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Glossary 

Formal methods. Formal methods are mathematically based techniques for the specification, development, 
and verification of software aspects of digital systems. The mathematical basis of formal methods consists of 
formal logic, discrete mathematics, and computer-readable languages. The use of formal methods is 
motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical 
analyses can contribute to establishing the correctness and robustness of a design [1]. 

Learning assurance. All of those planned and systematic actions used to substantiate, at an adequate level 
of confidence, that errors in a data-driven learning process have been identified and corrected such that the 
system satisfies the applicable requirements at a specified level of performance, and provides sufficient 
generalisation and robustness guarantees [2]. 

Operational Design Domain (ODD). Operating conditions under which a given AI-based system is specifically 
designed to function as intended, in line with the defined ConOps, including but not limited to environmental, 
geographical, and/or time-of-day restrictions. ODD defines the range of operating parameters within which 
the AI-based system is designed to operate, and as such, will only operate nominally when the parameters 
described within the ODD are satisfied. The ODD also considers correlations between operating parameters 
in order to refine the ranges between these parameters when appropriate; in other words, the range(s) for 
one or several operating parameters could depend on the value or range of another parameter [2]. 

Data completeness. A dataset is complete if it sufficiently (i.e., as specified in the data quality requirements) 
covers the entire space of the operational design domain for the intended application [2]. 

Data representativeness. A dataset is representative when the distribution of its key characteristics is similar 
to the actual input state space for the intended application [2]. 

ML model1. Mathematical model that is generated as an output of a learning algorithm. Its parameters are 
determined during the training process and fixed after it is finished. 

ML inference model. Implementation of the trained ML model on the target platform (software and/or 
hardware). 

ML constituent. A collection of traditional hardware and/or software items (e.g., pre-processing and post-
processing elements) and at least one specialized hardware or software item that contains one or more ML 
inference models. 

ML constituent ODD. Operating conditions under which a given ML constituent is expected to work as 
intended. 

Learning algorithm stability. Learning (training) algorithm is stable if in the presence of perturbations in the 
dataset in the training phase of learning assurance (e.g., replacement/removal of data points, additive noise, 
labelling errors) it produces a model that is similar, in terms of its properties and characteristics, to the one 
trained on the original dataset. For example, for classification models this would mean that model decision 
boundaries do not change significantly in case of training dataset perturbation. 

 
 
1 Sometimes in this report it is ŀƭǎƻ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άtrained ML modelέ. 
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ML model stability. ML model is stable if a small, bounded perturbation applied to its inputs in normal 
operating conditionsΣ ƛΦŜΦΣ ǿƘŜƴ ǘƘŜ ƛƴǇǳǘǎ ŀǊŜ ƛƴǎƛŘŜ ǘƘŜ a[ ŎƻƴǎǘƛǘǳŜƴǘΩǎ ƻǇŜǊŀǘƛƻƴŀƭ ŘŜǎƛƎƴ ŘƻƳŀƛƴΣ ŘƻŜǎ 
not cause a significant deviation in its output2. 

ML model robustness. ML model is robust if it does not exhibit unexpected behavior neither in normal 
operating conditions (i.e., the model is stable) nor in adverse conditions, for example, in response to out-of-
distribution inputs, adversarial inputs, or edge/corner cases.  

ML model generalization. The capability of the ML model to exhibit required performance on unseen inputs 
within its operational design domain, i.e., those inputs that have not been part of training and validation 
datasets. Generalization is typically evaluated using a test (holdout) dataset in order to demonstrate that the 
model has a reasonable bias-variance trade-off, i.e., does not underfit or overfit the training data. While such 
testing approach measures ML model generalization capability with respect to the chosen test dataset, 
additional analytical approaches may be required to assess model generalization to the entire admissible 
input space (e.g., see the discussion in [3]). 

  

 
 
2 Lƴ ƎŜƴŜǊŀƭΣ ŀ ŘƛǎŎƻƴǘƛƴǳƛǘȅ ƛƴ ǘƘŜ a[ ƳƻŘŜƭΩǎ ƻǳǘǇǳǘ does not necessarily represent its instability. If the phenomenon/process that 
the ML model describes has known discontinuities, i.e., large changes in the output in some input region, these should be 
documented and considered expected during the ML model stability assessment. 
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Executive summary 

The aim of this report is to present the outcome of the collaboration between EASA and Collins Aerospace  
on an Innovation Partnership Contract (IPC) that investigated the use of formal methods as part of the 
learning assurance building block of the EASA AI Roadmap [4]. The project ran from Oct 2021 to Mar 2023. 

The IPC project titled "Formal Methods use for Learning Assuranceέ όForMuLA) focused on emphasizing 
opportunities for the adoption of formal methods techniques in the design assurance process of machine 
learning enabled systems. This resulted in the following key achievements: 

¶ Proposed use of formal methods as anticipated means of compliance for a set of key certification 
objectives from the EASA Concept Paper for Level 1&2 Machine Learning Applications. This 
supported the update of definitions in the concept paper and the clarification of objective LM-11 on 
learning algorithm and trained model stability, which has been split into objectives LM-11 and LM-
12 in the transition to the new version of the concept paper. 

¶ Detailed discussion of relevant formal methods (FM) technologies and supporting statistical 
methods, and their possible role in the development and validation and verification (V&V) of machine 
learning enabled systems. Emphasis has been made on innovative FM applications specific to the 
robustness assessment of machine learning models. 

¶ Practical demonstration of the use of formal methods on an industrial use case of a deep learning-
based estimator for remaining useful life of mechanical bearings in airborne equipment.  The output 
of the estimator is used for on-ground maintenance applications. Demonstrations provided concrete 
evidence of how FM and supporting statistical techniques can be used as part of the verification 
activities to deal with data quality assessment, ML stability, robustness and intended behavior 
verification. 

The considerations summarized in the report apply to machine learning in general, but particular emphasis 
has been placed on specific challenges related to neural networks. Discussion of formal methods applications 
are purposefully kept generic. This report does not recommend specific methods or tools, but is rather 
intended to motivate opportunities from a theoretical perspective. Where applicable, a reference is made to 
concrete methods and tools. 

European Union Aviation Safety Agency (EASA) ƛǎ ǘƘŜ ŎŜƴǘŜǊǇƛŜŎŜ ƻŦ ǘƘŜ 9ǳǊƻǇŜŀƴ ¦ƴƛƻƴΩǎ ǎǘǊŀǘŜƎȅ ŦƻǊ 
aviation safety. Its mission is to promote the highest common standards of safety and environmental 
protection in civil aviation. The Agency develops common safety and environmental rules at the European 
level. It monitors the implementation of standards through inspections in the Member States and provides 
the necessary technical expertise, training and research. The Agency works hand in hand with the national 
authorities which continue to carry out many operational tasks, such as certification of individual aircraft or 
licensing of pilots. 

Collins Aerospace, a Raytheon Technologies company, is a leader in technologically advanced and intelligent 
solutions for the global aerospace and defence industry. Collins Aerospace has the capabilities, 
ŎƻƳǇǊŜƘŜƴǎƛǾŜ ǇƻǊǘŦƻƭƛƻΣ ŀƴŘ ŜȄǇŜǊǘƛǎŜ ǘƻ ǎƻƭǾŜ ŎǳǎǘƻƳŜǊǎΩ ǘƻǳƎƘŜǎǘ ŎƘŀƭƭŜƴƎŜǎ ŀƴŘ ǘƻ ƳŜŜǘ ǘƘŜ ŘŜƳŀƴŘǎ 
of a rapidly evolving global market. The Applied Research & Technology (ART) organization of Collins 
Aerospace is an agile centrally held enterprise level technology organization that works to identify, develop 
and demonstrate innovative technology solutions, products, services, and intelligent systems supporting 
/ƻƭƭƛƴǎ !ŜǊƻǎǇŀŎŜ ōǳǎƛƴŜǎǎŜǎ ǿƛǘƘ ǘƘŜ Ǿƛǎƛƻƴ ƻŦ άŀŎŎŜƭŜǊŀǘƛƴƎ ǘǊŀƴǎŦƻǊƳŀǘƛǾŜ ǘŜŎƘƴƻƭƻƎƛŜǎ ŦƻǊ ŀ ǎŀŦŜǊ ƳƻǊŜ 
ŎƻƴƴŜŎǘŜŘ ŀƴŘ ǎǳǎǘŀƛƴŀōƭŜ ǿƻǊƭŘέΦ As part of the ART organization, the Advanced Model Based Engineering 
Methods (AM2) department works to develop, mature, and transfer model-based methods, technologies 
and tools from conception to validation and verification of Collins products from sales to operation. 
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1 Introduction 

Artificial Intelligence (AI) in aviation is a disruptive technology that will impact various products and services. 
The aviation industry is being increasingly driven towards the application of Machine Learning (ML) in new 
products to assist human operators or implement enhanced automation. Such products, in particular safety-
critical ones, require certification and must provide a high level of trustworthiness and guarantees of the 
absence of unintended behaviors. This is achieved by providing design assurance, i.e., evidence that certain 
guidelines and verification processes have been followed during the design process or that the product 
possesses necessary safety features (e.g. redundancy, runtime monitors, or safety nets). 

The aviation industry currently does not have a consensus on the design assurance of ML constituents 
because they are not fully amenable to current design assurance processes and standards.   In particular, ED-
12C/DO-178C provides guidance to produce traditional (i.e., non-ML) software that performs the intended 
function with a level of confidence in safety that complies with airworthiness requirements [5]. The standard 
focuses on a process for software design that starts from functional and non-functional requirements and 
transforms them into the software code. This code shall be traced to and verified against the requirements 
to ensure it is correct, i.e., it performs the intended function, and, more importantly, does not expose 
behaviors that are unintended by the designer or unexpected by operators.  

ML constituent development, instead, is data-driven. An ML model is trained through a learning procedure 
that starts from data, not from requirements3. Thus, the use of traceability of the implementation back to 
requirements as a means to minimize the risk that the ML constituent includes unintended behaviors is not 
effective. Additionally, the use of structural coverage metrics may not be effective in identifying unintended 
behavior in ML models such as neural networks (NN) [6]. Instead, as part of learning process verification 
activities, ML generalization and robustness assessment have been proposed as key criteria that, when 
ŦǳƭŦƛƭƭŜŘΣ Ŏŀƴ ƘŜƭǇ ǘƻ ƳƛǘƛƎŀǘŜ ǎǳŎƘ Ǌƛǎƪǎ ƛƴ ǘƘŜǎŜ ǘȅǇƛŎŀƭƭȅ άōƭŀŎƪ-ōƻȄέ ǎȅǎǘŜƳǎ [2]. Therefore, it is critical to 
identify promising methods to evaluate generalization and robustness of ML models.  

This report provides a theoretical overview and practical demonstrations of how formal methods (FM) 
techniques can be leveraged in the design assurance process of ML-enabled systems, also called learning 
assurance [2], with particular emphasis on the learning process verification activities dealing with ML stability 
and robustness.  

According to ED-216/DO-333 [1], formal methods can be used as a source of evidence for the satisfaction of 
verification objectives when a formal model of the software artifact can be established, and properties they 
have to comply with can be verified via formal analysis. It is worth noting that formal methods provide 
comprehensive assurance of properties for those aspects that are formalized in the formal model. The key 
requirement of any formal verification method is soundness: only properties that are actually valid shall be 
declared valid by a sound method (see the full definition in Section 3.2). 

