running. Moreover, the last use case i.e. ACAS-Xu 
has many particularities that made it difficult to relevantly substitute. Considering other use cases relied 
on resources that could be deployed more efficiently, it was decided to dedicate more time to the 
learning and handling of the ACAS-Xu data set rather than finding a substitute data set. 

3.7.2 Selected methods: motivations and expectations 

This section aims at recalling the references and associated method that could be tested. In addition, it 

also describes how they were expected to be used to fit the objectives of the MLEAP project. 

3.7.2.1 PCA-based analysis 

Principal Component Analysis (PCA) for prior data set analysis is used in (Catania et al., 2022)  and 
briefly discussed in (Caiafa et al., 2020).  The idea is to gain visual insight on the completeness of a 

 

 
52 https://www.challenge-rose.fr/ 

https://www.challenge-rose.fr/
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data set by plotting its projection in the low-dimensional space (usually two or three, as it is difficult 
for humans to interpret visual information in more than three dimensions) computed by the PCA. The 
data points are expected to homogeneously occupy the entire plot. Any cluster or empty space might 
be indicative of some form of incompleteness (i.e. cluster density should be reduced or the data set 
should be enriched to reach a similar density or conversely examples should be added to fill the empty 
spaces). 

The authors of both papers do not discuss how to backtrack from discrepancies seen in the PCA plot to 
actual recommendations to improve the data set. Getting more insight on this type of round-trip 
engineering step was the main objective of the experiments. 

PCA is fit for high-dimensional quantitative data. Intuitively, the computer vision use case would fit 
these requirements. PCA may indeed be applied on images, but it then acts as an image compression 
algorithm. Such behaviour may influence the resulting analysis, and it was decided to try another data 
set first, possibly coming back to the image data set in later developments. 

On the other hand, the ACAS-Xu data set also has quantitative features and is supposed to be complete 
and representative. Its low-dimensionality limits the interest of dimension reduction strategies such as 
PCA, but does not prevent it. Considering some time had to be invested to learn to manipulate the data 
set, it seemed an opportunity to take this time on a well-known method with off-the-shelf 
implementation, for which expected results were clear. In addition, it was expected that PCA on ACAS-
Xu would yield a simple and homogeneous cloud of data points that would act as a validation of the 
use of the implementation. 

3.7.2.2 Graph-based analysis 

The method proposed by (Asudeh et al., 2019) relies on traversing the tree-like graph of feature 
combination of each sample of the data set. There is no available implementation and the paper only 
describes traversal strategies, leaving graph population as a problem for the developers. The method is 
by design directed towards qualitative data sets, while it is possible to extend it to quantitative features 
by binning them. 

 

The method was expected to be slow and possibly intractable for data sets with too many samples or 
features. However, it seemed easy to implement comparatively to other methods and offered clear data 
set exploration strategies. Thus, it could be seen as an inexpensive complementary tool to pair with 
other methods. Its implementation was decided on this basis. 

3.7.2.3 Entropy-based analysis 

The characterization of samples in a data set using entropy was described in (Dourado Filho and 
Calumby, 2022).  Entropy is a fundamental concept of information theory and while it may provide 
only shallow information on a data set, it appeared to be a useful and essential tool to combine with 
others in a more general approach. 

Moreover, it is easy to deploy and can be adapted to any type of data. The main point of attention when 
using entropy is the type of elements in the data set from which the entropy will be computed, to ensure 
the metric provides useful information regarding the overall analysis process. 

In the context of the MLEAP project, entropy will be used on the image data set as a first step. Its use 
might be extended to the speech data set in later phases. 
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3.7.2.4 Sample-wise similarity analysis 

(Cabitza et al., 2021) and (Mountrakis and Xi, 2013) proposed characterization tools based on the 
comparison of two data sets. Such methods are intuitively useful to compare the completeness and 
representativeness of a data set w.r.t to another, for example between a train and test. Although this 
approach is limited for the assessment of an "absolute" or "ODD-wise" completeness or 
representativeness, it is essential to have tools ensuring the characteristics of the data are preserved 
across the different training steps (i.e. training, validation and testing). 

At this stage of the MLEAP project, only the approach by (Cabitza et al., 2021) could be tested. 
(Mountrakis and Xi, 2013) rely on another similarity metric and will be tested in later phases. 

This method was planned to be used on the speech data set, partly because this data set had not been 
exploited with other methods and it was deemed important to cover all data sets within the phase, but 
also because speech is difficult to process on its own. Most assessment methods identified would work 
best on vectorized information. Building vectorized representation of speech is a non-trivial task. As 
the overall method was already implemented and yields a single similarity value, it was seen as a 
reasonable testbed for the assessment of pre-trained speech-embedding, i.e. learned vectorized 
representation of speech data. 

A possible difficulty would be the scalability of the approach to large data sets. Indeed, the time needed 
to encode embeddings for long samples such as those in the REPERE data set remained a potential 
shortcoming of the method, along with the ability to compute the metric at scale. 

3.7.3 Selected methods: Experimental protocols and results 

This section describes how the method were tested and what conclusions could be drawn from the 

experiments undertaken. In the end of each sub-section, a small synthesis of the results w.r.t the MLEAP 

objectives is proposed.  

3.7.3.1 PCA-based analysis 

3.7.3.1.1 Experimental protocol 

Testing was performed using sci-kit-learn's PCA implementation. Contrary to other methods, no "toy" 
data set was used for prior validation. Considering the properties of the ACAS-Xu data set, 2-
components PCA was ran directly on the data set. The results are presented in Figure 15. 
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Figure 15. Results of a 2-components PCA applied on a subset of the ACAS-Xu data set. Only samples with input state COC were used. 

As a reminder, the ACAS-Xu data set is comprised of eight features, including the current state of the 
aircraft, expressed with the same class than those to predict, hence the plot representing the Clear Of 
Conflict (COC) class (i.e. it is the input state and not the expected label)53. 

The plot shows the PCA for the input state COC. The output states to predict are the expected 
manoeuvres, either WR (Weak Right), WL (Weak Left), R (Right) and L (Left). Since PCA builds 
principal components (i.e. axis) by linearly combining input features with heterogeneous ranges and 
units to yield a new coordinate system, the actual values of the axis are meaningless. As in most cases 
when working with PCA, insight is mostly gathered by analysing the positions of the data points relative 
to each other rather than from an absolute standpoint. A strong homogeneity on the left-hand side of 
the graph can be observed. On the right-hand side, a structuring of the data points along vertical lines 
is still present but lines are horizontally separated by clear gaps. The homogeneity of the first half of 
the graph and of the vertical lines is interpreted as a confirmation of the exhaustive coverage of the data 
set. 

Combining with Figure 16, it can also be noted that in a vast majority of cases, the resulting manoeuvre 
is COC. This is consistent with the general trends of the data set, where the COC class is highly 
dominant. As the data set is supposed to be representative, discussions about this imbalance will be left 
aside for the moment. 

 

 
53 In the remainder of the discussion, unless indicated otherwise, the "COC" label will be used. Other labels are not shown 

because the observable trends are mostly identical. 
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Figure 16. Distribution of the output label on the ACAS-Xu samples with input state COC. 

However, ACAS-Xu being a data set compiling information about unmanned aircraft, the gaps between 
vertical lines cannot be explained by real-life regularities such as the use of fixed airways. This 
unexpected result and the lack of intuitive explanation for it called for complementary work, to assess 
whether they were artifacts due to errors in the use of the PCA or in the retrieval of the data set, or 
actual phenomena from the data, in which case the work should help understand their root. 

 

First, explained variance, i.e. the quantity of variance for each component was computed. This step can 
be performed prior to computing the PCA and indicates how much variance i.e. information is held in 
each component. It is used to choose the target number of components i.e. dimension in which the PCA 
will be computed. Figure 17 shows the histogram of explained variance for the ACAS-Xu data set (still 
on the COC label). 

 

Figure 17. Explained variance ratio of each component of the PCA. The PCA was performed on the subset the ACAS-Xu samples with 

input state COC 

It can be observed that the first component concentrates the entirety of the explained variance. 
Therefore, using the second component for a 2-dimensional projection will bring no supplementary 
information. Consequently, a new graph was plotted, visible in Figure 18, representing the distribution 
of the first component's values in function of the output decision (as cost value) for input classes COC 
and Weak Right WR. 
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Figure 18. On the left, boxplot of the distributions of values taken in the first component of the PCA of the ACAS-Xu subset with input 

state COC, in function of the output states. On the right, the same plot for the subset of input state WR. 

Boxplots are to be read as follows: the line inside the box indicates the median of the distribution (i.e. 
the value for which 50% of the sample are above and 50% below). The left and right extremities of the 
box represent the first and third quartiles of the distribution (i.e. 25% of the samples have value below 
the first quartile and 25% samples have values above the third quartile), respectively. The line at the 
extremities of the “whiskers” indicates the minimum value (left) and maximum value of the distribution. 
Finally, the diamonds represent statistical outliers, i.e. single occurrences of values outside the 
distribution. Note that these statistical outliers might be indicative of outliers in the sense of (EASA, 
2023). The boxplots on Figure 18 confirm the imbalance between classes, with a strong dominance of 
the COC. The WR plot also shows that the dominance is shared between COC and the same class as the 
input (i.e. WR in this case), as illustrated by the difference in size of the boxes. There is also a large 
amount of statistical outliers and the medians in the boxes are not visible or are very biased. All these 
phenomena show the heterogeneity of the distributions. No insight on the gaps was found. 

To ensure there was no error with the use of the PCA, a new data set was used. The Gas Sensor Array 
Drift Dataset54 was chosen. This data set is comprised of 13 910 measurements from 16 chemical 
sensors utilized in simulations for drift compensation in a discrimination task of 6 gases at various 
levels of concentrations. Each measurement is a 128-dimensional vector. It is a typical case where PCA 
may provide insight on the data set characteristics. 

First, the distribution of the different gases and the histogram of explained variance were plotted and 
are shown in Figure 19 and Figure 20, respectively. 

 

 
54 https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset# 

https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
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Figure 19. Distribution of the labels in the Gas Sensor Array Dataset. 

 
Figure 20. Explained variance ratio of each component of 5-component PCA performed on the Gas Sensor Array Dataset. 

Though not completely balanced, the data set has a globally homogeneous distribution of classes, with 
a 30% difference between the most represented and less represented class. Also, while the first 
component concentrates most of the variance, the second axis may still be informative. The result of 
the 2-dimensional PCA is visible on Figure 21. 
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Figure 21. PCA score plot of the Gas Sensor Array Dataset. 

The data points for ethylene form a dense and well-defined cluster. Toluene is less defined but each 
cluster is compact, as is the case for ethanol. However, other gases have a more diffuse distribution 
across the graph, especially acetone which is also the most represented, although ethylene is present in 
comparable proportions in the data set (and the best-structured in the plot). The general form of the plot 
validates the behaviour of the PCA, excluding errors from bad uses of the implementation.  

Finally, the testing of another method on ACAS-Xu required checking the value range of each feature. 
It was then observed that most features took only a few discrete values. This is detailed in Table 8. 

 
Table 8. Number of unique values for each feature of the ACAS-Xu data set (entire data set). 

Feature name Number of unique values in the 
data set 

vertical_tau 10 

intrspeed 12 

ownspeed 12 

max_cost 5 

min_cost 5 

psi 41 

range 39 

theta 41 
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Features psi, range and theta have the largest range with around 40 different values for each, while 
other features are between 5 and 12, across all samples and all labels. This phenomenon probably 
explains the gaps observed in the PCA, although as discussed earlier, it is unexpected w.r.t the a priori 
knowledge on the use case. 

3.7.3.1.2 Results from the MLEAP perspective 

Considering the Gas Sensor Array Drift Dataset represents real-life data, it is probably incorrect to 
interpret the sparsity of acetone as a lack of completeness of the data set. However, considering said 
sparsity, it may be relevant to anticipate a lower performance in predicting behaviours related to this 
gas, which could lead to a need for more data. Such situation would be a typical illustration of the 
balance/coverage dilemma discussed earlier in the chapter. 

Regarding the ACAS-Xu data set, the results obtained so far should be considered inconclusive. 
Hypothesis may explain the patterns observed but could not be confirmed definitely. Moreover, these 
hypotheses also question the assumptions of completeness and representativeness of this data set. 

More information on the constitution of the data set were obtained, and complementary analysis (such 
as feature-component correlation or normalization verification) is required. Both tasks had to be put 
aside to allow for the testing of other methods and will be continued in the later phases of the MLEAP 
project. 

However, the study of the ACAS-Xu data set showed the importance of good practice such as high-
level verification of the data set (e.g. the expected vs actual range of values) and the need to structure 
the analysis surrounding the PCA (e.g. analysing the explained variance across component), and did 
reveal unexpected trends in the data set related to its completeness. 

 

 

3.7.3.2 Graph-based analysis 

3.7.3.2.1 Experimental protocol 

As no reference implementation was available, the development of the necessary software had to be 
performed in-house. Several iterations were necessary, to validate the correct operation of the tools. 
The general idea of the method is to explore the tree-like graph of feature patterns, where a "leaf" is a 
sample from the data set and any upper-level node is the combination of determined and increasingly 
variable features.  
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As an example, consider a data set where each sample is a person represented by three binary features: 
their sex (0: male, 1: female), whether they have a Netflix account (0: no account, 1: has an account) 
and whether they wear glasses (0: no glasses, 1: wears glasses). Then the sample (also called pattern in 
the paper) [0, 1, 0] describes a man with a Netflix account who does not wear glasses. It would be a 
leaf of the graph and would have direct ancestors patterns [X, 1, 0], [0, X, 0] and [0, 1, X] i.e. persons 
with a Netflix account not wearing glasses, men not wearing glasses and men with a Netflix account, 
respectively. Here, X stands as a placeholder for undetermined features. Any graph as the same root 
pattern with only undetermined feature, here [X, X, X]. The paper discusses traversal strategies to find 
Maximum Uncovered Patterns i.e. patterns for which the number of attached samples is lesser than a 
user-defined threshold. The graph associated to this example is presented in Figure 22. Notice how the 
graph expands when developing fixed features, and then narrows down when reaching the fully fixed-
features set. While the graph may intuitively be imagined as a tree, a large number of redundant edges 
actually appear. This redundancy must be taken into account in the traversal strategies for two reasons. 
The first is algorithmic efficiency, as it is not desirable to traverse the same regions of the graph several 
times. The second is to enable correct MUP identification. As an example, consider the case where the 
number of male would be inferior to a given threshold (blue feature = 0, upper boxed combination). In 
such case, all boxed combinations would be part of the MUP and it becomes useless to traverse them. 
However, this is not trivial as they can be reached through other combinations (purple arrows). The 
traversal strategies should account for such cases. 

 

Figure 22. Graph representation of the example 

  

The first version of the implementation included a complete building of the connection graph with 
separate traversal algorithms, to allow the checking of the behaviour of both the population and traversal 
algorithms separately and by hand if needed. This is in opposition with the original approach that relies 
on traversal as a pruning strategy for efficiently populating the covered portion of the graph. To enable 
potential manual verification, this first iteration was tested on the Titanic data set55. 

The Titanic data set is a public data set comprised of various information about the 891 passenger of 
the RMS Titanic that sunk on April 15, 1912. It is a simple and popular classification data set for small 

 

 
55 https://github.com/datasciencedojo/datasets/blob/master/titanic.csv  

https://github.com/datasciencedojo/datasets/blob/master/titanic.csv
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ML projects. It was chosen as it is small enough to be explored by hand but large enough to hold 
different trends that can be used to validate the behaviour of the algorithms under implementation (thus 
being sometimes called a "toy" data set). While it has several features with missing values (such as 
age), some interesting features are complete. The three main features selected for testing were Survived 
(0: died in the wreck, 1: survived the wreck), Pclass (1: first class, 2: second class, 3: third class) and 
Sex (M: Male, F: Female). 

The development of this first iteration required more time than expected, in particular because the 
genericity of the tool had to be preserved to allow the transparent handling of future data sets. Results 
of the first experiments are shown in Figure 23, setting the threshold at 223, 446 and  669 occurrences, 
respectively 25%, 50% and 75% of the number of passengers.  

 

Figure 23. From left to right: MUPs for 25%, 50% and 75% of the number of passengers. Redundant MUPs across thresholds have 

been hidden for readability. 

At t = 669, the entire data set is captured. Identified MUPs are merely dispatched between the different 
features. It can be observed there was more 1st class passengers than 2nd class. For a threshold value of 
446 (50% of the passengers), more trends are visible e.g. out of 342 survivors, only 109 were males 
(out of 577 male passengers, or 18%). Moreover, 37% of 1st class passengers, 52% of 2nd class and 61% 
of 3rd class passengers did not survive. Finally, examining the MUPs obtained for 𝑡 = 223, the 
proportion of female survivor can be established (96% of 1st class, 92% of 2nd class and 51% of 3rd 
class). While unsurprising considering the nature of the data set (a vast majority of women survivors 
and a clear higher fatality rate for 3rd class), these results are illustrative of what can be inferred using 
this method. It also shows the influence of the selected threshold: the closer it is to the cardinality of 
the data set, the higher the level of information, which allows for controlling the granularity of 
imbalance information provided. The method could be the basis of a useful visual characterization tool. 

A run on the ACAS-Xu data set was then prepared in parallel of a second version of the implementation 
that would include pruning. Some preprocessing had to be performed. Indeed, the method is designed 
to work only with qualitative data, quantitative data had to be discretized. This can be achieved through 
binning, but different policies can be used. The first step was to check the distribution of values in the 
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data. At this occasion the particular distribution of the ACAS-Xu features was observed and triggered 
some complementary work on the PCA methods. Consequently, the method could not be tested on 
ACAS-Xu at the time of writing this document. 

 

3.7.3.2.2 Results from the MLEAP perspective 

Despite seemingly light experimentations, the interest of the method was confirmed. It has the potential 
to be a useful tool for a general characterization of a data set. To improve its added-value, the next 
round of experimentations may include the development of a threshold-setting strategy (currently a 
limiting factor as it requires launching and comparing runs with different thresholds, which is inefficient 
and impractical). 

A possible strategy would be to automatically identify the thresholds that would encompass 25%, 50%, 
75% and 100% of the data under a given pattern, to offer a synthetic visual tool of the imbalances in a 
data set, provide insight on potential completeness or representativeness shortcomings. Another would 
be to run the algorithm with dynamic thresholds, to ensure the data set complies with external 
completeness or representativeness constraints (that would have to be defined upstream). 

3.7.3.3 Entropy-based analysis 

3.7.3.3.1 Experimental protocol 

In the reference paper (Dourado Filho and Calumby, 2022), entropy was used to compute the intra-class 

variability of a plant image data set. The data set had two "levels" of annotation: the type of the plant 

on the image and, for each type of plant, the part of the plant represented on the image. 

 

As for the graph-based method, the first implementation was tested against a "toy" data set, namely 

CIFAR-10056. This particular data set was selected because as any such data set, it is easy to handle and 

thus to allow manual checks if necessary and is small enough to run in an algorithm without consuming 

significant resources while big enough to provide phenomena to observe. It also has additional 

advantages in the context: 

- It is comprised of 20 "super-class" (i.e. coarse-grained annotation such as "insects"), each sub-

divided into 5 "sub-classes" (i.e. fin grain-annotations such as "beetle" or "butterfly") 

- Each sub-class has the same number of images 

- Each image has the same resolution 

 

Considering these properties, any variation in entropy would come from the information embedded in 

the images rather than imbalances of the data set. In addition, the "coarse-grain"/"fine-grain" annotation 

scheme replicates that of the reference paper, which could be convenient for analysis (although it will 

actually not be exploited and should not have become a necessary configuration, as the MLEAP AVI 

use case is not supposed to be designed this way). 

 

The results of computing Shannon entropy on each super-class (label-wise entropy) are shown in Figure 

24. The image-wise entropy of each 20 super-classes of the data set is visible in Figure 25. 

  

 

 
56 https://www.cs.toronto.edu/~kriz/cifar.html 

https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 24. Entropy value of each super-class of the CIFAR-100 data set. 

 
Figure 25. Boxplots of the distribution of the entropy values of every images in each 20 classes of the CIFAR-100 data set. 

 

 

As a reminder, boxplots are to be read as follows: the line inside the box indicates the median of the 

distribution (i.e. the value for which 50% of the sample are above and 50% below). The left and right 

extremities of the box represent the first and third quartiles of the distribution (i.e. 25% of the samples 

have value below the first quartile and 25% samples have values above the third quartile), respectively. 

The line at the extremities of the “whiskers” indicates the minimum value (left) and maximum value of 

the distribution. Finally, the diamonds represent statistical outliers, i.e. single occurrences of values 

outside the distribution. Note that these statistical outliers might be indicative of outliers in the sense of 

(EASA, 2023). Figure 24 is merely a visual confirmation of the balance of the super-classes: entropy 

has same value for all classes because they contain the same number of images. Moreover, the measured 

entropy is maximal. Indeed, Shannon entropy's upper bound in defined as: 

𝑙𝑜𝑔2(𝑛) 
where 𝑛 is the cardinality of the random variable considered. Here, each class has 5 sub-classes of 500 

images each, so the upper bound of the entropy for each class is 

𝑙𝑜𝑔2(5) = 2.32. 
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On the other hand, Figure 25 shows a little more variability among the images of each class: large man-

made outdoor things or medium mammals have notably less outliers, while food_containers have 

significantly more. Despite these observations, the medians are roughly homogeneous and the 

maximum value for each variable is consistently close to the upper bound. In the case of CIFAR-100, 

each sample is a 32x32 image, so the upper bound is: 

𝑙𝑜𝑔2(32 ∗ 32) = 𝑙𝑜𝑔2(1024) = 10 

 

These preliminary tests validated the implementation of the method, which was then applied on the 

ROSE data set. As a first approach, it was decided to use single-object images, matching the setting of 

the CIFAR-100 data set, rather than working directly on the multi-object setting of ROSE and AVI. 

Thus, the data set requires some pre-processing, e.g. since every full frame image has several plants 

with their associated labelled bounding boxes, each bounding box had to be extracted, so that each 

image on which entropy is computed represents only one object. Consequently, images have 

heterogeneous dimensions. Moreover, each group used different sensors for image acquisition, with a 

group using classical CMOS sensor and the other using false colors images from multispectral cameras. 

Though it would be a problem in an applicative perspective, in the case of exploratory work these biases 

will be useful to illustrate the behaviour of the metric. Figure 26 shows the image-wise entropy for the 

super-classes of group A (left, team “bipbip”) and B (right, team “roseau”). 

 

  
Figure 26. On the left: boxplots of the distributions of the entropy values of the images of group A (team “bipbip”) in each classes of 

the ROSE data set. On the right: boxplots of the distributions of the entropy values of the images of group B (team “roseau”) in each 

classes of the ROSE data set. 

 

The medians of crop and weed are close, while unknown medians are notably different. Group B has 

no outliers over the maximum (except a few for unknown), contrary to group A. However, Group A's 

entropy distributions are notably tighter than group B. Overall, both distributions are more similar than 

could be expected considering the difference in acquisition sensors. 

 

Also, the average image size for group A is 502*700 pixels, yielding an average upper bound of 

𝑙𝑜𝑔2(351400) = 18.4. Group B has an average image size of 397*644, so an average upper bound of 

𝑙𝑜𝑔2(255668) = 17.9. Compared with the boxplots, it shows the images have an absolute low-

complexity (probably due to the fact that most plants considered are mostly made of green leaves, with 

little shading). Table 9 presents the dispersion of the image sizes for both groups. The large variability 

explains the number of outliers display in the boxplots. 
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Table 9. Per-group dispersion of the image size of the ROSE data set. 

Group Min size (h*w 

pixels) 

Mean size Max size 25% 50% 75% 

A 1 * 3 502 * 700 1449 * 2048 328 * 358 453 * 631 620 * 921 

B 5 * 5 397 * 644 821 * 1228 206 * 350 381 * 647 587 * 945 

 

Figure 27 shows the label-wise entropy of both groups. 

 

  
Figure 27. On the left, group A’s entropy values for each label. On the right, the same plot for group B. 

. 

We can see the trends in entropies are similar for both groups, with unknown being the lowest and crop 

and weed being of comparable values, although the difference is smaller for group B (contrary to the 

image-wise entropy trends). This indicates that crop and weed images are more complex than unknown 

images. The similarity of both distributions tends to indicate that a system trained on data from group 

A could be used on data from group B (and vice-versa) with decent performance. However, a system 

using a merged data set of both data might not increase its performance beyond sheer volume benefit. 

3.7.3.3.2 Results from the MLEAP perspective 

Using entropy on CIFAR-100 confirmed the balance of data set while hinting discrepancies in the 

amount of information available for learning each class. During evaluation, classes with the highest 

entropy might exhibit a higher error rate. This is because such images are somehow more complex, e.g. 

large man-made outdoor things images might share similar backgrounds and overall tones while 

food_containers might have more diverse background and object colors (especially considering the low 

resolution of the images), making them harder to predict for a model due to the highest number of 

potential features. Such phenomena might influence the volume requirement to meet representativeness 

criteria, though it might not be used to set a precise target value. 

 

On the ROSE data set, the method showed that despite the fundamental differences of hardware used, 

group A's data set could be considered representative of group B's. Therefore, it is not farfetched to 

think that a system trained on the data set of one group could perform similarly on the other group's 

data, which is interesting. 
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However, the method also showed that there is a difference in the complexity of the images which 

might bias the performance of the system. If such cross-data set experiment was tested, other metrics 

should complement the assessment, e.g. information about class-wise volume, etc. Conversely, entropy 

seems to be a useful metric that could be used in other assessment frameworks, either as a replacement 

for less suited metrics or as a complement of other metrics or tools. 

3.7.3.4 Sample-wise similarity analysis 

3.7.3.4.1 Experimental protocol 

As mentioned, the first problematic to apply the method is to be able to convert an audio signal into an 

embedding. Speech embeddings exist in many variants. Well-known pre-trained embeddings i-vectors 

(Dehak et al., 2011) (trained using Gaussian Mixture model) and x-vectors (Snyder et al., 2018), an 

evolution of i-vectors trained using Neural Networks. However, both representations aim at capturing 

speaker-related information like prosody. Those informations are not useful in the context of the 

MLEAP project, whose main focus is speech-to-text transcription, i.e. the semantic of the spoken 

exchanges rather than specifically identifying speakers. 

 

Nowadays, STT is treated as an end-to-end task, i.e. systems are trained with aligned speech and text 

as input and labels, respectively, and learn to predict the latter from the former. Most state-of-the-art 

STT systems are based on neural networks and usually adopt an encoder-decoder architecture. The 

Encoder takes an input (e.g. speech) and transforms it, usually through increasingly smaller hidden 

layers, into an internal representation (i.e. an embedding) which is fed to the Decoder. The Decoder is 

built as a reflection of the Encoder, and thus transforms an embedding into a text sequence through 

increasingly large hidden layers. Training both modules jointly increases the overall performance on 

the task. Figure 28 illustrates the general principle of the encoder-decoder architecture. 
Figure 28. General principle of the Encoder-Decoder architecture. The “Code” is the learned embedding space. 

 

Some of these models are trained on extremely large data set with learning strategies favoring the 

learning of embeddings based on small units of speech (roughly comparable to phonemes). For such 

systems, it is possible to use the Encoder alone to extract embeddings that can then be used in 

downstream task with good performance. As these pre-trained embeddings are formed on sub-units of 

speech, there is no problem of Out-of-Vocabulary samples. 

 

Few off-the-shelf pre-trained models with retrievable embeddings (i.e. separable Encoder and Decoder) 

were found during the research step. Two candidates were identified: 
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- End-to-End SLU57 (Lugosch et al., 2019) 

- Wav2Vec 2.058 (Baevski et al., 2020) 

 

Wav2Vec 2.0 being provided by Facebook and accessible via Hugging Face, it may be perceived as a 

more appealing resource, easier to deploy and with better support. Moreover, Wav2Vec2 is probably 

more accurate in absolute value, as it relies on Transformers while E2ESLU is based on their 

predecessors, RNN. However, since the evaluation protocols are different for both systems, comparing 

their strength and weaknesses is difficult (and outside the scope of the project), preventing the use of 

expected performance as a selection criterion. Nonetheless, the embeddings of E2ESLU have less 

dimensions (256 vs 512), which makes computation less costly. In the meantime, the performance of 

E2ESLU embeddings would be sufficient for the exploratory nature of the work performed at this stage, 

as the focus is to have semantic embeddings in a consistent representation space rather than the absolute 

quality of said space. This is why E2ESLU was selected at first. 

 

The preliminary experiments were very simple: a subset of three audio samples from the Fluent Speech 

Commands Dataset59 was duplicated to emulate two identical datasets (called A and B respectively). 

Each file is then loaded and its associated embedding is generated. 

 

Speech embeddings (whether E2ESLU or Wav2Vec2) are 3-dimensional, with the second dimension 

of variable length, depending on the duration of the input sample. On the other hand, the metric of the 

reference paper (i.e. (Cabitza et al., 2021)’s), called Degree of Correspondence (DoC) requires 2-

dimensional data (due to its internal use of the K-nearest-neighbours (KNN) algorithm) in matrix, i.e. 

with a fixed shape. Therefore, the embeddings underwent a two-steps pre-processing: 

- First, they were padded with zeros according to the longest embedding in the data set (along the 

second axis), so as to all share the same shape. 

- Second, they were reshaped by collapsing the first dimensions onto each other, leaving the last 

dimension untouched. 

 

Finally, DoC was computed between the resulting matrices. However, the final DoC value was 0.85, 

whereas 1.0 should be expected considering both data set are identical. The difference seemed too high 

to be imputable to variations caused by the internal KNN algorithm. Moreover, the algorithm was ran 

2 more times, yielding scores of 0.88 and 0.66. A series of sanity checks was then put in place to better 

understand these results. 

 

First, an element-wise comparison of each cross-data-set pair of embeddings was performed, i.e. is 

embedding 1 of data set A identical to embedding 1 in data set B? None of the embedding pairs were 

identical, confirming that the problem did not (only) come from the DoC computation. Second, the 

same element-wise comparison was performed for a pair of same embeddings from the same data set, 

i.e. is embedding 1 from dataset A identical to embedding 1 from data set A. This time the pair was 

found to be identical. The same protocol was performed first on the padded then unpadded embeddings 

with identical results, hinting that E2ESLU might generate its embeddings non-deterministically. The 

considerable variability in DoC made these embeddings unusable for further exploration. It was then 

decided to use the Wav2Vec2 despite its potential limitations. 

 

 
57 Hereafter abbreviated E2ESLU, implementation available at https://github.com/lorenlugosch/end-to-end-SLU 
58 Implementation available at https://github.com/huggingface/transformers 
59 https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/ 

https://github.com/lorenlugosch/end-to-end-SLU
https://github.com/huggingface/transformers
https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/
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Running the same sanity checks on Wav2Vec yielded no alert, i.e. embedding 1 of data set A is identical 

to embedding 1 in data set B. Running DoC between both data sets yielded a score of 0.96. To confirm 

that such variability came from the internal KNN, DoC was also ran between data set A and data set B, 

yielding 0.96 and confirming an irreducible variability that, although small, must be taken into account 

in further experiments. 

 

Finally, the choice of speech embeddings as the representation for DoC and other similarity assessment 

was explored. To do so, two data sets of three commands were assembled. Table 10 shows the 

commands chosen. 

 
Table 10. Correspondence between the audio samples of commands used in the experiment. 

Data set A Data set B 

Decrease the heating in 
the bathroom 

Turn the heat down in the 
bathroom 

Fetch my shoes Go get me my shoes 

Increase the sound Volume up 

 

It can be observed that each command in a data set has a semantically similar counterpart but with a 

notably different wording, except for up to one common word. Wav2Vec2 being trained for STT, it is 

not supposed to account for semantic similarity (focusing on the writing). However, complex systems 

such as Wav2Vec may capture a wide variety of phenomena, and investigating semantic could provide 

directions for further experimentations. 

 

The sanity check of comparing data set A against itself yielded a DoC score of 0.85. DoC for data set 

A against B yielded 0.0. This experiment shows the wide intrinsic variability of the DoC score, making 

it a tool to use very cautiously. Despite this variability, it seems clear that Wav2Vec embeds no or 

insignificant semantic information. 

3.7.3.4.2 Results from the MLEAP perspective 

Experiments performed with the DoC method confirmed the feasibility of using speech embeddings to 

apply similarity metrics. However, the metric itself exhibited an inconsistent behaviour greatly limiting 

its interest. Indeed, it yields a single value that is difficult in of itself to exploit for characterizing the 

relation between the data sets compared, which becomes even more difficult considering how much it 

can vary between runs on the same pair of data sets. Moreover, it is quite costly to compute: running it 

on two data sets each comprised of three embeddings of dimensions 174*512 took 10 minutes, which 

makes it intractable for real-sized data sets. 

 

Further experiments could be devised, taking this variability into account and exploiting embeddings 

capturing the semantic of the input signal. In this case, the main focus would be to enrich the metric in 

order to enable the analysis of what elements in the embeddings are identified as similar during 

computation. The DoC could also be compared with more classical metrics (such as cosine) to validate 

its interest and assess whether its computation is worth the computational effort. Nonetheless, it will 

not be considered a priority in the next phases of the MLEAP project. 
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3.7.4 Discussions on other methods 

During this phase, the work was divided into three rolling tasks: 

- Internal discussions to confirm the selection of a method, 

- Implementation of the method (or first experimentations if an off-the-shelf implementation was 

available), usually using a toy data set, 

- Testing of the method on the reference data set (corresponding to the use case). 

 

Implementation and testing have been extensively discussed in the previous section. However, after the 

first experimentations and feedbacks on using the data sets, the priority of certain methods was 

reassessed, and in some cases, reservations on their added-value w.r.t the MLEAP project were 

expressed. 

 

For example, the method by (Almeida and Vieira, 2011) aims at characterizing resilience, identified in 

this document as an influence factor of completeness and representativeness. However, the approach 

relies on incremental degradation (either of the system or of the input), which was found to be 

overlapping the works corner cases. 

 

The method by (Balaraman et al., 2018) is entirely directed toward the analysis of structured data such 

as knowledge bases. This kind of data is outside the scope of the MLEAP project, but it was envisaged 

to devise adaptations to the speech or vision use cases to enable its testing nonetheless. A preliminary 

work was performed in parallel of the research of speech embeddings. It appeared no work in the 

research community was done to build a structured embedding space that would exhibit enough explicit 

structure to allow for the testing of this method. Such endeavor would be an entire research direction 

and is thus outside the scope and feasibility of the MLEAP project. However, it remains an interesting 

tool for structured data. 

 

Also, the method described in (Sánchez et al., 2019) was based on a tool called TAQIH and focusing 

on tabular data. The tool proposes an interface synthesizing different information on the data set being 

processed. Information is dispatched into different types: on one side, a summary of general statistics 

on the data set e.g. the number of features, their individual type and range. On another side, correlation 

analysis of the features, identified outliers and missing values. In essence, the tool integrates much 

information from basic preprocessing of the data set. The testing of this tool was discussed after the 

case study of PCA and graph-based methods (PCA may even be seen has a direct extension of these 

basic statistics), so the tool itself could probably have been used for the ACAS-Xu data set and would 

have provided similar insight. Nonetheless, the tool is not generic enough to be recommended as a 

GoTo solution. The study of the methods demonstrated the importance of applying basic analysis tools 

on the data set and studying their interaction to get insight on the next steps, but it should remain a 

generic methodology, adaptable to any type of data. 

 

SliceTuner, the tool introduced in (Tae and Whang, 2021) was also put aside despite its interest because 

it required a learning system to be put to use, as its objective is to monitor the learning process to 

identify latent factors of influence and adapt the distribution of learning samples accordingly. 

Moreover, this objective is not directly aligned with MLEAP's scope and required adaptations, which 

also added to the time necessary to deploy it. However, it remains one of the priority tools to be tested 

in the next phases. 
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Finally, (BSA, 2021) being based on risk management, its testing was delayed and will be performed 

directly on one or more MLEAP use case since it does not require exploration, as opposed to software 

tools. It could not be applied on ACAS XU due to the priority given to manipulating data sets and 

implementing tools. 

3.7.5 Experimentation conclusions 

The outcome of these preliminary experiments is positive overall. Many methods have been 

implemented and validated on small data sets. In addition, some methods have been tested on high scale 

data set, allowing for the identification of technical challenges. This important groundwork offers a 

solid testbed for the continuation of experimentations by enabling a smoother testing of the remaining 

methods, along with the deepening of the analysis already implemented, either through complementary 

experiments or application of the methods on new data sets. 

 

Moreover, the results obtained, though at different levels of maturity, confirm the value of well-known 

but sometimes overlooked standard good practice of ML, e.g. systematic general characterization of the 

data set (beyond its description) through simple metrics and tools prior to investigate deeper into 

problematics such as completeness and representativeness. 

 

The work also confirms the absence of a one-size-fits-all methodology. Instead, a tailored, incremental 

examination process is preferable. It also requires combining tools and metrics to get insight from 

several points of view. 

 

Also, the experiments confirm that completeness and representativeness properties are hard to assess. 

The expressivity of the tools tested is limited, usually allowing to get fragment of information on 

intrinsic qualities of a data set, which may be used to anticipate trends in the learning process that may 

then be confirmed efficiently at evaluation time and orient modifications on the data set. In addition, 

comparison of two data sets is easy and may be more insightful but also has limitations and cannot be 

used to accurately decide a course of action regarding the use of the data set as it is.  A methodology 

enabling a consistent and absolute assessment of the completeness or representativeness of a data set, 

i.e. a set of tools that could be combined to appreciate the adequacy between any data set and real-life 

phenomena they are supposed to capture, remains an open challenge. 

 

3.8 Conclusion 

In light of all the elements discussed in this document, it appears that the field of data quality 

management is at a low degree of maturity. While general processes are mostly defined, normative 

efforts about definitions and terminology are still ongoing. Moreover, the importance of data curation 

often remains neglected due to its cost-intensive and painstaking nature. 

 

Meanwhile, most tools and methods publicly available lack operationalizability. Their many individual 

shortcomings encourage the multiplication of empirical, specialized works. This fragmentation is 

incompatible with industrial requirements, thus a consolidation step of the most generic and efficient 

method is needed but cannot be expected without incentives. On the research side, such incentives may 

take the form of challenges and other events to stimulate the development of theoretically sound, 

general-purpose solutions. On the industrial side, this can be done by encouraging the adoption and 

development of such methods, through labels, standards, certifications and regulations. 
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In addition, an important point is that many methods do not explicitly address completeness or 

representativeness, but rather data quality in general. Moreover, assessment methods do not identify 

and leverage influence factors as structuring elements of their methods. This results in a variety of 

approaches, from devising data-quality-aware objective function that work at training time, to 

assessment methods working directly on the data set, with in-between propositions such as using the 

model's learning process as a proxy to get insight on the data set. The heterogeneity of the solutions 

makes the choice of a method even more difficult. 

 

The preliminary experimentations empirically confirmed this combination of scarce information, 

complex operationalizability and lack of focus on the specific issues of completeness and 

representativeness. Putting up a framework for such assessment would require significant engineering 

and expert knowledge. While it is probable that such framework would be portable to similar tasks, at 

least each different task would require a tailored solution aggregating several metrics and tools and 

requiring substantial analysis. A reasonable first step to require from the system designers would be to 

provide documentation about whether completeness and representativeness have been ensured in 

relation to the factor of influence listed in this document, the methodology chosen to do so and the 

justifications behind this choice. Experts may then be consulted to evaluate the soundness and 

sufficiency of the approach. 

 

One of the major difficulties in assessing completeness and representativeness is to have reliable 

information about the distributions of phenomena of the intended behaviour in its operational context. 

Such assessment must be performed on a case-by-case basis and in most cases requires extensive expert 

work. No off-the-shelf methodology exists to define clear requirements prior to data collection. Finally, 

it is important to keep in mind that this assessment task must also take into account the necessary trade-

off posed by robustness and resilience requirements, i.e. ensuring completeness by enabling sufficient 

performance on specific cases while preserving an overall degree of representativeness. 
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4. Model development: Generalization properties 

4.1 Introduction 

This part is about evaluating Model Generalization in AI. It aims to review existing methods of machine 

learning (ML) and deep learning (DL) generalization guarantees and evaluation, distinguishing between 

methods from the two fields. Problems and limitations are analysed, and then new evaluation methods 

development is presented. This section includes a comprehensive overview and state-of-the-art analysis 

of existing methods for ML and DL models in terms of generalization process and bounds. In this 

section, we first present the issues of generalization and the known ML/DL-related problems of 

underfitting and overfitting. Then, we provide an overview of existing methods to address these aspects 

in a general way and how to detect overfitting/underfitting cases that prevent models from generalizing. 

Furthermore, we comprehensively review the available methods and tools to evaluate generalization 

bounds. Finally, we identify the barriers to the tractability of the objective of quantification of 

generalization guarantees for a given AI model, and provide a generic development and evaluation 

pipeline, dealing with the identified limitations to promote generalization, after training and model 

implementation. 

 

4.2 Background concepts  

In this section, we introduce the main concepts in machine learning, deep learning, and artificial 

intelligence and give general terminology definitions, w.r.t. the definitions and terms used in the second 

concept paper by EASA60 (EASA, 2023).  

4.2.1 AI modelling 

Using and implementing artificial intelligence (AI) applications involves creating a mathematical 

model function f. The latter is then fitted to some training data, in a given context, to be able to process 

additional data and hence make predictions. Several models have been defined for AI applications. 

There are two main categories: (1) ML models, which could be supervised61 or not, and which are based 

on different architectures and theoretical approaches. A detailed taxonomy can be found in (Shyam and 

Singh, 2021) ; (2) DL models, which are made of several computational layers, stacked on top of each 

other. DL uses supervised and unsupervised strategies to learn multi-level representations and features 

in hierarchical architectures, for several different tasks, such as classification or regression. A detailed 

description can be found in (Sarker, 2021).  

Independently of the model’s class, developing ML/DL-based applications requires a series of steps 

from the design phase to the operational phase. Given a generic data set 𝐷 made of three disjoint subsets 

𝐷𝑡𝑟𝑎𝑖𝑛 for training, 𝐷𝑡𝑒𝑠𝑡 for testing, and 𝐷𝑣𝑎𝑙 for validating (called also development set), such that 

𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡 ∪ 𝐷𝑣𝑎𝑙 and ∅ = 𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑡𝑒𝑠𝑡 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑣𝑎𝑙 = 𝐷𝑡𝑒𝑠𝑡 ∩ 𝐷𝑣𝑎𝑙. 

 

 
60 https://www.easa.europa.eu/  
61 Supervised learning (Caruana and Niculescu-Mizil, 2006) includes a set of algorithms that reason from a set of instance 

samples where input examples are provided with expected outputs, in contrast to unsupervised learning (Celebi and Aydin, 

2016) where the objective is to discover latent connexions and signals between the input samples (e.g. creating clusters, 

learning semantic representations). Note that in this document, we are more interested in supervised models, especially in 

the different formal descriptions of the models, without neglecting the unsupervised approaches. Examples of works from 

both approaches will be cited indifferently.  

https://www.easa.europa.eu/
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F is a set of possible models produced by the learning algorithm, sometimes called hypothesis space. 

Given a hypothesis space 𝐹 such that 𝑓 ∈ 𝐹. We consider two main steps to put an ML/DL model into 

production following the pipeline defined in (Cluzeau et al., 2020), as shown in Figure 29.  

 

 
Figure 29. From the design to the operational62 phase of machine learning modelling and production. 

1. The design phase: which includes the ML model (algorithm) choice, the training on a 

dedicated data set, evaluation of the best model, and finally testing its performance. In this 

phase, it is very common that a model can be changed or modified due to a lack of 

performance in the evaluation set.  

2. The operational phase: at that point, the model should have provided satisfying results and 

can keep the same performance level on unseen data samples. Here, the trained model is 

simply used to make predictions for new inputs (inference). 

In both phases, design and operational, we assume that a same data engineering pipeline is used to 

process data samples. The evaluation measures (cf. section 5.3) can be derived from the key 

performance indicators that are provided by the domain application expert. 

4.2.2 Learning process 

The learning process aims at going through a learning algorithm F and repeatedly updating the model’s 

parameters. The goal of a (supervised) learning algorithm (Cluzeau et al., 2020) F is to learn a function 

𝑓 ∶ 𝑋 → 𝑌 from an input space 𝑋to an output space 𝑌, using a finite number of example pairs 

 

 
62 This phase can include an implementation step of the model. Where the latter can be embedded in the target system and 

be part of its pipeline.  
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(𝑥, 𝑓(𝑥)), with 𝑥 ∈ 𝑋. These sample pairs represent parts of the target domain for which the application 

is being designed. More precisely, given a finite training data set 𝐷𝑡𝑟𝑎𝑖𝑛: 

𝐷𝑡𝑟𝑎𝑖𝑛 = {(𝑥𝑖, 𝑓(𝑥𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛𝑡𝑟𝑎𝑖𝑛} 
the goal of the training algorithm F is to generate a function  

𝑓(𝐷𝑡𝑟𝑎𝑖𝑛) ∶ 𝑋 → 𝑌 

that approximates 𝑓 “well”, as measured by some error metric. 𝑓(𝐷𝑡𝑟𝑎𝑖𝑛) is the result of learning 

algorithm 𝐹 trained on data set 𝐷𝑡𝑟𝑎𝑖𝑛. 

Hence, the learning process aims to approximate the best function 𝑓 ∈ 𝐹with the suitable parameters, 

(weights and biases, referred to as hyper-parameters 𝜃) that best perform the ongoing task.  

 

4.2.3 Error metrics  

The pointwise quality of the approximation of 𝑓 by 𝑓 is measured by using a predefined choice of error 

metric(s)  𝑚 ∶ 𝑌 → 𝑅≥0 expecting that 

∑𝑚𝐹(𝐷𝑡𝑟𝑎𝑖𝑛), 𝑓(𝑥) 

is low on all𝑥 ∈ 𝑋. These “metrics” can emphasize that “lower value means better performance”. For 

example, if 𝑌 is a subset of the real numbers, one could simply use the absolute values (resp. squares) of 

differences 𝑚(𝑦1, 𝑦2) = |𝑦1 − 𝑦2| (respectively(𝑦1 − 𝑦2)
2).  

These metrics are useful to identify whether the model can keep high performances in front of 

data changes and perturbations (robustness aspect), and how it would behave in new data 

instances that have not been evaluated during training (generalizability aspect). 

4.2.4 Robustness 

In ML/DL, the term “robustness”, according to the EASA’s CODANN-1 paper (Cluzeau et al., 2020) 

is used to refer to the ability of the system to perform the intended function in the presence of abnormal 

or unknown inputs, and to provide equivalent response within the neighbourhood of an input. 

In the literature, the robustness is defined differently. For instance, in (Doshi-Velez and Kim, 2018) the 

robustness evaluates how ML models are effective in unseen data samples, which can refer also to the 

generalization ability. In (Xu and Mannor, 2012), the robustness of a model is defined based on the 

property that if a testing sample is "similar" to a training sample, then the testing error is close to the 

training error. Which means that, for similar domains, the errors at testing time and training time should 

be correlated. In the MLEAP project, the robustness of ML/DL models is covered by section 5, which 

provides a more detailed definition and analysis of the “robustness” as a quality of AI applications.  

4.2.5 Generalizability  

Once the model has been trained, it is evaluated in a test set 𝐷𝑡𝑒𝑠𝑡. This set is used to evaluate 

the model’s ability to generalize the learned knowledge to a new context or environment. The 

most important success indicator is to produce a model that can perform well on an unseen data 
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set 𝑋 ≠ 𝐷𝑡𝑟𝑎𝑖𝑛 (out-of-sample63 examples), and not simply memorize the in-sample64 examples 

of the subset 𝐷𝑡𝑟𝑎𝑖𝑛. The memorization aspect is used to describe an overfitting behaviour of the 

learning process. The next sections will describe more these aspects and show how to  recognize 

the lack of generalization. 

4.2.6 Stability 

In the scope of analysing a model robustness, the stability concerns the learning algorithm and 

the model itself. According to (Cluzeau et al., 2020), the performance stability can be observed 

based on the behaviour of the trained model 𝑓 when it deals with noisy data set. Hence, it is a 

measure of how much changing a data point in 𝐷𝑡𝑟𝑎𝑖𝑛 can change the learned model (Gonen and Shalev-

Shwartz, 2017; Hardt et al., 2016; Kuzborskij and Lampert, 2018). Associated to model robustness, 

stability ensures that the produced model keeps a defined level of performance under 

perturbations of the training data set. In other works (Subbaswamy et al., 2021) the model stability, 

associated to the robustness, is defined as the ability of the model to preserve its robustness 

level, while dealing with varying contexts and environments. Hence, such stability analysis 

should demonstrate the range of environments and operational domains in which a model 

performs well and which types of changes in environment will degrade performance. The 

stability characteristic of a model is important so that environmental changes to the model will 

not affect its performance, especially in critical applications such as those in the medical field 

(Bai et al., 2021) and aeronautics (Torens et al., 2022). Further in this document, we will focus on 

the performance stability of a learning algorithm as well as the trained model. This notion is 

further developed in chapter 5. 

4.3 Overfitting and underfitting 

4.3.1 Overfitting vs Underfitting 

The overfitting and underfitting are two aspects that show that the ML/DL model is not learning well, 

or that it is not able to perform on unseen data as well as it does on training samples. According to 

(Cluzeau et al., 2020), on one hand, as the model becomes more complex, it can fit the data better (i.e. 

bias decreases), on the other hand, it will become very sensitive to it (i.e. variance increases). These 

two facts yield a specific and different evolution of error values. Figure 30 shows variance and bias 

tradeoff that optimizes the learning errors. 

 

 
63 The out-of-sample data, in some references (Chu and Qureshi, 2022) and this document, refers to data examples that have 

not been used during training. In the CoDANN paper (Cluzeau et al., 2020), this term is used to define error based on the 

expected loss (on sampled data), compared to the empirical loss (on the training data).  The out-of-sample data, in some 

references (Chu and Qureshi, 2022) and this document, refers to data examples that have not been used during training. In 

the CoDANN paper (Cluzeau et al., 2020), this term is used to define error based on the expected loss (on sampled data), 

compared to the empirical loss (on the training data).  
64 According to the CoDANN paper (Cluzeau et al., 2020), the in-sample data includes all the training samples. According 

to the CoDANN paper (Cluzeau et al., 2020), the in-sample data includes all the training samples. 
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Figure 30. Bias-variance trade-off65, for better error optimization, based on the model’s complexity. 

 

Simple models usually have high bias and low variance (sometimes called underfitting), while more 

complex ones (e.g. deep neural networks) have lower bias, but higher variance (sometimes called 

overfitting). This can easily be observed by taking the simple case where the algorithm 𝐹 chooses 

among a finite set of models, such that: if 𝐹 contains a single model, the variance will be zero, but the 

bias might be large, if the single model does not approximate well the target; in contrast when 𝐹 contains 

different models, the bias should be smaller, since there is more capacity to find a model that 

approximates 𝑓 well, but the variance will be non-zero. 

Both overfitting and underfitting come with risks: overfitting will lead to models that do not generalize 

well (may not perform well in unseen contexts), while underfitted models will not achieve a satisfactory 

trade-off66. A trade-off between these two extremes must be reached, depending on the performance 

and safety requirements. 

For more highlights, an empirical study comparing these aspects can be found in (Koehrsen, 2018), and 

a case study in adversarial learning is detailed in (Z. Li et al., 2020).  

 

4.3.2 Under/Over-fitting detection  

As explained above, overfitting occurs when an algorithm reduces error through the memorization of 

training examples, and sometimes of noisy or irrelevant features, instead of learning the regularities in 

the data samples from the input space 𝑋 and the output space 𝑌 (Krueger et al., 2017; C. Zhang et al., 

2021). Overfitting prevents models from perfectly generalizing the same performances, from observed 

data during training, to unseen data during testing (Ying, 2019). This happens mostly because of the 

presence of noise (randomness), the limited size of the training set, and the unsuitable complexity of 

the model(Krueger et al., 2017; C. Zhang et al., 2021). Overfitting prevents models from perfectly 

 

 
65 https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html  
66 Note that current aviation standard on AI (Liao et al., 2022), intends to refer to “bias variance optimisation” rather than 

“bias variance trade-off” Note that current aviation standard on AI (Liao et al., 2022), intends to refer to “bias variance 

optimisation” rather than “bias variance trade-off” 

https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote12.html
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generalizing the same performances, from observed data during training, to unseen data during testing 

(Ying, 2019). This happens mostly because of the presence of noise (randomness), the limited size of 

the training set, and the unsuitable complexity of the model.  

Underfitting occurs when there is not a sufficient model capacity or sufficient training to fully learn the 

exact relationship between input and output spaces, whether through memorization or not. To determine 

a model’s generalization ability and limitations (Bashir et al., 2020), we need to estimate its capacity, 

knowing the approximated true risk (expected loss), that has a central role in generalization. Here, we 

first define the aspects related to the training algorithm, then bridge the relationship with the resulting 

model ability to generalize: 

- Capacity: describes the learning capabilities of a model 𝑓 ∈ 𝐹, as opposed to the complexity 

which indicates the expressiveness of functions in the algorithm’s hypothesis space 𝐹 (e.g., linear 

functions for a regression model). The capacity 𝐶𝑓 of a model 𝑓 is the maximum amount of 

information 𝐼that 𝑓 can extract from a training data set 𝐷𝑡𝑟𝑎𝑖𝑛, when selecting its output 

hypothesis  (Bashir et al., 2020), namely, 

 

𝐶𝑓 = 𝑠𝑢𝑝𝐷𝐼(𝑓|𝐷𝑡𝑟𝑎𝑖𝑛) 

 

Note that the maximum amount of information that an model may transfer from a data set, w.r.t. 

a hypothesis, is the number of bits required for a model to memorize a one-to-one mapping 

between each feature-label pair in that data set. Hence, the capacity aspect has a high impact on 

the model’s generalization. 

 

- True risk (loss): is the aggregated expected loss values over the different data samples 𝑥of the 

test data set: 𝑅𝐷𝑡𝑒𝑠𝑡(𝑓) is estimated by a sampling of the test data sets. 

 

- Overfitting:  is diagnosed by comparing the losses of an model on training and test data sets, 

where the error on the test set (average observed loss) is intended to approximate the true risk. 

Observationally, if the true risk 𝑅𝐷𝑡𝑒𝑠𝑡(𝑓) exceeds the empirical risk �̂�𝐷𝑡𝑟𝑎𝑖𝑛(𝑓)  (the risk on the 

training data set), the algorithm seems to overfit.  

 

Formally, an algorithm 𝐹 overfits a data set 𝐷𝑡𝑟𝑎𝑖𝑛 if it selects a hypothesis 𝑓 ∈ 𝐹 such that  

𝑅𝐷𝑡𝑒𝑠𝑡(𝑓) >  �̂�𝐷𝑡𝑟𝑎𝑖𝑛(𝑓) 

Where: 

𝑅𝐷𝑡𝑒𝑠𝑡(𝑓) =
1

𝑚
∑𝑙(𝑓, 𝑥𝑗)

𝑚

𝑗=1

< 𝐸 

 

for some fixed scalar ℰ > 0 for any data distribution 𝐷𝑡𝑒𝑠𝑡, and 

�̂�𝐷𝑡𝑟𝑎𝑖𝑛(𝑓) =
1

𝑛
∑𝑙(𝑓, 𝑥𝑖)

𝑛

𝑖=1

 

 

- Underfitting: An algorithm 𝐹 underfits at iteration 𝑖 of the model 𝑓, if after training for 𝑖 times, 

its capacity is strictly less than the estimated one for a given model 𝑓 ∈ 𝐹, on the training data 

set, ie: 𝐶𝑓
𝑖 < 𝐶𝑓.  
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- Double descent risk: Based on the error evolution during training (training risk), and the 

overfitting and underfitting definitions, the double descent is used in recent ML/DL works (Belkin 

et al., 2019; Nakkiran et al., 2021) to refer to the bias-variance trade-off in the context of complex 

models. It is used in order to bridge the gap between the observed evolution in simple ML models 

compared to deep models like NNs and Gradient Boosting. Empirically (Belkin et al., 2019), 

given a training data set of size 𝑛 and a deep model of complexity 𝑁, the shape of the risk curve 

displays the double decent evolution, such that while 𝑁 is increasing, the risk initially decreases, 

attains a minimum, and then increases until 𝑛 = 𝑁. This twofold descent is called the double 

descent risk. 

 

As we can see, capacity as a property of the training algorithm and the resulting model enables 

us to estimate the underfitting and overfitting of a trained model 𝑓 ∈ 𝐹. Machine Learning 

algorithms will perform well when their capacity is in adequation with the complexity of the task 

that they need to perform and the amount of training data they are provided with. This will have 

a direct impact on the capacity of the trained model: 

• An algorithm with low-capacity struggles to fit the training set, which means that the 

resulting model will have insufficient capacity and hence may underfit; 

• An algorithm with a high-capacity could solve more complex tasks, however, when the 

capacity is higher than needed, it will make the models memorize all the training set, 

including irrelevant signals (noise), leading to overfitting;. 

To deal with this problem, one way is to control the capacity of a learning algorithm and the 

resulting model, by choosing the hypothesis space, or through an empirical analysis carried out 

beforehand in order to restrict the search space of the models. 

 

4.4 Generalization in AI 

Generalization is one of the most fundamental aspects of ML and DL. For centuries, scientists have 

exploited the empirical fact that unknown outcomes of a given process, whether future or unobserved, 

often trace regularities found in past observations. This is called generalization (C. Zhang et al., 2021): 

finding rules consistent with available data that apply to instances we have yet to encounter. Thus, there 

are a variety of theories proposed to explain generalization. Uniform convergence67 [G. H 1918], margin 

theory (Wei et al., 2019), and algorithmic stability68 (T. Liu et al., 2017) are some of the important 

conceptual tools to reason about generalization. In addition, the capacity of a model can be evaluated 

to help predict generalization. When the complexity of a model is very high, regularization introduces 

algorithmic tweaks intended to reward models of lower complexity. 

4.4.1 Model complexity 

As explained in (Hu et al., 2021), the model complexity is highly dependent on its architecture and 

other important factors, including the model framework, model size, optimization process, and data 

complexity. In deep learning, the model complexity is concerned with the network architecture and how 

 

 
67 A sequence of functions 𝑓𝑛converges uniformly to a limiting function 𝑓on a set 𝐸if, given any arbitrarily small positive 

number 휀, a number 𝑁 can be found such that each of the functions 𝑓𝑁 , 𝑓𝑁+1, … differ from  𝑓by no more than 휀  at every 

point 𝑥 in 𝐸. 
68 Captures stability of the hypothesis output by the learning algorithm in the normed space of functions from which 

hypotheses are selected. 
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complicated problems the model can express (Bianchini and Scarselli, 2014; X. Hu et al., 2020). While 

in classical machine learning models, the model complexity definition differs from one model to another 

(Bohanec and Bratko, 1994; Bulso et al., 2019). For example, in decision trees, the complexity is 

measured by tree depth and the number of leaf nodes; while in logistic regression, it is investigated 

using several metrics, such as the perspectives of Vapnik-Chervonenkis (VC) theory69 (Tempo et al., 

2013), Rademacher complexity (Kakade et al., 2008), Fisher Information matrix (Bulso et al., 2019), 

and the razor of model (Balasubramanian, 1997). 

Model complexity can be categorized into: 

1) Expressive capacity: also known as representation capacity, expressive power, and complexity 

capacity (Liang et al., 2019; Poggio et al., 2017a). It describes how well a deep learning model 

can approximate complex problems. Informally, the expressive capacity describes the upper 

bound of the complexity in a parametric family of models. It is based on:  

1) Depth efficiency which analyses how deep learning models gain performance (e.g., 

accuracy) from the depth of architectures;  

2) Width efficiency which analyses how the widths of layers (e.g. Vectors dimensionality in 

fully connected networks) in deep learning models affect model expressive capacity;  

3) Expressible functional space that investigates the functions that can be expressed by a deep 

model with a specific framework and specified size using different parameters;  

4) VC Dimension and Rademacher Complexity that are two classic measures of expressive 

capacity in machine learning. 

2) Effective complexity: also known as practical complexity, practical expressivity, and usable 

capacity (Hanin and Rolnick, 2019; Novak et al., 2018). It reflects the complexity of the functions 

represented by deep models with specific parameterizations [89]. It is based on two different 

aspects:  

1) General measures of effective complexity that design quantitative measures for effective 

complexity of deep learning models. e.g: the maximum number of samples on which the 

model must be trained to obtain a training error close to zero (Nakkiran et al., 2021) ;  

2) Investigations into the high-capacity low-reality phenomenon find that the effective 

complexity of deep learning models may be far lower than their expressive capacity. 

 
Figure 31. Learning curves70 showing the error evolution of different models with different complexities 

Figure 31 shows how a model complexity impacts the training. We can see that adding more 

features reduces the error on both training and validation data. But when complexity is increased 

again with even more features, training error improves but validation error does not, which means 

that the model is beginning to over-fit. A trade-off needs to be made: 

 

 
69 In Vapnik-Chervonenkis theory, the Vapnik-Chervonenkis (VC) dimension is a measure of the capacity (complexity, 

expressive power, richness, or flexibility) of a set of functions that can be learned by a statistical binary classification 

algorithm. 
70 https://www.pico.net/kb/overfitting-variance-bias-and-model-complexity-in-machine-learning/  

https://www.pico.net/kb/overfitting-variance-bias-and-model-complexity-in-machine-learning/
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➢ Using fewer features reduces model complexity. However, inadvertently removing key 

features that are important for the prediction can quickly make a model too simplistic to 

perform well.  

➢ Increasing the number and size of layers used in a neural network model, or the number and 

depth of trees used in a random forest model, increase model complexity. 

 

High-Capacity Low-Reality Phenomenon 

The effective complexity, reflecting the model’s characteristics that makes it practical enough to address 

target problems, and the expressive capacity, reflecting its ability to express those problems, are highly 

related and need to be balanced. Several studies explore the gap between these two properties in deep 

learning models, to define standards that could help design effective DL-based systems. In (Ba and 

Caruana, 2014), the empirical study shows that shallow fully connected neural networks can learn 

complex functions, as well as deep neural networks, can. Such that, given a well-trained deep model, a 

shallow model can be trained based on the outputs of the deep model. As a result, the shallow mimic 

model can achieve an accuracy that is as high as the deep model’s accuracy. However, the shallow 

model cannot be trained directly on the original labelled training data to achieve the same accuracy. 

This model derivation is called knowledge distillation (Hinton et al., 2015). This study suggests that 

there may be a big gap between the practical effective complexity of a deep learning model and its 

expressive capacity, which is called the high-capacity low-reality phenomenon. This is why effective 

model complexity is a relatively promising and useful research topic in deep learning. Detecting 

effective model complexity during training helps to investigate the usefulness of optimization 

algorithms, and explain the model efficiency and results (Kalimeris et al., 2019). Furthermore, effective 

model complexity can be defined based on the relationship between the model and target data. Hence, 

it can be considered a reflection of the information volume in the model (Du, 2016) and can be used for 

model selection and design to balance resource utilization and model performance, according to every 

use case’s technical requirements and characteristics. 

4.4.2 Generalization Error Bounds  

Generalization bounds are statistical tools that take as input various measurements of a predictor on 

training data, and output a performance estimate for unseen data — that is, they estimate how well the 

predictor generalizes to unseen data. Knowing the generalization error bound (gap) means ensuring 

theoretical guarantees that the model will perform well on unseen data samples. It is a statement about 

the predictive performance of a learning algorithm or class of algorithms (Reid, 2010). Under the 

assumption that the performance of a learning algorithm can be expressed in terms of the expected risk 

of its hypotheses, given randomly selected training samples, a generalization bound is a theorem, which 

holds for any distribution and states that, with a high probability 𝑃𝐷, applying the learning algorithm to 

a randomly drawn sample 𝐷 will result in a hypothesis with a risk that is no greater than some value 휀: 
 

𝑃𝐷(|𝑙𝑜𝑢𝑡(𝑓,𝑚) − 𝑙𝑖𝑛(𝑓, 𝐷,𝑚)| < 휀) > 1 − 𝛿 

 

𝑙𝑜𝑢𝑡 is the out-of-sample loss (error) value, and 𝑙𝑖𝑛 is the in-sample loss. 𝛿𝜖(0, 1) is a probability 

tolerance, and 휀 is the generalization gap tolerance. The Probably Approximately Correct (PAC)-

learning setting is then defined by the inverted form (Cluzeau et al., 2020): 

 

𝑃𝐷 > 1 − 𝛿:𝐺(𝑓, 𝐷) < 휀(𝛿, |𝐷|, 𝑏𝑜𝑢𝑛𝑑𝑠) 
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The bounds represent several involved theoretical aspects, and they all manifest an intuitive idea: 

models that are more complex are more prone to overfitting and lesser generalization (Cluzeau et al., 

2020). All bounds have a complexity term on the right-hand side which controls looseness. A general 

form of existing bounds is as follows: 

With the probability 𝑃𝐷 > 1 − 𝛿, for any estimated model 𝑓 ∈ 𝐹: 

 

𝐺(𝑓, 𝐷) ≤ √
𝑓𝑢𝑛𝑐(𝑚𝑜𝑑𝑒𝑙𝑐𝑙𝑎𝑠𝑠𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) + log(1/𝛿)

‖𝐷𝑡𝑟𝑎𝑖𝑛‖
 

𝐺(𝑓, 𝐷𝑡𝑟𝑎𝑖𝑛) → 0𝑎𝑠‖𝐷𝑡𝑟𝑎𝑖𝑛‖ → ∞ 

 

In the following, we review some of the most used bounds in ML, grouped following the taxonomy 

proposed in CODANN-1 document (Cluzeau et al., 2020). 

4.4.2.1 Data-independent, algorithm-independent  

This is the first bounds class to be derived by the Vapnik-Chervonenkis theory (VC) (Tempo et al., 

2013), and is based on the complexity of the hypothesis space (model class). The main component of 

these bounds is the VC-dimension defining how powerful the models are in the hypothesis space F. 

This power describes their ability to contain as much information as possible about the data. In DL, the 

VC-dimension of feedforward networks can be bounded in terms of the number of parameters 𝑑𝑖𝑚(𝜃) 
and can be defined as: 

𝑉𝐶𝑑𝑖𝑚 = �̃�(𝑑 ∗ dim(𝜃)) 
 

Where, 𝜃 is the set of trainable parameters (weights and bias), and 𝑑 (depth) is the number of layers of 

the network. Note that the notion of VC-dimension does not take into account properties of a particular 

data set, which is important in practice for a better estimation of generalization bounds (Dar et al., 

2021).  

4.4.2.2 Data-dependent, algorithm-independent  

Using data set information, such as the structure and size, could help for better tightening of 

generalization bounds. One of the data-dependent measures for estimating these bounds is the 

Rademacher complexity (Kakade et al., 2008), measuring the degree to which a hypothesis space can 

fit random noise. Compared to VC-dimension, the Rademacher complexity takes data distribution into 

consideration and therefore provides finer-grained model complexity. A higher Rademacher 

complexity means that the model can fit a larger number of random labels and thus the model has a 

higher expressive capacity (Bartlett and Mendelson, 2002). Generalization bounds that are data-

dependent and algorithm-independent scale inversely with data margin71 (which is a training-data 

dependent quantity). These bounds are directly proportional to the Rademacher complexity and can 

explain good generalization for classification, in some cases of overparameterization (more parameters 

than data points) (Bartlett et al., 1998), where the “effective dimension” is sufficiently small and there 

is no label noise in the data. Yin et al. (Yin et al., 2019) have proven that the lower bound for the 

Rademacher complexity of a given algorithm exhibits an explicit dependence on the input’s dimension. 

 

 
71 In machine learning the margin of a given data point corresponds to the distance from the data point to a decision boundary 

(Maji and Berg, 2009). This latter is the reference for a margin classifier to decide to which class every instance belongs. 
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However, other studies (Neyshabur, 2017; C. Zhang et al., 2021) suggest that deep learning models are 

often over-parameterized in practice and have significantly more parameters than samples. In this case, 

the VC-dimension and Rademacher complexity of deep learning models are always too high, so the 

practical guidance they can provide is weak. Recently, (D. Li et al., 2022) have investigated the domain 

generalization problem providing a novel learning-theoretic generalization bound that bounds unseen 

domain generalization performance in terms of the model's Rademacher complexity. This analysis 

suggests that domain generalization should be achieved by simply performing regularized Empirical 

Risk Minimization (ERM) with a leave-one-domain-out cross-validation objective. 

4.4.2.3 Data-dependent, algorithm-dependent  

Methods of this class take into account the distributional properties of the learning algorithm. One of 

the most insightful methods is the PAC-Bayesian framework (McAllester, 2003) which operates with 

distributions over models involving a prior distribution (i.e. chosen before seeing any data and defining 

complexity of possible solutions). It defines the foreseen complexity of the model category, and the 

posterior distribution (i.e. distribution learned once seeing the data), which determines the complexity 

of the models trained on given data. Hence, these bound measures are both data and model dependent. 

4.4.2.4 Overview of recent bounds 

In several cases (Dziugaite and Roy, 2017), the values of the generalization upper bound 𝐺 w.r.t. the 

values 𝛿 and 휀 for large models (DNN) are less important for small data sets compared to larger ones. 

Hence, in practice, a validation data set 𝐷𝑣𝑎𝑙 is used to compute validation errors, in addition to the 

𝐷𝑡𝑒𝑠𝑡 testing data set, as suggested in (Cluzeau et al., 2020). The 𝐷𝑣𝑎𝑙 can then be used to optimize the 

model better during training epochs. Besides, bias and variance need to be estimated and minimized in 

the train data set.  The analysis in (Cluzeau et al., 2020) suggest that one would aim for a model whose 

complexity is high enough to provide a low bias, but not too high as to cause a high variance. For better 

estimating the bias(𝐹, ‖𝐷𝑡𝑟𝑎𝑖𝑛‖) and the variance(𝐹, ‖𝐷𝑡𝑟𝑎𝑖𝑛‖), the following random resampling 

methods could help: 

1) Bootstrapping (Efron, 1992): consists of sampling 𝑘 subsets of the training set𝐷𝑡𝑟𝑎𝑖𝑛 in order to 

train the model in the subsets separately. Note that bootstrap sampling uses random sampling with 

replacement. This means that it is very much possible for an already chosen observation to be 

chosen again. The resulting subsets 𝐷𝑖=1…𝑘 will help estimating the variance for the different 

subsets separately. 

2) Jackknife (Miller, 1974): consists in sequentially removing a single data point from the data set 

𝐷𝑡𝑟𝑎𝑖𝑛 and re-training on such a “reduced” version of the original data set. Here, the most 

important (representative) data point will have more impact and hence produces the most different 

trained instance. That is why it is useful to estimate the bias(𝐹, ‖𝐷𝑡𝑟𝑎𝑖𝑛‖). 
3) Margin distributions (Lyu et al., 2022): margins measure how much the input has to be altered to 

change the output classification. Recent works (Glasgow et al., 2022) have shown that max-

margins indicate good generalization behaviour while large ones fail. 

Another taxonomy of the different theoretical and empirical generalization bounds is provided in 

(Valle-Pérez and Louis, 2020), where the models are grouped based on assumptions about the data, 

about the algorithm or even according to the dependence of their capacity on the training set. Moreover, 

in DL models, the classical aforementioned bounds cannot be easily applied due to the over-

parameterized setting and the non-linearity related to NN models. To handle these aspects, the classical 

bounds have been updated and new bounds have been defined for DL models generalization: 



 

MLEAP deliverable Phase 2 - Interim Public Report PAGE 139 

 

1) VC-based bounds (Maass, 1995): even though a corrected definition of VC-dimension for NNs 

has been proposed recently (Bartlett et al., 2019), there is still a misinterpretation of the VC-

theoretical bound. The analysis (Lee and Cherkassky, 2022) of this bound in a double descent72 

(Nakkiran et al., 2021) shows that it can be fully explained by classical VC-generalization bounds. 

This is by an application of analytic VC-bounds for modelling double descent in classification 

problems, using empirical results for several learning methods. 

2) Model compression bounds (Meir and Fontanari, 1993): Based on the idea of Occam’s Razor, 

which aims to gradually reduce an input space, including data (Talbot and Ting, 2022) or model’s 

parameters (Sun and Nielsen, 2019). In this approach, if a complex model can be replaced by a 

simpler one, up to some small admissible error, it might be possible to obtain stronger 

generalization bounds on the simple model. Hence, the objective is to perform a model reduction 

process to reduce the complexity of the model in a low resources setting (Choudhary et al., 2020). 

3) Based on Model Distillation (Hsu et al., 2021)VC-based bounds (Maass, 1995): even though a 

corrected definition of VC-dimension for NNs has been proposed recently (Bartlett et al., 2019), 

there is still a misinterpretation of the VC-theoretical bound. The analysis (Lee and Cherkassky, 

2022) of this bound in a double descent73 (Nakkiran et al., 2021) shows that this latter can be fully 

explained by classical VC-generalization bounds. This is by an application of analytic VC-bounds 

for modelling double descent in classification problems, using empirical results for several 

learning methods. 

4) Model compression bounds (Meir and Fontanari, 1993): Based on the idea of Occam’s Razor, 

which aims to gradually reduce an input space, including data (Talbot and Ting, 2022) or model’s 

parameters (Sun and Nielsen, 2019). In this approach, if a complex model can be replaced by a 

simpler one, up to some small admissible error, it might be possible to obtain stronger 

generalization bounds on the simpler model. Hence, the objective is to perform a model reduction 

process to reduce the complexity of the model in a low resources setting (Choudhary et al., 2020). 

5) Based on Model Distillation (Hsu et al., 2021): differently than the compression-based methods 

(Meir and Fontanari, 1993), the objective of distillation is, given a high complexity network with 

poor generalization bounds, one can distil it into a network with nearly identical predictions but 

with lower complexity and vastly better generalization bounds. After training and optimizing the 

bounds of the distilled network, the purpose is then to carry the good generalization bounds of 

this network back to the original network. A complete evaluation of the different theorems can 

be found in (Hsu et al., 2021). 

6) PAC-Bayesian bounds for NNs (McAllester and Akinbiyi, 2013): these bounds are based on the 

stochasticity of training loss minima. Hence, the original PAC-Bayes bound has been optimized 

(Dziugaite and Roy, 2017) and shown that one can bound the generalization gap of a two-layer-

stochastic neural network. Another method (Nagarajan and Kolter, 2019), namely Deterministic 

PAC-Bayesian provides generalization bounds computation method for DL models via 

generalizing noise-resilience, showing that if on training data, the interactions between the weight 

matrices satisfy certain conditions that imply a wide training loss minimum, these conditions 

themselves generalize to the interactions between the matrices on test data.  

7) Statistical guarantees (V. N. Vapnik, 1999): in this class, the generalization bounds are defined 

based on statistics either from data, especially for classes of estimators that are used in practice 

 

 
72 The double descent means that multilayer neural networks can be trained to achieve zero training error, while generalizing 

well on test data. 
73 The double descent means that multilayer neural networks can be trained to achieve zero training error, while generalizing 

well on test data. 
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(Taheri et al., 2021), or the error gradient evolution during training w.r.t. the training algorithm 

(Neu et al., 2021). In the latter, the upper bounds are defined based on the generalization error 

that depends on local statistics of the stochastic gradients evaluated along the path of iterations 

computed by the Stochastic Gradient Descent (SGD) algorithm. The main difference between 

these bounds resides in the variance of the gradients (with respect to the data distribution) and the 

local smoothness of the objective function along the SGD path, as well as the sensitivity of the 

loss function to perturbations to the final output. Recently, Taheri et al. (Taheri et al., 2021) have 

introduced a “scale regularization” approach, a general class of regularized least-squares 

estimators. The main strategy is to disentangle the parameters of a model into a ‘‘scale’’ and a 

‘‘direction’’ – similarly to introducing polar coordinates – which allows data engineers to focus 

the regularization on a one-dimensional parameter. The scale regularized least-squares estimators 

are then provided with a general statistical guarantee for prediction. The main feature of this 

guarantee is that it connects neural networks to standard empirical process theory through a 

quantity called the “effective noise”. This connection facilitates the specification of the bound to 

different types of regularization. Exemplified in the l1-regularization, this method provides a 

guarantee for the squared prediction error which decreases essentially in the number of training 

samples.  