The report summarizes the progresses that the research community is achieving in identifying proper 
languages and formal models to capture ML models/constituents and their properties, as well as in 
developing novel formal verification algorithms and tools able to extend the applicability of traditional formal 
verification capabilities to the assurance of ML robustness and beyond. 

1.1 Background 

The path towards ML certification is not yet defined, but several reports have been published by aviation 
authorities and research groups addressing foundational certification aspects of ML-enabled systems. In 
February 2020 the European Aviation Safety Agency (EASA) published their Artificial Intelligence Roadmap, 

 
 
3 In fact, datasets may implicitly represent some functional requirements for the system. 



    
Collins Aerospace ς EASA 

ForMuLA IPC extract 

 
Page 12 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

including the timeline shown in Figure 1. The roadmap ŜǎǘŀōƭƛǎƘŜǎ ǘƘŜ !ƎŜƴŎȅΩǎ ƛƴƛǘƛŀƭ Ǿƛǎƛƻƴ for the safety 
and ethical dimensions of development of ML in the aviation domain [4]. Its main scope is to create a 
framework for ML trustworthiness and establish conditions for use of ML applications in aviation.  

In March 2020 and May 2021 EASA released two technical reports entitled Concepts of Design Assurance for 
Neural Networks (CoDANN) I and II [3] [7]. These reports provide a detailed study of several ML-specific 
development and assurance aspects such as robustness, generalization and explainability topics, and propose 
a W-shaped ML development process (Figure 2) outlining the essential steps for learning assurance.  

In March 2021, the DEEL (Dependable and Explainable Learning) certification working group published a 
whitepaper entitled Machine Learning in Certified Systems [8] summarizing the necessary conditions and 
objectives for certifying ML-based systems. Auditability, data quality, explainability, maintainability, 
robustness, resilience, specifiability and verifiability are the identified certification objectives.  

In April 2021, the SAE G-34/EUROCAE WG-114 joint international committee on Artificial Intelligence in 
Aviation ǇǳōƭƛǎƘŜŘ ŀ ǎǘŀǘŜƳŜƴǘ ƻŦ ŎƻƴŎŜǊƴ ŘƻŎǳƳŜƴǘ ǊŜǾƛŜǿƛƴƎ άcurrent aerospace software, hardware and 
system development standards used in the certification/approval process of safety-critical airborne and 
ground-based systems,έ and assessing άwhether these standards are compatible with a typical artificial 
intelligence (AI) and machine learning (ML) development approachέ [6]. This was followed by a technical 
paper [9] presenting a new ML development lifecycle which will constitute the core of the new aeronautical 
standard on ML called AS6983 jointly being developed by EUROCAE and SAE. The paper covers the design 
assurance process at the item level (analogously to ED-12C/DO-178C for traditional avionics software) and 
proposes development and V&V lifecycle activities compatible with the ones identified by EASA. 

Lƴ 5ŜŎŜƳōŜǊ нлнмΣ 9!{! ǇǳōƭƛǎƘŜŘ ŀ ŎƻƴŎŜǇǘ ǇŀǇŜǊ ǘƛǘƭŜŘ άFirst Usable Guidance for Level 1 Machine 
Learning applications in aviationΣέ [10] which is the first milestone in the implementation of the EASA  
Roadmap. The guidance anticipates a set of assurance objectives (compatible with the ones proposed by 
DEEL), and additionally proposes means of compliance supporting applicants in the identification of 
certification means for ML-based safety-critical systems. In February 2023 EASA has published the update of 
the concept paper, extending it to Level 2 ML applications [2]. 

 
Figure 1. EASA AI Roadmap. 

1.1.1 IPC: CoDANN I and CoDANN II 

One important aspect of the development of machine learning systems is that it is based on a data-driven 
process. Specific activities on data management (data collection, data preparation, and data quality 
verification) need to be present in the process. Furthermore, the development process cannot go directly 
from requirements and data to programming, but must include a new paradigm of learning, i.e., creating and 
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training a mathematical model (ML model) from the data. This model can then be transformed to software 
and deployed on a target computer. As part of the two IPCs, titled Concepts of Design Assurance for Neural 
Networks (CoDANN I and II) [3] [7], a new AI development process, called the W-model, has been proposed. 
It is illustrated in Figure 2.  

 
Figure 2. W-shaped development cycle for machine learning (W-model). 

 
The left-hand side of the W-model covers the development activities specific to ML components, including 
the following: 

¶ Data management, which includes collection of the data (e.g., real, or synthetic data), its pre-processing 
(e.g., normalization, filtering, feature selection, annotation, labelling), and data quality verification. 

¶ Learning process management, which covers all steps required prior to training the model, such as model 
architecture selection, training algorithm, quality metrics, and hyperparameters.  

¶ Model training, a self-explanatory step in ML to find a best-performing model.  

The key element in the process, which transforms the V into a W, is the Learning process verification, where 
specific tests and analyses must be applied to ensure that the trained model meets the key criteria ς 
generalization and robustness. The former means that the model performs well on previously unseen data. 
The latter demonstrates that the performance of the model does not degrade in case of perturbations 
applied to its inputs and in case of adverse inputs, such as adversarial attacks and out-of-distribution data. 
Both criteria are key challenges in ML and must be fulfilled to demonstrate the absence of unintended 
functionality in these typically black-box systems, which is a crucial condition for their certification by aviation 
authorities.  

¢ƘŜ ƳƻŘŜƭ ǾŜǊƛŦƛŎŀǘƛƻƴ ǎǘŜǇ ƛǎ ŦƻƭƭƻǿŜŘ ōȅ ǘƘŜ ǎŜŎƻƴŘ ά±έ ƻŦ ǘƘe W-model, with one more development 
activity, Model implementation.  This phase covers creation of code that implements the trained model (also 
called the inference model) and its deployment on target hardware, as well as verification and integration 
activities of the inference model to ensure that the properties of the trained model are preserved in the 
deployed version. 
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1.1.2 EASA concept paper for level 1&2 ML applications 

¢ƘŜ 9!{!Ωǎ Concept Paper: Guidance for Level 1&2 ML Applications4 άintroduces a first set of objectives, in 
order to anticipate future EASA guidance and/or requirements to be complied with by safety-related ML 
applications. Where practicable, a first set of anticipated Means Of Compliance (MOC) has also been 
developed, in order to illustrate the nature and expectations behind the objectives. The aim is to provide 
applicants with a first framework to orient choices in the development strategy for ML solutionsέ [2]. Among 
the proposed MOCs, formal methods are considered promising, especially for the verification of stability and 
robustness properties of the trained and inference models.  

The concept paper also provides the following definition of learning assuranceΥ άAll of those planned and 
systematic actions used to substantiate, at an adequate level of confidence, that errors in a data-driven 
learning process have been identified and corrected such that the system satisfies the applicable requirements 
at a specified level of performance, and provides sufficient generalisation and robustness guarantees.έ 

1.1.3 ED-216/DO-333 formal methods supplement 

In commercial aviation, the use of formal methods in the development of software-based aerospace systems 
is allowed through the ED-216/DO-333 [1] supplement to the ED-12C/DO-178C [5] standard. The supplement 
identifies the modifications and additions to ED-12C/DO-178C objectives, activities, and software life cycle 
data that should be addressed when formal methods are used as part of the software development process. 
The standard highlights that the extent to which formal analysis can be used varies according to the ability 
to construct appropriate formal models, the choice of analysis techniques, and the availability of tools. 
Therefore, it is critical to define formal models provided with the appropriate level of detail representing a 
conservative approximation of the important software properties and of the properties stated by the natural 
language requirements, and to adopt tools able to process such models and perform analyses leveraging 
mathematical reasoning. 

1.1.4 Limitations of formal methods 

As discussed in DO-333, applicability of formal methods to any particular software development activity is 
bounded by the ability to construct an appropriate formal model. Requirements specified in natural language 
may include properties that cannot be verified with a formal method. Models can also be insufficiently 
detailed to allow meaningful analysis of some properties and yet be perfectly adequate for others. Despite 
these limitations, formal methods can be a means of completely and accurately describing important 
software properties. Formal analyses can then be applied to provide assurance of these properties [1].  

In recent years, new approaches ς including the use of formal methods ς have been proposed for the 
verification of ML components and ML-enabled systems. Furthermore, new formal methods tools are in 
development that permit mathematical analysis of ML models, such as neural networks. These are currently 
limited by scale and the need to precisely define requirements for analysis. Current state-of-the-art tools 
today could not be applied to large open input spaces and complex ML models, such as vision-based models. 
However, they are making rapid progress and have been used and applied at scale for low-complexity models 
(e.g., shallow NNs) with well-defined input spaces to prove critical robustness properties for real systems. At 
the same time, the research community is actively working on overcoming the existing barriers of FM tools 
scalability by developing novel techniques and tools that may be able to address higher complexity ML 
verification problems in the future. 

 
 
4 For short, in the remainder of the report it is ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ ά9!{! !L /ƻƴŎŜǇǘ tŀǇŜǊέΦ 
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1.2 Scope of the ForMuLA project 

The ForMuLA project focuses on identifying opportunities for adopting formal methods as means of 
compliance for the assurance and certification objectives for ML constituents. The following topics have been 
addressed: 

¶ Identification of available state-of-the-art FM technologies specific to ML. Such technologies have 
been adapted to or specifically developed for machine learning and are able to support several 
development and V&V activities, including data quality assessment, improvement of the learning 
process, ML model stability and robustness verification,and explainability. For those activities, where 
FM may face scalability or applicability limitations, statistical methods have also been explored as 
supporting means for the analysis. 

¶ Identification of key FM applications for the learning process verification, especially for the 
assessment of ML model stability, robustness, and verification of intended behaviors. To overcome 
current limitations of FM tools in verifying global properties, the project identifies a method that 
reduces the problem of global properties verification to a set of local pointwise verifications 
performed relying on a conservative approximation.  This method could be acceptable if the selected 
points and corresponding properties are representative of the ML constituent ODD. 

¶ Practical demonstration of the use of formal methods on an industrial use case of a deep learning-
based estimator for remaining useful life (RUL) of mechanical bearings in aircraft equipment in 
support of on-ground maintenance activities. A number of innovative FM technologies have been 
selected based on their applicability to the use case and used to evaluate the ML model stability, 
robustness and compliance with intended behaviors. At the same time, selected technologies have 
been evaluated in terms of efficiency and effectiveness. Furthermore, the use of statistical methods 
for data quality assessment has also been demonstrated. 

Based on both theoretical and experimental studies, the project has come up with proposals for the use of 
formal methods as anticipated means of compliance for a set of key certification objectives from EASA AI 
Concept Paper [2]. It supported the update of definitions in the concept paper and the clarification of 
objective LM-11 on learning algorithm and trained model stability, which has been split into objectives LM-
11 and LM-12 in the transition to the new version of the concept paper. 

1.3 Outline of the report 

After the brief introduction provided in Section 1 summarizing the scope of the ForMuLA project and the 
related background, Section 2 presents a concrete use case that will be used to contextualize the discussions 
in the following sections of the document. The selected use case consists of an ML-based Remaining Useful 
Life (RUL) estimator which is used in the context of a Prognostics and Health Management (PHM) system. 
After a short description of what RUL is and what solutions can be adopted to implement it, the ConOps and 
the architecture of the ML-based system incorporating the RUL functionality are described. Several details 
are offered to clarify the ML constituent operational design domain, the system-level and the ML constituent 
requirements, the datasets, the ML model characteristics, and, finally, the safety considerations related to 
the use case. 

Section 3 provides the necessary background on formal methods, covering their capabilities and range of 
applications. Definitions are offered to help the reader to understand the FM taxonomy and associated 
technologies. Examples complement the technology overview to guide the reader in gaining confidence on 
how formal methods can be used for validation and verification activities, as well as for supporting some 
development activities for ML. Complementary to FM technologies, selected statistical methods are 
discussed that can support the analysis for key ML assurance objectives for which FM are either not 
applicable or not scalable. 
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Section 4 is the core of the report, as it describes the innovative applications of formal methods in the context 
of ML assurance. These approaches go beyond the traditional V&V applications of FM that are described in 
existing standards (e.g., ED-216/DO-333). The intent is to stress that FM can be used as anticipated means of 
compliance for the objectives that address new challenges specific to ML, such as robustness of ML models, 
as prescribed by existing guidance.  

Section 5 demonstrates the application of formal methods on the use case described in Section 2. The 
demonstration focuses on a selected subset of FM approaches that includes data representativeness 
assessment and verification of ML model stability, robustness, as well as several other use case specific 
properties defined based on the ML model requirements. An example toolchain is described to offer practical 
insight of how the existing technologies can be combined, and the experimental evaluations provide an idea 
of the applicability and the scalability of the described toolchain solution.  

Finally, Section 6 (Conclusions) reviews the current accomplishments and discusses subjects for future work.  
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2 Concept of Operations and use case 

2.1 ConOps and use case selection  

2.1.1 Background 

Remaining Useful Life (RUL) is a widely used metric in Prognostics and Health Management (PHM) that 
manifests the remaining lifetime of a component (e.g., mechanical bearing, hydraulic pump, engine). Existing 
RUL calculation procedures often use physics-based degradation models [11]. Such models typically include 
a set of coefficients, such as component degradation coefficient and operating environment coefficient, 
which can come from engineering knowledge or be estimated using system identification methods. Another 
group of methods are similarity-based methods [12], where condition indicators of the component are 
compared to degradation trends of similar components available from historical data. 

While model-based approaches for RUL estimation tend to be more accurate if the complex system 
degradation is modeled precisely, they require extensive prior knowledge about physical systems, which is 
often unavailable in practice. Therefore, creation of accurate physics-based models may not be possible. 
Similarity-based methods often suffer from poor accuracy. In the recent decade, the focus has been gradually 
shifting towards data-driven approaches that are able to model the degradation characteristics based on 
historical sensor data and infer the underlying correlations and causalities in the collected data without 
relying on a physics model. Various machine learning approaches have been proposed [13] [14] [15], out of 
which the use of deep learning (DL) is of particular relevance [16]. The main advantage of applying DL in PHM 
is that highly nonlinear, complex multi-dimensional systems can be modeled without prior expertise on the 
system behavior provided that enough data is available. Raw sensor readings can be directly used as inputs 
to DL models, and their automatic feature extraction capabilities can be leveraged to discover the 
relationships between the inputs, the degree of impact on the RUL, as well as other contributions to the RUL 
that may be unknown to the expert [17]. This is similar, for example, to image data, where raw inputs to a 
neural network are pixels, while various features on the input image (e.g., presence of different objects, 
forms or shapes) are internally extracted by the network in the hidden layers. Therefore, DL methods require 
less domain expertise as they alleviate the need of feature engineering activities, which could be difficult and 
time-consuming, since it requires prior knowledge of machine health prognostics and signal processing. 

The ML-based (more precisely, DL-based) RUL estimation component is expected to accept time series data 
ς  a sequence of input values taken at several subsequent time steps, i.e., within a time window [16]. 
Therefore, a 2D input is expected, where the first dimension corresponds to the number of time steps (e.g., 
historical) and the second dimension corresponds to the number of input features. Considering a reasonable 
time window size and all ML constituent ODD inputs (see Table 1 and Table 2 in Section 2.2.3), the total 
number of input values, i.e., the number of entries in the time window (number of features × number of time 
steps), may be on the order of 103, which is a high-dimensional input. This motivates to apply a deep learning 
solution to this use case. More details about the inputs are available in Section 2.2.  

Additionally, current application scope is limited to offline training only. A trained ML model is assumed to 
be frozen, i.e., no further (online) updates to the model are made during operation.  

Remark: As mentioned above, DL can perform automatic feature extraction from raw data. Extracted 
features, such as, for example, filters in the hidden layers of a convolutional neural network, may not be 
interpretable by system developers and users. Understanding the meaning of such features shall play an 
important role both for developers and users of the ML system. Even though explainability is not the central 
topic of the ForMuLA report, its role in the development and for the end user are highly acknowledged, and 
relevant aspects are discussed in the report whenever applicable. 
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2.1.2 ConOps alternatives 

RUL estimation function can be used in the following application categories: 

1. On-ground 

a. Condition-Based Maintenance (CBM), where the estimated RUL could contribute to such tasks 
as augmented manual inspection of components and scheduling of maintenance cycles for 
components, such as repair or replacement, thus moving from preventive maintenance to 
predictive maintenance (do maintenance only when needed, based on componeƴǘΩǎ ŎǳǊǊŜƴǘ 
condition and estimated future condition). This could allow to eliminate or to extend service 
operations and inspection periods, prevent unsafe component conditions, optimize component 
servicing (e.g., lubricant replacement), generate inspection and maintenance schedules, and 
obtain significant cost savings.  

2. In-flight 

a. Pilot decision support, where estimated RUL is directly provided to the pilot via a dedicated 
screen/interface (e.g., cockpit display), so that they can be aware of the current state and 
remaining life of different components of the aircraft and take corresponding decisions in the 
scope of current flight mission. For example, low RUL value of an engine provides the pilot with 
critical information for managing a hazardous contingent situation, e.g., suggests to immediately 
abort the current mission (e.g., initiate emergency landing) or re-plan the mission (e.g., discard 
some objectives, land at the nearest runway, etc.).  

b. Airborne software applications, where RUL is communicated to other avionics software (SW) 
components, such as automated planners and decision makers. Such applications can use the 
RUL information to recommend appropriate mitigations (e.g., suggest an altitude change), direct 
the crew in case of missed recognition of hazardous situations, as well as provide real-time 
decision aids in the scope of the current flight mission. 

Aforementioned applications of RUL estimation provide support to information analysis (RUL value is more 
comprehensible by the pilot/maintenance engineer than raw component sensor measurements or statistical 
condition indicators) and support to decision/action selection (pilot can use RUL to take mission-related 
decisions such as mission abort or re-planning; similar case for maintenance; decisions and mitigations can 
also be suggested by avionics software). Therefore, they map onto Level 1A and Level 1B in the EASA 
classification [2]. In future products (in particular, for 2b ς Airborne applications) higher autonomy may be 
introduced, so that the use of RUL estimation function in Level 2 ς Human-AI collaboration applications, may 
be expected. 

It is currently premature to detail the use of in-flight RUL applications 2a-ōΣ ƛΦŜΦΣ άǊŜŀƭ-ǘƛƳŜέ w¦[ ǇǊŜŘƛŎǘƛƻƴ 
of aircraft components, in the civil aviation context. First, rapid in-flight component degradation is unlikely 
due to periodic maintenance and inspections. Therefore, timely detection of degradation and possible 
failures is performed by on-ground operations. Second, real-time RUL monitoring appears to be more 
applicable in dynamic contexts with rapidly changing conditions (one may consider military applications or 
unmanned aerial vehicles with short dynamic missions). Finally, required Design Assurance Level (DAL) of 
avionic SW functions that predict RUL in-flight would likely be one of the highest, i.e., DAL A-B, which 
currently has many open challenges due to stricter assurance objectives. Therefore, ForMuLA IPC considers 
an on-ground application for RUL as a support for flight preparation. 

2.1.3 Selected use case and associated ConOps 

As discussed in Section 2.1.2, RUL estimation function is a PHM metric that shall be used for condition-based 
maintenance to support aircraft maintenance and flight preparation. RUL estimation could contribute to 
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augmented manual inspection of components and scheduling of maintenance cycles. RUL could also highlight 
areas for inspection during the next planned maintenance, i.e., it could be used to move up (prioritize) a 
maintenance/inspection action to prevent component failure. Additionally, the failure probability of the 
component during the next flight mission could be estimated based on RUL. 

RUL estimation discussed in the ForMuLA IPC is performed for a mechanical bearing component installed in 
the drivetrain assembly of a rotorcraft. 

End users that are intended to interact with the ML-based RUL function include the MRO (Maintenance, 
Repair and Overhaul) team, the CAMO (Continuing Airworthiness Management Organization) team5, and the 
pilots. MRO could use the RUL as a support for ongoing maintenance actions (e.g., collecting additional 
ƛƴŦƻǊƳŀǘƛƻƴ ƻƴ ŎƻƳǇƻƴŜƴǘΩǎ ǎǘŀǘŜ ŀƴŘ ŜǎǘƛƳŀǘŜŘ ǊŜƳŀƛƴƛƴƎ ƭƛŦŜύΣ while CAMO could use it for 
planning/scheduling future inspection activities. The pilot could consult the estimated RUL of different 
aircraft components during pre-flight checks to detect possible problems and expected failures,  so that they 
can be reported to on-ground services6. Pilots shall interact with the RUL function via a cockpit display ς the 
function can be integrated into an existing display. MRO/CAMO users shall use a ground station display to 
consult the RUL value. 

The CBM application of RUL estimation provides support to information analysis, because RUL value is more 
comprehensible by a human (pilot/MRO/CAMO) than raw component sensor measurements or statistical 
condition indicators. RUL can also provide support to decision/action selection: for example, during pre-flight 
check the pilot may decide to abort the departure and to communicate a possible component problem to 
MRO/CAMO; MRO may decide to prioritize some maintenance/inspection action; CAMO may decide to 
adjust the maintenance schedule of the aircraft. Therefore, the use case maps onto Level 1A and Level 1B in 
the EASA classification [2], because estimated RUL does not automatically drive the maintenance and 
inspection tasks, but only supports the human user in taking a related decision7.  

ML-based RUL estimator is a part of the Vehicle Health System (VHS) ς a software system that monitors the 
health state of the aircraft and its components/subsystems. It constitutes a RUL estimation function to be 
implemented as an ML constituent (see Figure 3). It accepts a set of statistical indicators (also called condition 
indicators ς CIs) describing the state of the monitored component, as well as the information about the 
current flight phase, mission and environment, and outputs the predicted RUL value (time-to-failure). 
Therefore, ML model performs a regression task. Predicted RUL value corresponds to the remaining life of 
the monitored mechanical bearing and is provided  to the pilot via a cockpit screen (see example in Figure 
3a), to the MRO/CAMO team member via a ground display, and to the failure prediction function that 
computes the current probability of failure of the component (the latter is out of scope of ForMuLA). 