8) Geometry analysis bounds: in previous studies (Russo and Zou, 2016), it was well known that the 

generalization error of supervised learning algorithms can be bounded in terms of the mutual 

information between their input and the output, given that the loss of any fixed hypothesis has a 

sub-Gaussian tail. Recently, that aspect was generalized beyond the dependencies between input 

and output information. Other research interests (Rodríguez Gálvez et al., 2021) have developed 

bounds that are based on Wasserstein distance. More specifically, it introduces full-data set, 

single-letter, and random-subset bounds, and their analogous in the randomized subsample setting 

from Steinke and Zakynthinou (Steinke and Zakynthinou, 2020). Moreover, when the loss 

function is bounded and the geometry of the space is ignored by the choice of the metric in the 

Wasserstein distance, these bounds recover from below (and thus, are tighter than) current bounds 

based on the relative entropy. In (Neu and Lugosi, 2022), the mutual information is replaced by 

a strongly convex function of the joint input-output distribution, with the subgaussianity condition 

on the losses replaced by a bound on an appropriately chosen norm capturing the geometry of the 

dependence measure.  

These theoretical bounds adapted to DL model characteristics could help forecast the model’s 

performance. However, DL models in general yield uncontrollable generalizability (Cluzeau et al., 

2020) related to theoretical guessing of the generalization performance. Hence, the generalization 

bounds associated with the theoretical methods could be larger than the values in practice. Therefore, 

practical approaches, such as Regularization (cf. Section 4.5.1) in its different forms (e.g. batch 

normalization and early stopping) and domain generalization (cf. Section 4.4.5) are more adapted than 

simply splitting the data to leverage the particularities of the different data points. An extensive 

empirical study (Jiang et al., 2020) has investigated more than 40 complexity measures taken from both 

theoretical bounds and empirical ones, with over 10,000 trained convolutional networks. By 

systematically varying commonly used hyperparameters, this study has uncovered potentially causal 

relationships between each measure and generalization, and showed surprising failures of some 

measures.   

 

4.4.3 Generalization in ML 

As machine learning becomes widely used in different applications, one of the most relevant concerns 

is the assessment of confidence in the predictions of a machine learning model (Barbiero et al., 2020). 
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This can be formalized by generalization guarantees. In many real-world cases, it is more important to 

estimate the capabilities of a machine learning algorithm to provide accurate predictions on unseen data, 

depending on the characteristics of the target problem. 

4.4.3.1 Function of Data Set Characteristics 

Considering the generalization aspect as a function of a target data set means that we need to capture 

relationships between the conception and design context, compared to the target context. In (Barbiero 

et al., 2020), the generalization aspect of ML models is addressed as a function of data set 

characteristics. Hence, a quantitative evaluation of different ML models, analysing 109 classification 

data sets, demonstrated the relevance of using the concept of the convex hull of the training data while 

assessing machine learning generalization. In addition to several predictable correlations in different 

data samples, there are weak associations between the generalization ability of ML models and metrics 

related to dimensionality, such as the curse of dimensionality that might impair generalization in 

machine learning.  

The curse of dimensionality denotes a variety of phenomena hindering data analysis if a large number 

of variables need to be considered at the same time (Bellman, 1966; Bittner, 1962). This aspect prevents 

ML models from generalizing and includes several problems like data sparsity, collinearity, and 

overfitting (Altman and Krzywinski, 2018). In addition to the model capacity, the concept of 

extrapolation, defined as the ability of the model to correctly predict data points that are considerably 

different from the information provided in the training data, is a part of the generalization problem. 

Extrapolation comes from computational geometry. If we consider data points as points in ℝ𝑑 where 𝑑 

is the dimension of the features vector representing each point, the convex hull of a data set is the 

smallest convex polygon that contains all data points. Given the convex hull of a training set, it is then 

possible to assess whether an unseen test data point would fall inside or outside its convex hull. The 

hypothesis is that, for points within the convex hull, a ML model will interpolate using known data to 

obtain a prediction; while the same model will extrapolate for test points placed outside of the convex 

hull. An example is presented in Figure 4, where data points of ℝ2 are presented.  

 
Figure 32. Illustrating the convex hull aspect of intra/extrapolation of training and testing data samples in a two-dimensional space 

(Barbiero et al., 2020). 
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4.4.3.2 Function of Model Characteristics 

For a ML system to be used effectively in real-world situations, such as autonomous cars (Mohseni et 

al., 2019) and safety applications (Xu and Saleh, 2021), satisfying the auxiliary criteria related to each 

application domain is critical. In addition to the optimization and evaluation of the measures of 

performance, such as accuracy and precision, the ability of a model to generalize needs to be quantified 

even when not all possible cases can be listed and tested. For example, we might not be able to 

enumerate all unit tests required for the safe operation of a semi-autonomous car, or all confounds that 

might cause a credit scoring system to be discriminatory (Doshi-Velez and Kim, 2018). Hence, the 

generalization ability provides some guarantees on the model’s applicability to new unseen data, 

especially in real-world situations. 

As discussed in 4.4.1, the model’s complexity and effective capacity are two main factors defining its 

ability to generalize the learned evidence to unseen data samples. Besides, the bias-variance trade-off 

and model’s number of trainable parameters and data effectiveness are other criteria that considerably 

impact the robustness of a ML model. Given a trained model 𝑓 (also called a hypothesis), to know if 

the latter can scale up to new data samples, one first learning objective is to minimize the Generalization 

Error (true error �̂�(𝑓)) as defined in Section 4.3.2. Other measures like norm-based control and 

sharpness could also be used to assess the model’s ability to generalize. 

 

4.4.4 Generalization in DL 

Deep neural networks (DNNs) trained in effective data sets exhibit good generalization behaviour, even 

when the number of parameters is significantly larger than the amount of training data (Neyshabur et 

al., 2014; C. Zhang et al., 2021). In those settings, the objective function has multiple global minima74, 

all minimizing the training error, but not all of them generalize well (Neyshabur et al., 2017). Picking 

the wrong global minima can lead to bad generalization behaviour, which makes the training 

insufficient for learning. Different methods are used to minimize the training error for better 

optimization, such as the initialization, update rules, learning rate, and training stopping conditions, all 

of which lead to different global minima with different generalization abilities. For example, Path-SGD 

(Neyshabur et al., 2015a) is an optimization algorithm that is invariant to the rescaling of weights and 

showed better generalization behaviour over the classical SGD (stochastic gradient descent) algorithm 

(Bottou and others, 1991), in the training of different evaluated DNNs. In addition, smaller batch75 sizes 

for training with the SGD algorithm generalize better than larger ones (Keskar et al., 2016).  

 

In (Neyshabur et al., 2017), the statistical capacity of a model class is considered in terms of the number 

of examples required to ensure generalization, i.e. that the test error is close to the training error, even 

when minimizing training error. This corresponds to the maximum number of examples with which 

one can obtain small training errors even with random labels. Hence, the capacity of a model can be 

measured using different methods, each candidate gives information about the DL model’s ability to 

generalize. 

 

 

 
74 In gradient descent algorithms, the weights of the NN are initialized, then the gradient of the error is minimized during 

training and updating the weights. Hence, the error converges until a given minimum value. The latter is called “Local 

minimum” since the value of the loss function is minimum at that point in a local region. Whereas, a global minima is called 

so since the value of the loss function is minimum there, globally across the entire domain of the loss function.   
75 Is a small subset of the training dataset (Le et al., 2011).(Le et al., 2011). Neural networks are trained using different batch 

size to enable error optimization through smaller amounts of data, rather than the whole training dataset at once.  
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4.4.4.1 Network Size 

The evaluation of (Uzair and Jamil, 2020) in a fully connected network has shown that training error 

decreases as the number of hidden layers increases (increasing the number of parameters). In another 

study (Brutzkus and Globerson, 2019), a similar phenomenon has been observed when learning on the 

MNIST76 data, using an increasing number of channels, as shown in figure 30. 

 
Figure 33. Illustration of the test error evolution depending on the number of channels used in a NN (Brutzkus and Globerson, 2019) 

In practice, over-parametrized settings are used and the number of parameters is more important than 

the number of training samples. Hence, complexity measures that depend on the total number of 

parameters are not enough, since NNs having significantly more parameters than samples can perfectly 

fit even random labels, without generalizing (Kawaguchi et al., 2017).(Kawaguchi et al., 2017). 

Moreover, measuring complexity in terms of the number of parameters cannot explain the reduction in 

generalization error as the number of hidden units increases (Neyshabur et al., 2015b). Recently, 

another study (Liu, 2021) have shown that sparse NNs can even generalize better than their dense 

counterparts, and proposed different efficient approaches that can yield sparse neural networks with 

good generalization bounds. 

 

4.4.4.2 Norms and Margins of the Network 

For linear models, norms and margin-based measures are commonly used for capacity control (Bartlett 

and Mendelson, 2002; Evgeniou et al., 2000). Several norm-based complexity measures have been 

established for feedforward neural networks with the ReLU77 activation function. Hence, the capacity 

can be bounded based on the 𝑙1 norm of the weights of hidden units of every layer in the NN model. 

This is measured by ∏ ‖𝑊𝑖‖1,∞
2𝑑

𝑖=1 , where ‖𝑊𝑖‖1,∞
2  is the squared value of the maximum, over hidden 

units in layer 𝑖 of the 𝑙1 norm of incoming weights to the hidden unit, as defined by (Bartlett and 

Mendelson, 2002). Based on several norm functions, different capacity measures have been defined to 

assess the generalization ability of a DL model: 

1) 𝑙2 norm-based capacity 

 

 
76 http://yann.lecun.com/exdb/mnist/  
77 The rectified linear activation function or ReLU for short is a piecewise linear function that will output the input directly 

if it is positive, otherwise, it will output zero. This function is used to fix the vanishing gradients problem while training 

deep NNs. 

http://yann.lecun.com/exdb/mnist/
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Where 𝛾𝑚𝑎𝑟𝑔𝑖𝑛 > 0 is called the hard margin and represents the lowest difference value between 

the expected output and the computed one, over all training samples.  

 

2) 𝑙2-path norm capacity (Bartlett and Mendelson, 2002; Neyshabur et al., 2015c) 
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Where ∏ [ℎ𝑘]
𝑑
𝑘=0  is the Cartesian product over data sets [ℎ𝑘]. 

 

3) Spectral 𝑙2 norm margin-based capacity (Bartlett et al., 2017) 
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More capacity bounds can be found in (Neyshabur et al., 2017), where an empirical investigation 

of the appropriateness of different complexity measures is performed, using models trained on 

true versus random labels. Two main phenomena have been observed: first, the complexity of the 

models trained on true labels should be substantially lower than those trained on random labels, 

corresponding to their better generalization ability. Second, when training on random labels, the 

capacity is expected to increase almost linearly with the number of training examples, since every 

extra example requires new capacity in order to fit its random label. However, when training on 

true labels one can expect the model to capture the true functional dependence between input and 

output, and thus fitting more training examples should only require small increases in the capacity 

of the network. The reported results in (Neyshabur et al., 2017) have shown a gap between the 

complexity of models learned on real and random labels for all compared norms, with the 

difference in the increase in capacity between true and random labels being most pronounced for 

the 𝑙2-norm and 𝑙2-path norm. 

 

4.4.4.3 Uniform Stability  

Stepping away from complexity measures corresponding to different models of the hypothesis class, 

another way is to evaluate the generalization by considering properties of the training algorithm (C. 

Zhang et al., 2021). Uniform stability78 of an algorithm measures how sensitive the algorithm is to the 

replacement of a single example. However, it is solely a property of the algorithm, which does not take 

into account details of the data or the distribution of the labels. The weakest stability measure is directly 

equivalent to bounding generalization error and does not take the data into account.  

 

 

 
78 Stability applies to different notions, both at learning algorithm level the selected model (e.g. local stability when input 

slightly change). Several definitions are provided in [88]–[90]. In this document, we refer to the “performance stability” of 

a model in front of changing data and environment.  
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Other analyses (C. Zhang et al., 2021) have addressed the generalization aspect of DL models to make 

a deep understanding of it, where the main question is “What practices promote generalization? And 

what does it measure?”. Conducted experiments in (C. Zhang et al., 2021), on both the CIFAR1079 and 

ImageNet80 data sets, for image labelling have shown how DNNs fit random labels, through several 

randomization tests. The main outcome is that the effective capacity of neural networks is sufficient for 

memorizing the entire data set, and even optimization on random labels remains easy, the training time 

increases only by a small constant factor compared with training on the true labels. Furthermore, 

randomizing labels is solely a data transformation, leaving all other properties of the learning problem 

unchanged. 

4.4.5 Domain generalization   

The main assumption in several supervised learning methods is that training and testing data are 

sampled from the same distribution. However, in real-world applications, this assumption is often 

violated as conditions for data acquisition may change. In DL, models trained to minimize empirical 

risk on a single domain often fail to generalize when applied to other unseen domains (Bayasi et al., 

2022), due to domain shift.  

In the previous sections, we described some widely used methods that can help identify a priori the 

ability of the model to generalize to unseen data samples. Apart from model-driven methods, which 

focus on the model characteristics, data-driven methods focus on the target data that will be fed into the 

model. However, none of those methods take into account the target application features and the domain 

characteristics. When it comes to domain generalization, the objective is to leverage a model 

performance in another domain than the training one. To do so, one can train a model on multi-domain 

source data, such that it can directly generalize to target domains with unknown statistics (Dou et al., 

2019), or construct a domain-specific model (Han et al., 2020), omitting the domain statistics and its 

complex characteristics. Hence, extra training and additional data samples can be used, within the same 

application domain for both training and target application (Chung et al., 2018). A more detailed 

taxonomy of different domain generalization methods is highlighted in Figure 34. 

 

 

 
79 http://www.cs.toronto.edu/~kriz/cifar.html  
80 https://www.image-net.org/  

http://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/
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Figure 34. Taxonomy of domain generalization state of the art (J. Wang et al., 2022). 

 

As shown in Figure 34, several solutions can be adopted to achieve a cross-domain generalization 

objective. In this taxonomy, the methods are grouped based on the development phase that is affected 

by the domain adaptation process. It can be focused on the initial data manipulation, through generation 

of new instances (Gordon et al., 2020) or data augmentation (Volpi and Murino, 2019), or the learning 

strategies of the representations of the input instances (Ilse et al., 2020), or even the model training 

process (Zhou et al., 2021b). A complete description of the most recent methods for domain 

generalization can be found in (Zhou et al., 2021a). 

In this document, we study the domain generalization aspect from a different angle. We believe the 

most important thing to focus on is the target problem to be solved. Hence, another perspective to think 

about the existing methods focuses on how the ongoing task can be performed, while joining the training 

and the target domain. To this end, the definition of the target domain can be adapted to the one of the 

training domain, and the training process is thus adjusted. 

4.4.5.1 Domain adaptation   

In this approach, algorithms usually learn to align source and target data, in a domain-invariant 

discriminative feature space. Hence, existing methods have investigated several directions, such as data 

augmentation by transformation (Y. Shi et al., 2020) and the feature alignment between data from 

different domains (Z. Wang et al., 2021), where the main idea is to minimize the difference among 

source domains for learning domain-invariant representations, under the assumption that features that 

are invariant to the source domain shift should also be robust to any unseen target domain shift. Hence, 

domain adaptation consists in measuring domain distances and learning a representation that reduces 

them (Motiian et al., 2017). Several statistical distance metrics can be used, such as the simple 𝑙2 
distance and f-divergences. The most important thing is to know what we need to align between the 

different domains, and how to align it (Zhou et al., 2021a). To do so, we report the same definition used 

in (Zhou et al., 2021a) of a domain, as a distribution 𝑃(𝑋, 𝑌), with 𝑋 being the input (feature) space and 

𝑌 is the output (label) space. Both the input and output spaces are described with the corresponding 

distributions 𝑃(𝑋) and 𝑃(𝑌), respectively. 
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𝑃(𝑋, 𝑌) = 𝑃(𝑋|𝑌)𝑃(𝑌) = 𝑃(𝑌|𝑋)𝑃(𝑋) 
 

The domain-alignment occurs when there is a distribution shift in 𝑃(𝑋), corresponding to the input 

space, while the 𝑃(𝑌|𝑋) remains the same (same expected outputs by knowing the inputs). Hence, the 

source domain will undergo some transformations for alignment (Ghifary et al., 2016). When 𝑋 is the 

cause of 𝑌, the distribution  𝑃(𝑌|𝑋) is also affected, and the class-conditional distribution is aligned 

instead, assuming 𝑃(𝑌) is unchanged (S. Hu et al., 2020). To perform domain alignment, one can 

minimize the moments, such as the mean and variance domain, as well as training and testing, by using 

different mapping functions (Ghifary et al., 2016; X. Jin et al., 2020). Another way is to reduce the 

distributions mismatch between training and target domains, by minimizing a dedicated contrastive loss 

(Yoon et al., 2019). Other distances such as KL divergence (Z. Wang et al., 2021) and maximum mean 

discrepancy (MMD) (Gretton et al., 2012) are also investigated in domain alignment studies.  

Furthermore, in the aim of defining the domain generalization objectives, we need to distinguish 

between multi-source and single-source domains (Zhou et al., 2021a). The first assumes that multiple 

distinct but relevant domains are available, and the motivation is to learn representations that are 

invariant to different marginal distributions (Blanchard et al., 2011). This process allows a model to 

discover stable patterns across source domains, which generalize better to unseen domains. While the 

single-source setting assumes that training data is homogeneous (Hendrycks and Dietterich, 2019), and 

does not require domain labels for learning and thus they apply to multisource scenarios as well. 

Independently of the domain specificity, the general Out-of-Distribution (OOD) generalization problem 

addresses every challenging setting where the testing distribution is unknown and different from the 

training. Hence, the OOD entities need to be handled carefully to ensure the model’s robustness (Shen 

et al., 2021).   

4.4.5.2 Learning adaptation  

Another way to think about the domain generalization problem is to focus on exploiting the general 

learning strategy of ML/DL, to promote domain generalization capabilities. To do so, the main 

paradigms81 so identified are (Shen et al., 2021; J. Wang et al., 2022) 

 

• Ensemble learning. (Zhou, 2012) model-ensemble learning methods learn sets of multiple 

specific models for different source domains. Typically, this method learns multiple instances of 

the same model with different initialization weights or using different splits of training data, and 

then uses them together for prediction (Moussa and Owais, 2021; Szegedy et al., 2015). 

Ensemble-learning-based methods can be grouped into four main approaches: 

▪ Exemplar-SVMs uses a collection of Support Vector Machine (SVM) classifiers, each 

learned using one positive instance and all negative instances (Malisiewicz et al., 2011). 

Extended to domain generalization, exemplar-SVMs select the top-K exemplar classifiers 

that give the highest prediction scores (hence more confident), given a test sample for 

ensemble prediction (Xu et al., 2014). 

▪ Domain-Specific Neural Networks aim to learn a set of neural networks, each specializing 

in a given source domain (Ding and Fu, 2017) or sharing some shallow layers  between 

source domains to capture generic features (Yosinski et al., 2014; Zhou et al., 2021b). Then, 

 

 
81 Note that not all of these algorithms apply to different applications. In the scope of this report, we are more interested in 

“offline” supervised learning models. Such that the model is first trained, evaluated, then used for making predictions, which 

is not the same for “online” learning methods (e.g. lifelong learning).  
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in the prediction phase, one can either use the ensemble prediction averaged over all 

individuals with equal weight (D’Innocente and Caputo, 2018) or adopt a source domain 

classifier to compute the weights (which determines the most confident candidate) (S. Wang 

et al., 2020). 

▪ Domain-Specific Batch Normalization. Domain-Specific Neural Networks aim to learn set 

of neural networks, each specializing in a given source domain (Ding and Fu, 2017) or share 

between source domains some shallow layers to capture generic features (Yosinski et al., 

2014; Zhou et al., 2021b). Then, in the prediction phase, one can either use the ensemble 

prediction averaged over all individuals with equal weight (D’Innocente and Caputo, 2018) 

or adopt a source domain classifier to compute the weights (which determines the most 

confident candidate) (S. Wang et al., 2020). 

▪ Domain-Specific Batch Normalization. In batch normalization (Ioffe and Szegedy, 2015), 

the statistics are computed on-the-fly during training and their moving averages are stored 

in buffers for inference. For a domain generalization purpose, batch normalization has 

served for mixing statistics of multiple source domains, in order to learn generalizable 

representations (Seo et al., 2020).  

▪ Weight Averaging. (Izmailov et al., 2018) This method aggregates model weights at 

different time steps during training to form a single model at test time. It is used to improve 

model robustness under domain shift (Cha et al., 2021). In a runway detection application 

(Balduzzi et al., 2021), a pointwise average of the density function of the ensemble members 

is used to combine the predictions corresponding to four classical convolutional neural 

networks trained similarly.  

 

• Meta-learning. (Gordon et al., 2020) also known as learning-to-learn, consists in learning a 

general model from multiple tasks by induction. Meta-learning aims to learn from episodes 

sampled from related tasks to benefit future learning. In domain generalization, a general strategy 

is to divide the multi-source domains into meta-train set and meta-test set (Rajendran et al., 2020). 

The motivation behind applying meta-learning to domain generalization is to expose a model to 

domain shift during training with a hope that the model can better deal with domain shift in unseen 

domains. The existing methods (Balaji et al., 2018; Q. Liu et al., 2020) can only be applied to 

multi-source cases, where domain labels are provided. Besides, there are two main components 

to be defined: the episodes that will use available samples, and the meta-representation that 

answers the question of what to meta-learn. Hence, the learning objective is to update a model 

using the meta-source domain(s) in such a way that the test error on the meta-target domain can 

be reduced, which is often achieved by bi-level optimization. For example, the model-agnostic 

meta-learning (MAML) method (Finn et al., 2017) divides training data into meta-train and meta-

test sets, and trains a model using the meta-train set in such a way to improve the performance on 

the meta-test set. Rather than producing models that by design generalize well to novel testing 

domains, the model agnostic training procedure (D. Li et al., 2018) simulates train/test domain 

shift during training by synthesizing virtual testing domains within each mini-batch. Hence, the 

objective function of the training requires the training steps to improve the testing performances 

as well. BoostNet (Bayasi et al., 2022) is another recent work on domain generalization via meta-

learning. Designed for image classification of digits and skin lesions, it does not require any 

changes in the model’s architecture or training procedure. It aims at using a measure of feature 

culpability, which concerns training a model episodically on the most and least culpable data 

features extracted from critical units in the core network, based on their contribution towards 

class-specific prediction errors. At inference time, corresponding test image features are extracted 
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from the closest class-specific units, determined by smart gating via a Siamese NN (Bromley et 

al., 1993), and fed to BoosterNet for improved generalization.  

 

• Self-supervised learning. (Jing and Tian, 2020) is often referred to as learning with free labels 

generated from data itself. This can be achieved by teaching a model to predict the transformations 

applied to the inputs. In domain generalization, self-supervised learning can be applied to both 

single and multi-source scenarios without requiring any domain labels. In single pretexts (i.e. 

single source scenarios), in addition to optimizing a classical learning error, models are trained to 

reconstruct (some) input features. For example, image reconstruction has been investigated 

(Maniyar et al., 2020) to evaluate the learning ability of an auto-encoder to reconstruct image 

pixels and features. While in the multiple pretexts, the models are trained to learn how to solve 

several (at least two) problems in parallel. For example, in (Bucci et al., 2021) the model is trained 

to solve Jigsaw puzzles and to predict images rotations, at the same time. Overall, using multiple 

pretext tasks gives a better performance than using a single pretext task (Bucci et al., 2021). In 

(Zhou et al., 2021a), several self-supervised models for domain generalization have been 

reviewed. One of the issues related to self-supervised learning methods is that, in general, none 

of the existing multiple pretext tasks is universal, and that the selection of a pretext task is 

problem-specific. For instance, when the target domain shift is related to rotations, the model 

learned with the rotation prediction task will capture more rotation-sensitive information, which 

is harmful to generalization.  

 

• Transfer learning. (Zhuang et al., 2020) (TL) aims to transfer the knowledge learned from one 

(or multiple) problem/domain/task to a different but related one. Once a model is trained in a 

source task, the TL strategy aims to enhance the performance of that model on a target 

domain/task. To do so, the pretraining-finetuning (also used in self-supervised approaches) is the 

commonly used method, mainly in DL (Tan et al., 2018), where the source and target domains 

have different tasks: first pre-train deep neural networks on large-scale data sets, such as 

ImageNet (Deng et al., 2009) for vision models or BooksCorpus (Zhu et al., 2015) for language 

models; then fine-tune them on downstream tasks (Too et al., 2019; Vrbančič and Podgorelec, 

2020). The resulting model is hence able to leverage the knowledge acquired during the pre-

training phase to perform the tasks of the fine-tuning phase, and perform better on the target 

application. This is due to extraction of highly transferable features from the first step (pre-

training) being transferred to the second one (fine-tuning) (Yosinski et al., 2014). Given these 

advantages of the TL approach, recent works in domain generalization (Blanchard et al., 2021; 

W. Chen et al., 2021) have investigated how to preserve the transferable features learned via 

large-scale pre-training when learning new knowledge from source synthetic data for synthetic-

to-real applications (Inoue et al., 2018). Domain generalization methods based on TL do not 

require having the target data for the model fine-tuning phase in the downstream tasks. We assume 

to have no access to the target data, thus focusing more on model generalization. In (Zhou et al., 

2021a), a theoretical comparison between the domain generalization objectives and TL intentions 

is provided. One of the common features of TL and domain generalization is that the target 

distribution in both domains is different from the source distribution; in terms of label space, TL 

mainly concerns disjoint label space, whereas domain generalization considers both cases, i.e. 

same label space for homogeneous domains and disjoint label space for heterogeneous ones. 

Moreover, in recent years, we have witnessed the rapid development of large-scale pre-

training/fine-tuning procedures, such as BERT (Devlin et al., 2018) and GPT-3 (Brown et al., 

2020). Pre-training on large-scale data set and then fine-tuning the model not only improve its 
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performance on downstream tasks, it also enables competitive performance on domain adaptation 

tasks (Laskar et al., 2022; Xu et al., 2021). 

 

• Few/Zero-shot learning. (Wei Wang et al., 2019; Wang and Yao, 2019) (F/ZSL) is another way 

to leverage the learned signals and patterns from a set of training data, in a given context, to solve 

a different task in another context, where few/no data is available. Using prior knowledge, FSL 

(Wang and Yao, 2019) can rapidly generalize to new tasks containing only a few samples with 

supervised information. However, the main limitation of this approach is that the empirical risk 

minimization is unreliable (Wang and Yao, 2019) due to the low  number of training examples 

for risk minimization. Other related methods, such as weakly supervised learning (Zhou, 2018) 

and imbalanced learning (He and Garcia, 2009) have also been used for the same purpose, where 

incomplete, inexact, inaccurate, or noisy supervised information is used in the former, and rare 

labels are used in the latter. In (Wei Wang et al., 2019)later. While in ZSL (Wei Wang et al., 

2019), the main objective is to identify objects for which labels are unavailable during training. 

This learning paradigm results in classifiers having the ability to distinguish unseen classes, which 

is very helpful in practice when acquiring all possible labels is expensive and time-consuming or 

just impossible (e.g. object recognition in computer vision (Bansal et al., 2018) , scene 

interpretation in video security, or danger detection (Kim et al., 2021)). As there are no available 

labelled instances belonging to the unseen classes, some auxiliary information from the feature 

space is necessary to solve the ZSL problem. For instance, an association between a semantic 

space describing the unlabelled instance and the missing label is performed in (X. Li et al., 2020). 

This space should contain information about all the unseen classes, to guarantee they are all 

provided with corresponding auxiliary information, to help the model detect them better. Other 

methods related to ZSL include cumulative learning (Fei et al., 2016) and class-incremental 

learning (Rebuffi et al., 2017), in which labelled instances belonging to some previously unseen 

classes progressively appear after model learning. The learned classifier can be adapted with these 

newly available labelled instances, to be able to classify classes covered by them. This approach 

is however less practical since it still requires the complete knowledge of the target domain’s 

possible classes. This could be impossible in practice, hence, the open world recognition methods 

(Bendale and Boult, 2015) follow the process of “unseen classes detection, labelled instances of 

unseen classes acquisition, and model adaptation” and adapt the classifier to be able to classify 

previously unseen classes with the acquired labelled instances belonging to them.  

 

• Lifelong learning. (Parisi et al., 2019) (LL-learning) refers to the ability to continually acquire, 

fine-tune, and transfer knowledge and skills throughout the lifespan of a model. It aims to 

maintain the model’s robustness over time, in a context where data is evolutionary, and sometimes 

the same input instances at time t may be considered obsolete at time t+1. In such case, an open 

problem is the development of incrementally learning systems capable of assimilating more and 

more concepts over time from a stream of data. When the acquisition of incrementally available 

information from non-stationary data distributions is continuous, catastrophic forgetting82 or 

interference of information is likely to happen (Parisi et al., 2019). This limitation represents a 

major drawback for state-of-the-art DL models that typically learn representations from stationary 

batches of training data (Zhong et al., 2016), thus without accounting for situations on which 

information becomes incrementally available over time, e.g. Traffic management applications 

 

 
82 Catastrophic interference, also known as catastrophic forgetting (McCloskey and Cohen, 1989, 1989), is the tendency of 

an artificial neural network to completely and abruptly forget previously learned information upon learning new information. 
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(Nallaperuma et al., 2019). LL-learning models learn continuously while retaining previously 

learned experiences, which is different from domain generalization (that aims to exploit the skills 

learned from training in one domain to perform tasks in other domains), since it can access the 

target domain in every time step and  does not explicitly handle different distributions across 

domains (Q. Liu et al., 2020). To bridge the gap between both paradigms, incremental methods 

(D. Li et al., 2020; Parisi et al., 2019; Rebuffi et al., 2017) leverage the learning continuity and 

domain diversity aspects. For instance, iCaRL (Rebuffi et al., 2017) is an incremental 

representation learning algorithm that allows learning in such a class-incremental way. In this 

setting, only the training data for a small number of classes has to be present at the same time and 

new classes can be added progressively. This model learns through a set of classifiers and a data 

representation simultaneously. In (Rostami, 2021), a continual learning algorithm is proposed to 

update a model continuously to tackle the challenges of data distribution shifts. The goal is to 

update a model continuously to learn distributional shifts across sequentially arriving tasks with 

unlabelled data while retaining the knowledge about past learned tasks. Another approach is a 

sequential learning of several domains (D. Li et al., 2020), inspired from LL-learning, where 

accumulated experience means that learning the nth thing becomes easier than the first thing. 

Applied to domain generalization, this means that the performance at domain n depends on the 

previous n−1 learned problems. Thus, backpropagating through the sequence means optimizing 

performance not just for the next domain, but for all the subsequent domains. 

 

Furthermore, in the general objective of dealing with OOD cases, causal learning (Yao et al., 2021) and 

invariant learning (Ilse et al., 2020; Z. Wang et al., 2020) methods stem from causal inference literature 

and address the OOD generalization problem in a different way, aiming to explore causal variables for 

prediction and became more practical recently (Schölkopf, 2022).. Other methods based on stable 

learning have been recently used (Cui and Athey, 2022). Compared with domain generalization and 

causal learning, stable learning motivates another way of incorporating causal inference with machine 

learning, which significantly relaxes the requirements for multiple environments. Such that, given a 

training data set from one environment, the goal of stable learning is to learn a predictive model with 

uniformly good performance in any possible environment for the target application (X. Zhang et al., 

2021). The reader could find more discussions and theorems on these new paradigms for OOD 

generalization in (Shen et al., 2021). 

 

4.5 Methods to boost generalization 

Several solutions for a better generalization have been proposed in the literature. The impact of each 

identified generalization strategy has been empirically investigated by several studies (Ying, 2019), 

showing how each of them could help the targeted application. In this section, based on the taxonomy 

by (Kukačka et al., 2017), we summarize the most used solutions, showing results from some 

comparative studies, then discuss their strengths and weaknesses. The impact of every generalization 

strategy has been empirically investigated by several studies (Ying, 2019), showing how each of them 

could help the targeted application. In this section, based on taxonomy by (Kukačka et al., 2017), we 

summarize the widely used solutions, showing results from some comparative studies, then provide a 

relative discussion about the benefits of each of them.  

4.5.1 Regularization 

Regularization is a method to avoid high variance and overfitting as well as to increase generalization 

(Müller, 2012). In deep learning especially, regularization has a broader definition: regularization is a 
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technology aimed at improving the generalization ability of a model (Tian and Zhang, 2022). Widely 

used in deep learning, it allows a better generalization to unseen data, even when training on a finite 

and small training data set, or with an inappropriate optimization method. It encompasses any 

modification made to a learning algorithm with the intention to reduce its test error but not its training 

error, and hence, produce better results on test sets (Goodfellow et al., 2016; Kukačka et al., 2017). In 

the following, the main classes are reviewed. 

4.5.1.1 Data-driven 

The quality of a trained model depends on the quality and volume of the training data. It is possible to 

employ regularization via data, by applying some transformation to the training set: (a) some 

transformations perform feature extraction or pre-processing, modify the feature space or the 

distribution of the data to some representation making the learning task simpler (Bishop and others, 

1995); (b) other methods allow generating new samples to create a larger, possibly infinite, augmented 

data set (DeVries and Taylor, 2017). Both approaches (a) and (b) are somewhat independent and may 

be combined. Regularization via data relies on transformations with (stochastic) parameters (Kukačka 

et al., 2017). The latter is a function that can be applied to the network inputs, added to the activations 

in hidden layers, or applied to targets. The stochasticity of the transformation parameters is responsible 

for generating new samples, i.e. data augmentation (Feng et al., 2021; Shorten and Khoshgoftaar, 

2019).  

We can categorize the data-based methods according to the properties of the used transformation and 

of the distribution of its parameters: 

1) Stochasticity of the transformation parameters. Consists of transformation functions with two 

types of parameters: (1) deterministic ones which follow a delta distribution, and the size of the 

data set remains unchanged (Hoffer et al., 2017); (2) stochastic parameters, where several 

sampling strategies can be used in the function to allow generation of a larger, possibly infinite, 

data set (DeVries and Taylor, 2017; Loosli et al., 2007). 

2) Effect on the data representation. The data representation can be either preserved or transformed. 

In the latter, the objective is to map the data to a different representation, using a different 

distribution or even a new feature space that may make the learning problem easier (Bengio et 

al., 2013). 

3) Data transformation space. The transformation functions could be used at different levels of the 

model pipeline: It can be applied to the input space (enhanced and preprocessed data samples) 

(Zhu et al., 2021); to the hidden-features space (DeVries and Taylor, 2017), where the 

transformations are applied to some of the deep-layers corresponding to the input samples (it can 

use parts of the model weights to map the input into the hidden-feature space). Such 

transformations act inside the network and thus can be considered as part of the architecture; or 

the target output space to help the model’s fast learning (in this case, it is used only during training 

phase) (Shorten and Khoshgoftaar, 2019). 

4) Transformation function parameters. The parameters of the transformation function can be 

distributed differently. This can be the same for all samples, specific for each target (class value), 

dependent on the whole data set or specific to every training batch, and so on. For more details 

about the parameters distribution over the different cases, please refer to (Kukačka et al., 2017). 

5) Concerned phase by transformation. It means that the data transformation function could be 

applied either to the training set (Morerio et al., 2017) or the test set (Gal and Ghahramani, 2016). 

In the latter, for example, multiple augmented variants of a sample can be classified and the result 

is then aggregated over them. 
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6) Batch Normalization83. Is an operator that normalizes the model responses within each mini-

batch. It has been widely adopted in many modern neural network architectures such as Inception 

and Residual Networks. Although not explicitly designed for regularization, batch normalization 

is usually found to improve the generalization performance (Santurkar et al., 2018). 

 

Note that the data-driven regularization methods may affect ability to meet representativeness and 

completeness (cf. Section 3) objectives from EASA CP (EASA, 2023). Those two objectives should be 

assessed after data-driven regularization. Several other data-driven methods for regularization are cited 

and classified in (Kukačka et al., 2017), please, refer to this reference to know more about how one can 

exploit data processing and transformations to let the DL model learn and generalize better. 

4.5.1.2 Model-driven 

Another way to construct a suitable DL-based application is to focus on the network architecture and 

characteristics, rather than the training and domain data. Hence, a network architecture 𝑓 can be 

constructed to have certain properties or match certain assumptions in order to have a regularizing 

effect.  

The function 𝑓 ∶ (𝜃, 𝑥) ↦ 𝑦 defines a data mapping that the architecture of 𝑓can do along with the 

parameters space 𝜃. 

Several architecture-based methods can be used to make the model generalize better: 

1) Assumptions about the mapping. Means that the model 𝑓𝜃 needs to implement specific 

assumptions about the target data set, 𝐷𝑡𝑟𝑎𝑖𝑛 for training and 𝐷𝑡𝑒𝑠𝑡 for test. These assumptions are 

meant to make an abstract representation of the reality. Those assumptions may be intractable but 

can be approximated, and then used as guidelines to construct the model structure: choice of the 

number of units and layers, types of NN layers and architectures (convolutional, recurrent, 

bidirectional …) (Gulcehre et al., 2016), the processing layers pipeline and the invariances of the 

mapping, such as locality of some features extraction that can be a layer-specific and defined 

differently from one layer to another (Zeiler and Fergus, 2013). 

2) Weight sharing. The main objective is to minimize the number of trainable parameters. Reusing 

a certain trainable parameter in several parts of the network is referred to as weight sharing (Xie 

et al., 2021). This usually makes the model less complex than using separately trainable 

parameters. An example are convolutional networks (Li et al., 2016). Here weight sharing does 

not only reduce the number of weights that need to be learned; it also encodes the prior knowledge 

about the shift-equivariance and locality of feature extraction.  

3) Activation functions. The activation function adjusts the intensity of a signal sent from one node 

to another between NN layers. Hence, choosing the right activation function is quite important. 

There are several activation functions, but not all can be applied to all problems (Sharma et al., 

2017). There is no rule of thumb for selecting an activation function. In (Onwujekwegn and Yoon, 

2020), several functions are analysed and their impacts on results are highlighted. For instance, 

in classification problems, sigmoid functions show better loss evolution during training. Due to 

vanishing gradient problem i.e. gradient tending toward zero, sigmoid and tanh functions are 

sometimes84 avoided. ReLU function corrects this behaviour, making it a widely used function 

 

 
83 A complete explanation can be found in: https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-

normalization/  
84 Generalized Recurrent Units (GRU) (Irie et al., 2016) use sigmoid for gating and tanh for state due to their output range 

(0..1 and -1..1 respectively) Generalized Recurrent Units (GRU) (Irie et al., 2016) use sigmoid for gating and tanh for state 

due to their output range (0..1 and -1..1 respectively) 

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-batch-normalization/
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(Agarap, 2018), performing and performs better than other activation functions in most cases. 

However, it has to be used only in the hidden layers and not in the outer layer, and if there are 

dead neurons in the network, then we can use the leaky ReLU function.  

4) Multi-task learning. The objective is to train the same model to learn several tasks at the same 

time. The different tasks can help each other to learn mutually useful feature extractors, as long 

as the tasks do not compete for resources (e.g. network capacity) (Ruder, 2017). 

 

4.5.1.3 Based on the training objective 

Another way to make a model generalize better is to focus on the training objective. Hence, the error 

and objective functions can be designed to help the model learn better. The error function 𝑅𝐷𝑡𝑒𝑠𝑡/𝑡𝑟𝑎𝑖𝑛(𝑓) 

of a model 𝑓 reflects the learning state, during the training and/or testing phase, and in some cases, it 

can give some obvious assumptions about the data distribution. The training objective is to learn the 

model parameters that minimize the cumulated error values. The common form is:  

argmin
𝜃

1

|𝐷𝑡𝑟𝑎𝑖𝑛|
∑ 𝑅𝐷𝑡𝑟𝑎𝑖𝑛(𝑓(𝑥𝑖, 𝑦𝑖)) + 𝜑(… )

(𝑥𝑖,𝑦𝑖)∈𝐷𝑡𝑟𝑎𝑖𝑛

 

 

where 𝜑(… ) is a regularization term added to control the impact of the accumulated error. 

Generalization strategies based on error functions are proposed to approximate the unit step function 

for better learning (Guo et al., 2021). Typical examples of error (loss or risk) functions are mean squared 

error (Allen, 1971) or cross-entropy (Li and Lee, 1993). The error function may also have a regularizing 

effect, thanks to an added term 𝜑(… ). An example is Dice coefficient optimization (Milletari et al., 

2016) which is robust to class imbalance. Moreover, the overall form of the loss function can be 

different, in certain loss functions that are robust to class imbalance, the sum is taken over pairwise 

combinations 𝐷𝑡𝑟𝑎𝑖𝑛 × 𝐷𝑡𝑟𝑎𝑖𝑛 of training samples (Yan et al., 2003), rather than over training samples.  
 

4.5.1.4 Based on the optimization 

While training a DL model, the optimization algorithm finds the values of the model’s parameters 𝜃 

(weights and bias) that minimize the error when mapping inputs to outputs. The choice of algorithm 

widely affects the final performance of the deep learning model. It also affects the training speed of the 

model. Hence, regularization through optimization aims to find out the optimizer that helps the model 

converge better and faster to the optimum state.  

Stochastic gradient descent (SGD) (Bottou and others, 1991) is one of the most frequently used 

optimization algorithms, in the context of deep neural networks. Each epoch consists of one forward 

pass and one backpropagation pass, over all of the provided training samples, in a full batch learning 

process. The true gradient ∇𝜃 is obtained by computing the gradient value of each training case 

independently, then summing together the resulting vectors, in order to update farther the model 

parameters. Hence, SGD is an iterative optimization algorithm based on the following generic adapted 

rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡∇𝜃𝑅𝐷𝑡(𝜃𝑡 , 𝐷𝑡) 
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Where ∇𝜃𝑅𝐷𝑡(𝜃𝑡 , 𝐷𝑡) is the gradient of the error amount computed in a mini-batch85 𝐷𝑡 of the training 

data set, rather than the whole data set 𝐷𝑡𝑟𝑎𝑖𝑛, combined with a momentum 𝜂𝑡, to improve the 

convergence speed (Wilson et al., 2017). 

Several optimization methods are derived from the SGD algorithm, to make the model learn more 

efficiently (fewer data and shorter training time): 

1) Initialization, warm-up, and pre-training. Methods of this class affect the initial selection of the 

model’s parameters. The most frequently used method is sampling the initial weights from a 

carefully tuned distribution. Where the weights of a network are initialized and then adjusted 

repeatedly during the training of the network. Several initialization methods have been developed 

(Narkhede et al., 2022),  with the same aim of keeping the variance of activations in all layers 

around 1 to prevent vanishing or exploding activations (and gradients) in deep learning models 

(Tan and Lim, 2019). Several methods can be used: 

1) Random weight initialization (Sampson, 1987) 

2) Orthogonal weight matrices (Vorontsov et al., 2017) 

3) Data-dependent weight initialization (Cachi et al., 2020) 

Another (complementary) option is pre-training of the model with a different objective function 

and a partially different architecture, in a different context (task, data, domain …) where data can 

be more available, then perform a fine-tuning pass in the target context to make the model perform 

better on the actual objective starts.  One important aspect of this approach is that pre-training a 

model on a different task of the same domain may lead to learning useful features, making the 

primary task easier. Several pre-training methods can be used, such as: 

1) Greedy layer-wise pre-training (Bengio et al., 2006)  

2) Curriculum learning (Bengio et al., 2009) 

3) Spatial contrasting (Hoffer et al., 2016) 

4) Subtask splitting (Gülçehre and Bengio, 2016) 

 

2) Update-based. It concerns individual weight updates, through update rules that modify the form 

of the update formula, such as: 

1. Momentum, Nesterov’s accelerated gradient method, AdaGrad, AdaDelta, RMSProp, 

Adam (Wilson et al., 2017) 

a. Learning rate schedules (Ge et al., 2018) 

b. Online batch selection [Chaudhari and Soatto 2015] 

c. SGD alternatives (Netrapalli, 2019): L-BFGS, Hessianfree methods, ProxProp. 

2. or by using filters that would affect the value of the gradient or the NN weights, which are 

used in the update formula, such as injecting noise into the gradient (Wilson et al., 2017): 

a. Annealed Langevin noise (Neelakantan et al., 2015) 

b. AnnealSGD  (Chaudhari and Soatto, 2015) 

The Annealed noise on targets can work as noise on gradient but belongs rather to data-

based method. 

 

3) Early Stopping. This is a technique that aims to stop the training process at a good time to avoid 

the “learning speed slow-down” phenomenon. This means that the accuracy of the learning 

algorithms stops improving after some point, as shown in Figure 35 (right), or even gets worse 

 

 
85 Mini-batch learning aims at updating the training weights several times over the course of a single epoch (iteration). In 

this case, we are no longer computing the true gradient; instead we are computing an approximation of the true gradient, 

using several training samples in each split of the epoch. 
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because of the start of noise learning (Raskutti et al., 2014). Also, it is a widely used regularizer 

in neural networks starting from the 1990s. As shown in Figure 35 (left), where the blue line 

shows the testing error and the green line shows the training error. If the model continues learning 

after the red dashed line, the testing error will increase while the training error will continue 

decreasing.  

 

 
Figure 35. Illustration of the early stopping strategy based on error (left86) and accuracy (right87) evolution during training in test and 

training sets. 

 

However, the best training step for stopping is not easy to define. If we stop learning too early, 

the model could underfit the data, and if we stop too late it may overfit it. Hence, the aim is to 

find the exact training step to get a perfect fit between underfitting and overfitting. To do so, we 

can track the accuracy on validation set instead of test set in order to determine when to stop 

training. The early stopping method has been used in several effective DL models and has shown 

its effectiveness to promote generalization (Caruana et al., 2000; Wu and Shapiro, 2006). 

 

4) Dropout. Aims to randomly drop units (along with their connections) from the neural 

network during training (Srivastava et al., 2014). This prevents units from co-adapting too 

much. This is one of the most popular methods from the generic group, but also several 

variants of Dropout have been proposed that provide additional theoretical motivation and 

improved empirical results, such as the Random dropout probability (Bouthillier et al., 2015) 

for training and the Bayesian dropout (Gal and Ghahramani, 2016) at test-time. 

 

 

It is not clear which of the methods merely speeds up optimization and which actually help the 

generalization. One needs to perform several optimization tests and comparative analysis in order to 

find the best match between the model complexity and the optimization algorithm. An empirical study 

by (C. Zhang et al., 2021) compared different regularization techniques: data augmentation (aug), 

weight decay (wd), batch normalization (BN), and dropout. Figure 36 shows the performance evolution 

of a trained Inception88 model, using different regularizers. Since the Inception architecture uses a lot 

of batch normalization layers (Szegedy et al., 2015), a new “Inception w/o BN” architecture is used. It 

is, the same as the classical Inception, except with all the batch normalization layers removed. Figure 

36a shows the training and testing accuracy on ImageNet. Figure 36b compares the learning curves of 

 

 
86https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-

dce6de4081c5 
87 https://datascience.stackexchange.com/questions/32306/in-which-epoch-should-i-stop-the-training-to-avoid-overfitting  
88 Inception (Szegedy et al., 2015) is a deep convolutional neural network architecture that achieved a new state of the art 

for classification and detection, in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC2014). The main 

characteristic of this architecture is the improved use of the computing resources inside the network. By a crafted design 

that increased the depth and width of the network while keeping the computational cost constant. 

https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5
https://medium.com/analytics-vidhya/early-stopping-with-pytorch-to-restrain-your-model-from-overfitting-dce6de4081c5
https://datascience.stackexchange.com/questions/32306/in-which-epoch-should-i-stop-the-training-to-avoid-overfitting
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the two variants of Inception on CIFAR10, with all the explicit regularizers turned off. Each curve 

corresponds to one of the regularization methods, where the shaded areas are the cumulative best test 

accuracy, as an indicator of potential performance gain of early stopping. However, on the CIFAR10 

data set, no potential benefit of early stopping can be observed. 

 

 
Figure 36. Effects of different regularizers on generalization performance, in terms of accuracy (C. Zhang et al., 2021). 

This evaluation shows that a good match between different regularizers can lead to better performances. 

In this experiment, there are two main observations to retain: 

(a) Early stopping could potentially improve generalization when other regularizers are absent.  

(b) Early stopping is sometimes not necessarily helpful (e.g. CIFAR10), while batch normalization 

consistently stabilizes the training process and improves generalization. 

 

4.5.1.5 Boost the generalization with regularization 

All the regularization methods and generalization analysis seen so far are based on observations of the 

training error compared to the test errors. A significant gap between both losses suggests low 

generalization, as shown in Figure 37. 
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Figure 37. Illustration of a bad generalization behaviour89 showing important gap between validation and training loss errors. 

 

Regularization can be as simple as shrinking or penalizing large coefficients (cf. Section 4.5.1.3), where 

an added term 𝜑(… ) is often used to calibrate weights and can be defined differently. Regularization 

can also impose a penalty on the model’s complexity or smoothness (cf. Section 4.5.1), allowing for 

good generalization even when training on a finite data set or with an inadequate iteration. Recently, a 

comparative study (Tian and Zhang, 2022) of different existing regularization methods for ML/DL 

applications has discussed how to choose a regularization for a specific task. Such new regularization 

techniques can be constructed by extending and combining existing regularization techniques. 

Even if the methods are different, the objective of regularization remains the same and is to improve 

the generalization ability of a ML/DL application (Müller, 2012). For instance, in the data-driven 

methods, the optimization of the data representation and the leveraging of latent content on the data, 

along with the identification of the right location and function for data transformation is the strength of 

the regularization by data processing. The advantage of these methods is that the model will master the 

data as well as the target application domain. However, to avoid the opposite effect of these methods 

on the generalization, we need to pay attention to data biases (e.g. ensure a balanced data distribution 

over different mini-batches while using batch normalization) which will be harmful to the data 

generalization. Model-driven approaches rely on building the model architecture based on the target 

application statements and assumptions. Here, independently of the data, the input-output stream is 

constructed by highlighting transitions and shared links between intermediate results and 

representations. The most important attention point is to correctly formulate the abstract observations 

to avoid associating wrong or inadequate tasks or features together, in the multi-task performance or 

during the weight-sharing, to ensure a smooth transition of the information contained in the initial data. 

Finally, the methods based on the optimization algorithms can also be leveraged to promote the models’ 

generalization. In fact, these methods, such as early-stopping and weight-update functions, rely on the 

training process itself, rather than the model’s architecture or its inputs. They enable to preserve the 

optimal state of the model that is more likely to generalize.  

 

 

 
89 Source: https://towardsdatascience.com/generalization-regularization-overfitting-bias-and-variance-in-machine-

learning-aa942886b870  

https://towardsdatascience.com/generalization-regularization-overfitting-bias-and-variance-in-machine-learning-aa942886b870
https://towardsdatascience.com/generalization-regularization-overfitting-bias-and-variance-in-machine-learning-aa942886b870
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4.5.2 Penalty Methods 

 

An overfitted model tends to memorize all the data features while training, even if some of them are 

noise. In order to limit these cases, two possible solutions can be adopted:  

1) Select only the useful features and remove the useless ones from the model (Javed et al., 2020; 

Khalid et al., 2014; Mas’ ud et al., 2014), where methods such as Dimensionality Reduction, as a 

preprocessing step to a machine learning model and an objective of the first layers of a deep 

learning model,  is effective in removing irrelevant and redundant features, while keeping the 

important information unchanged. In this case, a trade-off between dimensionality and 

informativeness of the features needs to be found to guarantee some degree of efficiency and 

effectiveness of the model;  

2) Minimize the weights of the features which have little influence on the final classification. In 

other words, we need to limit the effect of those useless features. However, we do not always 

know which features are useless. In a context where features are automatically computed (e.g. 

deep NN where representations are latent), DL models could not effectively filter out the 

redundant features from the original data. Besides, DL-based approaches usually obey the rule of 

feature engineering first and algorithm hyper-parameter tuning later to build the machine learning 

pipeline, which could lead to sub-optimal outcomes (Bai et al., 2022).  

To better combine both solutions (1) and (2), optimal features need to acquire more attention from the 

model, though sometimes noisy content can bring guidelines that could help the model’s learning, if 

leveraged correctly (Song et al., 2022). The common approach is to limit the effect of noise by 

minimizing the cost function of the model. To do this, a “penalty term”, called regularizer, can be added 

to the cost function used during training, as shown in the formula of section 4.1.3. Hence, regularization 

can be achieved by adding the term 𝜑(… ) into the loss function. Unlike the error function 𝑅𝐷𝑡𝑟𝑎𝑖𝑛  

(which expresses the consistency of outputs with targets), the regularization term is independent of the 

targets. Instead, it is used to encode other properties of the desired model, to provide inductive bias (i.e. 

assumptions about the mapping other than the consistency of outputs with targets). The value of 𝜑 can 

thus be computed for an unlabelled test sample. The regularization term 𝜑 is used in general to express 

a given assumption about the elements of the data set and the target application domain. For example, 

one of the classical regularizers is weight decay (Goodfellow et al., 2016) 

𝜑(𝜃) = 𝜆
1

2
‖𝜃‖2

2 

 

where λ is a weighting term controlling the importance of the regularization over the consistency. 𝜃 are 

the weights of the model being trained. 

Several other error regularizers can be used, a brief classification of several penalty methods is provided 

in (Kukačka et al., 2017). The following dependencies can be observed: 

1) Dependence on the weights 𝜃 

2) Dependence on the network output 𝑦 = 𝑓𝜃(𝑥) 

3) Dependence on the derivative 
𝜕𝑦

𝜕𝜃
 of the output y w.r.t. the weights 

4) Dependence on the derivative 
𝜕𝑦

𝜕𝑥
 of the output y w.r.t the input x 

 

4.5.3 Network reduction 

Network reduction is a strategy to reduce the number of trainable parameters of the DL model, without 

losing performance on the target task and have same good results. This regularization approach is 
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inspired by the noise reduction to prevent overfitting. Known also as pruning (Ying, 2019), network 

reduction is proposed to reduce the heavy inference cost of deep models in a low-resources settings. 

Pruning is a theory used to reduce classification complexity by eliminating less meaningful, or 

irrelevant data, and finally to prevent overfitting and to improve the classification accuracy. During 

pruning, according to a certain criterion (rules), redundant weights (inter-neuron connections) are 

removed and important weights are kept to best preserve the accuracy of the model (Liu et al., 2018), a 

fine-tuning pass is then performed to optimize the resulting reduced network.  

 
Figure 38. The three stages NN pruning pipeline. 

 

Two methods have been used to make the deep learning model simpler:  

- pre-pruning that functions during the learning process, and where a stopping criterion is used to 

determine when to stop adding conditions to a pruning rule or adding rule to a model description, 

such as encoding length restriction;  

- post-pruning splits the training set into two subsets: growing set and pruning set. Post-pruning 

prevents overfitting by deleting conditions and rules from the model generated during learning.  

Formally, given a neural network model 𝑓𝜃(𝑥), pruning involves producing a new model 𝑓𝜃′⨀𝑀(𝑥). 

Here 𝜃′⨀𝑀 is the elementwise product of the new parameters 𝜃′ with the binary mask 𝑀 ∈ {0, 1}|𝜃′|. 
Algorithm 1 (Blalock et al., 2020) describes a generic format of the pruning strategies for the NN 

reduction models in the literature. 

 
Algorithm 1: Generic pruning strategy 
Input: N the number of iterations of pruning, X the data set on which to train and fine-tune 
Output: the new parameters distribution 𝜃⨀𝑀 

1. 𝜃 ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒() 

2. 𝜃 ← 𝑡𝑟𝑎𝑖𝑛𝑇𝑜𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒(𝑓𝜃(𝑋)) 

3. 𝑀 ← 1|𝜃| 
4. For 𝑖 ∈ {0,…𝑁} do 

a.  𝑀 ← 𝑝𝑟𝑢𝑛𝑒(𝑀, 𝑠𝑐𝑜𝑟𝑒(𝜃)) 

b. 𝜃′ ← 𝑓𝑖𝑛𝑒𝑇𝑢𝑛𝑒 (𝑓𝜃⨀𝑀(𝑋)) 

c. 𝜃 ← 𝜃′ 
5. End for 
6. Return 𝑀, 𝜃 

 

In this algorithm, the network is first trained to convergence. Afterwards, for each parameter or 

structural element in the network, a score is computed, and the network is pruned based on these scores. 

The process of pruning and fine-tuning is often iterated several times for gradually reducing the 

network’s size without losing performance. This pipeline is shown in Figure 38:  

1. Pruning: where the objective is to gradually reduce the number of trainable parameters in the 

network. In this step, the target model is designed to have as little complexity as possible. Several 

methods can be used: 

1) Sparsity structure. When individual parameters are pruned separately, the algorithm 

produces a sparse NN (Molchanov et al., 2019). Some other methods (Wang et al., 2017) 
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consider group parameters pruning, by removing entire neurons, filters, or channels for a 

better-optimized computation.  

2) Scoring. Different score values can be computed to assess the probability that the 

parameter, the node or the layer will be dropped. Scores like absolute values, trained 

importance coefficients, or contributions to network activations or gradients can be used. 

Hence, some methods (Tanaka et al., 2020) prune parameters with the lowest scores within 

each structural subcomponent of the network (node or layer). While other methods (You et 

al., 2019) are based on global scores. They aim at comparing scores of a group of parameters 

to other parts in the network. 

3) Scheduling. Aims to prune different amounts of parameters at each step. Some methods 

prune all desired weights at once in a single step (Liu et al., 2018), some other methods 

prune a fixed fraction of the network iteratively over several steps (Hubens et al., 2021), or 

vary the rate of pruning according to a more complex function (N. Liu et al., 2020). 

 

2. Fine-tuning90. Since the pruning reduces the accuracy of the network, this latter is trained further 

(fine-tuned) to recover. This step aims in general to adapt an already trained model, in a given 

context, to a target context, where data and tasks can be different (Vrbančič and Podgorelec, 

2020). pruning methods, involving fine-tuning commonly restart training the network using the 

trained weights from before pruning. Alternative proposals include rewinding the network to an 

earlier state (Frankle et al., 2019) or reinitializing the network entirely (Zhang et al., 2022). 

 

3. Truncation. (Nevzorov et al., 2022) is another method for network reduction and which is similar 

to the classical dropout (cf. section 4.5.1.1). In this method some neurons are excluded during 

training, according to a position-based probability. By defining a training direction in the network, 

neurons that are positioned at the beginning of each layer tend to be better connected (have higher 

weights) so not excluded by the Truncation (Nevzorov et al., 2022), and they make the main 

contribution to the result. Meanwhile neurons at the end of a layer have weaker connections to 

the next layer and can be excluded without making a significant impact. Hence, the dependence 

of a network accuracy on the number of neurons in a layer has been implemented, after one cycle 

of training, while performing some regularization, without losing accuracy.  

 

4.5.4 Data Expansion  

4.5.4.1 Data quality and volume qualification 

A crucial issue in machine learning projects is to determine how much training data is needed to achieve 

a specific performance goal (w.r.t. industrial requirements and theoretical evaluation metrics. Cf. 

Section 1.3), and how to qualify this data set (identify characteristics that describe the target 

application). The qualified data acquisition becomes more critical in a supervised setting, where DL 

models should be trained on a sufficient and qualified data set (i.e. required amount, less noise, balanced 

labels). To figure out if the data size and characteristics fit the target application and the models’ 

requirements, several studies have provided data scientists with measures that help with assessing the 

data quality and volume: 

 

 
90 http://d2l.ai/chapter_computer-vision/fine-tuning.html  

http://d2l.ai/chapter_computer-vision/fine-tuning.html
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1) Data quality. The quality of data is “its ability to satisfy the requirements for its safe application 

in the end system” (Cluzeau et al., 2020). The paper defines a set of classical measures, (Cluzeau 

et al., 2020). In this latter, a set of classical measures along with discussions highlighting the 

required modifications and adaptations that is needed to bring to them, in order to cope with 

ML/DL development and release. These requirements are: 

1) Data accuracy. The ability to provide the model with correct pairs (x, y) during training. 

Hence, statistical tests should be performed to guarantee the absence (or scarcity) of biases 

and statistic errors (e.g. zero mean). In addition, the following errors need to be minimized: 

▪ Capture error: noisy, biased, or distorted collection of data, by a human factor or bad 

machine conditions.   

▪ Single-source errors: relying on a single source of data could introduce biases, which 

would lead the model to learn patterns related to the source of the data as well as the 

data itself. 

▪ Labelling errors: which is related to the automatic labelling of data, hence, a human 

verification is needed to mitigate this risk, or double (multiple)-pair labelling to avoid 

biases and errors when the data is initially labelled by experts.  

Data inaccuracy is exemplified as Data Quality errors at the instance level of a database in 

some cases. Examples of these errors are missing data, incorrect data, misspellings, 

ambiguous data, outdated temporal data, “misfielded” values and incorrect references 

(Laranjeiro et al., 2015). Hence, one of the central preprocessing steps is improving 

accuracy of data by trying to predict and fill missing values in data sets (Ma et al., 2007). 

2) Entity Resolution: is about recognizing when two observations relate semantically to the 

same entity, despite [possibly] having been described differently. Conversely, recognizing 

when two observations do not relate to the same entity, despite having been described 

similarly. 

3) Assurance level: As the samples may be modified during data transformation and cleaning, 

confidence that the data will not be corrupted during storage or transport is required. 

4) Traceability: stands for the ability to determine the origin of each data item (recording) and 

that can be required. When inputs and outputs are both recorded from the same source, it is 

needed to pay attention to subsequent changes (e.g. in case of evolutionary data 

applications). When the data pairs are taken from different sources (x and y come from 

different sources), we need to take care of the matchings. 

5) Timeliness: Confidence that the data is applicable to the period of intended use. 

6) Completeness: data completeness is one of the data quality dimensions that were found to 

be the most significant by a previous research study (Gupta et al., 2021; Wang et al., 2006). 

The incompleteness of data is expressed in different ways, such as missing values, absent 

values and sparse-ness of values. Several automatic and ML-based methods for data 

completeness detection and improvement can be found in (Juddoo and George, 2020). 

 

Furthermore, recent studies (Hagendorff, 2021) on the impact of data quality on resulting 

ML/DL applications have defined the concept of ethical data quality. It defines how data 

quality is affected by certain personality traits or modes of behaviour of individuals (e.g. in 

human-based data collection and labelling), and how those traits or states can be assessed 

from an ethical point of view. Eventually, finding quality data should not primarily serve 

the pursuit of an improved marketability, but of socially acceptable, beneficial machine 

learning applications. Another study by Chen et al. (H. Chen et al., 2021) have defined a 

set of “fit for purposes” data quality criteria that qualify the data in a more complete manner 

in order to know if the data used fit the objectives of the application and the target use of 
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the model. These qualities are: comprehensiveness that means a data set contains all 

representative samples from the population (e.g. there are data samples for learning all the 

aspects of the target domain and associate the reality with the training data labels); 

correctness refers to the fact that a record in a data set is accurate and valid, and they are 

correctly labelled if they are labelled records. Inaccurate or invalid data lead to data noises, 

and incorrectly labelled data lead to label noises; and variety which. Hence, these qualities 

need to be assessed on the data preparation step since they affect a good or poor model 

performance (more details about the data quality assessment are provided in section 3). 

 

2) Data volume. As for data quality, the amount of data that should be used to train a ML/DL model 

effectively needs to be defined. Here the main question to be answered is “Do I have enough data 

to train the model effectively?” (it is more about preventing overfitting a small data set by a high 

parameterized model), w.r.t. the targeted application, and the model to be trained. Hence, as for 

data quality assessment, the volume of data needed to train a model can be evaluated and 

determined based on a set of empirical and theoretical measurements. The amount of data required 

for training a ML problem mainly depends on the complexities of two main elements: the problem 

(task) to be solved, and the ML/DL model that will solve it. As described in the previous sections 

(cf. Section 4.4.1) model complexity has an important impact, as well as the complexity (cf. 

Section 4.4.2) in the model’s generalization estimation. Hence, we can choose one (or more) 

method from the existing two classes, with respect to the target application objectives: 

1) Theoretical (heuristic-based) data bounds:  

▪ Factor of the number of classes: It is desirable to achieve the order of tens, hundreds 

or thousands independent examples of each class. For example, on a binary 

classification, we may need a set of 20, 200 or 2000 data samples per class, depending 

on the model complexity and target performances. 

▪ Factor of the number of input features: The desirable features matrix should present 

a hundred of percent (100%) more rows than columns (have more examples than 

number of features describing each example).  There must be x% more examples than 

there are input features (Jain and Chandrasekaran, 1982). For example, to train a 

model on a dataset where each sample is comprised of 80 features, and define a 

heuristic of the 20% more data (120% of the number of features 80 is needed for 

training), it is recommended to have at least 96 samples. 

▪ Factor of the number of model parameters: There must be N independent examples 

for each parameter in the model. For example, in a classification using a linear 

regression and a heuristic of N=10, the expected input is at least 20 independent 

examples. 

2) Empirical bounds for data size: To determine the data size needed, depending on the 

constraints to achieve the targeted performances, several ways have been provided in 

(Balduzzi et al., 2021) to tie the empirical generalization assessment and the minimal size 

of data needed. For instance: 

▪ Function of the VC-dimension (Juba and Le, 2019): if 𝑑 is the probability of failure 

and 휀 is the learning error, the amount 𝑁 of data needed for learning depends on the 

complexity of the model 

▪ 𝑁 = 𝐹 (
𝑉𝐶+ln(

1

𝑑
)
) 

A side effect of this is the well-known voracity of neural networks for training data, 

given their significant complexity. 



 

MLEAP deliverable Phase 2 - Interim Public Report PAGE 164 

 

 
Figure 39. Difference between ML and DL w.r.t. the impact of the amount of data on the performance evolution 

during training (Zhu et al., 2016). 

  

▪ Observing the learning curves (Yelle, 1979): rests on a set of plots of error versus 

different training data sizes. An example formula to plot the learning curve is (Cho et 

al., 2015): 𝑦 = 100 + 𝑏1𝑥
𝑏2 , where y is the classification accuracy, x is the training 

set, and 𝑏1 and 𝑏2 correspond to the learning rate and decay rate, respectively. Figure 

39 shows how the performance of machine learning algorithms changes with 

increasing data size in the case of traditional machine learning (Zhu et al., 2016) 

algorithms (e.g. regression) and in the case of deep learning (Hassaballah and Hosny, 

2019).(Hassaballah and Hosny, 2019). Specifically, for traditional machine learning 

algorithms, performance grows according to a power law and then reaches and settle 

on a plateau value. Regarding deep learning, there is significant ongoing research as 

to how performance scales with increasing data size (Shahinfar et al., 2020). In this 

study, an empirical evaluation is provided along with an approximation formula to 

estimate how many images per animal species are needed for certain accuracy level a 

priori. It is based on observations of the learning curves to show that the common 

behaviour is: the performance keeps increasing with data size according to a power 

law. 

4.5.4.2 Importance of data 

Data choice and preparation are two important steps in the development of DL applications. However, 

when the target application requires a complex model, there is a need for an important amount of data 

from the target domain. In particular deep learning applications require considerable amounts of data 

for training91. Figure 40 shows some examples of DL applications w.r.t. the amount of training data 

sizes used to train all the model parameters, for applications of different models: VGGNet (Simonyan 

and Zisserman, 2014) for image recognition, DeepVideo (Karpathy et al., 2014) for videos 

classification, and GNMT (Wu et al., 2016b) for machine translation.  

 

 

 
91 https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-and-performance-estimates/  

https://machinelearningmastery.com/impact-of-dataset-size-on-deep-learning-model-skill-and-performance-estimates/
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Figure 40. Three example applications show the complexity of the used DL model, the data type, and the sizes of the training sets92. 

 

In real-world applications, collecting such a volume of data is difficult and sometimes impossible. In 

some domains, collecting new data is either not feasible or requires comparably much resources, due 

to the need for experts to validate and label the data samples, or simply because it is costly to perform 

(Bansal et al., 2021). Sometimes, large data sets can be found for real applications however, raw primary 

data often suffers from over-representation of one (or more) class/label overothers, as in the case of 

computer vision, information security, marketing, and medical science (Kaur et al., 2019). This is the 

data imbalance problem, where some parts of the desired labels for training are not as available as some 

other labels in the same data set, which can lead to a data bias problem. 

For most93 of the aforementioned problems, data augmentation (expansion) is one of the common 

solutions to reach the required data amount for DL models training. In addition, the performance of 

most ML models, and deep learning applications in particular, depends on the quality, quantity and 

relevance of training data (Redman, 2018). Data augmentation is a set of techniques to artificially 

increase the amount of data by generating new data points from existing data. This includes making 

small changes to the original qualified data, or using deep learning models to generate new data points 

for the training (cf. section 3). Formally, given a data set 𝑋 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 0,… , |𝑋|}, a transformation 

function 𝑡𝑓 produces a new data example associated to every input sample 𝑥𝑖: 𝑡𝑓(𝑥𝑖, 𝜔) = 𝑥𝑖
𝑡 , hence 

(𝑥𝑖
𝑡, 𝑦𝑖)will be the new training sample, where 𝑦𝑖 is the label corresponding to the original input 𝑥𝑖. 𝜔 

is a set of transformation parameters corresponding to 𝑡𝑓. 

Several data augmentation methods have been used to cope with the data availability barrier in ML and 

DL applications. These methods can be either online or offline. In online augmentation, data is 

augmented at training time so that there is no need to store the augmented data (Lemley et al., 2017). 

In offline augmentation, data is augmented in preprocessing phase and stored for later use (Lei et al., 

2017).use (Lei et al., 2017). Online and offline methods can be either learnable (based on trained models 

to perform data augmentation) or non-learnable (heuristic methods that make series of data 

transformations). 

 

 
92 https://www.datarobot.com/blog/introduction-to-dataset-augmentation-and-expansion/  
93 Recently (C. Wang et al., 2021), there has been a vast interest in self-supervised learning where the model is pre-trained 

on large scale unlabelled data and then fine-tuned on a small labelled dataset. The objective of these approaches is to help 

developing models for applications where few labelled data is provided.  

https://www.datarobot.com/blog/introduction-to-dataset-augmentation-and-expansion/
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4.5.4.3 Non-learnable methods  

This class relies on a set of human-based heuristics. It includes manual data transformation methods 

where the 𝑡𝑓 function is designed manually, and 𝜔 includes handcrafted rules and features. These 

methods are based on simple transformation functions (TFs) that are defined and tuned by experts, 

where TFs make the same changes (e.g. image rotation or flip) to all the original data entities. The 

definition of 𝑡𝑓 and 𝜔 depends on the target application. Most of the existing methods can be described 

by the same heuristic pipeline (Sharon Y. Li, n.d.), as shown in Figure 41. Where a series of 

transformation functions (TF) are defined and applied to different data entities, under a supervision of 

a human expert, then the qualified augmented data set is used for DL models training. 

 
Figure 41. Description of the heuristic data augmentation pipeline94 which applies a deterministic sequence of transformation functions 

tuned by human experts. 

 

In image processing (Shorten and Khoshgoftaar, 2019), one of the most used heuristics is geometric 

transformation (Goodman, 2022), where the main TFs are: Flipping, which is a mirror effect, done by 

reversing the pixels of an image horizontally or vertically; Rotation, which is done by simply rotating 

the image at a certain angle; Cropping, which is used to create image data with mixed width and height 

dimensions; and Translating, which aims to shift the original image in a given direction (i.e., right, left, 

up or down) and is very useful to preserve the label. Another common heuristic is color augmentation 

which is based on the color space transformation. It is also known as photometric transformation, it can 

be made by transferring colors between images (Xiao et al., 2019) or applying color perturbations for a 

given input image (Khosla and Saini, 2020). Noise-based methods, such as Gaussian noise (Lopes et 

al., 2019) and random erasing (Zhong et al., 2020) are also used to produce new images by noise 

injection in different patches of the input image, in the former, or by randomly erasing parts/areas of 

every image, in the latter. Other than heuristics, the style transfer method is an artistic approach that is 

widely used to produce new images by transferring the style of an image to another. This method defines 

three images: a content image C (the image for which we want to transfer a style), a style reference 

image S (the image we want to transfer the style from such as an artwork by a famous painter), and the 

input (generated) image G. It blends them together such that the image G is transformed to look like 

the image C, in the style of the image S. Figure 42 shows an example of a style transfer result: 

 

 

 
94 https://salmenzouari.medium.com/automating-data-augmentation-f2bdf1f1c0da  

https://salmenzouari.medium.com/automating-data-augmentation-f2bdf1f1c0da
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Figure 42. Example of style transfer data augmentation in images processing95. 

 

Apart from computer vision, several methods for natural language processing (NLP) data augmentation 

have also been proposed to deal with the same data scarcity problem. A review of several non-learnable 

text data augmentations, known as “symbolic augmentations”, can be found in (Shorten et al., 2021). 

Where rule-based methods like Easy Data Augmentation (EDA) (Wei and Zou, 2019), based on random 

operations (swap, insertion, deletion, and synonym replacement) as shown in Table 11; and the rule-

based attack (D. Jin et al., 2020), namely TextFooler which selects the words that most significantly 

change the outputs for the synonym replacement; or Regular Expression Augmentations (Spasic et al., 

2020) that find common forms of language and generate extensions that align with a graph-structured 

grammar; aim to generate accurate textual data to enhance DL models for NLP applications. Graph-

structured augmentation (Ding et al., 2022) aims to construct graph representations of text inputs. This 

includes relation and entity encodings in knowledge graphs and grammatical structures in syntax trees. 

These augmentations add explicit structural information that can help find label-preserving 

transformations and representation analysis, and add prior knowledge to the data set or application. A 

key benefit of symbolic augmentation is the interpretability to human designer. Symbolic 

augmentations also work better with short transformations, such as replacing words or phrases to 

construct augmented examples. This entails if-else programs for augmentation and symbolic templates 

to insert and re-arrange existing data. 

 

 
Table 11. Examples of Easy Data Augmentation techniques 

The main limitation of the non-learnable data augmentation methods is that the human is too involved 

in the whole pipeline, starting from the TFs design and choice to the transformation and validation of 

the resulting samples. Therefore, in a context where large data sets are needed (DL training), this 

 

 
95 Source: https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-

ac2dbc0e9822  

https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822
https://towardsdatascience.com/neural-style-transfer-on-real-time-video-with-full-implementable-code-ac2dbc0e9822
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approach becomes infeasible due to the associated cost and time. To deal with these limitations, 

learnable methods can be more efficient for some use cases, where a huge amount of training data is 

needed and human expertise is not available. 

4.5.4.4 Learnable methods 

Learnable data augmentation is promising, in that it enables to search for more powerful 

parameterizations and compositions of transformations. Perhaps the biggest difficulty with automating 

data augmentation is how to search over the space of transformations. This can be expensive due to the 

large number of transformation functions and associated parameters in the search space. The learnable 

data augmentation methods are based on advanced models that are trained to learn how to generate new 

data examples.  

One of the learnable methods for image data augmentation is AutoAugment (Cubuk et al., 2019) which 

uses learned augmentation policies, where a TFs sequence generator learns to directly optimize for 

validation accuracy on the end model. Feature Space Augmentation methods (Chu et al., 2020; B. Li et 

al., 2021) describe augmenting data in the intermediate representation space of Deep Neural Networks. 

Nearly all Deep Neural Networks follow a sequential processing structure where input data is 

progressively transformed into distributed representations and eventually, task-specific predictions. 

Feature Space Augmentations isolate intermediate features and apply noise to form new data instances. 

This noise could be sampled from standard uniform or Gaussian distributions, or they could be designed 

with adversarial controllers. Another approach is Generative Data Augmentation, which is one of the 

most emerging ideas in Deep Learning. This includes generating photorealistic facial images (Karras et 

al., 2019) or high-level text passages that are indistinguishable from those written by humans (Brown 

et al., 2020). Text generation approaches are based on language modelling to perform text data 

augmentation. This is useful to produce models for different tasks in different languages (especially in 

the case of languages with few resources). One of the most popular strategies for training a language 

model for Generative Data Augmentation is Conditional BERT (C-BERT) (X. Wu et al., 2019). C-

BERT augments data by replacing masked tokens of the original instance. The key novelty is that it 

takes a vector representation of the class label as input, such as to preserve the semantic label when 

replacing masked tokens. This targets the label-preserving property of Data Augmentation. Based on 

the same idea, the Transformation Adversarial Networks for Data Augmentations (TANDA) (Ratner et 

al., 2017) models data augmentations as sequences of  TFs provided by users. TANDA is a framework 

that consists of three main components, (1) the learnable TF sequences, (2) the generator using the 

sequence to create new images, (3) the discriminator that should distinguish the augmented images from 

real ones. Another case study of text data augmentation is training sentence classifier in a few labelled 

data. In (Anaby-Tavor et al., 2020), a method, referred to as language-model-based data augmentation 

(LAMBADA), involves fine-tuning a state-of-the-art language generator to a specific task through an 

initial training phase on the existing (usually small) labelled data. Using the fine-tuned model and given 

a class label, new sentences for the class are generated. The sentence classifier has then shown better 

performances after training on the generated data.  