 
 
5 CAMO is a civil aviation organization authorized to schedule and control continuing airworthiness activities on aircraft and their 
parts (https://en.wikipedia.org/wiki/Continuing_airworthiness_management_organization). A CAMO can also be the operator of the 
aircraft. The term CAMO is used in the European Union. CAMOs are audited by EASA. MRO performs the scheduled maintenance 
under the requirements of CAMO. Similarly,  in the USA operators are required to have a Continued Airworthiness Maintenance 
Program (CAMP) that must be approved by FAA. MRO performs the scheduled maintenance under the requirements of the CAMP. 
Hereafter, the term CAMO is used for the entity that plans and schedules maintenance activities (for the US this would typically mean 
the operator of the aircraft). 
6 Note that ground services and pilots may require to observe the degradation trend within different timeframes (a longer trend may 
be required by MRO). 
7 In future products one may also expect higher autonomy levels, for example, for automated scheduling and optimization of 
maintenance cycles, automated pre-flight checks with single-pilot operations. Therefore, in the future, CBM application of RUL may 
also fall under Level 2 ς Human-AI collaboration. This is out of scope of the current use case and the ForMuLA project. 

https://en.wikipedia.org/wiki/Continuing_airworthiness_management_organization
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Figure 3. (a) VHS view on a cockpit display (example); (b) ML subsystem and ML constituent. 

Remark: VHS monitors the health state of different aircraft components (e.g., engines, bearings, hydraulic 
system, fans). These components may or may not have a dedicated RUL estimation function. If present, the 
RUL estimation function may be implemented both with and without ML. There may be multiple ML 
constituents implementing the RUL function, each of them dedicated to a different aircraft component. Each 
ML constituent is part of the ML subsystem that may also include functional elements implemented with 
traditional software, e.g., signal processing from raw sensor data to compute inputs for the ML constituent. 

2.2 Definition of the ML-based system 

2.2.1 System architecture 

VHS is an ML-based system since it includes a component/function based on machine learning, namely the 
RUL estimation function. It is assumed to be the only ML-based function in the VHS. The concept architecture 
of the VHS is illustrated in Figure 4. It includes multiple subsystems/components, among which an ML-based 
subsystem is responsible for estimating the state of the mechanical bearing component mentioned above. It 
incorporates an ML constituent that is a deep learning based RUL estimator further detailed in Section 2.2.2. 
The constituent includes an ML-based RUL estimation function (ML inference model) and pre/post-
processing elements implemented in traditional software. Health and Usage Monitoring System (HUMS)8, as 
well as other avionics systems, provide inputs to the ML constituent. ML subsystem additionally includes 
traditional SW components that perform other, non ML-based functions, for example, estimation of failure 
probability of a mechanical component given its predicted RUL (out of scope of the ForMuLA project). 
 

 
 
8 HUMS is a generic term given to activities that utilize data collection and analysis techniques to help ensure availability, reliability 
and safety of vehicles (https://en.wikipedia.org/wiki/Health_and_usage_monitoring_systems).  

https://en.wikipedia.org/wiki/Health_and_usage_monitoring_systems
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Figure 4. ML-based system, ML-based subsystem and ML constituent in the ForMuLA use case. 

2.2.2 Machine learning constituent 

The use case of ForMuLA focuses on a single ML constituent that implements the RUL estimation function 
for a mechanical bearing installed in a drivetrain assembly of a rotorcraft. It is monitored by a vibration 
sensor, which is a single axis piezoelectric accelerometer mounted on the outside of the gearbox near the 
bearing. From this sensor measurements, a set of Condition Indicators (CIs) is computed by the HUMS using 
signal processing algorithms (this computation is done outside of ML constituent). A typical CI is an energy 
value, e.g., Ball Energy for the bearing, that manifests some degradation pattern.  

Additional inputs are provided by other avionics systems: current flight regime (e.g., ascent, cruise), current 
mission, and current environment. The main factor that affects bearing degradation and its RUL is how the 
component is used. This depends on the load of the bearing, which is different across flight regimes, and, 
consequently, on the flight missions that the aircraft executes, because each mission is a sequence of flight 
regimes; also duration of each regime varies across missions. A set of mission patterns (types) that may be 
executed is known and specified in the operational design domain of the aircraft. RUL is also dependent on 
the environment conditions. 

Inputs to the ML constituent represent a time window, i.e., an ordered sequence of snapshots of bearing 
state (represented by CIs and other quantities described above). Snapshots can be recorded both between 
and during flight missions. The data is recorded with a fixed time step and stored in memory to be later used 
in predictions9.  

Figure 5 illustrates the ML constituent that includes the ML model (deep learning; see Section 2.2.6 for 
description) and pre-/post-processing components implemented in traditional software and used for feature 
computation, (de-) normalization, monitoring of ML constituent ODD, and other relevant tasks. The output 
of the RUL estimator is provided to human users (MRO, CAMO, pilot) for CBM purposes, and to the 
component failure probability estimation function. Data recording and generation/update of time windows 
is performed outside of the ML constituent and, therefore, it is not part of its preprocessing functions. 

 
 
9 All inputs to the RUL function are also available during flight. This means that, in principle, RUL estimation can also be performed 
in-flight. Corresponding airborne applications are not part of the use case discussed in this report. 
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Figure 5. Overview of the ML constituent for RUL estimation, and its operating environment. 

2.2.3 ML constituent operational design domain 

2.2.3.1 Definition 

Operational design domain of the ML constituent is defined at its boundary. Dimensions of the ML 
constituent ODD, as well as their expected limits and/or probability distributions, are summarized in the 
following subsections. 

The aircraft operates by flying a set of missions. The bearing component is expected to operate under 
different loads that depend on the flight regime and, consequently, on the mission. Therefore, current 
mission, being part of the aircraft-level ODD, is also part of the ML constituent ODD. Duration of flight regimes 
in different missions follow a Gaussian distribution (with different parameters across different regimes). 
Condition indicators for the bearing component, provided by HUMS, are also expected to follow specified 
probability distributions. The aircraft is expected to operate under different environment conditions. All 
these dimensions frame the ODD of the ML constituent. Their descriptions, measurement units (if 
applicable), data types and sources are summarized in Table 1. Numerical values for ODD dimensions (ranges, 
categorical values, distribution parameters) are available in Table 2. 

ML constituent ODD does not include abnormal loads, abnormal (unexpected) CI values, unknown flight 
regimes and missions, unexpected environment. These should be verified by robustness verification 
methods. In general, adverse inputs should be prevented from entering the ML model. For that, runtime 
monitoring techniques can be employed (discussed in Section 2.2.3.2). 

Table 1. ML constituent ODD dimensions (AvS = Avionics Software; G ~ m/s2). 

Input name Description Unit Data type Source 
Ball energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Cage energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Inner race energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Outer race energy Condition Indicator (CI) G2/Hz Numeric (float) HUMS 

Shaft order 1 Condition Indicator (CI) G Numeric (float) HUMS 

Shaft order 2 Condition Indicator (CI) G Numeric (float) HUMS 

Shaft order 3 Condition Indicator (CI) G Numeric (float) HUMS 

Torque Aircraft Parametric Data % Numeric (float) HUMS 

Current regime Current flight regime (flight phase) n/a Categorical (string) AvS 

Nominal load Nominal load of the component. Each 
flight regime has a different nominal load. 

n/a Numeric (float) AvS 

Current mission 
profile 

Information about current mission of the 
vehicle: sequence of flight regimes, 
duration in each regime.  

n/a Regimes: Categorical (strings)  
Durations: Numeric (integers)  

AvS 

Environment  Condition, in which the mission is flown. n/a Categorical (string) AvS 



    
Collins Aerospace ς EASA 

ForMuLA IPC extract 

 
Page 23 of 110 

© 2023 Collins Aerospace. 
European Union Aviation Safety Agency. All rights reserved. ISO9001 Certified. 
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet. 

Table 2. ML constituent ODD ranges. 

Dimension name Limits Comment 
Ball Energy Weibull distribution (‗  ρȢςωὉ πτȟὯ πȢτρω   ‗ ς scale, Ὧ ς shape 
Cage Energy Weibull distribution (‗  ωȢπωὉ πτȟὯ πȢςτς   Same as above 

Inner Race Energy Weibull distribution (‗  χȢφωὉ πυȟὯ πȢυτω   Same as above 

Outer Race Energy Weibull distribution (‗  ψȢχσὉ πυȟὯ πȢσψχ   Same as above 

Shaft Order 1 Weibull distribution (‗  πȢχπυȟὯ σȢυω   Same as above 

Shaft Order 2 Weibull distribution (‗  πȢςψπȟὯ ςȢπυφ   Same as above 

Shaft Order 3 Weibull distribution (‗  πȢωχπȟὯ ςȢφφφ   Same as above 

Torque Min: 0; Max: 160  

Current regime One of the following: Ground, Takeoff, Ascent, 
Forward Flight, Descent, Hover, Land 

 

Nominal load One of the following values:  
 

¶ 2.1 (Ground) 

¶ 9.2 (Takeoff, Land) 

¶ 8.2 (Ascent) 

¶ 4 (Forward Flight) 

¶ 7.6 (Descent) 

¶ 7 (Hover)  
 

Nominal load is the mean of the Gaussian distribution 
with the following parameters (NOTE: only positive 
values are allowed):  
 

¶ Ground: ‘ ςȢρ and „ πȢυ 

¶ Takeoff: ‘ ωȢς and „ ρȢυ 

¶ Ascent: ‘ ψȢς and „ ρȢυ 

¶ Hover: ‘ χ and „ ρȢπ 

¶ Forward Flight: ‘ τ and „ ρȢυ 

¶ Descent: ‘ χȢφ and „ ρȢυ 

¶ Land: ‘ ωȢς and „ πȢυ 

There is no easy way of 
measuring current (actual) 
component load during 
operation. Statistically, in each 
flight regime, actual load shall 
be within „ of the provided 
probability distribution. 
 
NOTE: Higher loads may occur 
during a flight regime if there is 
an abnormal maneuver (e.g., 
banked turn).  
 

Current mission Sequence of mission regimes ς one of the pre-
defined patterns. 
Example of a mission pattern: Ground ς Takeoff ς 
Ascent ς Forward Flight (Short) ς Descent ς Land.  
 
Flight regime duration: 
Within „ of the Gaussian distribution with 

¶ Ground:  ‘ ρπ and „ υ 

¶ Takeoff:  ‘ ρ and „ π 

¶ Ascent:  ‘ ρπ and „ υ 

¶ Hover (Short):  ‘ υ and „ σ 

¶ Hover (Long):  ‘ ρπ and „ ρπ 

¶ Forward Flight (Short): ‘ υπ and „ ςπ 

¶ Forward Flight(Long): ‘ ρψπ and „ ςπ 

¶ Descent:  ‘ ρπ and „ υ 
Land:  ‘ ρ and „ π 

Full list of mission patterns is not 
provided here for brevity. 