  

4.6 Methods and tools for generalization evaluation 

The objective is to quantify the generalization ability of an ML/DL system. In this section, we describe 

existing methods in three main approaches, which could be used together or separately, depending on 

the generalization evaluation objective. 
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4.6.1 Random labelling 

This method aims to evaluate, a priori, the ability of the model to generalize (C. Zhang et al., 2021). 

The main idea is to create a copy of the training data where each label is replaced independently by a 

random label chosen from the set of valid labels (e.g. a dog picture labelled “dog” might thus become 

a dog picture labelled “airplane”). The objective of randomization is to break any relationship between 

the training instances, then run the learning algorithm both on the original true label data and on the 

randomized data with identical settings and model choice. By design, no generalization is possible on 

the randomized data. The model is fitted to random labels and compared to how it behaves on the natural 

data against the random data. The hypothesis is that if it turns out to be the same in both cases, it cannot 

even distinguish learning from natural data (where generalization is possible) from learning on 

randomized data (where no generalization is possible). 

4.6.2 Data corruption 

Another way to evaluate how a model could generalize better is to compare the learning process and 

performance evolution on original data, and on data with corrupted samples (added noise). In (C. Zhang 

et al., 2021) different corruption methods have been compared, as shown in  Figure 43: 

1) Partially corrupted labels: independently with probability p, the label of each image is corrupted 

as a uniform random class. 

2) Shuffled pixels: a random permutation of the pixels is chosen and then the same permutation is 

applied to all the images in both the training and testing sets. This function breaks the structure 

of the input original images. 

3) Random pixels: a different random permutation is applied to each image independently. 

4) Gaussian: A Gaussian distribution (with matching mean and variance to the original image data 

set) is used to generate random pixels for each image.  

 
Figure 43. Comparison of the average loss evolution of the Inception model on the CIFAR10 data set under various settings96. 

 

 
96 https://dl.acm.org/doi/fullHtml/10.1145/3446776  

https://dl.acm.org/doi/fullHtml/10.1145/3446776
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4.6.3 Evaluation approaches 

4.6.3.1 Machine learning testing 

The “massive” or “big bang” testing aims to run a set of scenarios to analyse the behaviour’s correctness 

of the whole system after putting all modules together (Soares et al., 2022), known also as “integrating 

testing” it enables to test the correct interaction between several modules integrated together in the same 

system, of which an ML/DL module can be part. In ML/DL, the testing helps spot problems in models 

that regular evaluation metrics might miss (Zhang et al., 2020). The aim of testing in ML/DL systems 

can target different elements such as:  

• Testing properties, including correctness, robustness, and fairness of the ML module, using 

different tools such as DeepXplore (Pei et al., 2017) and Themis (Galhotra et al., 2017) ; 

• Testing components where the data, the learning program (the core of the ML/DL module), and 

used frameworks, are tested using several ML development tools such as TensorFlow97 and 

Scikit-learn98 ; 

• Software workflow and whole application scenarios (e.g., test generation and test evaluation). 

 

A more complete ML testing taxonomy is reviewed in (Zhang et al., 2020). Based on the fact that testing 

is the common practice for software quality assurance, the same policy could be applied for ML/DL 

systems. Hence, while evaluation metrics are used to tell the performance of the model on test data sets, 

model testing focuses on checking the expected behaviour of the model and its corresponding module. 

This testing is needed since there could be unexpected events in production. Several forums of the ML 

community are still discussing these issues. However, testing on DNN-based software, such as 

DeepGini (Feng et al., 2020), is significantly different from conventional software. While conventional 

software depends on programmers to manually build up the business logic, DNNs are constructed based 

on a data-driven programming paradigm. Therefore, a lot of effort is required to obtain oracle 

information, which usually requires expensive human implication to label the testing data that will be 

used in the quality assurance process. To deal with these costing issues, several ML-testing methods 

can be used: 

• Adversarial attacks: it aims to confuse the model to make incorrect predictions (Das et al., 2020). 

Rather than letting this confusion happen in a production environment, a model can be tested with 

adversarial examples to increase its robustness prior to deployment. 

• Data integrity and bias: it refers to the data quality (cf. section 4.5.4.2) in terms of balanced 

samples. Note that data collected from different sources might reflect human bias that can be 

modelled during training.  During the evaluation, bias can be missed because it focuses mostly 

on performance and not the behaviour of the model given the role of the data in this case. Hence, 

several methods (Tomalin et al., 2021) to reduce the bias on data can be used. 

• Spot failure modes: Failure modes can occur in the production of ML/DL models. These can be 

due to performance bias failures, robustness failures or model input/output failures. The latter can 

be even intentional, due to a system intruder, or unintentional due to an unsafe model output 

(incorrect or with a very low confidence). A more detailed failure modes analysis, related to ML 

systems, can be found in (Kumar et al., 2019). Whatever it is their source, these failures should 

be taken into account, to ensure a more complete testing/evaluating benchmark. However, some 

of them can be missed by evaluation, for instance, a trained model with an accuracy of 90% means 

 

 
97 https://www.tensorflow.org/  
98 https://scikit-learn.org/stable/  

https://www.tensorflow.org/
https://scikit-learn.org/stable/
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that the model is struggling to generalize with the 10% of the data. In this case, a verification on 

the remaining 10% of data needs to be performed to figure out the elements that the model is not 

able to learn with the used architecture/configuration, and hence try to integrate them into the 

objective function, the application description, or the evaluation process (metrics and 

benchmark). 

4.6.3.2 Discussion  

As described by the different evaluation metrics, the confidence in the performance of a ML model 

heavily relies on actual observations and the values computed by evaluation measures. As a result, the 

classical methods relating to the software engineering discipline (e.g. behaviour correctness verification 

by unit tests) continue to be limited in size and suffer from a lack of extensiveness and coverage (Naser 

and Alavi, 2021). This is often related to limitations in conducting full-scale tests, the need for 

specialized equipment, and a wide variety of tested samples. For instance, an empirical study has shown 

how the atmosphere pressure computed by ML approaches can significantly vary from one study to 

another (Priyadarshini and Puri, 2021) due to some context differences. Therefore, a combination of 

several metrics, such as MAE, MSE, RMSE and R-squared coefficient (cf. section 1.3) is required to 

validate the model’s effectiveness.  

Furthermore, adopting a set of metrics does not negate the occurrence of certain common issues, namely 

overfitting and bias. As such, an analysis that uses ML should also consider additional techniques, such 

as the use of independent test data sets and threshold values (Gossmann et al., 2018; Ji et al., 2019), and 

varying degrees of cross-validation folds (Refaeilzadeh et al., 2009). Hence, a robust ML model should 

not only provide reasonable values based on the performance evaluation metrics, but should also be 

capable of capturing the underlying physical and semantic aspects that govern the investigated system 

(Brennan et al., 2020; Peters and Kriegeskorte, 2021). This aspect is more developed in chapter 5. An 

essential approach to verify the robustness of the ML model is to perform parametric and sensitivity 

analyses (Moussa and Owais, 2021; Razavi et al., 2021; Xu et al., 2012). It is the study of how the 

outputs of a system are related to, and are influenced by, its ‘inputs’. These types of analyses provide 

indicators on the generalization ability of the model and ensure that the system’s behaviour after 

deployment will be less affected by other phenomena and processes. Hence, this excludes the fact that 

the model’s performances are simply a combination of the variables with the best fit on the data during 

training. This, thanks to the inputs/outputs special definition in the sensitivity analysis modelling 

(Razavi et al., 2021): Inputs of interest, commonly referred to as ‘factors’, may include model 

parameters, forcing variables, boundary and initial conditions, choices of model structural 

configurations, assumptions and constraints ; Outputs may include any functions of model responses, 

including those that may vary over a spatio-temporal domain, objective functions such as a production 

or cost function in cost-benefit analysis, or an error function in model calibration.  

 

4.7 Limitations of existing methods and discussion 

In this chapter, we have reviewed several existing methods for generalization evaluation, mentioning 

the strengths and weaknesses of each of them. In this part, we analyse the main limitations of the 

existing methods and pipelines, for ML/DL models analysis and generalization evaluation benchmarks. 

This analysis will provide the main resources to develop a rather compact methodology in terms of 

analysis and leveraging of the different elements (data preparation, training pipeline, evaluation, and 

analysis) allowing a rigorous workflow for the development of a certifiable trustworthy AI. 
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4.7.1 Misunderstanding of the generalization bounds 

To generalize well beyond the training set, ML/DL models undergo analysis based on many hypotheses 

concerning what the triplet of a model, optimization algorithm, and data properties could generate. The 

good combination of the elements of this triplet could help provide an AI solution that generalizes 

better. To do so, hypotheses about the model’s complexity, effective capacity and data properties are 

made. This yields a set of theoretical and empirical analysis of the generalization ability. However, 

despite the prominent role of complexity measures in studying generalization, the empirical evaluation 

of the existing measures (cf. Sections 4.4.2 and 4.6) is usually limited to a few models, often on toy 

problems. A measure can only be considered reliable as a predictor of generalization gap if it is tested 

extensively on many models at a realistic scale (Jiang et al., 2020). In this study, the findings are 

surprising. For instance, it has been verified that one can easily capture false correlations, between 

generalization and complexity and that do not reflect more causal insights about generalization, using 

some complexity measures. Hence, an empirical verification on the use-case needs to be performed. 

Another limitation is that many norm-based measures (Bartlett et al., 2017) could negatively correlate 

with generalization specifically when the optimization procedure injects some stochasticity.  

An experimental study (C. Zhang et al., 2021) has shown that conventional generalization bounds, 

based on uniform convergence or uniform stability are inadequate for over-parameterized deep neural 

networks. Hence, several empirical studies have been performed to show how generalization could be 

evaluated in deep neural networks. This results in a set of empirical methods that could be computed to 

estimate how well the trained model will generalize to unseen data, mainly the target domain. However, 

despite extensive development spanning many decades (Anthony et al., 1999), there is growing concern 

that these bounds are not only weak (Dziugaite and Roy, 2017), but that they do not correlate with the 

underlying phenomena (approximating the most correct generalization performance). As an explicit 

demonstration of the looseness of the existing bounds, several previous studies (Hsu et al., 2021; Jiang 

et al., 2020) have shown that calculated bounds for a feed-forward NN architecture achieving a small 

test errors represent an important gap in different observations.  

Despite these limitations, the extensive analysis by (Jiang et al., 2020) have shown that measures related 

to the optimization procedures such as the gradient noise and the speed of the optimization can be 

predictive of generalization. Besides, sharpness-based measures like PAC-Bayesian bounds 

(McAllester, 2003) perform the best overall and seem to be promising candidates for further research. 

4.7.2 Practical issues preventing generalization 

In the previous sections, we have reviewed the importance of the generalizability of an ML/DL model 

in AI applications. We have seen that some problems can prevent an AI application from performing 

well on unseen data during training. This issue is the main limitation that harms ML/DL models’ 

generalization and that could prevent them from being released. There are two major sources of 

performance limitations: (1) overfitting that results from too much learning of a model or learning a 

complex model with insufficient data. The model will then perform well on the training data set and 

poorly on new data; (2) underfitting, that results from too little learning or training a model with too 

small capacity to learn the task. The model will then fail to sufficiently learn how to solve the problem 

and perform poorly on a training data set, and does not perform well on test samples. In addition to the 

overfitting and underfitting issues, several studies have investigated the main issues that can lead 

ML/DL models to under/over-fit the data. In the following, we review the common mistakes and pitfalls 

that lead to a lack of performance in ML/DL applications. This list is not exhaustive: 

● Inappropriate training objective. The loss function plays an essential role in the training of 

ML/DL model. It essentially calculates how good the model is at making predictions using a 

given set of values (input representations, model weights and biases). Hence, choosing a relevant 
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way to drive the model training is essential. Not all existing loss functions defined in the literature 

(Q. Wang et al., 2022) could fit a given targeted application. Moreover, one can build a custom 

loss function that closely matches specific solution objectives and performance criteria. 

● Ignoring outliers99. In statistics, an outlier is an observation point that is distant from other 

observations. In training data, the presence of several special cases in the data set should be 

handled carefully. One outlier could skew the distribution of results if it is ignored during training. 

In the observation of the results, the outlier may be due to just variability in the measurement or 

may indicate experimental errors. In this case, an additional evaluation or results investigation 

should be considered (Carlini et al., 2019). 

● Regularization without standardization. Standardization100 is a data preprocessing technique. 

Regularization is used to improve model performance and aims to tune the function by adding 

additional penalty term in the error function. However, when the data is not standardized or 

normalized, the regularization alone could not be enough to boost the model ability to generalize. 

To better help the regularization, it is needed to rescale the features using standardization and/or 

normalization, which will, together with regularization, make the parameters in learning 

algorithms more likely to converge to smaller values, resulting in better performances (Dauphin 

and Cubuk, 2020). 

● Inappropriate data representation. In ML/DL, models are built by observing and interpreting the 

data. Correct application of data preparation will transform raw data into a representation that 

allows learning algorithms to get the most out of the data and make correct predictions (Zhong et 

al., 2016). Hence, it is highly important to feed the data in a way that important information is 

preserved. However, the wrong representation function can result in a lack of features, miss 

formatted inputs, or high sparsity.  

● Inappropriate data in training and/or test. As discussed in this chapter, the quality of the data 

used in developing any ML/DL application is very important to produce performant models 

(Gupta et al., 2021). Nevertheless, the following(Gupta et al., 2021). Nevertheless, these issues 

can lead to a poor generalization ability of the model: 

▪ Training and target domain data are very different and distinct (different domains, different 

types, inputs format, length…), and the mismanagement of the domain shift characteristic 

will lead to poor performances. 

▪ Lack of Quality Data. (e.g. imbalanced data having more samples of a given class compared 

to others). 

▪ Noisy data. Data that contain a large amount of conflicting or misleading information 

(contradictory classes for similar entries or differences between the entries are not easy to 

capture by the model). 

▪ Dirty data. Data that contains missing values, categorical and character features with many 

levels, and inconsistent and erroneous values. 

▪ Sparse data. Data that contains very few actual values, and is instead composed of mostly 

zeros, undefined, or missing values. 

 

 
99 Another important element to be considered is the impact of edge and corner cases. An edge case takes only one parameter 

into account and analyses the impact of its various values (eg. If one feature of the data samples could impact the output 

related to that sample, then it can be considered an edge case). A corner case is defined with two or more parameters working 

together and make a significant impact on the behavior of the system. More analysis about the corner and edge cases is 

provided in the chapter related to Task 3 of the MLEAP project. 
100

 Standardization (Ali et al., 2014) typically means rescaling data to have a mean of 0 and a standard deviation of 1 (unit 

variance). Feature scaling is one of the most important data preprocessing step in machine learning. Algorithms that compute 

the distance between the features are biased towards numerically larger values if the data is not scaled. 
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▪ Inadequate data. Data that is either incomplete or biased. 

To cope with data completeness, representativeness and volume adequacy, the reader can refer to 

chapter 3 for a more detailed analysis of the state-of-the-art, relating to data qualification and 

recommendations to enhance the data preparation pipelines.  

● Inappropriate model complexity to perform the task. As explained in the previous sections, the 

model’s ability to generalize is highly correlated with its complexity as well as data qualification. 

More complex models will, in general, perform better on large training data than simpler ones. 

These models have more parameters that can be adjusted during training to get a good fit for the 

desired result. Therefore, their error rate when measured on the training data set will usually be 

lower. However, a model that is too complex can end up overfitting to random effects that are 

present only in the training data set (Barr et al., 2013). If these random effects are not present in 

evaluation and test data sets, then the model will perform poorly. To figure out if this is the case, 

the model's error rate on a validation data set is a best indicator: 

▪ A high error rate on both training and validation data indicates that the model may be too 

simple to faithfully capture any relationships present in the data. In this case, the model 

seems to have high bias (underfitting). 

▪ If the error rate is low on training data but high on validation data, then the model may be 

too complex, and hence suffers from high variance (overfitting). 

To overcome this problem, one may regularize complexity measure (Jiang et al., 2020) by adding 

it a regularizer and directly optimizing it, but this could fail due to: (1) The complexity measure 

that could change the loss landscape in non-trivial ways and make the optimization more difficult; 

(2) The existence of implicit regularization of the optimization algorithm. This makes it hard to 

run a controlled experiment since one cannot simply turn off the implicit regularization. The 

consequences should not be ignored, in (1), if the optimization fails to optimize the measure, no 

conclusion can be made about the causality; in (2), if optimizing a measure does not improve 

generalization it could be simply due to the fact that it is regularizing the model in the same way 

as the optimization is regularizing it implicitly. 

● Inappropriate evaluation metrics. Evaluation metrics are used to assess the model’s 

evolution during training and in the validation set as well. Hence, the metrics to be used 

must correspond to the objective of the application (classification or regression). In addition, 

the mean performance by the evaluation needs to be handled carefully during the metrics 

selection. For instance, in the case of recommending safe city locations to tourists, true 

positives should be prioritized. In this case, True Positive Rate or Precision should be 

preferred to Recall. Besides, not all the commonly used metrics are appropriate to reflect the 

targeted performance under evaluation, some combinations and testing practices can be 

needed (cf. Section 1.3) to ensure a more rigorous evaluation and verification. 

● Bad global minima101. Picking the bad global minima can lead to bad generalization 

behaviour, especially for models trained with SGD (S. Liu et al., 2020). To avoid the wrong 

global minima, regularization plays a central role, where complex models do not simply “get 

lucky” with the training data, but the regularization makes simple models fit the data as well 

as the global optima, and it also clears the way to make them discoverable by local methods, 

such as SGD. 

 

 
101 If the loss function is convex, standard optimization techniques like gradient descent will find parameters that converge 

towards global minima, otherwise, the optimization might lead towards local minima convergence, where loss value is 

higher than the value at global minima. 
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● Misuse of the model-driven regularizers. The misunderstanding of the assumptions about 

the input-output mappings that could be applicable only to the training data set as a limited 

sample, or mismatching different tasks in the multi-task learning-based methods that could 

lead to a competition-based learning process. 

● Bad match between the model complexity and the optimization algorithm. As for the 

evaluation metrics, not all the optimizers can lead to better results. For example, early 

stopping is useless when the error does not stabilize, and the wrong data augmentation 

function will harm the model’s performance instead of providing a larger data set for 

training. In this case, note that not all the data domains can be augmented easily, some use-

cases (e.g. air-traffic control data processing) could not benefit from neither trainable nor 

non-trainable augmentation methods. 

● The violation of data (training-validation) independence assumption. Inaccurate data 

oversampling102, data augmentation before splitting into training, validation, and test sets, 

or performing feature selection before splitting data, are all procedural errors that may lead 

to the violation of the train-test data sets independence assumption (Maleki et al., 2022). 

Hence, this would result in a performance measured not representative compared to the full 

input domain defined by the ODD.   

● Adapting a large hypothesis space. When the training algorithm is not bounded well, the 

problem to be solved becomes more and more complex. To deal with this issue, one can use 

statistical learning theory103. This latter considers methods of constructing approximations 

that converge to the desired function with an increasing number of observations. Recently, 

(Vapnik and Izmailov, 2020) have explored the Hilbert space of 𝐿2-norm functions and 

studied the convergence in the space of functions, to reduce the set of admissible functions 

in a learning process. The authors have discussed learning methods that allow reducing the 

learning space by selecting an admissible (appropriate) subset of functions and finding the 

desired approximation in this admissible subset. This method is called the “complete 

statistical theory of learning” and uses both weak and strong convergences of the Hilbert 

space (Soenjaya, 2013). 

4.7.3 Expectations from evaluation vs reality 

As discussed before, the evaluation metrics of different machine learning applications, such as MSE, 

precision, and recall, are used to measure only the technical performance of the ML/DL component. 

An analysis about how the system would interact with the user, through additional testing of the 

corresponding module can be made, and an overall idea is then drawn about the performances after the 

release.  

In the industry, some AI technologies can be meant to replace (or highly assist) a human being in several 

tasks and decision takings. Hence, these technologies are supposed to have a behaviour as close as 

possible to that of an expert of the concerned industrial domain, and this, in terms of decision-making 

and choice of the different actions necessary to perform a task. This is why the evaluation phase is so 

 

 
102

 It aims to duplicate some examples from the minority class (data samples) in the original dataset, to overcome the data 

imbalance problem.  
103

 Statistical learning theory (de Mello and Ponti, 2018) is a framework for machine learning that draws from statistics and 

functional analysis. It deals with finding a predictive function based on the data presented. The main idea in statistical 

learning theory is to build a model that can draw conclusions from data and make predictions. 
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crucial in the certification104 process of an AI that is intended to replace or complement a human effort. 

However, several empirical analyses have shown a significant gap between the behaviour of an ML/DL-

based system and that of a human. For instance, a comparison of object recognition performance by 

humans and deep convolutional neural networks in image manipulation (van Dyck and Gruber, 2020) 

and objects recognition (Ho-Phuoc, 2018) have shown that the best DL model trained for this task still 

cannot recognize correctly several images that are otherwise clear to a human eye. On the other hand, 

human-computer interactions imply that evaluation of human-facing systems, such as comment 

toxicity, misinformation detection and real-time video surveillance analysis should account for people’s 

reactions to the system (Gordon et al., 2021).  

Despite the need to bring the man-machine links closer together, there is a gap between the ML/DL 

model performances and the efficiency needed in practice. In fact, in many instances, researchers 

assessed the validity of a specific ML model by reporting its performance against traditional evaluation 

metrics, only to be later identified that such a model does not properly represent actual observations – 

despite having good fit w.r.t. the evaluation process. This can be avoided by adopting a rigorous 

validation procedure (Otles et al., 2021). Unfortunately, many of the published studies in the area of 

ML application, in engineering, do not include multi-criteria/additional validation phases and simply 

rely on conventional performance metrics such as R or R2 of the derived models (Naser and Alavi, 

2021). 

Another procedural detail is the gap in performance between the empirical evaluation metrics and 

targeted performance in practice. It is important that the model evaluation involves appropriate 

performance indicators. More precisely, the metrics and performance thresholds that are chosen need 

to reflect adequately human judgement. Standard metrics, like Mean Absolute Error (MAE) and 

accuracy, are sometimes not enough to reflect the model’s ability to generalize, or the domain specific 

(business) key performance indicators (KPIs). For example105, the enhanced use of email cannot be 

enough to measure the effectiveness of spam filter until proper isolation is done. Comments toxicity 

and misinformation detection can score highly on the evaluation pipeline but perform poorly in practice 

(Gordon et al., 2021). Thus, it is recommended to use AI/ML technical metrics in conjunction with 

business value metrics/KPIs to measure the effectiveness of ML solutions, such as the responsiveness106 

of the model answers to the business questions. Hence, when the model capabilities in the product are 

more pronounced, their influence on operational KPIs becomes greater.  

Moreover, with the rise of commercial, open-source, and user-oriented AI/ML tools, a key question 

that needs to be answered is: what constitutes a good AI/ML model? A proper answer to this question 

depends on various factors, including the fact that a good model optimally performs and describes the 

phenomenon being addressed. One possible option (Naser and Alavi, 2021) is the use of multi-fitness 

criteria (where a series of metrics are checked on one problem) to ensure the validity of ML models, as 

their combination may overcome the limitations of each individual metrics. Furthermore, several key 

engineering safety principles need to be handled, along with ML safety issues due to dependability107 

limitations (Mohseni et al., 2021) such as generalization errors. Several research activities are launched 

in ML safety investigation and implementation, mainly with the perspective of enhancing performance 

 

 
104 Note that the certification process of AI technologies is not directly considered in the scope of the MLEAP project. This 

latter focusses on complementing the W-shaped process steps for ML/DL development and evaluation even more 

implementation, in order to make conclusions that could help the certification process.  
105

 https://vitalflux.com/different-success-metrics-for-ai-ml-initiatives/  
106 Ability of the model to bring an answer and which is relevant to the input question. 
107

 It refers to the model’s ability to minimize prediction risk on a given test set [Mohseni et al. 2021]. Unlike code-based 

algorithms, the dependability of ML algorithms is bounded to the model’s learning capacity and statistical assumptions such 

as independent and identically distributed on relation of source and target domains. 

https://vitalflux.com/different-success-metrics-for-ai-ml-initiatives/
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and robustness, by adapting robust network architectures (Djolonga et al., 2021) or robust training 

process (Mohseni et al., 2021), and the run-time error detection for uncertainty resolving (Geifman and 

El-Yaniv, 2019, 2017). 

Finally, aligning evaluation metrics with reality is really important to promote AI adoption in the 

industry (Gordon et al., 2021). The relation between ML models’ performance and user-facing 

performance is indicative of a larger disconnection between researchers working on machine learning 

and human-computer interaction (HCI), while evaluating their work (Muller et al., 2021). In ML, a 

large set of technical metrics is used, where most of them are based on generalization errors. On the 

other hand, HCI systems (Sinha et al., 2010) report user-facing experience, developing metrics (Ledo 

et al., 2018) that measure direct user response or opinions such as agreement rates (Hertzum and 

Jacobsen, 2001), Likert scales (Nataraja and Raju, 2013), and behavioural outcomes (Kostakos and 

Musolesi, 2017). In order to assess the acceptability of the technical performances of a system, Kay et 

al. (Kay et al., 2015) have introduced a new measure called Acceptability of Accuracy based on 

measurements of classifier accuracy. The objective is to assess the user tolerance to the uncertainty 

degree of a given classifier (i.e. is the 85% of accuracy is acceptable? And how the remaining 15% of 

uncertainty would affect the user experience and tolerance?). The proposed tool enables to 

systematically select an objective function to optimize during classifier evaluation, in addition to 

insights into how to design user feedback in interactive classification systems. 

In the same line of the technical performances evaluation of ML/DL models, the safety of the systems 

integrating these models needs to be evaluated, in most of critical applications of AI, including the wide 

area of aeronautics. In this case, AI systems are submitted to a consistent evaluation and validation 

pipeline (Brunton et al., 2021). Recently, the outcomes (Alecu et al., 2022) of one of the most promising 

projects in aeronautics, called DEEL108 (DEpendable Explainable Learning), have provided an 

overview of several analysis required for the assessment of ML models’ capacity to comply with 

existing safety standards. Such that various methods can be considered (and even combined) to attempt 

to fill the gap identified between ML performances and safety requirements, such as the conformity of 

predictions, the OOD and robustness monitoring, the availability, and so on. Two practical examples 

from the railway and automotive industries have been explored, showing that ML performances are 

currently far from those required by safety objectives. Several techniques aimed at reducing the error 

rate of ML components have been provided, such as: model diversification, monitoring, classification 

with a reject option, conformal prediction, and temporal redundancy. 

4.7.4 ML/DL testing limitation and challenges 

As described in Section 4.6.3.1, a massive testing109 approach can be adopted to make sure that the 

trained model and/or the module that includes a trained AI model, has the expected behaviour in a 

defined scenario. To make sure the ML/DL component testing gets as close as possible to the reality of 

the targeted application, we need to verify that: 

1) We have enough “qualified” and labelled data as needed for the whole testing scenario; 

2) The testing scenarios should include as much as possible system failures related to the 

implemented software. Hence, a continuous and resource-consuming testing is required; 

 

 
108

 https://www.deel.ai/  
109 Like in software engineering, in order to validate the system, a big bang testing needs to be implemented and run. This 

can include different types of testing, such as functional testing (unit-testing, integration…) and non-functional testing 

(security, performance, usability…).  

https://www.deel.ai/
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3) The testing schemes should include “performance evaluation” indicators and scenarios to test the 

correct behaviour of the ML/DL model and the system  module that embed it and/or modules that 

are related to it  as well;  

Testing in software development identifies explicitly which parts of the source code fails and it provides 

a relatively coherent coverage measure (e.g., lines of code covered). It is not that simple when it comes 

to the ML/DL model, where other criterion related to “explainability” (Arrieta et al., 2020) can be 

involved. 

 

Despite the difficulties related to the massive testing of ML/DL components, this approach still 

represents important elements and attention points adopted from software engineering. In particular, it 

helps in two ways: (a) Quality assurance, whether the software works according to requirements; and 

(b) Identify defects and flaws during development and in production. Both verifications (a) and (b) could 

apply to ML/DL modules meant for critical systems. To do so, several challenges need to be solved: 

1) The lack of transparency, due to the “black box” model consideration (mainly in deep learning); 

2) The indeterminate modelling/results outcomes, due the use of stochastic training algorithms (e.g. 

SGD). This latter can provide two different models for two training times at the same data set, 

due random local/global minima and random initialization of a same network connections. Hence, 

a small difference on the predicted scores can have an important impact on the results (e.g. 

predicted probability for a given class), which prevent models from reproducing the same results 

(or output scores) after (re)training; 

3) The unclear/insufficient tests coverage, due to lack of well-defined methods and tools to define 

testing coverage for machine learning models. Since in ML/DL, the “Coverage” does not refer to 

lines of code as it does in software development. Instead, it might relate to concepts like input 

data and model output distribution; 

 

These issues make it difficult to understand the reasons behind a model’s low performance, interpret 

the results, and ensure that the model will work, even when there is a change in the input data 

distribution (data drift) or in the relationship between our input and output variables (concept drift). 

These concepts relate more to the robustness (cf. Section 4.2.4) and generalizability (cf. Section 4.2.5) 

of the trained model. Unless being combined with a well-defined evaluation pipeline, we believe that 

the ML/DL testing is not enough to build a safe AI module properly. 

4.8 Towards application independent ML development pipeline to promote 

generalizability 

As mentioned before, the main objective of this section is to analyse the ML/DL state-of-the-art 

concerning model development and training to promote the generalization after testing. So far, we 

analysed several methods and common practices allowing, on one hand, optimal training and on the 

other hand a consistent evaluation, by emphasizing the expectations of the target application. However, 

in the previous section we identified several limitations of existing approaches preventing the produced 

models from generalizing their performance to unseen data sets, and farther from being released. In 

order to come with recommendations and solutions to cope with those limitations, we revisit the 

pipeline for ML/DL models development, training, evaluation and enhancement after implementation 

in the target system. In the following, we will first explain the main research questions addressed so far 

and how we aim to deal with each issue, providing the identified ways that can lead to answers in 

industry. Further, we propose a use-case independent approach, including selected methods, for the 

generalization assessment and evaluation. 
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4.8.1 Research questions and roadmap 

How to deal with overfitting/underfitting in industry? 

Overfitting is a common problem in several supervised machine learning tasks. It is noticed when a 

learning algorithm fits all the training data samples so well that noise and the particularities of the 

training data are memorized too. This results in a drop in performance when the model is tested on an 

unknown data set (Jabbar and Khan, 2015). On the other hand, underfitting is noticed when the model 

is incapable of capturing the variability of the data, which is the result of using a model with a low 

capacity to describe a given problem. The common point is that both overfitting and underfitting lead 

to deterioration of the generalization properties of a resulting ML/DL solution (Ying, 2019).  

 

To deal with this problem, several techniques have been developed to help the ML/DL models 

generalize better. Although the original model may be too large to generalize well, regularization 

techniques help limit learning to a subset of the hypothesis space, where resulting models will have 

manageable complexity (C. Zhang et al., 2021). By combining different methods, it makes the model 

generalize better, independently of the generalization type (domain-based, multi-tasking, OOD-based): 

 

- The regularization methods, could be data-driven (transformations and representation adaptation) 

or model-driven (making assumptions about the input-output mapping and using specific 

activations), even based on the training process through assumptions on the objective function, 

or based on the optimization algorithm that aims to converge to the best global minima. Hence 

specific initialization and warm-up or pre-training options could be adopted, or by using specific 

functions in the weight update (e.g. weight sharing) as well as stopping the training at the best 

moment to preserve performance. Even if pre-training can help boost model performance (e.g. 

using a multi-lingual model pre-trained to solve a question-answering task in a specific language), 

pre-trained models are also often misused to deal with problems where training from scratch or 

using thorough domain adaptation, transfer learning, or multi-task learning methods would be 

worth trying. Other methods based on modifications of the network architecture (reduction 

methods) or the volume of the data set (expansion) have also been discussed and their advantages 

and applicability depend highly on the target application. All these methods can be involved in 

the performance boosting of an ML/DL model that is not able to generalize to unseen instances 

during training.  

 

How to bridge the gap between experimentation and industrial expectations?  

To know if the model generalizes effectively, several performance evaluation metrics have been 

proposed for both regression and classification applications. A lot of work is done so far in ML/DL 

evaluation metrics (Roelofs, 2019). All the existing evaluation metrics are based on the model 

predictions. These existing evaluation metrics are based on the model results. Others from (ISO/IEC, 

2022b) described robustness metrics based on the model performance over part of the input domain. 

Such that the expected outputs are compared to the ones produced by the model, and the evaluation 

metric is built on this observation. The number of accurate classifications or ranks is also assessed to 

find out if the model is performant enough. Industrial development pipeline focuses on a set of 

performance and robustness indicators (KPI) that is not always expressed by classical ML/DL 

evaluation pipelines. In (De Prado, 2018), most of the ten reasons why AI applications fail in industry 

are derived from poor practices related to the experimental pipeline and which is not adapted to the 

target domain. As we can understand, an infinite number of evaluation metrics could be used based 

only on the model results and behaviour during and after the training. However, none of the existing 
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methods have focused on the reasons that make the model’s generalizability weak and hence an adverse 

(limited) user experience. 

 

To bridge the gap between the empirical and industrial processes, we need to leverage the evaluation 

metrics in the way that they reflect the targeted performances, and integrate the KPIs in the training 

objectives and the evaluation pipeline as well: 

 

- To evaluate the model results in a more rigorous way, one interesting conclusion by Caruana et 

al. (Caruana and Niculescu-Mizil, 2004) is that “Different performance metrics yield different 

tradeoffs that are appropriate in different settings. No one metric does it all, and the metric 

optimized to or used for model selection does matter.” With this in mind, recent works in ML/DL 

models evaluation recommend the utilization of multi-fitness criteria (Naser and Alavi, 2020; 

Yates et al., 2020) where a series of metrics are checked on one problem, to assess the validity of 

AI models, as these metrics may overcome some of the limitations of individual metrics. Finally, 

the industrial KPIs need to be considered seriously to prevent adverse user experiences after the 

ML/DL application release.  

 

How to cope with common data processing and evaluation mistakes? 

In the previous sections, we briefly reviewed the different pitfalls that could lead to weak model 

robustness. We believe that the evaluation process of ML/DL applications should include the evaluation 

and adaptation of traditional mismanagement and manipulations undertaken in the model building 

pipeline, data analysis and/or pre-processing, and the evaluation process as well, to have a better return 

on investment on the results of the built model, in terms of generalization for the target application. 

Besides, despite being insufficient to address all the potential ML/DL model errors and failures, ML 

validation approaches provide important elements to construct model evaluation and testing scenarios, 

such as the data qualification and identification of the expected behaviour (i.e. What kind of outputs is 

expected for every kind of input?). 

 

To ensure a more rigorous evaluation pipeline, we suggest that the complete roadmap, from the data 

preparation and qualification step to the model validation and release, benefits from some software 

engineering best practices, such as the scenarios building for test, and the iteration on the process of 

data set improvement, evaluation benchmarks as well as the verification and validation process of the 

final trained model: 

- To construct a more rigorous pipeline, we provide a generic framework for data preparation, 

model training and evaluation pipelines including most of the best practices we identified during 

the state-of-the-art analysis, in addition to suggestions on how to deal with common limitations 

in existing processes. 

4.8.2 Generalization Guarantees Selection 

The objective is to provide assurance that the trained model will perform well on unseen data. The 

generalization performance assessment aims to: 

- Ensure a minimum gap between the generalization error and the test error; 

- Provide generalization guarantees on the full domain of application; 

It is a concern that has to be taken into account during the full development of the machine learning 

solution and each step of the model development will have to demonstrate the level of performance 

according to the different criteria of the target application. The model performance should be validated 

according to requirements that are verified in each phase of the development. 
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Any hypothesis that correctly classifies all the training examples, or that gives the most optimal 

approximation of the expected value is considered consistent. However, some issues should be handled 

carefully, including: 

• The training data that may be noisy so that there is no consistent hypothesis at all. 

• The real target function that may be outside the hypothesis space and has to be approximated. 

• A rote110 learner and the overfitting learner, that simply output 𝑦 for every 𝑥 such that (𝑥, 𝑦) ∈𝐷 
are consistent but fail to classify or predict a correct scoring value any 𝑥 not in 𝐷 (out of 
distribution samples). 

 

As discussed previously, generalization performance is affected by:  

- The adequacy between the targeted function complexity and the algorithm capacity; 

- The assumption taken on the data distribution and the data quality, such as the completeness and 

the representativeness; 

- The selected hyper parameters; 

- The training process and the loss function selection; 

- The trained model robustness and stability that indicate how the generalization can be achieved. 

Hence, in order to choose the suitable bounds, the target data and algorithm need to be 

considered. 

 

4.8.2.1 Data impact 

A strong assumption made at the beginning is that the data sets available are issued from the same 

distribution than the real world. Section 3 details elements that enable to provide recommendations that 

help to verify that the operational domain concerned by the model is properly covered by the data sets. 

Besides, the volume of data needed to properly train the model is also key. A priori approach can help 

estimate this volume according to the complexity of the task to be performed (cf. section 4.5.4.1), in 

addition to the aimed model capacity and the number of parameters involved. . However, in a high 

complexity setting, it is difficult to assess the volume needed as many different hypotheses can be used 

to draw the relationship between input and output data (for example the groups of symmetries) are 

unknown.  

 

4.8.2.2 Model impact 

At this stage, we aim to leverage some functions to help select potential models for the target task 

learning, having in mind its ability to generalize. Theoretical generalization bounds are great support to 

identify the right hypothesis to be selected. A summary table can be found in (X. Li et al., 2018). 

Here, the adequacy between the targeted function and the complexity of the algorithm is an important 

step and will assess the risk for the model to overfit or underfit. It is in this step that the hyperparameters 

of the models are defined using the validation data set for example using bias-variance tradeoff or cross 

validation techniques. Whatever the adapted method is, the objective is the same and should ensure 

that: 

 

 
110 A rote learning (Foote, 2022) corresponds to a learning based on instructions. In this kind of learning, the model is trained 

to memorize a set of rules to make a correct correspondences between inputs and outputs (Rong et al., 2021), while its 

memorization capacity is evaluated using metrics such as Rademacher complexity and Vapnik-Chervonenkis (VC) 

dimension. 
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- The model will have high stability regarding the data selected for the training phase (cf. section 

5.2);  

- The volume of data of 𝐷𝑡𝑟𝑎𝑖𝑛 is sufficient to train the model and answer performance 

requirements, such as robustness under adversarial attacks (B. Li et al., 2022) or generalization 

error; 

- The metrics are properly identified to measure the performance of the model; 

- The loss function is properly selected and can help to minimize the cost; 

- The training strategy is identified thanks to generalization bounds minimization. 