Environment 
condition 

One of the following: desert, normal (non-desert)  
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2.2.3.2 ML constituent ODD monitoring aspects 

Correct function of the RUL estimator (ML constituent) shall be guaranteed inside its operational design 
domain. During operation, unexpected/adverse inputs may occur, for example, due to abnormal maneuvers 
of the aircraft, unexpected environment phenomena. ²ƘƛƭŜ a[ ƳƻŘŜƭΩǎ ōŜƘŀǾƛƻǊ for such inputs shall be 
evaluated via robustness verification methods, an appropriate risk mitigation for preventing adverse inputs 
and possible unintended behavior of the model is the use of runtime monitoring in the ML constituent, in 
particular, the ML constituent ODD monitoring. 

In case of the RUL estimator, some checks on the quality of certain model inputs, such as condition indicators, 
shall be performed outside of ML constituent by the HUMS using data quality indicators. As further 
elaborated in Section 5.4.3.1, such checks can detect, for example, fluctuations in the CI values over multiple 
time steps in the time window, flag the incoming data correspondingly, and block it from entering the ML 
constituent (in this case no RUL prediction will be provided). 

Other checks for out-of-ODD inputs can be implemented as monitors inside the ML constituent to perform, 
for example, range checks for inputs, which have min/max values prescribed by the ML constituent ODD 
(e.g., Torque), correctness of one-hot encoded categorical inputs (e.g., ŜȄŀŎǘƭȅ ƻƴŜ ŎŀǘŜƎƻǊȅ ƛǎ Ŝǉǳŀƭ ǘƻ άмέ 
at every time step), and out-of-distribution checks. Further discussion and investigation of ODD monitoring, 
in particular, of out-of-distribution detection, is out of scope of the ForMuLA report. 

2.2.4 Requirements 

Provided lists of requirements are not complete and have exemplary purpose for the discussion and 
demonstration of formal methods carried out in the ForMuLA IPC. 

This section provides information about the functional requirements both at the level of the RUL estimator 
function and at the system level. It also describes the main categories of non-functional requirements for the 
ML constituent.  

2.2.4.1 Functional requirements 

Table 3 provides several functional requirements for the aircraft/vehicle (VH) and its maintenance that are 
related to the RUL function of the Vehicle Health System (VHS). A selected list of system-level functional 
requirements for the VHS (ML system) is shown in Table 4. These requirements can be refined into more 
detailed requirements for the RUL ML constituent, provided in Table 5.  

Table 3. Selected aircraft (vehicle)-level requirements related to RUL. 

ID Requirement 
VH-1 The vehicle shall operate in two different environments: desert and non-desert (normal), which 

differently affect the degradation of the mechanical bearing component. 

VH-2 The vehicle shall execute a set of predefined flight mission types. Each mission type (pattern) is an 
ordered sequence of flight regimes. 

PHM-1 The vehicle shall provide means for estimation of RUL of the bearing component on ground, i.e., during 
flight preparation. 

 
Table 4. Selected ML system-level requirements (VHS). 

ID Requirement 
VHS-1 The VHS shall provide a function for estimation of RUL of the bearing component. 

VHS-2 The VHS RUL function shall accept as inputs statistical condition indicators for the bearing component, 
current flight regime, nominal load in the current flight regime, current environment condition, and 
current mission. 
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VHS-3 The VHS RUL function shall compute the RUL desertic and non-desertic environments. 

VHS-4 The VHS shall accept a sequence of input snapshots within a time window. The last snapshot in the time 
window shall correspond to most recent timestamp. 

VHS-5 The VHS shall store snapshots for current and preceding time steps in memory and update it at every 
time step. 

VHS-6 The VHS RUL function shall operate inside its operational design domain. 

VHS-7 The VHS RUL function shall have a maximum admissible error of +30% (RUL over-estimation) and -10% 
(RUL under-ŜǎǘƛƳŀǘƛƻƴύ ƛƴ ǘƘŜ άƴƻǊƳŀƭέ ǊŀƴƎŜΣ ƛΦŜΦΣ ǿƘŜƴ ōŜŀǊƛƴƎ ŎƻƳǇƻƴŜƴǘ ƘŜŀƭǘƘ ǎǘŀǘŜ ƛǎ ƴƻǘ 
low/critical. 

VHS-8 The VHS RUL function shall have a maximum admissible error of +5% (RUL over-estimation) and -15% 
(RUL under-ŜǎǘƛƳŀǘƛƻƴύ ƛƴ ǘƘŜ άŎǊƛǘƛŎŀƭέ ǊŀƴƎŜΣ ƛΦŜΦΣ ǿƘŜƴ ōŜŀǊƛƴƎ ŎƻƳǇƻƴŜƴǘ ƘŜŀƭǘƘ ǎǘŀǘŜ ƛǎ ƭƻǿ ƻǊ ŎǊƛǘƛŎŀƭ 
ς greater prediction accuracy is required for degraded component to avoid incorrect decisions for 
component inspection and maintenance. 

VHS-9 The average absolute error of the RUL function shall not exceed 15 hours. 

 
Table 5. Selected functional requirements for the RUL ML constituent. 

ID Requirement 
RUL-ML-1 The ML constituent shall return a numerical value corresponding to the predicted remaining useful 

life of the bearing component in hours. 

RUL-ML-2 The ML constituent inputs, encoded as numerical features, shall include statistical condition 
indicators for the bearing component, current flight regime, nominal load in the current flight 
regime, current environment condition, and current mission. 

RUL-ML-3 The ML constituent shall have a categorical feature related to current environment. Its  domain 
shall include two values: desert and non-desert. 

RUL-ML-4 The ML constituent shall accept multivariate time series data as input. 

RUL-ML-5 The time series data shall be organized as a two-dimensional array, where rows represent 
consecutive time steps and columns represent input features. 

RUL-ML-6 The time step for the time series data shall be equal to 60 minutes. 

RUL-ML-7 The number of time steps in the time series data array shall be equal to 40. 

RUL-ML-8 The ML constituent shall update the input and perform inference with the new input every 60 
minutes. 

RUL-ML-9 The ML constituent shall ensure correct function within the input ranges specified by the ML 
constituent ODD. 

RUL-ML-10 The over-ŜǎǘƛƳŀǘƛƻƴ ŜǊǊƻǊ ƻŦ ǘƘŜ a[ ŎƻƴǎǘƛǘǳŜƴǘ ǎƘŀƭƭ ƴƻǘ ŜȄŎŜŜŘ ол҈ ƛƴ ǘƘŜ άƴƻǊƳŀƭέ ǊŀƴƎŜΦ 

RUL-ML-11 The under-ŜǎǘƛƳŀǘƛƻƴ ŜǊǊƻǊ ƻŦ ǘƘŜ a[ ŎƻƴǎǘƛǘǳŜƴǘ ǎƘŀƭƭ ƴƻǘ ŜȄŎŜŜŘ мл҈ ƛƴ ǘƘŜ άƴƻǊƳŀƭέ ǊŀƴƎŜΦ 

RUL-ML-12 The over-ŜǎǘƛƳŀǘƛƻƴ ŜǊǊƻǊ ƻŦ ǘƘŜ a[ ŎƻƴǎǘƛǘǳŜƴǘ ǎƘŀƭƭ ƴƻǘ ŜȄŎŜŜŘ р҈ ƛƴ ǘƘŜ άŎǊƛǘƛŎŀƭέ ǊŀƴƎŜΦ 

RUL-ML-13 The under-ŜǎǘƛƳŀǘƛƻƴ ŜǊǊƻǊ ƻŦ ǘƘŜ a[ ŎƻƴǎǘƛǘǳŜƴǘ ǎƘŀƭƭ ƴƻǘ ŜȄŎŜŜŘ мр҈ ƛƴ ǘƘŜ άŎǊƛǘƛŎŀƭέ ǊŀƴƎŜΦ 

RUL-ML-14 ¢ƘŜ άŎǊƛǘƛŎŀƭέ ǊŀƴƎŜ ǎƘŀƭƭ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ǘƘŜ ƭŀǎǘ млл ƘƻǳǊǎ ƻŦ ŎƻƳǇƻƴŜƴǘ w¦[Τ ǘƘŜ άƴƻǊƳŀƭέ ǊŀƴƎŜ 
shall correspond to all hours before the last 100 hours.  

RUL-ML-15 The ML constituent average RMSE on the test dataset shall not exceed 15 hours. 

 

The main performance requirement for the RUL estimator is the accuracy of the estimation (percentage of 
admissible error) that can be measured by comparing the estimation accuracy at each input point in the test 
dataset to the ground truth. Metrics, such as RMSE, can also be applied to quantify the error [18]. Respective 
requirements include the bound on over-estimations and under-estimations of the RUL, in particular, in the 
άŎǊƛǘƛŎŀƭ ȊƻƴŜέ. RUL estimation accuracy also has safety considerations, as elaborated in Section 2.2.7. 

2.2.4.2 Non-functional requirements 

In Table 6, a selected list of non-functional requirements for the RUL estimator is provided. They include 
stability and monotonicity of the estimator (formal definitions of these properties can be found in Section 
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3.4), as well as the impact of the operating environment on the RUL prediction. These requirements can be 
formalized as properties and verified using formal methods, as demonstrated in Section 5.4. 

Table 6. Selected non-functional requirements for the RUL ML constituent. 

ID Requirement 
RUL-ML-Stab-1 The maximum admissible perturbation that can occur to a condition indicator input shall be equal 

to 40% of the average initial value of that CI that corresponds to a fully healthy state of the bearing 
component. This value is estimated from available degradation data for the bearing. 

RUL-ML-Stab-2 For a perturbation of a single condition indicator at a single time step within any input time 
window in the ML constituent ODD, the output deviation of the RUL estimator shall not exceed 10 
hours. The max perturbation value for which the requirement must hold corresponds to RUL-ML-
Stab-1. Requirement applies to each condition indicator. 

RUL-ML-Stab-3 For a simultaneous perturbation of all condition indicators at a single time step (e.g., due to a 
resonance frequency) within any time window in the ML constituent ODD, the output deviation 
of the RUL estimator shall not exceed 10 hours. The maximum perturbation value for which the 
requirement must hold corresponds to RUL-ML-Stab-1. 

RUL-ML-Mon-1 For an increased growth rate of a single condition indicator (may occur, for example, when a 
particular failure/damage occurs in the bearing, which increases its degradation) within any input 
time window in the ML constituent ODD, the estimator shall output a non-increasing value of the 
RUL. Requirement applies to each condition indicator. 

RUL-ML-Mon-2 For an increased growth rate of all condition indicators (may occur, for example, due to 
simultaneous development of a number of failures or due to excessive load) within any input time 
window in the ML constituent ODD, the estimator shall output a non-increasing value of the RUL. 

RUL-ML-Env-1 RUL estimator shall predict a smaller RUL for a desert environment than for a non-desert 
environment, all other inputs being equal.  
(A desert operating environment has higher impact on the bearing degradation than a non-desert  
environment) 

2.2.5 Data description 

Presented use case does not represent any concrete product of Collins Aerospace. ForMuLA project only 
used synthetic data from simulations, both for training and testing, because real data from the field was 
not immediately available during IPC execution for the selected application and mechanical component. 
The main goal of ForMuLA is the analysis of applicability of FM as means of compliance for the assurance and 
certification objectives for ML constituents and practical demonstration on a use case, not the verification or 
certification of a final product. Therefore, synthetic data was sufficient for the project. However, in general 
the importance of using real data, in particular for testing, is highly acknowledged. 

The data for the RUL use case is in a form of multivariate time series10 that describe the degradation of 
bearings installed in the same type of assembly (drivetrain). Data is related to a specific type of aircraft 
(rotorcraft) and specific type of sensor, which is a single axis piezoelectric accelerometer mounted on the 
outside of the gearbox near the bearing. The time series start at a healthy state and end at a failure state of 
the bearing. Additional sequences may be provided that either do not start at a 100% healthy state or end 
earlier than the component fails.  

Currently available data comes from simulations. Collins Aerospace possesses physics-based bearing 
degradation models that can be configured to run the data collection process under a set of simulation 
scenarios. Following model parameters can be varied: component and cross-component degradation 
coefficients, environment factor (imitates different operational environments; affects the degradation rate), 

 
 
10 In the remainder of this report, they are referred to as degradation sequences that capture run-to-failure conditions of the 
component. 
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which allows to collect data for different types of bearings installed in different mechanical assemblies, as 
well as model the uncertainties (e.g., manufacturing, installation) within the component. These simulation 
parameters have associated probability distributions. Additional parameters can be introduced in the 
simulation model to consider other important types of uncertainties, for example, aberrations and/or aging 
of sensors that monitor the component. 

Each simulation is traced to a simulation scenario. The latter consists of a sequence of flight missions, while 
every mission, in turn, includes a sequence of flight phases. Each flight phase has a duration described by a 
Gaussian distribution (see Table 2). To generate a new executable scenario, a sequence of missions is 
randomly sampled from a set of predefined mission patterns (see example of a mission pattern in Table 2). 
The scenario is then simulated to obtain a new run-to-failure sequence. Altogether, these sequences form 
the dataset that undergoes data preparation activities (e.g., normalization, labeling, feature engineering) and 
is split into training, validation and test sets. 

Summary of bearing datasets to be used in the RUL use case of the ForMuLA IPC is provided in Table 7. There 
is a number of degradation sequences. Each such sequence has samples corresponding to subsequent time 
steps. Each sample is a snapshot of inputs (e.g., condition indicators) at a given time step. Samples are labeled 
with RUL values at current time step. The average number of samples in the sequences is also provided. 

Table 7. Summary of the available bearing degradation data. 

Item Value 
Number of degradation sequences 100 (more can be generated) 

Number of features 21 (some are categorical) 

Number of categorical features 3 

Average sequence length (steps) 631 

Time step duration 1 (flight) hour 

Missing or wrong data entries None 

Data preparation toolchain Available: Includes feature engineering, labeling, normalization, split 
into training/validation/test datasets. 

Metadata  Available: Includes simulation scenario (for traceability), simulation 
model version and timestamp, random seed, environment condition. 

2.2.6 ML model description 

The ML model is trained offline using available time series data and a supervised learning method.  

To achieve an accurate RUL prediction at current time step, the snapshot of inputs (e.g., CIs, flight phase, 
current component load) taken at this single step is often not sufficient. Instead, as discussed in Section 2.1.1, 
RUL estimation functions typically accept a sequence of inputs, also called a time window [16]. The last row 
in this window is the current time step, i.e., the step at which the RUL is being estimated, while all preceding 
Ǌƻǿǎ ŀǊŜ άƘƛǎǘƻǊƛŎŀƭέ όǇǊŜŎŜŘƛƴƎύ ǘƛƳŜ ǎǘŜǇǎΦ ¢Ƙƛǎ ǎǳƎƎŜǎǘǎ ŀ н-dimensional (2D) input structure, with the first 
dimension being the number of time steps in the window, and the second dimension being the number of 
features. Based on the available bearing degradation data (number of condition indicators and other 
features) and considering that categorical features need to be one-hot encoded, the total number of input 
features at each time step is 40. Similarly, 40 hours is the reasonable size of the time window validated with 
Collins Aerospace SME (each step is 1h, therefore, the number of time steps is 40 as well) needed to get an 
accurate RUL prediction. Altogether, the number of inputs to the ML model, i.e., the cumulative number of 
entries in the time window for all time steps, is on the order of 1000.  

Given the complexity of the input space, a deep learning solution has been selected for the RUL estimator, 
namely, a convolutional neural network (CNN). The choice of CNN is justified with the fact that this type of 
neural network is capable of automatically extracting features from a large number of raw inputs, thus 
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reducing or completely removing the need of manual feature engineering. This is particularly relevant to 
images, where raw data is represented by pixels, and crafting interpretable features from pixel data is often 
impractical. Two-dimensional input to the RUL estimator is similar to the image input representation. 
Moreover, despite the fact that certain inputs, such as CIs, are precomputed outside of ML constituent based 
ƻƴ ǎŜƴǎƻǊ Řŀǘŀ όƛΦŜΦΣ ǘƘŜǎŜ ŦŜŀǘǳǊŜǎ ŀǊŜ ƴƻǘ ǇǳǊŜƭȅ άǊŀǿέύ, higher-level features for RUL may include 
degradation trends. Domain experience may not be sufficient to define such trends and consider them in 
predictions. Such trends could be automatically extracted by a CNN. 

Neural network architecture of the RUL estimator is adapted from [17] and is summarized in Table 8. As 
discussed above, it accepts as input a sequence of time steps. A number of convolutional layers is used to 
apply one-dimensional convolutions along the time sequence direction, thus extracting trends in separate 
features. These trends are then merged together via a fully connected layer. Activation functions at all layers 
are Rectified Linear Units (ReLUs). Dropout is used to mitigate overfitting. The CNN performs a regression 
task and outputs a numerical value, which is the predicted RUL value. 
 

Table 8. Summary of the CNN architecture for the RUL estimator. 

Item Value 
Input size two-dimensional; 40x40 window 

Output size 1 

Model type convolutional neural network 

Model task regression 

Number of convolutional layers 4 

Type of convolutions one-dimensional convolutions 

Types of layers convolutional, fully connected 

Type of activations ReLU 

Total number of layers 12 

Total number of learnable parameters 94500 

Dropout probability 0.1 

2.2.7 Safety considerations 

Provided lists of failure conditions are not complete and are provided for exemplary purpose to support 
the discussion and formal methods demonstration carried out the ForMuLA IPC. 

Rationales in EASA NPA 2022-03 guidance on (d) VHM (vibration health monitoring) system safety 
requirements [19] have been considered to derive the proposed classification. For an actual certification 
project associated assumptions would be listed in the functional hazard analysis and validated during the 
project. 

Remaining useful life estimation function can be subject to various functional failures that may affect the 
safety, therefore, the use case is safety relevant. This is illustrated in Table 9, where a set of representative 
failures of the RUL function, corresponding failure effects and the classification based on severity of the 
failure conditions effects (MAJ = Major; MIN = Minor) has been captured. 
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Table 9. Representative list of RUL use case failure conditions classified by hazard levels. 

ID Failure description Failure effect Class Rationale 

FC1 Undetected loss of 
RUL function 
combined with a 
critical degradation of 
the bearing or an 
actual failure. 

MRO or Pilot mistakenly 
considers the component 
w¦[ άǎǳŦŦƛŎƛŜƴǘέ ǘƻ 
execute the flight mission 
without an inspection or 
maintenance action (in 
reality the component 
may develop a failure). 

MAJ Loss of RUL function may lead to both 
under-estimation and over-estimation 
of the RUL.  In the latter case, there is a 
possible safety impact, i.e., lack or 
delay in critical decision making: 
pilot/MRO does not know that the 
component may fail soon and starts 
the flight mission ς large reduction in 
safety margins. 

FC2 Non-monotonic 
variation of RUL 

Same as above MAJ Critical inspection of the component 
may be mistakenly skipped (especially 
if the variation is near the decision 
threshold) 

FC3 Frozen value of RUL Same as above MAJ Critical inspection of the component 
may be mistakenly skipped (especially 
if the variation is near the decision 
threshold) 

FC4 Undetected loss of 
runtime monitoring of 
ML constituent ODD  

Same as above MAJ Out-of-ODD input value may not be 
detected due to runtime monitor 
failure. Correctness of ML model 
outputs for out-of-ODD inputs may not 
be guaranteed, therefore, an 
undetected incorrect RUL prediction 
may appear (e.g., an overestimation), 
which may lead to skipping a critical 
inspection of a component that lead to 
an unexpected failure. 

FC5 Use of outdated 
(untimely) inputs 

Same as above MAJ Out-of-date inputs may reflect some 
previous component state with less 
degradation compared to the actual 
state. Consequently, the system may 
predict the RUL that is higher than real 
one, which may lead to skipping a 
critical inspection of the component. 
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3 Formal methods technologies for machine learning 

This chapter provides necessary background on formal methods, including main definitions and high-level 
application categories. It then discusses property specifications and formal methods technologies that have 
been adapted to or specifically developed for machine learning. In addition, the chapter offers a discussion of 
other categories of methods, such as statistical methods, that can complement the analysis for some 
assurance objectives where formal methods are not applicable or face scalability limitations. 

3.1 What are formal methods? 

Formal Methods (FM) are typically defined as mathematical techniques used to develop software systems 
and verify their correctness. In commercial aviation, the use of formal methods in the development of 
software-based aerospace systems is allowed through the ED-216/DO-333 [1] supplement of the ED-12C/DO-
178C [5] standard. ForMuLA report refers to the following definition of formal methods taken from DO-333: 

Formal methods are mathematically based techniques for the specification, development, and verification of 
software aspects of digital systems. The mathematical basis of formal methods consists of formal logic, 
discrete mathematics, and computer-readable languages. The use of formal methods is motivated by the 
expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can 
contribute to establishing the correctness and robustness of a design. For example, formal methods, because 
of their mathematical basis, are capable of: 

ω Unambiguously describing requirements of software systems. 
ω Enabling precise communication between engineers. 
ω Providing verification evidence such as consistency and accuracy of a formally specified representation of 
software. 
ω Providing verification evidence of the compliance of one formally specified representation with another. 

Possible applications of formal methods span across the entire development lifecycle of a software system, 
including (1) formal specification of the system and its requirements using different mathematical formalisms 
(e.g., first-order logic, finite state machines) that are used by effective reasoning tools; (2) support for system 
development activities, such as design exploration and architecture/program synthesis, and (3) formal 
verification that aims to provide formal proofs of correctness of intended algorithms, programs, and systems. 
Verification is the largest area that includes a number of traditional FM applications11. For example, model 
checking provides a sound, complete, and automatic verification method for finite-state models of software 
and hardware against specifications by exhaustive exploration12. Proof assistants are able to produce reliable 
proofs of mathematical theorems, often in an interactive fashion. Static program analysis techniques 
perform a direct and automated analysis of programs without executing them (for example, this is often used 
in compilers). ForMuLA report focuses on the use of formal methods for machine learning, thus leaving out 
of scope the detailed discussion of aforementioned traditional approaches. We refer an interested reader to 
FM survey works, such as [20].  

Remark: Formal methods are traditionally associated with rigorous and exhaustive analyses. To explore a 
broader scope of techniques for assurance and verification of ML, ForMuLA also considers statistical methods. 
The use of statistical methods is intrinsic to the design assurance process for ML as possible means of 
compliance for such objectives as data quality and ML model generalization. They can also be applied to 
property verification of ML models, for example, to mitigate scalability issues of exhaustive analyses of 
traditional FM, while increasing the thoroughness of the analysis.  