 

In terms of theoretical evaluation of generalization, we have previously reviewed different classes of 

methods to correctly assess model’s generalization error (cf. Section 4.4.2). For example, Rademacher 

complexity (Bartlett and Mendelson, 2002) is commonly used to determine how well a model can fit a 

random assignment of class labels. The VC-dimension (V. Vapnik, 1999) is a measure of the 

capacity/complexity of a learnable function set. To make sure the chosen method can correctly reflect 

the model performance, a common practice is to adapt the one that is recommended to the model’s 

architecture. Bounds based on uniform convergence provides guarantees that holds for any hypothesis 

and bounds (with probability 1 − 𝛿) the true risk by its empirical risk plus a penalty term that depends 

on the number of training examples, the complexity and the value of 𝛿. Bounds based on performance 

stability deal with the dependence of the model trained by a learning algorithm by considering the 

stability of the algorithm with respect to different datasets. The main difference with the bounds based 

on uniform convergence is the incorporation of regularization term and removal of the complexity 

argument; it can be used when hypothesis classes are difficult to analyse with classic complexity 

argument (such as support vector machines where VC Dimension is infinite). The robustness-based 

generalization bounds are based on the capability of the model to keep its performance under several 

conditions (Gonen and Shalev-Shwartz, 2017; Hardt et al., 2016; Kuzborskij and Lampert, 2018); those 

bounds deal with larger class of regularizers than stability and its geometric interpretation makes 

adaptation to non-standard settings possible such as non-i.i.d. data. For instance, Chris Rohlfs (Rohlfs, 

2022) proposed to categorize generalization under several levels of abstraction, including sample 

generalization where test cases are drawn from the same population as training data set, distribution 

generalization where test cases are drawn from new populations, and domain generalization where the 

input-output relationship has changed. Another criterion is confidence dimension (R. Wang et al., 2022) 

which is used to measure deep model’s generalization ability and to theoretically calculate the upper 

bound of generalization based on the conventional VC-dimension and Hoeffding’s inequality.  

 

As a result, in table 4, we show a classification of commonly used bounds that have been selected, w.r.t. 

several model architectures, based on their applicability analysis (cf. sections 4.8.2.1 and 4.8.2.2), 

general formulation and genericity. 

 

We plan to follow and assess the selected bounds (difficulty to calculate, applicability limitations and 

assumptions validation…) for the subsequent evaluation steps of this project through use cases. 

 

Algo. Ref. Bound 

CNN (Lin and Zhang, 
2019) 

𝑅𝒟(𝐹𝐶) ≤ �̂�𝑆,𝑙𝜂(𝐹𝐶) + 𝒪((
‖𝑋‖𝐹ℛ𝐶
𝜂

)

1
4

𝑛−
5
8 +√

ln(1/𝛿)

𝑛
) 

https://arxiv.org/search/cs?searchtype=author&query=Rohlfs%2C+C
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Algo. Ref. Bound 

RNN (Chen et al., 

2019) 
𝑅(𝑓𝑡) ≤ �̂�(𝑓𝑡) + �̃� (

𝐿 × 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

√𝑚
+ 𝐵√

log(1/𝛿)

𝑚
) 

NN for 

classification 

(P. Jin et al., 

2020) ℇ(𝑓) ≤
√𝑑. (1 − 𝜌𝜏)

min(𝛿0, 𝜅𝛿𝜏)
= 𝛼(τ). 𝐶𝐶(𝜏) 

NN 

 

(Alquier, 2021) Catoni’s bound (PAC Bayes) 

ℙ𝑆 (∀𝜌 ∈ 𝒫(Θ), 𝔼𝜃~𝜌[𝑅(𝜃)] ≤ 𝔼𝜃~𝜌[𝑟(𝜃)] +
𝜆𝐶2

8𝑛
+
𝐾𝐿(𝜌||𝜋) + 𝑙𝑜𝑔

1
𝜖

𝜆
) ≥ 1 − 𝜖 

(Alquier, 2021) 
(McAllester, 

1998) 

Mc Allester’s bound 

ℙ𝑆(∀𝜌 ∈ 𝒫(Θ), 𝔼𝜃~𝜌[𝑅(𝜃)] ≤ 𝔼𝜃~𝜌[𝑟(𝜃)] +
√𝐾𝐿

(𝜌||𝜋) + log
1
𝜖 +

5
2 log

(𝑛) + 8

2𝑛 − 1
) ≥ 1 − 𝜖 

(Alquier, 2021) 

(Seeger, 2002) 
Seeger’s bound 

ℙ𝑆 [∀𝜌 ∈ 𝒫(Θ), 𝔼𝜃~𝜌[𝑅(𝜃)] ≤ 𝑘𝑙
−1 (𝔼𝜃~𝜌[𝑟(𝜃)] |

𝐾𝐿(𝜌||𝜋) + log
2√𝑛
𝜖

𝑛
)] ≥ 1 − 𝜖 

(Alquier, 2021) 

(Tolstikhin and 
Seldin, 2013) 

Tolstikhin and Seldin’s bound 

ℙ𝑆

[
 
 
 
 

∀𝜌 ∈ 𝒫(Θ), 𝔼𝜃~𝜌[𝑅(𝜃)] ≤ 𝔼𝜃~𝜌[𝑟(𝜃)] +
√
2𝔼𝜃~𝜌[𝑟(𝜃)]

𝐾𝐿(𝜌||𝜋) + log
2√𝑛
𝜖

2𝑛
+ 2

𝐾𝐿(𝜌||𝜋) + log
2√𝑛
𝜖

2𝑛

]
 
 
 
 

≥ 1 − 𝜖 

Fully connected NN (Arora et al., 

2018) 

�̂�𝛾(𝑓𝐴) + 𝑂̃

(

 
 √
𝑐2𝑑2max

𝑥∈𝑆
‖𝑓𝐴(𝑥)‖2

2∑
1

𝜇𝑖
2𝜇𝑖⟶
2

𝑑
𝑖=1 

𝛾2𝑚

)

 
 

 

Two class classifier (Anthony, 2004) 

𝑒𝑟𝑃(𝑓) < 𝑒𝑟𝑆(𝑓) + √
8

𝑚
((𝑛 + 𝑘 − 1) ln (

2𝑒𝑚𝑘

𝑛 + 𝑘 − 1
) + ln (

4

𝛿
)) 

Supervised learning (Neu and 
Lugosi, 2022) 

|𝔼[gen(𝑊𝑛 , 𝑆𝑛)]| ≤
√
4𝐻(𝑃𝑛)𝔼 [‖𝑙(̅. , 𝑍)‖∗

2
]

𝛼𝑛
 

SVM (Pac Bayes) (Tang et al., 
2012) 1

𝑛
∑𝑙(𝜌ℎ𝑤(𝑥𝑖 , 𝑦𝑖)) + 3𝐵𝑙

√log
2
𝛿

2𝑛

𝑛

𝑖=1

+
2𝐿Λ

𝑛
√∑𝑘(𝑥𝑖 , 𝑥𝑖)

𝑛

𝑖=1

× {
√𝑒(4 log 𝑐)

1+
1

2 log 𝑐 , 𝑖𝑓𝑝∗ ≥ 2 log 𝑐

(2𝑝∗)
1+

1
𝑝∗𝑐

1
𝑝∗, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

γ-uniformly stable 

learning algorithm 

(Feldman and 
Vondrak, 2018) E

�̅�~𝒫𝑛
[(ℰ�̅�

←𝒫[𝐿])
2
] ≤ 𝛾2 +

1

𝑛
 



 

MLEAP deliverable Phase 2 - Interim Public Report PAGE 184 

 

Algo. Ref. Bound 

DNN (Arora et al., 

2018) 

�̃�

(

 
 √
ℎ𝑑2max

𝑥∈𝑆
‖𝑥‖∏ ‖𝐴𝑖‖2

2 ∑
‖𝐴𝑖‖𝐹

2

‖𝐴𝑖‖2
2

𝑑
𝑖=1

𝑑
𝑖=1

𝛾2𝑚

)

 
 

 

(Hardt et al., 

2016) 
𝔼[𝑅[�̅�𝑇]] ≤ 𝔼[𝑅𝑆[𝑤∗

𝑆]] +
𝐷𝐿

√𝑛
√
𝑛 + 2𝑇

𝑇
 

(Lei et al., 2022) 𝑅𝐷(𝐴(𝑆)) ≤ Ω + √4ΩΔ+ 8Δ + 𝜖, 
where 

Ω = 𝜖 + √
1

2(1 − 𝜂)𝑚
log
1

𝛿
, 

Δ = 𝜂 log
𝑒

𝜂
+
1

𝑚
log
2

𝛿
 

CNN (Arora et al., 
2018) 

𝐿0(𝑓�̃�) ≤  �̂�𝛾(𝑓𝐴) + 𝑂̃

(

 
 √
𝑐2𝑑2max

𝑥∈𝑆
‖𝑓𝐴(𝑥)‖2

2∑
𝛽2(⌈𝜅𝑖/𝑠𝑖⌉)

2

𝜇𝑖
2𝜇𝑖⟶
2

𝑑
𝑖=1 

𝛾2𝑚

)

 
 

 

penalty linear 

regression models 

(Montiel Olea et 
al., 2022) 

�̅�𝑟(ℙ𝑛, ℙ)
𝑟 ≤

𝐶

√𝑛
, 

𝐶 ≔ (180√𝑑 + 2 +√2 log (
1

𝛼
))diam(sup(ℙ))

𝑟
 

Table 4: Theoretical generalization bounds 

 

4.8.2.3 Generalization evaluation 

The generalization error can be expressed as follow: 

 

𝐺𝐸(𝑓𝐷𝑡𝑟𝑎𝑖𝑛) = ∫ 𝑙
𝑥,𝑦

[𝑓𝐷𝑡𝑟𝑎𝑖𝑛(𝑥), 𝑦]𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦(𝑥, 𝑦) ∈ (𝑋 × 𝑌) 

 

Where 𝑓𝐷𝑡𝑟𝑎𝑖𝑛(𝑥) is the predicted output provided by the trained model and 𝑝(𝑥, 𝑦) the distribution on 

the domain (which is not fully known) defined by the ODD.  

To approximate this error, we introduce the test error defined by: 

𝑅𝐷𝑡𝑒𝑠𝑡(𝑓𝐷𝑡𝑟𝑎𝑖𝑛) =
1

𝑛𝑡𝑒𝑠𝑡
∑ 𝑙

𝑛𝑡𝑒𝑠𝑡

𝑖=1

[𝑓𝐷𝑡𝑟𝑎𝑖𝑛(𝑥𝑖), 𝑦𝑖] 

 

From statistical theory, we can say that the correctness of this approximation is strongly related to the 

volume and the quality of data in 𝐷𝑡𝑒𝑠𝑡, as we need to take into account the associated confidence 

interval (which is correlated to the distribution and the volume of test data). 

As far as the observations are complete and representative of the targeted distribution and we can 

demonstrate the data from 𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑡𝑒𝑠𝑡 are issue from the observations distribution, the conclusions 
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that are done using this approach are generalizable to the full domain and can be used to guarantee the 

average results on unseen data defined by the ML ODD111. 

We can apply this approach for the different metrics which are relevant versus the targeted function 

with the objective to provide for the selected metrics the guarantees that the probability of a metric 𝑚𝑖, 
to achieve an expected performance 𝑝𝑒𝑟𝑓𝑜𝑖 is greater than the expected probability 𝑅𝑒𝑞: 

 

𝑃(𝑚𝑖 > 𝑝𝑒𝑟𝑓𝑜𝑖/𝑥) > 𝑅𝑒𝑞, ∀𝑥 ∈ 𝑋 

 

Nevertheless, it is expected to provide guarantees that the model is properly generalizing locally, 

meaning that the probability to obtain a correct result is not impacted by a special area of the full domain 

(for example while being close to a decision boundary or in a corner case). This aspect is developed in 

Chapter 5 where robustness and stability are analysed in depth. We can note the data representativeness 

and completeness are helpful in the identification of the area of interest for this analysis. 

 

Finally, the assessment of the generalization ability of a trained model has to be done locally and 

globally regarding the parameters used to define the ODD. The global performance of a model is not a 

guarantee that the model is performing at an acceptable level in all conditions, especially for the one 

having a low probability of occurrence. This is further developed in section 4.8.4.2. 

 

Figure 44, is an illustration machine learning pipeline and some activities useful for the generalization 

concerns 

 

 
Figure 44. Illustration of the machine learning model development112 

 

 

 
111 Note that we made several assumptions; in particular, we assume new data samples to be independent and drawn from 

the same distribution as the training data. However, in many real-world scenarios data samples are not entirely independent, 

and data used during training does not always come from the same distribution as that encountered later during deployment. 

(Lust and Condurache, 2020) is analyzing several methods to detect out of distribution samples 
112 Based on the ML pipeline in a nutshell: https://www.altexsoft.com/blog/machine-learning-metrics/  

https://www.altexsoft.com/blog/machine-learning-metrics/
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4.8.3 Methods Applicability Analysis 

Generalization guarantees aim to provide evidences that the trained model will provide correct outputs 

(with a certain level of accuracy) for all inputs of the entire ODD. Hence, we: 

- Need to show a distribution of the observations that is close enough to the one of the real target 

domain, and adapted to the expectation purpose (see Section 3); 

- Ensure that the right adequacy between the hypothesis space selected and the targeted function; 

- Ensure that the trained model is correctly optimized; 

- Ensure the absence of overfitting, underfitting and bias of the trained model by introducing 

metrics of performance evolution during the training process; 

- Analyse the stability of the model w.r.t the training data set content during the training process;  

- Assess the generalization performance of the trained model using statistical theory results such 

as Chernoff Bound to estimate the Generalization error based on the test error (Chernoff, 1952): 
 

If |𝐷𝑡𝑒𝑠𝑡| ≥
1

2𝜖2
log (

2

𝛿
) then with the probability 1 − 𝛿 the difference between the 

generalization error and the test error is at most 𝜖. 
 

As this bound is growing exponentially with the tightness of the difference and the guarantee113 

around, we will use bounds identified in the literature and applicable to the use cases; 

 

- Dive into the local generalizability of the trained model using for example data set margin 

calculations to assess the thickness of decision boundaries and area to focus on the local 

generalization performance assessment. This analysis will potentially provide guarantees 

depending on the input (using what is presented in Chapter 3 and 5); 

- Investigate information bottleneck framework and multi-view to bound generalization error 

through input compression bound (Shwartz-Ziv and Tishby, 2017; Yan et al., 2023). 

 

4.8.4 Generic evaluation approach 

4.8.4.1 Pipeline definition 

Following the general pipeline for the development and release of machine learning and deep learning 

models, as defined in Figure 29 of Section 4.2.1 and Figure 44 of Section 4.8.2.3, and the requirements 

discussed previously (for data preparation, generalization guaranty and verification pipelines), we 

consider the training, evaluation, and implementation steps, to provide a workflow promoting 

generalizability of implemented models. Putting ahead the best practices and potential means to avoid 

common mistakes (cf. Section 4.7.1), we define a domain-independent approach for ML/DL 

applications design and evaluation. Figure 45 shows the different steps and loops that we suggest 

building an appropriate data optimization, training-evaluation and performance verification framework, 

to cover most of the ML-related steps of EASA’s W-shaped process. 

 

 

 
113 for example “we need closely 50 000 data to statistically guarantee a difference of 10−2 with a 90% probability” 
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Figure 45. A general framework for ML/DL models development and evaluation, including a priori evaluation of data, metrics, and 

generalization bounds, and a posteriori evaluation after training, which is built around the model optimization and verification 

before/after implementation. 

 

Figure 45 shows three main loops, loop 1 corresponds to data optimization and qualification, loop 2 to 

the model design optimization, and loop 3 corresponds to the training of the model and its optimization 

before putting it into production.  

(1) After the data is collected, it needs to be evaluated and qualified based on a set of metrics and 

practices (cf. section 4.5.4.1) w.r.t. the target application. This evaluation includes two main steps: 

a. the assessment of the minimal size of data set needed. This should be performed early 

enough to ensure that data collection activities are launched if needed;  

b. the data quality evaluation, where the completeness and representativeness are some of the 

features that will be verified. Targeted performances could also be analysed, independently 

of the models and the training algorithm (derived from section 3). 

After these two evaluation steps, a set of operations, like data augmentation, processing, cleaning 

can be performed when needed. Finally, the data is then divided into at least three sets, for 

training, testing and evaluation; 

 

(2) Once the model architecture is chosen, it should be developed and adapted to deal with the target 

application constraints, such as : data constraints (e.g. data size and type, alignment and 

independency between training and testing sets …); the mappings between the inputs and outputs; 

as well as the generalization bounds (cf. Section 4.4.2) that provide signals on the ability of the 

trained model to generalize to unseen data after training; in addition to the abstraction of targeted 

performance through a well combined set of evaluation metrics (cf. Section 1.3). Furthermore, 

some known elements that could influence the models results/performance should be anticipated. 

For instance, several regularization and model adaptation methods (cf. Section 4.5) can be used 

in the model level, and other methods (e.g. data expansion and evaluation) can be used to better 

construct the training data sets (cf. Section 3). Finally, factors that could change the inputs 
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structure or included information (e.g. background noise on speech data, fog of dust on camera 

for image data) need to be included in the input features description and/or representations 

learning; 

 

(3) When loop (2) is completed, the model and the data are qualified for running. Then, the model is 

trained on the optimized data set. To do so, a benchmark including a set of industrial KPIs, 

evaluation measures, and acceptability criteria (e.g. threshold values on every metric) need to be 

defined for the target task to be performed effectively. A posteriori evaluation of the trained model 

is then performed to ensure that it meets the industrial objectives and the evaluation standard as 

well. In this crucial step, measures defined in Section 5.3 can be adapted to match the target 

application. Adapted loss functions and objective functions should to be used as recommended in 

the state of the art (Q. Wang et al., 2022; Zhu et al., 2022).In this crucial step, measures defined 

in Section 1.3 can be adapted to match the target application. Adapted loss functions and objective 

functions need to be used as recommended in the state of the art (Q. Wang et al., 2022; Zhu et al., 

2022); 

 

(4) The post implementation evaluation aims to verify the trained model and its ability to bear the 

complete process on which it is implemented (i.e Embedding system, submodule, whole system 

providing intermediate results …). This verification, under influencing elements of the system 

and the implementation environment is crucial. It is needed to verify: 

a. If performances are considerably deteriorated, the influencing factors should be taken into 

consideration in the adaptation loop. Hence, we could get back to model adaptation step, 

training, and evaluation; 

b. Otherwise, these elements can be included before training (in step 3), to ensure good 

performance after implementation, and less impact on the released model. 

 

Note that this process is designed for an offline model training setting. It applies to both supervised and 

unsupervised model development, and can be farther extended to online training settings (e.g. lifelong 

learning frameworks). Hence, depending on the target application and the task being addressed, our 

evaluation of ML/DL models is two folds:  

A. A priori evaluation. Where the listed development and design pitfalls (cf. Sections 4.7.1 and 

4.7.2) and mishandlings of the task (cf. Section 4.7.3) should be evaluated, in order to 

prevent harmful learning and development process of the model, as well as the 

generalization guarantees evaluation and bounds identification. Finally, with respect to the 

target system requirements, a hypothesis on the performance requirements of the ML/DL 

model should be made;  

B. A posteriori evaluation. Where a set of technical metrics (cf. Section 1.3) should be used, 

w.r.t. target task, along with a set of the domain specific (business) key performance 

indicators that verify how well the model can meet the expectations of the final application, 

in addition to the generalization bounds verification. Finally, the hypothesis on the 

performance requirements of the ML/DL model will be either verified, and hence validate 

the resulting model, or compared to the performance of the obtained model and then allow 

to identify ways to optimize the model better.   

4.8.4.2 Target application definition 

Based on the pipeline defined in the previous section (cf. figure 43), the targeted application needs to 

be defined in terms of data inputs, processors, and expected outputs. Hence, for a data set 𝐷, we need 
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to define a function 𝑇𝑓 representing a series of transformations applied to every instance 𝑑 ∈ 𝐷 to put 

it into an independent input space 𝑋 and a dependent output space 𝑌: 

𝐷
𝑇𝑓
→   (𝑋, 𝑌), 𝑤𝑖𝑡ℎ 

𝑇𝑓(𝑑) = (𝑥, 𝑦), 𝑎𝑛𝑑𝑥 ∈ 𝑋𝑎𝑛𝑑𝑦 ∈ 𝑌 

 

This transformation function can include a series of data analyses that will be performed to identify 

whether there is a need for a data augmentation (generation and expansion), after assessing the quality 

and quantity of data in our possession (cf. Section 4.5.4). This step will give some evidence of how the 

data will be processed, to fit into the model’s architecture. A representation computation method will 

be then used in order to transform the data set as a part of the global function 𝑇𝑓. Next, we define the 

important elements that constitute an AI pipeline designed for the target application 𝑇: 

- Given a model 𝑓 ∈ 𝐹, the input space 𝑋, and the output space 𝑌, we define the target application  

𝑇 as a system of 8 elements: 

𝑇 = 

{
 
 
 
 

 
 
 
 
𝑓 ∈ 𝐹,(1)

𝑋 ∶  𝑥𝑖 = [𝑥𝑖
0, … , 𝑥𝑖

𝑛],(2)

𝑌 ∶  𝑦𝑗 = [𝑦𝑗
0, … , 𝑦𝑗

𝑚],(3)

𝑓:𝑋
𝑓(𝑥)
→    𝑌 , (4)

𝑀 = {𝑚1, … ,𝑚𝑘},(5)

𝐵 = {𝑏1, … , 𝑏𝑙},(6)

𝑏𝑡(𝑚𝑡 ∘ 𝑓(𝑥𝑡)) ∈ {0, 1}(7)

𝐸 = {𝑒1, … , 𝑒𝑧; (𝑒𝑖⊙𝑥𝑖) = 𝑥′𝑖}(8)

 

In this system:  

(1) Corresponds to a mapping strategy (trained model), part of the hypothesis space 𝐹. This can 

be defined with respect to a set of observations in the environment, events, and rules. All 

these elements should be formalized in the definition of 𝑓 to ensure a coherent mapping; 

(2) Is the definition of the input space 𝑋, and every element 𝑥𝑖 ∈ 𝑋 is defined as a vector of 

values (features) associated with every sample in 𝑋; 

(3) Is the definition of the space 𝑌, it provides a set of results and/or consequences emerging 

from the inputs in 𝑋, and every element 𝑦𝑗 ∈ 𝑌 can be viewed as a vector of resulting 

observations (output values, classes…); 

(4) Corresponds to the mapping from the input to the output space, performed by the trained 

model 𝑓; 

(5) Is a set of SMART114 indices that provide signals in the effectiveness of 𝑓 while performing 

the mappings in (4). Hence, we define 𝑀 as a set of metrics matchingmatch the objectives 

of the application. Hence, for  𝑓 to be effective it should obey all the elements 𝑚𝑡 ∈ 

𝑀corresponding to evaluation measures (cf. Section 1.3 for different possibilities) and 

KPIs as well. This should provide standards of accurate mapping in 𝑇 (check correctness 

and relevance of the mappings), and that should be valid whatever the elements of both the 

spaces 𝑋 and 𝑌. This phenomenon corresponds to the “Generalization” aspect that we need 

to quantify and qualify as well; 

(6) Represents a benchmarking scheme of the industrial KPIs. Every element 𝑏𝑡 corresponds to 

a validity/acceptance factor and/or a target performance index threshold value, as intended 

 

 
114 SMART (Haughey, 2014) objectives are: specific, measurable, achievable, relevant and time-bounded.  
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in the ground truth. Hence, for each metric 𝑚𝑡 ∈ 𝑀, there exist an element 𝑏𝑡 ∈ 𝐵 which is 

a validity criteria (e.g. a minimum threshold value, or indicator p ϵ [0,1] that could even 

represent a probability tolerance) that enables to correctly interpret the computed value by 

the measure; 

(7) Represents the benchmark exploration (all the defined elements 𝑏𝑡 for the target 

application), based on the defined measures (𝑚𝑡) for evaluation of the mappings performed 

by 𝑓. The objective here is to validate or not the industrial assessments of the performance. 

Hence, the application 𝑏𝑡(𝑚𝑡 ∘ 𝑓(𝑥𝑡)) provides a binary value (i.e. is the performance 

accepted or not?). This validation scheme should provide a-priori hypothesis on the 

performance requirements of the sub-system including the ML/DL model under 

development; 

(8) It provides a set of phenomena and/or conditions and circumstances that directly impact the 

inputs, and hence the model predictions after implementation. This could represent the set 

of environment elements (e.g. blurring, noise, signal errors, interference… several 

implementations can be found in ISO 24029-2115) that could impact the inputs of the model 

(the input space 𝑋) during inference. The function ⊙ applies the set of elements𝐸 to every 

sample in 𝑋, resulting in a modified data set.  

Note that, this function can be considered in two different ways (regarding the real 

environment) 

a. Training time:  

i. Used as an “identity function”: if the inputs are perfect (no noise, no 

perturbation …),  

ii. Considered as a noise introducer function or corruption function (e.g. image 

rotator, cutting words, background noise function …) during the model 

validation, 

b. Implementation time: after embedding in the target system, the function ⊙ represents 

the introduction of real-life factors 𝐸that could harm the model performance. Hence, 

we believe that environmental factors should be included in the model evaluation and 

training process as well. 

4.8.4.3 Evaluation   

Based on the pipeline defined in Section 4.8.4.1 and the target application definition of Section 4.8.4.2, 

the resulting evaluation pipeline includes the key steps to achieve most of the objectives of an AI 

application. For each of the different steps, the targeted performance (hypothesis on performances of 

the ML/DL component) is defined formally and will be checked empirically in the different use-cases 

of the MLEAP project (Chapter 0). 

Note that, one of the main issues that could impact the robustness/generalization of a model is the 

reproducibility of the results (Tatman et al., 2018), for the same inputs processed in equivalent 

circumstances but in different times. Hence, in the evaluation pipeline of section 4.8.4.1, one of the 

main objectives is to ensure that the model would not produce unexpected behaviours by adapting 

different behaviours in the same conditions. Hence, this aspect is evaluated in loop (4) of the process, 

to make sure that the model is still performant after its implementation in the target system. In the 

literature, few work (McDermott et al., 2021; Olorisade et al., 2017) has been done on this aspect so 

far. Mainly, in deep learning models, the reproducibility is an important concern, as several factors can 

 

 
115 https://www.iso.org/obp/ui/#iso:std:iso-iec:24029:-2:dis:ed-1:v1:en  

https://www.iso.org/obp/ui/#iso:std:iso-iec:24029:-2:dis:ed-1:v1:en
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prevent the reproducibility of the results of the same model, including random initializations and the 

hardware features. Although recent studies (Chen et al., 2022) have investigated some solutions to 

promote results reproducibility in DL, there is no specific approach that define away to design and 

develop DL models to guarantee reproducible results. 

Finally, the theoretical hypothesis on performance requirements corresponding to the different models 

and applications, under investigation on the MLEAP project, will be checked and developed more on 

the next phases of the project, to give more precisions about applicable methods to bridge the gap 

between experimentation and target system requirement. 

 

4.9 Conclusion 

In machine learning and deep learning, the key to success of any approach is to provide a model that is 

robust enough and that could generalize well on unseen data, during training, without a drop in 

performance when moving from one context to another. There are several issues related to the design 

and development pipelines of ML and DL solutions, such as overfitting and underfitting and the design 

pitfalls that result in a weak model in production. Most previous research has focused on empirical 

methods for generalizing from a large number of training examples using no domain-specific 

knowledge. In the past few years new methods have been developed for applying domain-specific 

knowledge to formulate valid generalizations from single training examples. Other techniques were 

designed to solve problems related to areas with little qualified data, as well as training algorithms to 

accelerate and improve model learning. When it comes to generalization evaluation, it is highlighted 

that the classical approach that aims at using a set of technical metrics to assess the model’s performance 

is limited in terms of capturing performance aspects related to the industry (KPIs) and reproducibility. 

Hence, the generalization evaluation is ultimately more crucial than originally thought.  

In this section, we have made a detailed analysis of the state-of-the-art of ML/DL generalization 

evaluation and provided our main observations about the cited methods, concerning the generalization 

assessment, issues detection, and methods of improvement. Finally, we provided a generic target 

domain definition and a generalization evaluation protocol in order to take into account the best 

practices for ML/DL models development, independently from the target domain characteristics. The 

proposed pipeline in this section (cf. Figure 45) is mainly focused on generalization assessment and 

how to conduct the development in a way to reduce the drop on model performance after 

implementation. This process will be developed more in the next phases of the project, based on 

findings related to the data evaluation and preparation (Chapter 3), to take into account elements that 

could harm the model performance (loop (1) on Figure 45), and consider recommendation about 

robustness and performance stability evaluation (Chapter 5), to validate the model after its 

implementation (loop 4 of Figure 45).  
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5. Model evaluation: robustness and stability 

5.1 Introduction 

5.1.1 Background 

Methods to evaluate the robustness and the stability of ML models are moving rapidly from academic 

prototypes to more industrial tools. These methods can be classified roughly into three categories: 

statistical, formal and empirical methods. They can also be combined. Statistical approaches usually 

rely on a mathematical testing process and are able to illustrate a certain level of confidence in the 

results. Formal methods rely on formal proofs to demonstrate a mathematical property over an ODD. 

Empirical methods rely on experimentation, observation and expert judgement.  

In the chapter will we study the approaches developed by the tools and methods available and the target 

properties as well as their domain validity. 

5.1.2 Scope of the chapter 

This chapter aims at studying the relationship between concepts developed in the EASA CP and 

ISO/IEC concepts around the robustness and the stability of machine learning models. 

First, the chapter is relying on the terminology associated to the robustness and stability concepts 

detailed in Section 1.2.3.1, specifically between the EASA CP, the CoDANN documents and ISO/IEC 

literature. The chapter studies how to align related concepts from all sources in order to support the 

MLEAP program with the on-going standardization work. Then, this chapter aims at analysing within 

each type of method which one is mature enough and what kind of robustness properties it allows to 

obtain. For each, a study of the maturity of tools associated (if any) with the method will be done.  

5.2 Robustness and stability 

5.2.1 Robustness and stability concepts 

Robustness and stability concepts were introduced in Section 1.2.3 as components of the 
trustworthiness of a ML system. These two concepts have obvious relation with the model performance, 
but also the way it has been trained (see chapter 4 for more) and the data that has been used (see chapter 
3 for more). In this chapter we aim at detailing what is currently available to assess the robustness and 
stability beyond the performance metric that are used initially (see section 1.3 for more). 

5.2.2 Robustness and stability properties already available 

From the literature, several properties can be tied to robustness and stability. This section aims at listing 

(non-exhaustively) properties available and their associated criteria116. For the whole chapter, we use 

the following terms (from the CoDANN documents): 

• X is the input space; 

• 𝑛 is the size of a data set; 

 

 
116 The document uses the word criterion in the ISO/IEC sense as rules on which a judgment or decision can be based, or 

by which a product, service, result, or process can be evaluated (ISO/IEC/IEEE 15289:2019). 
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• 𝑥~𝒳 denotes a random variable sampled from the probability space 𝒳 = (𝑋, 𝑃) with a 

probability distribution 𝑃; 

• 𝔼 denotes the expected value of a random variable; 

• ℱ is the training algorithm, and by a slight abuse of notion is also the set of possible models 

produced by this learning algorithm. 𝑓: 𝑋 → 𝑌is a function resulting from the training algorithm 

on a training set 𝐷 ⊂ 𝑋which approximate the function 𝑓: 𝑋 → 𝑌; 

• An average model 𝑓�̅� = 𝔼𝐷~𝒳𝑛[ℱ(D)(x)]. 𝑓�̅� is mostly a theoretical tool which is not possible to 

compute in most cases. Intuitively, the average model can be interpreted as a “theoretically 

idealized” model one could produce by training algorithm ℱ on all possible data sets of size 𝑛. 

5.2.2.1 Local vs. global properties 

The current state of the art methods to assess the robustness or the stability of machine learning models 

tends to be focusing on local properties (e.g., (Z. Zhong, 2010), (Singh et al., 2018), (K. Leino, 2021)) 

and not often on global ones (e.g., (Leino K., 2021), (W. Ruan, 2019), (Z. Wang, n.d.)).  

It is more common to verify local robustness properties than global robustness properties, as the former 

are easier to specify and verify. Local robustness properties are specified with respect to a sample input 

from the test data set. For example, given an image classified with a given outcome, the local robustness 

property can specify that all images generated by applying some transformation to it are still classified 

with the same outcome. Since local stability or robustness does not entail local performance, the 

monitoring of an AI component at the system level should not just be determined by its local stability. 

However, this assumption can be nuanced since for some systems some local properties can be a 

(statistical) discriminator of performance. Also, a drawback of verifying local stability or robustness 

properties is that the guarantees are local to the provided test sample and do not extend to other samples 

in the data set.  

In contrast, global robustness properties define guarantees that hold deterministically over all possible 

inputs (Katz G., 2017). For ODD where input features have semantic meanings, for example, air traffic 

collision avoidance systems, the global properties can be specified by defining valid input values for 

the input features expected in a real-world deployment. Defining meaningful input values is more 

challenging in settings where the individual features have no semantic meaning (e.g. the input space of 

all possible images). 

5.2.2.2 [Model] Bias (CoDANN-1 and EASA CP) 

Model Bias is defined as an error from erroneous assumptions in the learning process. High bias can 

cause an algorithm to miss the relevant relations between attributes and target outputs (underfitting, for 

more see Section 4.3).  

The quantity bias (ℱ, 𝑛) is the average over all points 𝑥 ∈ 𝑋 on the difference between the average 

model and the target function, that is: 

𝑏𝑖𝑎𝑠2(ℱ, 𝑛) = 𝔼𝑥~𝒳[(𝑓�̅�(𝑥) − 𝑓(𝑥))
2] 

Intuitively, the bias of a learning algorithm can be interpreted as a measure of how well the average 

model deviates from the true one and thus is a measure of model quality. One wants to make the bias 

small to have the average model close to the true function f.  
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5.2.2.3 [Model] Variance (CODANN-1) 

It is defined as an error from sensitivity to small fluctuations in the training set. High variance can cause 

an algorithm to model the random noise in the training data, rather than the intended outputs 

(overfitting, for more see Section 4.3). 

First, for every fixed 𝑥~𝒳, the variance of ℱ:𝐷 ⟼ 𝑓(𝐷) is the average distance to the value of the 

average model 𝑓�̅�: 

𝑣𝑎𝑟(ℱ, 𝑛, 𝑥) = 𝔼𝐷~𝒳𝑛 [(𝑓
(𝐷) − 𝑓�̅�(𝑥))

2

] 

Second, averaging this quantity over all 𝑥~𝒳 gives the variance of the learning algorithm: 

𝑣𝑎𝑟(ℱ, 𝑛) = 𝔼𝑥~𝒳[𝑣𝑎𝑟(ℱ, 𝑛, 𝑥)] 
Intuitively, the variance of a learning algorithm can be interpreted as a measure of its fluctuations 

around the average model and thus reflects how stable it is.  

5.2.2.4 Learning algorithm stability 

The LM-11 objective from EASA CP refers to the learning algorithm stability by pointing out to the 

CoDANN-1. This latter refers to it as the type of robustness ensuring that the produced model keeps a 

defined level of performance under perturbations of the training data set. The learning algorithm 

stability ensures that the trained model is not too sensitive to the training data, and will not deviate 

much in case the training set is changing.  

The evaluation of the distance between two machine learning models is not defined here. It cannot be 

directly measured through the difference in weights and biases of the two model, because of the random 

nature that can occur during training. It would rather be defined using the gap in performance between 

the two evaluated models, by using metric such as bias, variance, robustness, relevance. For that 

evaluation a threshold should be define. 

 

Following the definition used in the CODANN-1 we propose the following formalization for the 

learning algorithm stability. Given two training data sets 𝐷𝑡𝑟𝑎𝑖𝑛 ⊆ 𝑋 and 𝐷𝑡𝑟𝑎𝑖𝑛
′ ⊆ 𝑋 such as 

|𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑡𝑟𝑎𝑖𝑛
′ | > 𝑁,𝑁 ∈ ℕ, a training function ℱ and a performance function 𝑃 evaluating the 

performance of a trained machine learning model over a test set 𝑇 ⊆ 𝑋. A learning algorithm stability 

correspond to: 
|𝐷𝑡𝑟𝑎𝑖𝑛 ∩ 𝐷𝑡𝑟𝑎𝑖𝑛

′ | > 𝑁 ⇒ ‖𝑃(ℱ(𝐷𝑡𝑟𝑎𝑖𝑛), 𝑇) − 𝑃(ℱ(𝐷𝑡𝑟𝑎𝑖𝑛
′ ), 𝑇)‖ < 휀, where 휀 ∈ ℝ+. 

5.2.2.5 Stability (ISO/IEC) 

5.2.2.5.1 Trained model or inference model stability properties 

The property is first introduced in ISO/IEC 24029-1 (ISO/IEC, n.d.) as “stability property”. This notion 

corresponds to the EASA CP property of the trained model stability property.  

A trained model stability property expresses the extent to which a neural network (and here by extension 

a machine learning model) output remains the same when its inputs vary over a specific ODD. Checking 

the stability over an ODD where the behaviour is supposed to hold allows for checking whether or not 

the performance will hold too. A trained model stability property can be expressed either in a closed-

end form (e.g. “is the variation under this threshold?”) or an open-ended form (e.g. “what is the largest 

stable of the input space?”). 

A stability property allows to check if a machine learning model remains performant in the presence of 

noisy inputs. In order to be usable, a trained model stability property requires that the input space 

presents some regularity properties. It is not adapted for a chaotic system for example, since its results 
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will not be relevant. When the regularity of the function to approximate over the ODD is not easy to 

affirm (e.g., chaotic function), it can still be useful to use the trained model stability property to compare 

different machine learning models. For example, it is possible to measure for each system their 

maximum stable space around the same input. 

The property is then being implicitly extended to the inference model stability by ISO/IEC 24029-2 

(ISO/IEC, 2022b) by the Deployment requirements expressed by the document. Indeed, at this phase 

of the life cycle the system should be verified to have the same performance on the targeted hardware. 

This notion is therefore an equivalent to the inference model stability of the EASA CP. 

 

5.2.2.5.2 Trained model or inference model stability criterion 

A trained or inference model stability criterion establishes whether a trained or inference model stability 

property holds within a specific ODD, in contrast to a specific set of examples or a subset in the ODD 

such as training or validation data sets. The inference model is obtained by the transformation of the 

trained model to be adapted to the targeted platform. A trained or inference model stability criterion 

can be checked using formal methods described in 5.3.2.1. 

To be precise, according to the ISO/IEC 24029 standards (ISO/IEC, n.d.) and (ISO/IEC, 2022b): 

• A trained or inference model stability criterion defines at least the ODD and the output value 

space on which it has been measured and the trained or inference model stability property 

expected. 

• A trained or inference model stability criterion may be used as one of the criteria to compare 

models.  

In order to be a fair comparison, the machine learning models need to have performed the same tasks, 

the criterion needs to have been used on the same ODD and the criterion needs to have the same 

objective to be proven. 

For example, for a machine learning model performing classification, a trained or inference model 

stability criterion assesses whether a particular decision holds for every input in the ODD. For a machine 

learning model performing regression, a trained or inference model stability criterion assesses whether 

the regression remains stable on the ODD on which the inferences are done. 

To be applicable, a trained or inference model stability criterion relies on pre-existing information of 

the expected output of the machine learning model. This information can be known by the user or can 

be determined by other means (using simulation or solvers systems). It is well-suited to assess the 

stability over a ODD where the expected answer is known to be similar. For this reason, a trained or 

inference model stability criterion is especially recommended for any decision-making process handled 

by a machine learning model (e.g., classification, identification). 

Following the definition used in the CODANN-1 a stability criterion would be defined over the ODD 

noted 𝐷 as:  

Given 𝑥 ∈ 𝐷 and 𝛿 ∈ 𝑅+ then ‖𝑥′ − 𝑥‖ <  𝛿 ⇒ 𝑓(𝑥′) = 𝑓(𝑥),  where 𝑥′ ∈ 𝑋. 

5.2.2.6 Sensitivity (ISO/IEC) 

5.2.2.6.1 Trained model or inference model sensitivity property 

The property is first introduced in ISO/IEC 24029-1 (ISO/IEC, n.d.). A sensitivity property on a neural 

network (and here by extension on a machine learning model) expresses the extent to which the output 

of a machine learning model varies when its inputs are changed. In order to assess the robustness on an 

ODD it is sometimes necessary to check the variation of the outputs of a system. A sensitivity analysis 

can be carried out to determine how much the system varies and the inputs which can influence that 

variation of the output. This analysis is then compared to a pre-existing understanding of the expected 
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performance of the system. The sensitivity concept is quite close to stability, except it does not require 

that the output does not change at all (as for a classification task), but that it does not change too much 

(as for an interpolation task). 

Sensitivity analysis is used over an ODD to prove that a machine learning system stays bounded (Hess 

D. E., 2007). As is the case for the trained or the inference model stability property, sensitivity analysis 

can be more suited for ODD where the function to approximate presents some regularity properties. As 

for the stability property, by following the requirement in ISO/IEC 24029-2 (ISO/IEC, 2022b) in the 

Deployment requirements, the sensitivity property can be applied to the inference model and not only 

to the trained model. 

5.2.2.6.2 Trained model or inference model sensitivity criterion 

Since a sensitivity criterion expresses a property over an ODD (and not just a specific set of examples) 

it can be checked using formal methods described in 5.3.2.1.  

To be precise according to standard 24029-1 (ISO/IEC, n.d.): 

• A sensitivity criterion describes at least the ODD on which it has been measured and what are the 

sensitivity thresholds to be checked. 

• A sensitivity criterion may be used to compare different machine learning model architectures or 

trained models. In order to be a fair comparison, the machine learning models have to perform 

the same task, the criterion has to be used on the same ODD and has the same objective to be 

proven. 

A sensitivity criterion is especially well-suited for machine learning models performing interpolation 

or regression tasks. For these kinds of tasks, it often allows a direct proof against a ground truth that 

can hold over the ODD. 

A sensitivity criterion is usually expressed in a closed-form as a threshold of variation over a specific 

ODD noted 𝐷. 

Following the definition used in the CODANN-1 a sensitivity criterion would be defined as: 

Given 𝑥 ∈ 𝐷 and 𝛿 ∈ 𝑅+ then ‖𝑥′ − 𝑥‖ <  𝛿 ⇒ ‖𝑓(𝑥′) − 𝑓(𝑥)‖ < 휀, where 𝑥′ ∈ 𝑋 and 휀 ∈ 𝑅+. 

5.2.2.7 Relevance (ISO/IEC) 

5.2.2.7.1 Relevance property 

The relevance property is first introduced in ISO/IEC 24029-1 (ISO/IEC, n.d.). This property helps to 

evaluate the decision of a model, contributing to its development explainability as well as its stability 

and robustness evaluation. A relevance property on neural network (and here by extension to a machine 

learning model) expresses an ordering of the impact of the inputs on the outputs. For each output a 

relevance property expresses the individual impact of each input on the result obtained for this output. 

For each output the individual impact of each input can be sorted. A relevance property checks if the 

ordering obtained satisfies a user-required order. A relevance property can be checked using a variety 

of methods to evaluate the impact of each input. Contrary to stability and sensitivity properties, a 

relevance property can lead to a debate between the experts in charge of its evaluation. Indeed, two 

machine learning models can have very different relevance property results, both of which could be 

considered as acceptable depending on the experts. This case should be taken into account in the 

comparison protocol in order to be resolved. For example, a protocol may use an evaluation system (as 

for an inter-annotator agreement (Mathet et al., 2015)) in order to resolve the situation. This stems from 

the fact that interpretability methods used to build a relevance property give debatable results (or even 

contradictory results depending on the method used). 

A relevance property should be used in cases where the machine learning model performs a task that 

can be done by a human. For (ISO/IEC, n.d.) in these cases the justification of the output of the machine 



 

MLEAP deliverable Phase 2 - Interim Public Report PAGE 197 

 

learning model should be understood and checked, whereas in EASA CP the objectives of explainability 

are applicable in every cases (i.e. not only by tasks done by a human). A relevance property is essential 

in order to assert if the performance of the system can be assured for the correct reasons. If that is the 

case then the robustness of the system can be justified and not just asserted. This verification may be 

done manually by a human operator or automatically using references that have been checked before. 

5.2.2.7.2 Relevance criterion 

A relevance criterion expresses a relevance property over an ODD which requires demonstration of a 

link between each input and the outputs. For that, it requires a method to quantify the influence of each 

input. Formal methods relying on symbolic calculus, logical calculus or computational methods can be 

used to achieve such a goal. Examples of formal methods available to check a relevance criterion are 

provided in 5.3.2.1 

To be precise, according to standard 24029-2 (ISO/IEC, n.d.): 

• A relevance criterion presents the ODD on which it has been measured, the expected results or 

at least the methodology to evaluate the results if they cannot be defined a priori. 

• A relevance criterion allows to compare different machine learning architectures or training 

outputs. In order to be a fair comparison, the machine learning models have to perform the same 

task, the criterion has to be used on the same ODD and the criterion has to have the same 

objective to be proven.  

For example, on a machine learning model performing a classification task, a relevance criterion can 

be used to check if the most relevant pixels are located on a specific part of the object to be identified 

(e.g. the wheels in order to identify a vehicle). For a machine learning model performing predictive 

analysis of a time series, a relevance criterion can be used to check if the predicted event matches a 

consequential logic acceptable for the user (e.g. a predictive maintenance alert for an engine can be 

triggered by an over-heating alarm). 

A relevance criterion can be expressed on a variety of tasks, as long as the result can be analysed by a 

user. A relevance criterion can be used for example on classification, detection, interpolation or 

regression tasks. Checking a relevance criterion can be automated or can rely on human assessment. 

When the checking relies on human assessment, the decision can be transferred as a new requirement 

to automate tests as much as possible. 

Following the definition used in the CODANN-1 we propose the following formalization for a 

relevance criterion. Given a relevance function 𝑅 that can analyse the function 𝑓 on a subset 𝑆 ⊆ 𝑋 and 

returns a vector [𝑟1, 𝑟2, … 𝑟𝑛] where 𝑛 ∈ ℕ is the number of dimensions of the space 𝑋 and 𝑟𝑖 ∈ ℝ. Each 

𝑟𝑖 is the influence of the 𝑖𝑡ℎdimension of the input over the output of 𝑓(𝑥), 𝑥 ∈ 𝑆. Therefore, 𝑅(𝑓, 𝑆) =
[𝑟1, 𝑟2, … 𝑟𝑛]. From the vector [𝑟1, 𝑟2, … 𝑟𝑛] we considered the fully ordered vector [𝑟1

′, 𝑟2
′, … 𝑟𝑛

′] which is 

a permutation of the initial vector. A relevance criterion is an evaluation of acceptability of the vector 
[𝑟1
′, 𝑟2

′, … 𝑟𝑛
′] regarding an expected vector [𝑟1

∗, 𝑟2
∗, … 𝑟𝑛

∗]. This acceptability can be formalized in several 

ways, for example by using the Hamming distance or the transposition distance. 

5.2.2.8 Reachability (ISO/IEC) 

5.2.2.8.1 Reachability property 

Reachability property is first introduced in ISO/IEC 24029-2 (ISO/IEC, 2022b). A reachability property 

on a machine learning model expresses the multi-step performance of the model in conjunction with its 

operating environment. A reachability property checks whether an agent can reach a set of states when 

using the machine learning model to self-check in a given environment. A reachability property can 

specify either a set of failure states that the agent shall avoid or a set of goal states that the agent shall 

reach.  
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Expressing this type of property requires defining an environment model that describes the effect of an 

agent’s action on its next state. The environment can evolve either deterministically or stochastically. 

For a deterministic environment, the reachability property expresses whether it is possible for the agent 

to reach a particular set of states.  

5.2.2.8.2 Reachability criterion 

A reachability criterion expresses a reachability property over a given set of initial states. For a 

deterministic environment it can be checked using methods described in Section 5.3.2.1.3. For a 

stochastic environment, the criterion expresses a probability of reaching a set of states. This probability 

can be determined using methods in Section 5.3.2.1.4.  

A reachability criterion should be satisfied for a given set of initial states. The set of initial states can 

be specified as part of the criterion. Alternatively, formal methods can be used to determine the set of 

initial states for which the system satisfies the criterion. An advantage of using a reachability criterion 

to evaluate a learned system is that it provides a metric on the performance of the network in a closed-

loop environment. Therefore, it can be used to express high-level safety properties that go beyond input-

output properties.  

For example, in the case of an aircraft collision avoidance task, the reachability criterion can express a 

requirement to avoid reaching a set of collision states given a particular environment model. 

Following the definition used in the CODANN-1 we propose the following formalization for 

reachability criterion. Given a subset 𝑍 ⊆ 𝑋 of forbidden states that the function 𝑓 should not reach, 

𝑆 ⊆ 𝑋 a subset of starting set, and an environment ℰ: 𝑋, 𝑌 ⟶ 𝑋 which can transform a state of 𝑋 

impacted by the outcome of 𝑓into another, such as ℰ(𝑥, 𝑓(𝑥)) = 𝑥′. One can build a sequence of 

composition of the functions 𝑓 and ℰ where at each step both are composed as such: ℰ(𝑥, 𝑓(𝑥)). To 

ease the notation, we define ℰ2(𝑓2) = ℰ (𝑓 (ℰ(𝑓))). 

Given 𝑆 ⊆ 𝑋 a reachability criteria is met if: 

∀𝑥 ∈ 𝑆, 𝑛 ∈ ℕ, ℰ𝑛 (𝑥, 𝑓𝑛(𝑥)) ∉ 𝑍 

5.2.2.9 Discussion 

The EASA CP and ISO/IEC concepts are overlapping in part but are not entirely aligned. EASA 

CP is considering a “fine-grained” notion of robustness by assessing the stability of the training 

algorithm, the robustness of the trained model and of the inference model, while the ISO/IEC is 

almost only focused on the trained and inference model. 

The CODANN-1 document would use the notions of bias and variance for example as one way to 

evaluate the stability and robustness of a model. These concepts can also be partially found in the 

ISO/IEC literature through the trained model stability and sensitivity concepts to assess the 

robustness of a trained model or an inference model. The notion of reachability is also present and 

equivalent in both literatures. 

The concept of relevance introduced in the ISO/IEC standards however is not present in the EASA 

CP (neither in the CoDANN IPC reports) and can help expand the notions around robustness. 

In conclusion, we can say that while the concepts from both sources are not completely aligned, 

they can be used complementarily quite easily, since they do not contradict themselves and are not 

mutually exclusive. 
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EASA CP ISO/IEC 

[learning algorithm] Stability - 

[trained model] Stability Robustness during stages before Deployment 

[inference model] Stability Robustness during stages after Deployment  

[trained model] Robustness Robustness during stages before Deployment 

[inference model] Robustness Robustness during stages after Deployment  

Bias - 

Variance Trained model stability (stability in 24029-1) 

Sensitivity 

- Relevance 

Reachability (from CODANN-1) Reachability 

Table 12 – table of relevant concepts from either EASA CP or ISO/IEC 

5.2.3 General framework of methods to assess robustness and stability 

5.2.3.1 EASA CP framework 

Robustness and stability are verified through different requirement depending on the level of the system 

to assess. Stability is viewed as a property stemming from the learning process, it implies that the 

outcome of the process has to handle properly the trade-off between bias and variance. Different 

methods can be deployed to assess bias and variance at this stage. Robustness is a property of the model, 

the ML component and/or the system against the adverse conditions in the ODD. On each level, 

different approach to assess or monitor robustness are possible. Edge cases, corner cases and out of 

distribution cases can be used to test the ability of the system to perform under these varying conditions 

at different levels of system design. 

 

Learning algorithm 
stability 

ML trained model 
stability and robustness 

ML inference model 
robustness 

AI-based system 
robustness 

Assessed through LM11, 
using performance 
metrics on the different 
versions of the trained 
models (e.g. bias and 
variance) 

Assessed through LM-12 
and IMP-08 with 
requirement-based 
robustness testing, 
including input 
perturbations and edge 
cases tests cases 

ODD monitoring, outliers, 
infeasible corner cases 
and novelty 

Performance monitoring 

Table 13 – table describing the different concepts of robustness and stability and the actions related to their assessment 

5.2.3.2 ISO/IEC framework 

5.2.3.2.1 AI Life cycle 

In ISO/IEC literature the life cycle of AI is organized as described in Figure 46. It is composed of 
several phases starting with the Inception of the AI project to the Retirement of the AI system. 
CoDANN documents are mostly focusing on phases starting at the Inception phase up to the Operation 
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and monitoring phase. The EASA CP has instead a wider spectrum which overlaps most of the life 
cycle described in Figure 46. 

 

 
Figure 46 – ISO/IEC AI life cycle available in ISO/IEC 22989 (ISO/IEC, 2022a) 

 

5.2.3.2.2 Correspondence between AI life cycle frameworks regarding robustness 

Following the description given in 5.2.3.1 EASA CP and ISO/IEC 22989 (ISO/IEC, 2022a) life cycle 

and the requirement expressed along this life cycle in ISO/IEC 24029-2 (ISO/IEC, 2022b), it is possible 

to detect some overlap. 

In ISO/IEC the Design and development phase regroup the training and internal selection of a trained 

model. The verification and validation step is more oriented towards the trained model and the 

requirement checking. The ML constituent robustness and AI-based system robustness can be 

regrouped in the Operation and monitoring step. While the Deployment phase does not seem to be 

explicitly covered in CoDANN-1. CoDANN-2 (EASA and Daedalean, 2021) is considering in its 

chapter 3.2.2 the impact of the transformation of a deep neural network toward a specific hardware and 

imply the fact that it would probably require to retrain the model. This is also taken into account in the 

notion of inference model used by the EASA CP. CoDANN-2 is advocating an approach where the 

trained model adapted to hardware is a separate model that needs to go through every step of 

verification. The EASA CP is aiming at generalizing the objectives to avoid being prescriptive on one 

approach, which considers the inference model as a derived model from the trained model, and defines 

a set of verification objectives. One of those objectives (IMP-04) aims at verifying that trained model 

properties are preserved. To ensure that it respect still the same properties the evaluation protocol should 

be also applied on the inference model. ISO/IEC is more aligned with EASA CP, by considering the 

transformation of a trained model as a new step in the process to deploy a pre-validated model. 

Table 14 matches the corresponding components between the two frameworks (EASA CP and 

ISO/IEC). The main difficulty in this comparison is that ISO/IEC does not cover the architecture 

aspects, whereas in the EASA CP this notion appears through the distinction between ML model, ML 

constituent and AI-based system robustness. However, this progression of concepts from the EASA CP 
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is somewhat found in the ISO/IEC AI life cycle. Indeed, this life cycle covers the design of a ML 

component all the way to the deployment and the monitoring of the model into an AI system. 

 

Learning algorithm 
stability 

ML trained model 
stability and 
robustness 

ML inference model 
robustness 

AI-based system 
robustness 

Design and development Verification and 
validation 

 

Note: the ML 
inference model 
refers more to the 
Deployment phase in 
ISO/IEC terminology. 

Operation and monitoring 
(when referring to ops 
aspects) 

Operation and monitoring 
(when referring to Exp-15) 

Table 14 – Correspondence between the EASA CP robustness concepts and the ISO/IEC life cycle phase. 

5.2.3.2.3 Robustness assessment 

In the ISO/IEC TR 24029-1, robustness is assessed through a process that takes place after the training 

phase. This process is not necessarily done a single time because it could fail at any step and require 

rolling back to a previous one. This framework does not consider the stability of the learning algorithm 

and only focusses on the robustness of the outcome. The process is decomposed into 6 steps. 

1) The first step is a statement of the robustness goals. During this initial step, the targets to be tested 

for robustness are identified. The metrics to quantify the objects that demonstrate the achievement 

of robustness are subsequently identified. This constitutes the set of decision criteria on 

robustness properties that can be subject to further approval by relevant stakeholders (see 

ISO/IEC 22989 – 5.19 (ISO/IEC, 2022a)). The choice of these criteria would be documented to 

be justified is necessary (for example in the avionic context). The retained criteria can imply to 

employ one or several methods to verify them. In practice, several metrics and methods are 

combined to capture a better overall picture of the robustness of the model. This constitutes the 

set of decision criteria on robustness properties that can be subject to further approval by relevant 

stakeholders 

2) The second step consists in describing the methodology to demonstrate the robustness properties 

expected of the machine learning model. The methodology can rely on different tools. In planning 

the testing, the environment setup needs to be identified, data collection planned, and data 

characteristics defined (that is, which data element ranges and data types will be used, which edge 

cases will be specified to test robustness, etc.). The output of Step 2 is a testing protocol that 

comprises a document stating the rationale, objectives, design and proposed analysis, 

methodology, monitoring, conduct and record-keeping of the tests. 

3) The third step conducts testing according to the defined testing protocol. It is possible to perform 

tests using a real-world experiment or a simulation, and potentially a combination of these 

approaches. 

4) After completion, tests outcomes are analysed using the metrics chosen in Step 1. 

5) The analysis results are then interpreted to inform the decision to relevant evaluators or 

stakeholders. 

6) A decision on system robustness is then formulated given the criteria identified earlier and the 

resulting interpretation of the analysis results. 
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Figure 47 – ISO/IEC 24029-1 generic workflow to assess robustness from (ISO/IEC, n.d.) 

 

When the final test objectives are not met, an analysis of the process is conducted and the process 

returns to the appropriate preceding step, in order to alleviate deficiencies, e.g., add robustness goals, 

modify or add metrics, add consideration of different aspects to measure, re-plan tests, etc. 

 

One important step that is not overly detailed in the 24029-1 is Data sourcing. It is a process selecting, 

producing and/or generating the testing data and objects that are needed for conducting the testing. It 

can sometimes include considerations of legal or other regulatory nature, as well as practical or 
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technical issues. This step could constitute a serious problem in some industries since the availability 

of the data could be a challenge. This is for example the case for prediction machine learning models 

which have to predict (feared) occurrence of failure of the system from data where the failure does not 

occur thanks to other built-in failsafe preventing them. In any case the testing protocol contains the 

requirements and the criteria necessary for data sourcing. Data sourcing issues and methods are covered 

extensively in Chapter 3. 

5.3 Review of methods and tools 

5.3.1 Statistical methods 

5.3.1.1 Method 

In order to evaluate the robustness or the stability of a ML system it is possible to apply a statistical 

methodology. In short, the general method consists of choosing the data set to evaluate the ML system 

on, as well as the metrics that will be calculated. For that, the general method will select one or several 

metrics that are presented in Section 1.3 in order to considered them together. These metrics will then 

be applied on the system using the testing data in order to assess the robustness or the stability. This 

section describes the available statistical methodology to perform the steps 2 and 3 described in Section 

5.2.3.2 as to plan and conduct the testing. Performing a testing protocol is not unique to machine 

learning models and considerations include the testing environment set-up, what and how to measure, 

and data sourcing and characteristics. The difference in machine learning model robustness test 

planning is a deeper consideration of the data sourcing (e.g., quality, granularity, train/test/validation 

data sets, etc.). While conducting the testing, planned data sourcing and availability of computational 

resources are important considerations due to the sometimes massive amounts of data and 

computational resources required by machine learning models. 

Statistical measures of performance are applied first on a reference data set and then on one or several 

data sets representative of the targeted changes of circumstances. For each of those, if the performance 

drop on the reference test set is sufficiently low the system is deemed robust. Section 1.3 present a 

detailed list of available metrics for the purpose of applying statical methods. 

5.3.1.2 Corpus amplification 

Corpus amplification, or augmentation, is a statistical method used to ensure a better coverage of testing 

of the system by creating new test cases using techniques such as: 

• Changing input data through transformations that are not supposed to change the result, called 

“Metamorphic relationships”. Sometimes the reference has to be transformed alongside the 

input. For instance, the detection of objects in an overhead satellite view should keep identical 

performance when rotating both image and reference. 

• Adding different types of noise or other forms of input transformation or degradation117 which 

are reasonable in the considered use-case and hence the system should be robust to. 

 

It should be noted that these methods can also be used at the system training level, but that is outside 

the scope of this chapter. See Chapter 4 for the use of those methods at training time. 

 

 
117 This part focuses on the evaluation of the system, not its training. These perturbations do not cover the concept of data 

corruption which concerns mostly the training data set. 
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These approaches tend to be applied in perception cases where the input is in a continuous context (e.g. 

vision or audio processing, sensor measurements). The metamorphic approach tends to be more difficult 

to put in place because it requires the presence of transformations that are supposed to be invariant for 

the model, which is not often the case. Some examples are: 

• Mirroring of images 

• Scaling/resolution changes of images 

• Rotation of images 

• Phase inversion on audio 

• Removal or addition of frequencies outside of the relevant audio range 

• Unit scaling within sane limits (e.g. multiplying distances and speeds by the same values on 

Doppler radars) 

Not all of those are always applicable, for instance the rotation can move an input outside of the defined 

ODD. A fixed camera for example would not have the sky at the bottom of the image. 

 

Noise addition is used when a principled argument can be made for the existence of those noises, or 

transformations in general, in the real world. Numerous categories exist, some examples are: 

• Additive (usually Gaussian) or multiplicative (usually Poisson) noise on images, representing 

thermal and electromagnetic noise 

• Blur due to movement, incorrect focal distance, or optical aberrations 

• Loss of pixels or lines due to sensor failures 

• Luminosity variations 

• Environmental variations (fog, snow, rain, dirt) 

• In audio, filtering and reverberation (due to acoustic path issues), volume variations 

• In sensors, periodic or spiking noises, and general drift 

 

The approach, in evaluation, is usually to plot the performance of the system as a function of the noise 

level and, where a level of performance is deemed to be inadequate, to have an expert examine examples 

of noisy inputs so as to determine whether they are still realistic (e.g. in the ODD) or outside of 

reasonable bounds. 

This transformation approach is also sometimes used in a monitoring setup to detect whether the system 

is nearing a zone of instability in its decisions, which are expected to indicate inputs for which its results 

are untrustworthy. The issue with the method is that it partially relies on chance: the number of 

transformed inputs that can be generated and tested is limited. Formal methods, which are presented 

later in the document, analytically cover the whole noise space to ensure every potential input is tested.  

5.3.1.3 Corner and edge case detection using test based methods 

Corner cases and edge cases are by essence more complex cases that can be hard to test exhaustively 

because they are located on the limit of the ODD (see Section 1.2.3.2 for more). But corner case 

detection is not limited to ML system, in classical software validation their handling is necessary. Some 

test methods for DNNs corner case detection were in fact directly inspired by software test methods. In 

classical software testing, one can find two main sorts of methods (Ahamed, 2010):  

• White-box test methods (Williams, 2006), for which one need to own the source code. In this 

case, tests mostly focus on code coverage; 

• Black-box test methods, based on the executable and without knowledge of the source code. In 

this case, tests mostly focus on functional properties. 
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These methods coming from software engineering have been adapted to DNNs as developed hereafter. 

Section 5.3.1.3.1 deals with white box approaches for neural networks while the methods related to 

black box testing are discussed in Section 5.3.1.3.2. 

5.3.1.3.1 White Box Testing 

In (Pei et al., 2017) the authors states that at a conceptual level, erroneous corner-case behaviours in 

DNN-based software are analogous to logic bugs in traditional software. Similar to the bug detection 

and patching cycle in traditional software development, the erroneous behaviours of DNNs, once 

detected, can be fixed by adding the error-inducing inputs to the training data set and also by possibly 

changing the model architecture/parameters. However, traditional software testing techniques for 

systematically exploring different parts of the program logic by maximizing branch/code coverage is 

not very useful for DNN-based software as the logic is not encoded using control flow. DNNs are built 

in a different way that traditional software, by automatically learn its logic from the data rather than 

expressing the human intent through a control flow graph. They operate also differently since they do 

not rely on the control flow to change behaviour but rather on weight and bias through activation 

functions. In that regard testing DNNs is fundamentally different from testing traditional programs. 

Unlike traditional models, finding inputs that will result in high model coverage in a DNN is 

significantly more challenging due to the non-linearity of the functions modelled by DNNs. Moreover, 

the Satisfiability Modulo Theory (SMT) solvers (Biere et al., 2009) that have been quite successful at 

generating high-coverage test inputs for traditional software are known to have trouble with formulas 

involving floating-point arithmetic and highly nonlinear constraints, which are commonly used in 

DNNs. 

In (Cheng, 2013), Pei et al. propose DeepXplore118, a white box differential testing algorithm for 

systematically finding inputs that can trigger inconsistencies between multiple DNNs. They introduced 

neuron coverage as a systematic metric for measuring how much of the internal logic of a DNNs have 

been tested. 

In (Tian et al., 2017), the authors address the issues mentioned in the former paragraph and design a 

systematic testing methodology for automatically detecting erroneous behaviours of DNN-based 

software of self-driving cars. They present a systematic technique to automatically synthesize test cases 

that maximizes neuron coverage in DNN based systems like autonomous cars. They also demonstrate 

that different realistic image transformations like changes in contrast, presence of fog, etc. can be used 

to generate synthetic tests that increase neuron coverage. This approach is implemented into the 

DeepTest119 tool. 

In (Yu et al., 2022) the authors propose a differential testing strategy to automatically verify inconsistent 

behaviour of DNNs, which can track inactive neurons and triggered them in order to maximize neuron 

coverage. Then they use an optimization technique to derive the predictions from the initial input and 

construct new test data. 

In (S. Lee et al., 2020) the authors present a white-box testing method using an adaptive neuron-

selection strategy without using the gradient of the selected internal neurons for the selection. It is done 

to improve the coverage and to find adversarial inputs. This approach is implemented into the Adapt120 

tool. 

 

5.3.1.3.2 Black Box Testing 

 

 
118 https://github.com/peikexin9/deepxplore 
119 https://github.com/ARiSE-Lab/deepTest 
120 https://github.com/kupl/adapt 
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In (Tian et al., 2017) an overview of the black box testing approaches is provided, which present the 

three following approaches detailed in this section.  

Usual approaches in evaluating machine learning systems primarily measure their accuracy on 

randomly drawn test inputs from manually labelled datasets and ad hoc simulations (Google, 2016; 

Madrigal, 2017; Witten et al., 2016). However, without knowledge of the model’s internals, such black 

box testing paradigms are not able to find different corner-cases that may induce unexpected behaviours 

(Goodfellow and Papernot, 2017; Pei et al., 2017). In (Aghababaeyan et al., 2023) the authors showed 

a comparative analysis with the coverage-based approach uses diversity metrics, to then use them to 

construct corner case detection cases. 

Another recent line of work has explored the possibility of verifying DNNs against different functional 

safety properties (Huang X., 2016; Katz et al., 2017; Pulina and Tacchella, 2010). However, none of 

these techniques can verify a rich set of properties for real world-sized DNNs. 

Also metamorphic testing (Chen et al., 2020; Zhou et al., 2004) is a way of creating test oracles in 

settings where manual specifications are not available. Metamorphic testing has been used in the past 

for testing both supervised and unsupervised machine learning classifiers (Murphy et al., 2008; Xie X, 

2009). 

Finally, surprise adequacy methods, as described in Section 1.2.3.2.3, can also be considered as black 

box testing methods. 

In this section, the academic papers are referencing only prototypes in their work. These prototypes are 

not always available to be tested but some of them are. 

5.3.1.4 Applicability analysis 

In this section we study the applicability of the methods presented in the previous sections to the 

properties detailed in Section 5.2.2. Corner case and edge case detection are not considered here since 

they relate more to performance properties (see Section 1.3 for more) than stability and robustness 

properties. The choice of properties reflects both the current literature on the topic from the 

standardization effort (e.g. (ISO/IEC, 2022a)) and the EASA CP (EASA, 2023). We grade by “+” or 

“++” the ability of the methods to deliver results to assess each property, and by N/A if the property 

cannot be assessed by this method to the best of our knowledge. 
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Method Stability of 

the learning 

algorithm 

Stability of 

the trained 

model 

Robustness 

of the 

inference 

model 

Bias Variance Relevance Reachability 

RMSE 

MAE 

Max error 

Actual/predicted 

correlation 

++ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

++ 

++ 

+ 

+ 

+ 

++ 

+ 

+ 

+ 

N/A 

N/A 

N/A 

N/A 

 

N/A 

N/A 

N/A 

N/A 

 

Precision-recall 

ROC 

Lift 

AUC 

Balanced_accuracy 

Micro-average 

MCC 

Confusion matrix 

+ 

++ 

++ 

++ 

+ 

+ 

+ 

++ 

++ 

++ 

+ 

++ 

+ 

+ 

++ 

++ 

++ 

++ 

+ 

++ 

+ 

+ 

++ 

++ 

++ 

+ 

+ 

+ 

+ 

+ 

+ 

++ 

++ 

+ 

+ 

+ 

+ 

+ 

+ 

++ 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

N/A 

Hinge loss 

Cohen’s kappa 

++ 

++ 

++ 

++ 

++ 

++ 

+ 

+ 

+ 

+ 

N/A 

N/A 

N/A 

N/A 

Corner case testing 

• White box  

• Black box  

 

N/A 

N/A 

 

++ 

+ 

 

++ 

+ 

 

N/A 

N/A  

 

N/A 

N/A  

 

N/A 

N/A  

 

N/A 

N/A  

Table 15 – Applicability of the different metrics and methods on the robustness and stability property 

5.3.1.5 Tools maturity and scalability 

Statistical methods presented in 5.3.1 dispose of a quite wide variety of tools available to implement 

different metrics. It is also entirely possible to implement them directly in any programming language. 

Here are some examples of common tools available to ease the work of a data scientist in charge of a 

statistical evaluation of the robustness and stability property: 

• Using R, with the following packages: 

o Package « metrics »121: AUC, ROC, rmse, mae.. 

o Package « bmrm »122 hinge loss 

o Package « vcd »123 cohen’s kappa 

o Package « caret »124 confusion matrix 

• Using Python, with the library scikit-learn125 which contains already almost all metrics 

• Using Matics126 (LNE) 

• Proprietary solutions also exist such for example as the ones provided by: 

 

 
121 https://cran.r-project.org/web/packages/Metrics/Metrics.pdf 
122 https://cran.r-project.org/web/packages/bmrm/bmrm.pdf 
123 https://cran.r-project.org/web/packages/vcd/vcd.pdf 
124 http://cran.nexr.com/web/packages/caret/caret.pdf 
125 https://scikit-learn.org/stable/search.html?q=metrics 
126 https://www.lne.fr/fr/logiciels/lne-matics 

https://cran.r-project.org/web/packages/Metrics/Metrics.pdf
https://cran.r-project.org/web/packages/bmrm/bmrm.pdf
https://cran.r-project.org/web/packages/vcd/vcd.pdf
http://cran.nexr.com/web/packages/caret/caret.pdf
https://scikit-learn.org/stable/search.html?q=metrics
https://www.lne.fr/fr/logiciels/lne-matics
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o Tibco (Data Science127) 

o Microsoft (Azure 128) 

o Salesforce (Tableau129) 

o SAS (Model Studio130) 

o … 

 

Concerning the evaluation of corner cases most of the most advance tool available rely on a white-box 

testing approach, such as: 

• DeepXplore131 

• DeepTest132 

• Adapt133 

5.3.2 Formal methods 

5.3.2.1 Methods 

This section uses the description provided by ISO/IEC 24029-1 (ISO/IEC, n.d.) and 24029-2 (ISO/IEC, 

2022b) to introduced the different methods available to apply formal methods to neural networks. 

Indeed, most of the methods described in these documents were designed primarily for neural networks. 

Here we are considering machine learning models in a broader sense. While for many of the methods 

described there is no major problem to be adapted to other machine learning techniques, this work is 

mostly not yet done. 

5.3.2.1.1 Solver 

Neural network models are known to be often large, non-linear, non-convex and beyond the reach of 

general-purpose tools such as linear programming solvers or existing satisfiability modulo theories 

(SMT). However, some advances have been made to use solver technologies to prove properties over 

machine learning models. For example, (Katz G., 2017) presents an approach to efficiently prove 

properties over some classes of neural networks (using ReLu activation functions which is defined as 

𝑅𝑒𝐿𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥)) by using a variation of a Simplex algorithm.  

Mixed-integer linear programming (MILP) solvers (V. Tjeng, n.d.)  and satisfiability modulo theories 

(SMT) solvers(Katz G., 2017) are deterministic, white-box and typically complete verification 

methods. They encode all computations of a given machine learning model as a collection of constraints 

and then use these constraints to prove robustness properties. Depending on the machine learning 

model’s architecture, these methods can be complete or incomplete. In the case of neural networks 

certain non-linear activations (such as hyperbolic functions including sigmoid and tanh) are too 

complex to encode precisely. The same issues would be identified for example for SVM with non-linear 

kernel (polynomial, radial etc). Therefore, solvers approximate them with sound abstractions. Other 

non-linear activations (such as ReLU, linear kernel) can be precisely encoded.  

To prove a given robustness property, the machine learning model and constraints on the input are 

encoded as a MILP problem which can then be used to optimize the robustness constraint. If the bounds 

 

 
127 https://www.tibco.com/fr/products/data-science 
128 https://azure.microsoft.com/fr-fr/ 
129 https://www.tableau.com  
130 https://support.sas.com/en/software/model-studio-support.html 
131 https://github.com/peikexin9/deepxplore 
132 https://github.com/ARiSE-Lab/deepTest 
133 https://github.com/kupl/adapt 

https://www.tibco.com/fr/products/data-science
https://azure.microsoft.com/fr-fr/
https://www.tableau.com/
https://support.sas.com/en/software/model-studio-support.html
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on the robustness constraint satisfy the requirements, the property is proven. SMT solvers pose the 

verification problem as a constraint satisfiability question that either holds or not. 

Some techniques include symbolic linear relaxation that computes tighter bounds on the machine 

learning model outputs by keeping track of relaxed dependencies across inputs and directed constraint 

refinement (refining the output relaxation by splitting the set of initial or intermediate neurons) to verify 

safety properties (S. Wang, 2018) (of neural networks). Other techniques propose a satisfiability 

modulo convex (SMC)-based algorithm combined with an SMC-based pre-processing to compute finite 

abstractions of machine learning model (here also neural network) controlling autonomous systems (X. 

Sun, 2019). 

5.3.2.1.2 Abstract interpretation 

Abstract interpretation is a kind of formal method that relies on a theory which constructs controlled 

approximations. It is often used to prove complex program properties (R. and Cousot, 1977). Abstract 

interpretation has taken a larger role in the software verification and validation community, especially 

in the context of safety-critical software, such as embedded software for aircrafts (Souyris J., 2007), 

cars (Yamaguchi T., 2019), spacecrafts (O. Bouissou, 2009). It aims at tackling the issue of Software 

reliability in a broader sense (Cousot, 2000). It is a general framework for analysing large and complex 

deterministic (R. and Cousot, 1977) and stochastic (Cousot, 2012) systems in a scalable fashion. In the 

context of machine learning models, it is used to provide an incomplete, deterministic and white-box 

method that can verify the robustness of large machine learning models. The verification process 

proceeds as follows: 

• First, the provided test input and a robustness specification collectively define a region that 

contains all possible perturbed inputs that can be obtained by modifying the input based on the 

robustness specification. This region can be represented exactly or approximately using certain 

geometric shapes, such as boxes, zonotopes and polyhedra, or as custom abstract domains for 

neural networks (Singh et al., 2018) or SVM (Ranzato, 2019). 

• This region is then propagated through the machine learning model, such that every layer is 

sequentially applied to the input region. The input region is transformed into an output region 

containing all outputs reachable from the input region. Depending on the layer, this can 

introduce approximations (outputs that are unreachable from the input region).  

• Finally, an output region captures all possible outputs of the network for input perturbations that 

are formed according to the robustness specifications. 

There is an inherent trade-off between precision and scalability. For example, simple abstract domains 

such as boxes can verify machine learning models within seconds but are often too imprecise to verify 

the desired robustness properties. On the other hand, semidefinite relaxations are more precise but do 

not scale to large machine learning models. Balancing this trade-off is therefore key to achieving 

effective verification. 