 
 
11 Of course, both development and verification applications of FM are informed by a formal specification. 
12 Extensions exist to address the tractability of the analysis (for example, bounded model checking, symbolic mode checking).  
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3.2 Formal methods main definitions 

This section provides a set of key definitions related to formal methods. Some definitions (e.g., soundness, 
completeness) are provided in the context of property verification,. However, they similarly apply to other 
applications of FM. 

Property. A property is a mathematical statement, i.e., a declarative sentence which is either true or false. A 
formal method can be used to determine whether a given property is valid or invalid. 

For example, let Ὢ be a function ὢᴼὣ,  ὢ and ὣ being, respectively, the input space (domain) and the output 
space (codomain) of Ὢ. Also, let both input and output of Ὢ be two-dimensional, i.e., ὢᶰᴙ  and ὣᶰᴙ . For 
a given subset of input points ὢṒὢ, the following property ὖ can be formulated13: 

ὖȡ ᶅὼɴ ὢȟ   Ὢὼᶰὣ ώȟώ ᶰᴙȿ ώ ώ σȢρ 

where ὣṒὣ is a region of the output space ὣ. An equivalent formulation is given below: 

ὖȡ Ὢὢ Ṗὣ σȢς 

where Ὢὢ  is the image of ὢᴂ by Ὢ, i.e., the set of all elements of the output space ὣᶰᴙ  that correspond 
to the output of Ὢ when applied to input points in ὢᴂ. Formally, it is defined as Ὢὢ Ὢὼ ȿ ὼɴ ὢᴂ. Image 
Ὢὢ  is often referred to as the set of outputs reachable from the inputs ὢᴂ, or output reachable set. 

A property is valid14 (resp. invalid) if it evaluates to True for each input ὼ in ὢᴂ (resp. False for at least one 
input ὼ in ὢᴂ). An illustration of a valid property ὖ is shown in Figure 6. Here, the output reachable set Ὢὢ  
is fully contained in the region (half-space) ὣ ώȟώ ᶰᴙȿ ώ ώ ȟ therefore, the property is valid 
w.r.t. the input subset ὢ Ṓὢ. Instead, an invalid property ὖ is illustrated in Figure 7. Here, part of the 
output set Ὢὢ  is out of the required region, i.e., certain inputs from ὢ Ṓὢ lead to outputs that violate 
the condition ώ ώ, thus invalidating ὖ. 

A property is satisfiable (SAT) if there exists at least one input that makes it evaluate to True. The property is 
unsatisfiable (UNSAT) in the opposite case. 

 
Figure 6. An example of a valid property. 

 
Figure 7. An example of an invalid propertyȢ 

 

 
 
13 ¢Ƙƛǎ ŜȄŀƳǇƭŜ ƻŦ ǇǊƻǇŜǊǘȅ ƛǎ ŀ ǳƴƛǾŜǊǎŀƭ όάŦƻǊ ŀƭƭέύ ǎǘŀǘŜƳŜƴǘΦ Lǘ ƛǎ ǎǳǇǇƻǎŜŘ ǘƻ ōŜ ǘǊǳŜ ŦƻǊ all members of a set, which is expressed 
through a universal quantifier. Such properties are most common, and the remainder of this report focuses on such universal 
statements (i.e., άŦƻǊ all ƛƴǇǳǘǎΧέΣ rather than άǘƘŜǊŜ ŜȄƛǎǘǎ ǎƻƳŜ ƛƴǇǳǘ ǎǳŎƘ ǘƘŀǘΧέ). 
14 Commonly used synonyms: true (false) property, the property holds (does not hold). Mathematically, valid property is written as 
ὖṹṴ ("P entails True") and invalid property is written as ὖṹ Ṷ ("P entails False").  
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Counterexample. Consider a property ὖ, which is a universal statement. A counterexample (CEX) to ὖ is an 
instance ὼ in ὢᴂ for which the negation ὖ is true. If there exists a counterexample to ὖ, then ὖ is invalid. 
Inversely, if there exists no counterexample to ὖ, then ὖ is valid. 

An illustration of a counterexample to an invalid property ὖ is given in Figure 8. ὖ is as in the previous 
example, i.e., ὖȡ Ὢὢ Ṗὣ ώȟώ ᶰᴙȿ ώ ώ Ȣ A counterexample is an element ὼɴ ὢ  such that 
ὖ is true, i.e., such that Ὢὼᶱὣᴂ.  

 
Figure 8. A counterexample to an invalid property. 

 
Falsification. The falsification approach is a common way of property verification using formal methods, that 
aims at finding a counterexample for the property. To do so, the negation of the property (ὖ) is considered. 
If a formal method can identify at least one input from the input (sub)space specified for ὖ that makes this 
negation evaluate to True, this, consequently, disproves ὖ. This is because the universal statement in ὖ 
becomes false, i.e., the property does not hold for all required inputs. Instead, if the verification problem for 
ὖ has no solutions then ὖ is declared valid. 

To reason about the validity of properties, FM may rely on approximations. For example, rather than 
reasoning on an exact property formulation ὖȡ Ὢὢ Ṗὣ, the method may consider an approximation 

ὖȡ Ὢὢ Ṗὣ, where Ὢὢ  approximates the set Ὢὢ . Approximations in FM have practical value as they 
can be less computationally expensive to verify than the original property. However, considerations on 
method soundness exist, discussed below. 

Soundness. A verification method is sound if for any property ὖ it returns that ὖ is valid ONLY IF ὖ is valid. In 
other words, a sound method never has a missed violation, i.e., an invalid property is never declared valid.  

Remark: Missed violations are often referred to as false negativesΦ Lƴ ǘƘƛǎ ŎŀǎŜΣ άƴŜƎŀǘƛǾŜέ ƛǎ ŀƴ ŀƴǎǿŜǊ ǘƻ ǘƘŜ 
falsification problem, i.e., άIs there some point that violates the property?έ. A negative answerΣ ƛΦŜΦΣ άbƻΣ there 
are no points that ǾƛƻƭŀǘŜ ǘƘŜ ǇǊƻǇŜǊǘȅέΣ ƳŜŀƴǎ that the property itself is valid. Therefore, false negative 
means that the property has been mistakenly declared valid, that is, a property violation has been missed. 

If a sound method relies on an approximation ὖ of ὖ, then this must be a conservative approximation: ὖᵼ

ὖȢ In this case, if the method can prove that ὖ holds and returns True, then necessarily  ὖ is valid. For instance, 

a conservative approximation of ὖȡ Ὢὢ Ṗὣ could be a property ὖȡ Ὢὢ Ṗὣ where Ὢὢ  is a superset 

of Ὢὢ  i.e., such that Ὢὢ ṗὪὢ. Figure 9 illustrates an output set Ὢὢ  of the function Ὢ and its 

conservative approximation Ὢὢ  for a valid property ὖ. It can be seen that the approximation subsumes 
ǘƘŜ άǊŜŀƭέ ƻǳǘǇǳǘ ǎŜǘΣ ǿƘƛŎƘ ǎƘƻǿǎ ƛǘǎ ŎƻƴǎŜǊǾŀǘƛǾŜƴŜǎǎΦ Lƴ ǘƘƛǎ ŎŀǎŜΣ if the approximation meets the output 
constraint ώ ώ, it can be concluded that ὖ is valid. Figure 10 illustrates that when a property is invalid 

(ὖ on the figure), the conservative approximation Ὢὢ ṗὪὢ  captures the invalidity as well. 
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Figure 9. An example of a conservative approximation for 

a valid property. 

 
Figure 10. An example of a conservative approximation for an 

invalid propertyȢ 

Completeness. A verification method is complete if for any property ὖ it returns that ὖ is valid IF ὖ is valid. 
In other words, if a solution to the falsification problem exists, it will always be found by a complete method15; 
a false alarm16 is never raised, i.e., a valid property is never declared invalid.  

An example of a false alarm is provided in Figure 11. It illustrates a valid property ὖȡ Ὢὢ Ṓὣᴂ: all possible 
outputs Ὢὢ  of the function Ὢ belong to the correct half-space ὣ ώȟώ ᶰᴙȿ ώ ώ . The figure 

also shows the output of a sound method that deals with a conservative approximation of ὖ, Ὢὢ , where 

Ὢὢ ṗὪὢ ȟ as a red rectangular area. The bottom right part of this conservative over-approximation 

Ὢὢ  lies outside of ὣᴂ. Therefore, such method may declare ὖ invalid as it intersects with an undesired 
region, while in fact the property is valid. The method may also return a counterexample, i.e., some input 

from the region Ὢὢ ὣʌᴂ that is a spurious (misleading) counterexample for verification, i.e., a false alarm.  

 

Figure 11. An example of a false alarm (false positive) for a valid propertyȢ 

Soundness is a mandatory requirement for a formal method. Some FM are sound and complete, i.e., they 
can correctly prove or disprove any property that can be expressed in the formalism used by the method. 
Such methods do not rely on approximations and provide maximum precision of the analysis. Other types of 

 
 
15 Note that no assumption is made on the method scalability, i.e., even if the solution is guaranteed to be eventually found, this may 
not be done in reasonable time. Scalability is a typical problem for FM, especially for complete methods. 
16 Often referred ǘƻ ŀǎ ŀ άŦŀƭǎŜ ǇƻǎƛǘƛǾŜέΦ 
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FM are instead sound but incomplete. Such methods typically use conservative approximations to preserve 
soundness, while they trade off completeness to reduce the computational burden. As discussed above, they 
may not be able to prove property violations. To avoid returning false alarms, they typically return an 
άunknownέ ŀƴǎǿŜǊ when they determine that the property is invalid. This is because the invalidity is with 
respect to an approximation, which means that the property may in fact be valid if the exact analysis without 
approximation is performed. 

3.3 High-level application categories of formal methods 

Possible uses of formal methods span across specification, development, and verification. While analysis is 
considered the main FM activity (various formal analyses for systems and software exist, including ML), they 
can also perform synthesis functions, i.e., generate artifacts that can be used during development and 
verification. Generally, FM applications belong to one of the three following areas: 

Property Inference. In the absence of, or in addition to, known properties to be verified, it may be possible 
to automatically infer characteristics of a model behavior, either related to parts of the model or to the model 
as a whole. In other words, this is a synthesis activity for the properties. For example, this is the case for 
neural networks, where techniques have been developed to extract layer properties or relationships 
between NN input and output.  

Property Verification. Formal analyses can be employed to provide evidence that a property of interest is 
valid on a given model. The applicability of this approach is constrained: it depends on the extent to which 
the property is formalizable and verifiable from a theoretical and practical perspective. On the other hand, 
the formal model has to be a conservative representation of the original artifact to guarantee that, if the 
property holds for the model, then it holds for the artifact as well. 

Automated Test Generation. Manual testing is an expensive and time-consuming activity. Many different 
methods have been proposed in the literature to automate the generation (synthesis) of test cases, according 
to the availability of a model for the artifact under test and to the chosen testing criteria: random and 
adaptive random testing, search-based testing, combinatorial testing, scenario-based testing, structural 
coverage-based testing, and others.   