The principles of abstract interpretation are as follows. First, the approach usually considers all the 

possible executions of a program through the use of a semantic. This semantic is, for example, 

denotational (G., n.d.) or axiomatic (R., 1969). The set of all traces of execution expressed by a given 

semantic forms a lattice (a complete partial order defined over the set of all traces) or at least a partial 

order set. This lattice is called the concrete domain and is known to be intractable. Then a second 

domain is defined, referred to as the abstract domain since it is an abstraction of the concrete domain. 

The abstract domain is also a lattice or at least a partial order set. An abstraction is proven to be correct 

when a Galois connection is defined (and proven) between the two domains. The Galois connection is 

done by defining two specific functions: one called the abstraction 𝛼 (going from the concrete to the 

abstract domain) and the other called the concretization 𝛾 (going from the abstract to the concrete 



 

MLEAP deliverable Phase 2 - Interim Public Report PAGE 210 

 

domain). These functions have some specific properties that are to be proven beforehand, mainly the 

monotonicity of 𝛼 and 𝛾, 𝛾 ∘ 𝛼 is extensible and 𝛼 ∘ 𝛾 is tightening. 

Once the Galois connection is proven between the two domains, the abstract domain becomes a sound 

over-approximation of the all the concrete executions, which is also tractable (by construction). It is 

then possible to prove properties on the abstract domain and have them transferred automatically on the 

corresponding concrete traces represented by the abstraction. The main difficulty with an abstract 

interpretation is to define a simple enough yet expressive enough abstract domain. The abstract domain 

is intended to be both tractable and representative of the concrete traces of the system. There is a vast 

literature on abstract domain definitions, in order to represent numerical computations. For example, it 

is possible to use intervals (Cousot P., 1976), pentagons (Logozzo F., 2008), octagons (Miné, 2006), 

templates (Mukherjee, 2017), polyhedrons (Cousot and Halbwachs, n.d.), zonotopes (Goubault et al., 

2012), etc. Each one is the result of a different trade-off between the accuracy of the abstraction and the 

cost of its computation. 

Recent work (Gehr, n.d.; Mirman M., 2018; Pulina and Tacchella, 2010; Singh et al., 2018) constructs 

new abstract domains specially tailored for the behaviour of neural network. Indeed, the non-linear 

nature of machine learning tends to render some of the existing abstract domains ineffective, especially 

the ones that use the affine dynamics of a system to define the abstract domain. This is the case, for 

example, with a new zonotopic domain described in (Singh et al., 2018) that captures the specific 

dynamics of ReLu activation functions commonly used in image processing machine learning. 

5.3.2.1.3 Reachability analysis in deterministic environments 

Reachability-based machine learning verification techniques combine the outputs of the solvers 

described in Section 5.3.2.1.1 with techniques in reachability analysis to provide guarantees on the 

closed-loop performance of machine learning operating in a given environment. The first step in this 

analysis is to divide the input space into many smaller regions called cells. For each cell, the solvers 

from Section 5.3.2.1.1 can be used to determine the possible control outputs of the network in the region 

it defines. Using this information along with the environment model, it is possible to determine an 

overapproximation of the range of possible next states from any given cell. By repeating this for all 

cells in the initial state region over multiple time steps, an overapproximation of the set of reachable 

states can be determined (K. Julian, 2019). Another approach to this problem is to encode an 

overapproximation of the environment dynamics as constraints in a mixed-integer program and using 

the mixed-integer verification technique from Section 5.3.2.1.1 to solve for an overapproximation the 

output reachable set (C. Sidrane, 2019). 

5.3.2.1.4 Reachability analysis in non-deterministic environments 

When the environment is stochastic, the solvers in Section 5.3.2.1.1  can be combined with techniques 
in probabilistic model checking to determine the probability of reaching a set of states. Similar to the 
technique described in Section 5.3.2.1.3, the input space is divided into a set of cells and each cell is 
passed through a solver to determine the possible machine learning outputs. Probabilistic model 
checking determines the probability of reaching a certain set of states from a given initial state using 
dynamic programming (M. Bouton, 2020). By adapting this framework to work with cells rather than 
single input states, we can obtain an overapproximated probability of reaching a set of states when using 
a machine learning system (S. Katz, 2021). 

5.3.2.1.5 Model checking 

Model checking is a method to prove that a formal expression of a theory is valid under a certain 

interpretation. More detailed descriptions can be found in (ISO/IEC/IEEE, 2017) and in (Ehrig H., 

1985). A theory is expressed by a vocabulary of symbols comprising constants, functions and predicates 

to build sentences that state assertions about the intended semantics of an idea. A theory can either be 

expressed by sentences of a predicate logic or expressed by data patterns. Machine learning models are 
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algorithms designed for discovery and use of data pattern models. The data pattern model is checked 

against the input. 

For model checking to be valid, all models need to be checked. Model checking can be used on machine 

learning to prove relationships among different sorts of sets which obey some relationship. 

Example 1: The ‘theory of family’(Manna Z., 1993) obeys the interpretation which implements the 

membership of persons belonging to a family. Thus, two arbitrary persons are be proven to be members 

of the family or not. Then the sentence ‘one person is parent of the other person’ has to be checked for 

all available pairs of persons. 

Example 2: Model checking has been used in (Sena L. H., 2019) in order to prove the existence of 

adversarial inputs for a machine learning. The theory is the language constituted by the letters and the 

weights and biases description of the machine learning. The interpretation is constituted by the label 

attached to the image of the letter. It is possible to compute a distance between every possible pair of 

letters in the alphabet. Then, the model can be checked in order to ensure the predicate that every 

distance is greater than a specific threshold fixed by the user. User predefined predicates are checked 

through machine learning against a theory. 

5.3.2.2 Applicability  

In this section we study what methods can prove the properties presented in section 5.2.2 by using the 

method introduced in (ISO/IEC, n.d.). For each, we review the literature associated and the possible 

limitation of each given method. 

 

5.3.2.2.1 Using uncertainty analysis to prove interpolation model stability 

Uncertainty analysis is a general method used to measure the variability of any kind of mathematical 

functions. For that the methods tends to search for inputs that can cause significant drift in the 

behaviour. For machine learning model, it is indeed a way to find the previously described issues in 

Section 5.4.2 of standard 24029-2 (ISO/IEC, 2022b). In particular, it is possible to compare the 

measured behaviour with the knowledge of the actual behaviour. The goal is to measure the capacity of 

the machine learning model to reproduce within an acceptable range of deviation the phenomenon it is 

intended to model. It especially helps measuring the variation of response of the network in order to 

check that no unstable behaviour has been introduced. 

Several works have defined methods to quantify the capability of a machine learning model (especially 

for neural networks) to have a level of model stability property. In (Choi J. Y., 1992), a method is 

described to calculate the propagation of uncertainty in a network, thereby allowing it to detect the part 

of the ODD where the response of the neural network is abnormal and non-robust behaviour is to be 

expected. In (Montaño and Palmer, 2003), a method is described indicating the impact or importance 

of the input variables on the output, independently of the nature (quantitative or discrete) of the 

variables. In (Hess D. E., 2007), several sources of uncertainty are described, including uncertainty in 

the input, the sensitivity of the model itself, and the influence of random choices for training and testing 

data sets.  

Uncertainty analysis is also used to detect some conditions under which a machine learning model can 

operate in a non-robust manner. Another advantage is that is can also allow to trace the cause of such a 

behaviour by checking the source of the uncertainty change in the computation. 

 

5.3.2.2.2 Using solvers to prove a maximum stable space property 

Several example of use of solvers to compute a maximum stable space property have been published 

recently. For example, in (Huang X., 2016), an SMT solver is used to prove the absence or the existence 
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of adversarial example, including the ability to construct it. In (R., 2017), a combination of satisfiability 

solving and linear programming on a linear approximation of the overall network behaviour is 

considered. These works illustrate the capacity to express as a logical formula the property needed, and 

the capacity of a generic solver to prove this kind of properties on a machine learning model.  

 

5.3.2.2.3 Using optimization techniques to prove a maximum stable space property 

Common optimization techniques are also able to verify a machine learning model, whereby any 

satisfiability problem is converted to an optimization problem. It then becomes possible to apply 

conventional optimization techniques, such as the Branch and Bound algorithm(A. H. Land, 1960), to 

solve it. 

In the case of a maximum stable space property, it can be expressed as a Boolean formula on linear 

inequalities. As an example, the property can express that the output of a neural network must not 

become greater than a certain value. This requirement is then translated into a new (Boolean) layer in 

the network. Then the model is analysed in order to find a solution of the optimization problem, 

consequently the solution of the satisfiability problem is also solved by checking the sign of the solution. 

In (Bunel, 2017), the construction of such an optimization problem from a satisfiability problem on a 

neural network is described, combining a classical gradient descent to find a local minimum, as well as 

a branch and bound optimizer to determine the global optimum. 

In the field of optimizations techniques one can also use constraint programming to express the property 

to be checked. An example of such a technique is proposed in (Bastani O., 2016). The model is 

approximated by first modelling it as a linear program (using network composed of piece-wise linear 

functions), then approximating the feasible states using only convex sets, and finally applying 

iteratively a constraint solver to prove the robustness property. 

 

5.3.2.2.4 Using abstract interpretation to prove a maximum stable space property 

Abstract interpretation can easily be used in order to verify a maximum stable space property. It requires 

to first express the part of the input space to be check using an abstract domain. Then an abstract 

interpretation verifier can infer using the abstract object the over-approximation of the model over the 

considered input space. The abstract computation will contain all possible outputs of the system over 

the input space. For a classifier model for example, the abstract computation will produce for each class 

the maximum and minimum values possible for the model. Then, two cases are possible: either one of 

the class outputs is greater than any other (no overlap is detected), or there is no class that always takes 

over the decision. Several works explore how to compute such a property for neural networks in (A. 

Boopathy, 2018), (Singh et al., 2018) and (Gehr, n.d.), or for SVM in (Ranzato, 2019). 

 

5.3.2.2.5 Using abstract interpretation to prove a relevance property 

Although relevance has been quite extensively studied through approaches which are only valid on 

isolated inputs (e.g., deconvnet (M. D. Zeiler, n.d.), Grad-Cam (R. R. Selvaraju, 2016), LIME (M. T. 

Ribeiro, 2016) or SHAP (S. M. Lundberg, 2017)), it is a rather new topic for formal methods. At their 

core, these approaches identify through a gradient analysis how the inputs have influenced the outputs 

of a machine learning algorithm. However, these approaches are not meant to be generalized to prove 

(local) relevance properties. For abstract interpretation to be applied, one needs to first generalize this 

approach in order to considered not only isolated data points, but part of the input space. The notion of 

abstract gradient has been defined in that sense by Numalis (on an unpublished work yet) with the 
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European Space Agency134. An abstract gradient allows the analysis of the impact of every input on 

every output of a machine learning system over a part of the ODD. It relies on classical abstract domains 

detailed in 5.3.2.1.2, but it applies the abstraction on the gradient space instead on just the input space. 

 

5.3.2.2.6 Using optimization to prove a reachability property 

A forward reachability analysis method for the safety verification of nonlinear systems controlled by 

neural networks can be designed by leveraging the Linear-Parameter-Varying control (LPV) 

representation for the nonlinear systems. LPV frameworks have already received great attention to 

tackle the control synthesis/analysis problem of nonlinear and time-varying systems via convex 

methods (C. Hoffmann, 2015). However, to the best of our knowledge, this idea has not been employed 

for the reachability analysis of nonlinear systems yet such as the one used in ML. Finding an exhaustive 

method to address LPV embedding of nonlinear system on a systematic basis is still an ongoing research 

topic; most of the available methods are ad-hoc approaches with an inherent lack of generality and/or 

have shortcomings in addressing predominant issues regarding the constitution of the embedding (A. 

Kwiatkowsku, 2008; Sadeghzadeh, 2020).  

 

5.3.2.2.7 Using solvers and abstract interpretation to prove a reachability property 

By combining both solvers and abstract interpretation it is possible to prove a reachability property. A 

detailed approach is described in section 5.3.2.1.3 for deterministic environments and 5.3.2.1.4 for non-

deterministic environments. 

 

5.3.2.2.8 Overview 

We grade by “+” or “++” the ability of the methods to deliver results to assess each property, and by 

N/A if the property cannot be assessed by this method. 

 
Method Stability of 

the learning 

algorithm 

Stability of 

the trained 

model 

Robustness 

of the 

inference 

model 

Bias Variance Relevance Reachability 

Solver N/A ++ ++ + + N/A + 

Abstract 

interpretation 

N/A ++ ++ + + ++ ++ 

Optimization 

techniques 

N/A ++ ++ + + + + 

Table 16 – Applicability of the different techniques on the robustness and stability property 

 

While formal techniques allow to tackle most properties, their scalability can vary widely. Currently 

most of the most scalable solutions use abstract interpretation. One limitation of most of the tools 

available is that they do not easily process natural language models since the definition of local 

robustness is not properly defined yet. 

 

 
134 This work has been carried out from 2021 to 2022 through the ESA tender AO10403. 
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5.3.2.3 Tools overview  

5.3.2.3.1 Saimple 

Saimple is a proprietary tool based on abstract interpretation to verify neural networks and support 

vector machine. It uses several proprietary abstract domains developed by Numalis135. It can be used to 

verify both robustness and relevance properties. It can also be used to check reachability, by building 

around it the necessary loop infrastructure of such use cases.  

The product can currently handle convolutional, residual, recurrent architectures of neural networks. In 

addition, detectors are currently in beta-version in the product. It handles most of the ONNX 

specification of neural network (with the notable exception of custom layers). Saimple can also process 

support vector machines with linear, quadratic, cubic and RBF kernel. 

The tool has SaaS capability and can be used either through a web interface or through its REST API. 

 

5.3.2.3.2 PyRat 

PyRAT is proprietary tool based on abstract interpretation to verify neural networks136. It was developed 

at CEA after considering the lack of adaptability to neural networks of classical formal software 

verification tools developed at CEA. Through abstract interpretation techniques, PyRAT proposes 

multiple abstract domains to verify neural networks, such as boxes or zonotopes. To verify networks, 

PyRAT propagates the abstract domains through them in order to obtain the whole set of reachable 

values from an initial configuration. In addition to this, an input partitioning approach allows PyRAT 

to improve its precision and prove more general properties on the network, such as the ACAS-Xu 

properties.  

 

5.3.2.3.3 ERAN 

ERAN is an academic tool based on abstract interpretation to analyse neural networks137. ERAN stands 

for ETH Robustness Analyzer for Neural Networks. It refers to the work introduced in (Singh et al., 

2018) and (Gehr, n.d.). It operates on MNIST, CIFAR10, and ACAS Xu based networks. Its design 

does not allow straightforwardly the handling of other neural networks than the ones already 

implemented as examples. 

The goal of ERAN is to automatically verify safety properties of neural networks with feedforward, 

convolutional, and residual layers against input perturbations (e.g., L∞-norm attacks, geometric 

transformations, vector field deformations, etc).  

ERAN combines abstract domains with custom multi-neuron relaxations to support fully-connected, 

convolutional, and residual networks with ReLU, Sigmoid, Tanh, and Maxpool activations. 

Specifically, ERAN supports the following analysis:  

• DeepZ: contains specialized abstract Zonotope transformers for handling ReLU, Sigmoid and 

Tanh activation functions.  

• DeepPoly: based on an abstract domain that combines floating point Polyhedra with Intervals.  

• GPUPoly: leverages an efficient GPU implementation to scale DeepPoly to much larger 

networks.  

• RefineZono: combines DeepZ analysis with MILP and LP solvers for more precision.  

 

 
135 https://www.saimple.com/ 
136 https://list.cea.fr/en/page/development-environments/ 
137 https://github.com/eth-sri/eran 
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• RefinePoly/RefineGPUPoly: combines DeepPoly/GPUPoly analysis with (MI)LP refinement 

and PRIMA framework to compute group-wise joint neuron abstractions for state-of- the-art 

precision and scalability. 

ERAN supports only layers used with most classical activation layers used in MNIST, CIFAR10, and 

ACAS Xu based networks. 

 

5.3.2.3.4 Marabou 

Marabou is academic tool based on an SMT solver to compute bounds on neural networks138. It is a 

framework that formerly verifies mathematical properties of neural networks. It is a SMT (Satisfiability 

Modulo Theory) solver, which means it verify whether a mathematical formula is satisfiable. Its goal 

is to answer queries about a network’s properties by transforming these queries into constraint 

satisfaction problems. This tool is built upon Reluplex (Katz G., 2017), a previous solver developed 

using SMT-based techniques to verify mathematical properties of DNNs (Deep Neural Networks). 

Marabou can be used with networks using different activation functions and topologies. It also supports 

parallel execution to further enhance scalability. Marabou accepts multiple input formats, including 

protocol buffer files generated by the popular TensorFlow framework for neural networks.  

Marabou supports fully connected feed-forward and convolutional neural network with piece-wise 

linear activation functions, in the NNet and TensorFlow formats. Properties can be specified using 

inequalities over input and output variables or via a Python interface. 

There are several types of verification queries that Marabou can answer:  

• Reachability queries: if inputs are in a given range is the output guaranteed to be in some, 

typically safe, range. 

• Robustness queries: test whether there exist adversarial points around a given input point that 

change the output of the network.  

 

5.3.2.3.5 MIPVerify 

MIPVerify is academic tool based on MILP solver to compute bounds on neural networks139. 

MIPVerify enables users to verify neural networks that are piecewise affine by finding the closest 

adversarial example to a selected input, or proving that no adversarial example exists for some bounded 

family of perturbations. It has been introduced in (V. Tjeng, n.d.). 

 

5.3.2.3.6 DNNV 

DNNV is a framework for verifying Deep Neural Networks. DNNV takes as input a neural network140, 

and a property over the network, and checks whether the property is true, or false. One common DNN 

property is local robustness, which specifies that inputs near a given input, will be classified similarly 

to that given input. It has been introduced in (D. Shriver, 2021). 

DNNV standardizes the network and property input formats to enable multiple verification tools to run 

on a single network and property. This facilitates both verifier comparison, and artifact re-use.  

 

 

 

 

 
138 https://neuralnetworkverification.github.io/  
139 https://github.com/vtjeng/MIPVerify.jl 
140 https://github.com/dlshriver/dnnv  

https://neuralnetworkverification.github.io/
https://github.com/vtjeng/MIPVerify.jl
https://github.com/dlshriver/dnnv
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5.3.2.3.7 ReluVal 

ReluVal is one of the first systems proposed for formally verifying properties of feed-forward fully-

connected neural networks with ReLU activations141, and it is still considered among the state- of-the-

art tools concerning the ACAS Xu benchmarks. Introduced in (S. Wang, 2018), ReluVal implements a 

search-based approach that combines interval abstractions and iterative refinement. Later, it has been 

further improved with the integrations of the optimizations first proposed in Neurify. 

 

5.3.2.3.8 Nnenum 

Nnenum is an exact verifier for sequential neural networks supporting fully-connected and 

convolutional network with ReLU activation functions142. It is developed by Stanley Bak (Bak, 2020) 

and is considered a state-of-the-art tool, especially on the ACAS-Xu benchmark. Nnenum combines an 

approach based on zonotopes and star-set overapproximations with an improved path enumeration 

verification method for case splitting on the ReLU function.  

 

5.3.2.3.9 𝜶,𝜷-CROWN 

α,β-CROWN is a formal neural network verifier based on the CROWN (Huan, 2018) verifier, GPU 

relaxation for ReLU and a branch and bound approach for case splitting on ReLU143. As mentioned, it 

supports GPU computation to accelerate the analysis. Combined with its wide support of neural network 

analysis and thus possibility to run on various benchmarks, this led to very good performance in the 

VNN-COMP 2021. 

 

5.3.2.3.10 Saver 

SAVer (SVM Abstract Verifier) is an abstract interpretation-based tool for proving properties of 

SVMs144 (Ranzato, 2019), in particular it aims at proving robustness or vulnerability properties of 

classifiers. 

5.3.2.4 Tool applicability and maturity 

Most of the tools available are design to process robustness property on trained neural network, a 

significant part allows also to perform reachability analysis. Very few are able to perform analysis on 

other machine learning types than neural networks (Saimple and Saver). Only Saimple allows formal 

analysis for relevance property. 

We grade by “+” or “++” the ability of the tool to deliver results to assess each property, and by N/A if 

the property cannot be assessed by this method. Assessment is based on the ability of the underlying 

method used by the tool, the documentation provided and the general knowledge we have of the tool. 

  

 

 
141 https://github.com/tcwangshiqi-columbia/ReluVal  
142 https://github.com/stanleybak/nnenum  
143 https://github.com/Verified-Intelligence/alpha-beta-CROWN  
144 https://github.com/abstract-machine-learning/saver 

https://github.com/tcwangshiqi-columbia/ReluVal
https://github.com/stanleybak/nnenum
https://github.com/Verified-Intelligence/alpha-beta-CROWN
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Tool Stability of 

the learning 

algorithm 

Stability of 

the trained 

model 

Stability of 

the inference 

model 

Bias Variance Relevance Reachability 

Saimple N/A ++ ++ + + ++ + 

PyRat N/A ++ + + + N/A + 

ERAN N/A ++ + + + N/A + 

Marabou N/A + + + + N/A + 

MIPVerify N/A + + + + N/A  

DNNV N/A + + + + N/A + 

ReluVal N/A ++ + + + N/A + 

Nnenum N/A N/A N/A N/A N/A N/A ++ 

𝛼, 𝛽-

CROWN 

N/A ++ + + + N/A + 

Saver N/A + N/A N/A N/A N/A N/A 

Table 17 – Tool applicability on the different robustness and stability properties 

In terms of scalability for the robustness property the tools Saimple and PyRat have the best capabilities 

by being able to process large neural networks (over several dozen millions of parameters). It should 

be noted that no other use case is available to perform reachability property comparison. 

In terms of ease of access Saimple is currently the only tool to be deployable as a service and fully 

usable in any CI/CD process through an API. 

5.3.3 Empirical methods 

5.3.3.1 Methods 

This section presents methods described first in the ISO/IEC 24029-1 (ISO/IEC, n.d.). 

 

5.3.3.1.1 Field trials 

While there are several aspects that need to be studied for the establishment of trust in AI systems, the 

number of feasible approaches for analysing a system's behaviour and performance are limited. AI 

systems typically consist of software to a large extent. Therefore, standards for software testing are 

needed, such as ISO/IEC/IEEE 29119 for example. 

The primary goals of software testing are stated in ISO/IEC/IEEE 29119-3:2013 (ISO/IEC/IEEE, 

2013): Provide information about the quality of the test item and any residual risk in relation to how 

much the test item has been tested; to find defects in the test item prior to its release for use; and to 

mitigate the risks to the stakeholders of poor product quality. 

The workflow to assess machine learning robustness described in 5.2.3.2, Figure 47 contains three steps 

that are crucial for every field trial: 
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1. Setting up the testing plan (plan testing) 

2. Realization of the data acquisition (data sourcing) 

3. Carrying out the trial in a real operation environment (conduct testing) 

In contrast to other testing methods, in field testing the machine learning is integrated into a system that 

operates in a realistic environment for the respective application. Therefore, data acquisition and 

sourcing are integral to experimental design and execution. This is why the data sourcing step is to be 

taken particularly thoroughly for this approach to work. 

Defects and poor product quality are concerns when testing machine learning systems too. However, 

the failure of an AI system in a functional test is not necessarily related to a "software bug" or an 

erroneous design. AI systems showing occasional malfunctions are sometimes accepted because they 

are still regarded as useful for their intended purpose, in particular where there are no feasible 

alternatives. AI systems reveal their degree of performance mainly during field trials or deployment, as 

is the case with systems like virtual assistants, for example. This applies to many machine learning 

systems that operate in interaction with or dependency of natural environments and humans. This imply 

that in order to be setup a machine learning model need to be integrated into a component or even a 

system that can be deployed. A field trial approach would not be adequate to test a machine learning 

model in itself. 

In the medical sector the efficacy and the balance between risk and benefit of a new product are subject 

of many regulations. For instance, in Europe medical devices, including those using AI components, 

need to comply with DIN/EN/ISO 14155(ISO, 2011). They need to undergo "clinical investigations", 

a procedure that resembles "clinical trials"(Läkemedelsverket, 2009) (Beede, 2020; Florek H.-J., 2015).  

For some non-medical devices using AI components, field trials have for long been a recognized means 

of comparing and assessing the robustness of solutions. In these sectors it should be noted that 

regulations are also being made in order to control their safety before their entrance on the market.  

Some prominent examples are: 

• Facial recognition trials (BAA, 2009; BIS, 2004) (Vetter, 1997). 

• Tests of decision support systems for agricultural applications (Burke J., 2008). 

• Practice for testing driverless cars (UK-Government, 2015). 

• Tests of speech and voice recognition systems (Isobe T, 1996; Lamel L, 1996). 

• Networked robot at a train station (Shiomi M, 2011). 

Field trials for machine learning systems greatly vary with respect to methodology, number of users or 

use samples involved, status of the responsible organization/persons, and documentation of the results. 

 

5.3.3.1.2 A posteriori testing 

In some cases, it is possible to formally validate the robustness of an intelligent system. When this is 

not possible, as is very often the case for machine learning (Tian, 2018), validation by testing 

empirically the robustness of the system is then implemented, and input-output evaluation are very 

popular in this context. In this kind of evaluation there are a priori testing and a posteriori testing 

method. While a priori testing knows in advance the expected output and statistical measures are 

therefore applicable, a posteriori testing does not know it in advance. In that case, it is sometimes 

possible to design automated measures to still perform statistical measures by indirect means, but 

otherwise the only available method is empirical, relying on the judgment of human subjects. 

In a posteriori testing, Step 4 and 5 of the process illustrated in Figure 47 in Section 5.2.3.2 are slightly 

altered. Step 4, Analyse outcome, is likely to be more complicated, because the correct answer is 

unknown. Interpreting the results in Step 5 is a matter of consensus and not based on an unambiguous 

truth. 
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In general, to validate the robustness of a system, data or test environment representing a wide variety 

of test scenarios, for normal operating conditions and critical cases, are identified (Step 2 of the 

process). These inputs are submitted to the system to be evaluated and the system outputs (called 

hypotheses) are compared to references, i.e. to a ground truth (Step 3). These inputs are designed to 

challenge the system to check its robustness, for example by using adversarial examples. These 

references are usually provided by human annotators performing the same task as that performed by 

the evaluated system, or by physical measurements. 

In the case of a priori testing, references are provided by human annotators, and they usually all agree 

among themselves on the "right answer" to be provided (high inter-annotator agreement rate). The 

ground truth is therefore unambiguous. On the contrary, with a posteriori testing, the references 

produced by the annotators varies from one to another. The field truth is therefore ambiguous. In 

general, this is the case when the task has several correct answers (G., 1979).  

As it is not possible to determine a priori all the possible correct answers, thus a posteriori evaluations 

are carried out. That is, it is by looking at the outputs of the systems that human annotators or automated 

measures will tell whether they are "acceptable" or "incorrect". 

Machine translation is a classic example of a task for which a posteriori evaluation is a useful 

complement to a priori testing. There are usually several ways to translate the same sentence from one 

language to another. While statistical methods are often applied in this case, by establishing an arbitrary 

set of correct or acceptable answers to compare the output with (Papineni, 2002), this is not a fully 

reliable measure of performance and subjective a posteriori testing is often more precise. Similarly, 

during a navigation task, it is possible to accept several trajectories to move from one place to another. 

Depending on the ability to define an objective criterion for successful trajectories, a posteriori testing 

can be applied with either statistical or empirical means. 

It is also possible to use a posteriori evaluation to validate a new robustness metric (a new method or 

formula to measure). Indeed, when the quality of task is subjective the metrics needs to assign quality 

scores that correlate with human judgment of quality. Human judgment is the benchmark for assessing 

automatic metrics (Graham, 2014). 

However, the concepts of a posteriori evaluation and post-deployment evaluation are overlapping in 

some cases, particularly when testing with end-users. For example, in the case of the evaluation of the 

quality of a human-machine interaction, the evaluation is done a posteriori because it is not possible to 

know the how the interaction will generalize across the population before widespread interaction takes 

place. To carry such evaluation, it is possible to vary the user profile and having a user pool 

representative of the system's actual operating conditions and obtain an empirical analysis of the 

robustness of this interactive intelligent system. 

 

5.3.3.1.3 Benchmarking of machine learning 

Benchmarking a machine learning based system could help in establishing to some degree of the 

robustness of the system. Often the initial trust in an AI solution based on machine learning models is 

established by a benchmark test assembled by the system designer. For example, in pattern recognition 

and similar applications of AI methods, benchmarking has for long been the gold standard for 

establishing trust in a certain method (Kohonen, 1988). However, benchmarking could introduce 

elements of subjectivity, such as in the tagging or annotation of test data sets by expert practitioners. 

Benchmarking measures the performance of a system on carefully designed data sets that are publicly 

available in most cases. Often, they are used for testing different systems competitively. Prominent 

examples of benchmarking are the Face recognition vendor tests conducted by the US Department of 

Commerce (Ngan, 2015). Other examples are the "Grand Challenges in Biomedical Image Analysis" 

(Van Ginneken et al., n.d.). Since they are public and are intended to be generic enough for a sector, 
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they cover only a subset of the possible variation type of the inputs concerned by the machine learning 

model. 

In contrast to field trials, benchmarking does not necessarily require an operational system in a real 

application scenario. For benchmarking, data sets are created to pose a serious but not impossible 

challenge for state-of-the-art classification or regression methods. The benchmark data sets need to be 

complemented by a set of benchmarking rules that describe and standardize ways of setting up testing, 

documenting this setup, measuring results and documenting these results (Prechelt, 1994). 

Benchmarking plays a strong role in pattern recognition research and has contributed decisively to the 

advancement of the field. However, benchmarking is usually not sufficient for a decision on a certain 

robustness goal. Benchmarking results are to be interpreted with care (Maier-Hein et al., 2018).  

5.3.3.2 Applicability and maturity 

We grade by “+” or “++” the ability of the methods to deliver results to assess each property, and by 

N/A if the property cannot be assessed by this method. 

 
Method Stability of 

the learning 

algorithm 

Stability of 

the trained 

model 

Robustness 

of the 

inference 

model 

Bias Variance Relevance Reachability 

Field trials N/A + + + + N/A ~ (*) 

A posteriori 

testing 

N/A + + + + ++ N/A 

Benchmarking + + + + + + + 

Table 18 – Applicability of the different empirical techniques on the robustness and stability property 

(*) Reachability properties can be very challenging to be verified in field trials. However, if the ODD is 

rather small it might be possible to empirically test it. 

 

Field trials and a posteriori testing present the same drawback that the system which include an ML 

constituent should be completed before being tested. It is therefore only suitable to assess the robustness 

of the trained model since this one has to be frozen for the evaluation to go forward. They both can be 

implemented by specific evaluator groups specialized in this kind of evaluation. There is no tool 

available capable of replacing the manual step of the evaluation protocol setup and realization. 

Scalability is completely dependent on the difficulty of setting up this protocol. But since it has to be 

done using human involvement the scalability of such methods is necessarily more costly and difficult. 

Benchmarking however presents more scalability potential. A growing scientific literature is addressing 

this topic (J. Thiyagalingam, 2022; P. Malakar, n.d.; R. S. Olson, 2017; T. St. John, 2019). Benchmarks 

can either concerns data set that are shared in order to measure the performance of a new machine 

learning models, or it can also be a shared data set of already trained machine learning models to be 

benchmarked against. It should be noted that no large-scale benchmark data set is already 

internationally and formally recognized. Several benchmarks are still competing with each other to 

become the standard on each topic and many new ones are entering the fray each year. One important 

driver in the emergence of these benchmarks are competitions organized by academic conferences, 

which usually have one challenge in mind (image recognition, translation, etc). As these benchmarks 

are growing in number they also improve in maturity, allowing new evaluations to be done more and 

more easily. However, it is important to note that benchmarks are not always of the same quality, and 

it often happen that outliers, incorrect labelling, or even incorrect data are present in some. A recent 
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study shown that even imageNet, which is one of the most used data sets, contains a 6% error in average 

in its labelling (C. Northcutt, 2021). Some work has taken place at the ISO/IEC to try to standardize the 

way benchmarks can be assembled, annotated, traced and validated in order to improve their quality 

and usability. 

 

Data set Type of input Size 

MNIST Images 10 000 

CIFAR-10 Images 10 000 

CIFAR-100 Images 10 000 

Caltech-256 Images 29 780 

ImageNet Images 50 000 

QuickDraw Images 50 426 266 

20news Text 7 532 

IMDB Text 25 000 

Amazon Reviews Text 9 996 437 

AudioSet Audio recording 20,371 

MSTAR X-band SAR 2 747 

NORB Images 29 160 

COP_banknote Images 20 800 

Table 19 – Some examples of data sets used in machine learning competitions 

Outside the benchmark used in some competitions we can also cite two benchmark that are specific to 
the aeronautic sector: 

• The Air Operators database of incidents from the Federal Aviation Administration145, with more 
than thousands of entries. 

• The Opensky datasets146 with more than dozens of thousands of commercial and non-
commercial flights. 

 

5.3.4 Selected tools and methods  

 

 

 
145 https://av-info.faa.gov/dd_sublevel.asp?Folder=%5CAirOperators 
146 https://opensky-network.org/datasets/metadata/  

https://av-info.faa.gov/dd_sublevel.asp?Folder=%5CAirOperators
https://opensky-network.org/datasets/metadata/
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Following the assessment done of each method and the maturity of the available tools, the next phase 

of the MLEAP project will focus on experimenting some of them on the proposed use cases. From a 

practical point of view the use cases allow most of the statistical metrics to be tried, however not all 

formal methods can. The maturity of the available tools can also impact their applicability. In practice, 

abstract interpretation will be the preferred technique to implement formal methods on the use cases. 

In particular the tools Saimple, ERAN and Nnenum can be both available and compatible with the 

intended use cases (or at least some of them). Finally, empirical method requires a preparatory work 

alongside with the experts in charge of the evaluation with limited scalability. This type of evaluation 

is not covered by the MLEAP project in order to focus on scalable techniques. 

 

5.4 Conclusion 

Assessing the robustness and stability of machine learning is a complex task that deals with: 

• the definition of the operational domain on which the system is going to operate; 

• the definition of the requirements that are needed from the system; 

• the choice and the setup of a methodology to assess these properties over the ODD; 

• the practical realization of such a methodology in a tractable way. 

As several methods are available the document regroups them into 3 categories: statistical, formal or 

empirical ones. In each several metrics and techniques are available with a varying degree of maturity 

in the existing tools. These categories can fit within both ISO/IEC and EASA documents on the topic. 

They can also be used to a point to implement some of the requirements described in those 

standardization reference documents. 

Statistical methods might be the most straightforward way to analyse these properties. However, they 

require lots of preparation work in order to setup the right data sets. Also, any attempt to sample in an 

exhaustive way is immediately limited by the high dimensionality of the input space. In terms of tools 

many libraries are providing the necessary functions to evaluate statistical metrics. However, few tackle 

the data issues associated to such methodologies. 

Formal methods, while being promising in overcoming this limitation, suffer in part from some 

scalability issues that few tools can overcome. The available tools can vary in terms of maturity. Most 

are still academic tools; but a few industrial solutions are starting to appear. These methods offer 

stronger properties in terms of robustness and stability; however, they are often limited in the scope on 

what they can prove over the input space. 

Finally, empirical methods might be considered as the most practical one in the sense that they need to 

have the system up and running to be evaluated. However, these approaches can only provide a black 

box understanding of the system properties. Contrary to statistical or formal approaches, they will not 

allow to assess to the same level of confidence the properties required on the system. Empirical methods 

either rely on a concrete assessment evaluated by some human experts which tends to reach a consensus 

both in term of methodology and the assessment obtain through it. But it can also propose some 

benchmarking using common and widely spread data sets as points of references. Their use might be 

considered to applications of low-level criticality depending on the objective the system has to meet. 

 

Overall, any meaningful evaluation of robustness and stability would benefit from a combination of 

techniques. In this way, the process would cover as much as possible the input space while maintaining 

tractability.  
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6. Conclusions 

This document presents the current state and latest achievements of the MLEAP project. So far, tools 
and methodologies needed to instantiate several steps of the EASA's W-shaped development approach 
(EASA, 2023) have been investigated. The axes being explored focus on: 

• Data completeness and representativity, with handling of the corner cases 

• Model development, through the handling of the generalization properties 

• Model evaluation, in particular in terms of robustness and stability 

 

Data quality is a difficult topic, science-wise, because of the inherent cost which comes with doing 

research in the field. Completeness and representativeness are usually not handled per se, and almost 

no dedicated tools exist. Thus there is a need to build indicators from more general metrics (such as 

entropy) or by leveraging different tools (like sample similarity). Intrinsically, the domain is a difficult 

one, because an objective estimation of completeness or representativeness requires knowing the exact 

extent and distributions of the phenomena to observe.  In addition there is a necessary tradeoff between 

representativity and diversity, since rare cases need to be amplified to be modelled correctly.  Hence, 

Chapter 3 provides analysis on the requirements for the ODD to set the expectations for representativity-

diversity tradeoff.  Hopefully, the array of tools and methods described in the selection grid should give 

AI developers a chance to document and justify if the tradeoff holds. 

  

The generalizability of trained models, assessment and evaluation is investigated, while analysing 

methods to avoid along the way under- or overfitting, taking into account the impact of the quality and 

volume of the data. We presented methodologies to right-scale the complexity and capacity of the 

models depending on the scope of the task under development, and the volume and nature of input data, 

while measuring the level of generalization reached by a training session.  Chapter 4 ends up with an 

operational proposal on how to project these methods into the W-shaped approach, which should be 

extended to the whole set of tools and methods presented in the document for the next version. 

 

Measuring the quality of the training step takes part in the larger question of the evaluation of the model.  

We present multiple approaches in Chapter 5, from pure performance measures with empirical, data-

based approaches to the validation of explicit properties, in particular of stability, through an array of 

analytic or formal methods.  Those methods, while sometimes difficult to put in practice, allow for very 

powerful analysis of the behaviour of the models, including at runtime, allowing monitoring of the 

whole system in a live setup. 

 

An updated version of this public report is expected to be published in May 2024, and will allow 

validation of the applicability of the methods on the aviation use cases we presented in Chapter 2, and 

focus on the actual operational usability and scaling of the various tools identified. 

 

Finally, for further information on the MLEAP achievements, and to give your feedback, do not hesitate 

to contact the ai@easa.europa.eu.   

 

 

mailto:ai@easa.europa.eu
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