3.4 Property specifications for machine learning 

Formal methods can be used to verify properties of machine learning models. As per the state-of-the-art, 
existing FM technologies and tools, in particular those for neural networks, only address a specific type of 
property formalization that associates a desired or a forbidden output region (or class) to a given input region. 
Such formalizations are referred to as input-output relationships or input-output properties17. This section 
provides an overview of key properties that are relevant to machine learning. For a more detailed overview 
the reader can consider [21] or [22].  

The scope of ML properties can be either local or global. A local property is defined for a given input point 
ὼɴ ὢ or a subset of points ὢṒὢ of the input space ὢ. That is, local properties must hold for some specific 
inputs. A global property is defined over the entire input space ὢ of the ML model. Global properties must 
hold for all inputs. 

 
 
17 Sometimes, also the term reachability property is used. The rationale is that formal analysis computes, possibly with approximation, 
all possible ML model outputs that are reachable from (can be the result of ML model computation for) a given set of inputs. 
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3.4.1.1 Generic input-output relationship 

Properties of ML models are typically expressed over their inputs and outputs, without involving internal 
model structure18. This is because application experts can use domain knowledge to require certain output 
behavior of the ML model based on certain inputs, while the internal organization of the model is often a 
black box to them (e.g., model architecture or learnable parameters, such as weights and biases). A generic 
form of these properties is expressed as an if-then relationship: 

ὖὼ
 
ᵼὗώȟ σȢσ 

where ὖὼ is a precondition on the input ὼ (premise), and ὗώ is a postcondition over the output ώ 
(consequent). Both precondition and postcondition can be expressed differently depending on the type of ὼ 
and ώ. For example, for a numeric input a precondition may impose a range (or a multi-dimensional subspace 
if multiple inputs are considered), while for a categorical value a set of admissible values (e.g., classes) may 
be specified. Arithmetic and logical relationships between the inputs can also be imposed by the 
precondition. The same applies to the outputs and the postcondition. 

Let Ὢ be an ML model that approximates some function Ὢȡ ὢᴼὣ. For the example below, let ὢ ὼȟὼ ᶰ
ᴙ  and ὣ ώȟώ ᶰᴙ . An input-output property can be exemplified as follows: 

ὼ π᷈ὼ σ᷈ὼ ὼ
 
ᵼ ώ  ώ  

This property requires the first output ώ of the ML model to be strictly less than its second output ώ, given 
that the input ὼ is in the interval πȟσ and is greater than or equal to ὼ.  

Aǘ ǘƘŜ άbaseέ (lowest) level all ML model properties discussed below are expressed as input-output 
relationships. They specify desired output behavior based on a set of constraints over the ML model input. 

3.4.1.2 Stability 

Following the definition of ML model stability19, this type of properties limits the admissible deviation of the 
ML model output, given a bounded perturbation of its inputs. Stability properties are defined for 
perturbations in normal operating conditions, that is, perturbations over the inputs inside the ML constituent 
ODD. Input perturbation is bounded by a value often referred to as ‏ (delta). Similarly, the maximum 
admissible deviation of the output, such ǘƘŀǘ ǘƘŜ ƻǳǘǇǳǘ Ŏŀƴ ōŜ ǎǘƛƭƭ ŎƻƴǎƛŘŜǊŜŘ άŜȄǇŜŎǘŜŘέ ƻǊ άŎƻǊǊŜŎǘέ, is 
often denoted as ‐ (epsilon). ¢Ƙƛǎ ǊŜǎǳƭǘǎ ƛƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ άŘŜƭǘŀ-ŜǇǎƛƭƻƴέ ŦƻǊƳǳƭŀǘƛƻƴ ƻŦ ǎǘŀōƛƭƛǘȅ ǇǊƻperties: 

ᴁὼ ὼᴁ ᵼ‏  Ὢὼ Ὢὼ  ‐ȟ σȢτ 

where ὼɴ ὢ is the original input belonging to the input space ὢ of the ML model, ὼᴂɴ ὢ is the perturbed 

input, Ὢὼ and Ὢὼ  are ML model outputs for, respectively, ὼ and ὼᴂ, ‏ and ‐ are as discussed above (‏ȟ‐ɴ
ᴙ , and ᴁϽᴁ is a norm that measures the distance between original and perturbed inputs and outputs. The 

 
 
18 In general, it is possible to define properties that also involve internal structure of ML models (e.g., hidden layers of a neural 
network) if they have meaningful semantics and can be traced to some system/model requirements. In particular, explainable AI 
methods could help to understand the behavior of internal elements of models and to make use of these elements for improved 
traceability and richer specifications. Formal methods can also be used to infer properties from datasets and ML models, as discussed 
in Sections 3.5.1.1 and 4.3.1-4.3.4. 
19 Note the distinction between stability and robustness of the ML model, where the former has the scope of only normal operating 
conditions, while the latter subsumes it and considers both normal and adverse conditions (that is, stability, as well as edge cases, 
adversarial cases, etc.). Current academic literature on the verification of neural networks does not make any distinction between 
the two terms and ƻƴƭȅ ǳǎŜǎ άǊƻōǳǎǘƴŜǎǎέ ǘƻ ŘŜǎŎǊƛōŜ ǘƘŜ ǇǊƻǇŜǊǘƛŜǎΦ 
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right-hand side of Equation (3.4) suggests a regression output. Instead, if ὪϽ returns a class, then a stability 
property shall impose that the class does not change in the presence of an input perturbation20: 

ᴁὼ ὼᴁ ᵼὪὼ‏  ὪὼȢ σȢυ 

If input/output perturbations, i.e., ‏ and ‐, are relative ǾŀƭǳŜǎ όŜΦƎΦΣ άan input perturbation of 1%έύ ǘƘŜƴ ǘƘŜ 
following form would apply for a given input point ὼ:  

ὼᶅᶰὢȡ ᴁὼ ὼᴁ ᴁὼᴁᵼ‏  Ὢὼ Ὢὼ  ‐ ὪὼȢ σȢφ 

One can observe that the formulations above contain an implication (ᵼ). Therefore, as discussed above, they 
establish relationships between ML model inputs and outputs. 

Local stability. A property that captures the stability of the ML model around a given input point is a local 
stability property: a perturbation of a concrete input shall result in a slight or no change in the output of the 
model (e.g., bounded error in the case of regression or no change in prediction class in the case of 
classification). Local stability properties are accepted by the majority of FM tools for ML, e.g., tools for neural 
networks verification. 

Global stability. A more general formulation is global stability property, that states that for any input point 
ŦǊƻƳ ǘƘŜ a[ ƳƻŘŜƭΩǎ ƛƴǇǳǘ ǎǇŀŎŜ όὼᶅɴ ὢ) the property formulated as in Equation (3.4) must be valid. Global 
stability can also be expressed as a bound on the ratio between the change in the output and the change in 
the input. This is a notion of Lipschitz continuity [23] discussed in Section 3.4.1.4. 

Perturbation measurement. Input perturbations (and, respectively, deviations in the ML model outputs) can 
be quantified in different ways using different types of norms. For example, the ὒ norm (also known as 
Manhattan distance) and the ὒ norm (Euclidean distance) are different ways of measuring the distance 
between the two inputs or outputs. The infinity norm (ὒ ) that records the greatest perturbation magnitude 
among all input elements is also widely used for measuring perturbations. The norms are defined as below: 

ὒȡ ȿ● ●ȿ ÍÁØȿὼ ὼȿ σȢχÁ 

ὒȡ  ȿ● ●ȿ ȿὼ ὼȿ σȢχÂ 

ὒȡ  ȿ● ●ȿ ȿὼ ὼȿ σȢχÃ 

3.4.1.3 Robustness 

As discussed above, in general ML model robustness captures both the stability in normal operating 
conditions, with respective property defined as in Section 3.4.1.2, as well as the capability of the ML model 
to not exhibit unintended behavior in the presence of adverse inputs, such as the ones outside of the ML 
constituent ODD, as well as edge/corner cases, adversarial cases, and out-of-distribution cases. There is no 
specific formalization of a robustness property that is different from the one defined above (Equation 3.4)21, 
therefore, in this section we focus on certain variations of this formulation that can be used for identification 
of adversarial examples, which can be considered adverse inputs. 

 
 
20 Typically, raw outputs of a classification model are probabilities or scores of different classes. Therefore, for classification models, 
stability properties can also be formalized similarly to (3.4) imposing that the score of some class shall deviate by no more than ‐ . 
21 It is a matter of input region where the property is defined; if the region is outside of ODD or near the ODD boundary, then the 
ǎŀƳŜ ǎǘŀōƛƭƛǘȅ ǇǊƻǇŜǊǘȅ Ƴŀȅ ōŜ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ άǊƻōǳǎǘƴŜǎǎ ǇǊƻǇŜǊǘȅέΣ ōŜŎŀǳǎŜ ƛǘ ŎƻƴǎƛŘŜǊǎ ƛƴǇǳǘs outside of the normal range. 
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Some FM technologies, such as the ones based on optimization (e.g., MILP) can be employed to search for 
ƛƴǇǳǘǎ ǘƘŀǘ ŀǊŜ άŎƘŀƭƭŜƴƎƛƴƎέ ŦƻǊ ǘƘŜ a[ ƳƻŘŜƭΦ Cor example, such inputs may be located close to a decision 
boundary of the model, such that a small perturbation would change the output class, or near an unknown 
discontinuity of the function, such that the function output may deviate significantly in the neighborhood of 
an input. These challenging inputs may be used both as tests and as dataset augmentations to improve ML 
model robustness and mitigate the risks of adversarial attacks. Several formulations of the optimization 
problem can be used. The first one aims at minimizing the input perturbation. To express it, the delta-epsilon 
formulation in Equation (3.4) can be modified as follows: 

ÍÉÎ‘‏ σȢψ 

                                                             ίȢὸȢ  ɴ‏ Ў 

                                                                      ɱὼȟὼ ȡ ᴁὼ ὼᴁ ᵼ‏  Ὢὼ Ὢὼ  ‐ 

Here, ‘ is a cost function defined for the perturbation, and Ў is a set of possible perturbations. The 
formulation aims to find a minimum-cost perturbation for the output deviation to exceed the bound of ‐. For 
instance, in the context of adversarial attacks, using a smallest/cheapest perturbation helps the attacker to 
stay undetected. Another formulation aims at maximizing the loss: 

ÁÒÇÍÁØ 
 

Ὢὼ Ὢὼ  σȢω 

ίȢὸȢ  ɴ‏ Ў 
         ᴁὼ ὼᴁ  ‏ 

This formulation focuses on finding a worst-ŎŀǎŜ ŜǊǊƻǊ όǘƘŜ άƳƻǎǘ ƛƴŎƻǊǊŜŎǘέ ƻǳǘǇǳǘύ ƻŦ ǘƘŜ ƳƻŘŜƭ ƎƛǾŜƴ ŀ ǎŜǘ 
of possible input perturbations.  

3.4.1.4 Lipschitz continuity 

Lipschitz continuity is a global property, characterizing the behavior of the ML model over its whole input 
space. It consists of a Lipschitz constant which measures the sensitivity of the model to input perturbations: 

Ὢὼ Ὢὼ Ᵽᴁὼ ὼᴁȟ σȢρπ 

where ᴁϽᴁ is a norm that measures the distance between original and perturbed inputs and outputs, e.g., ὒ, 
ὒ or ὒ  norm, as in Equations (3.7a) - (3.7c), and — is the Lipschitz constant. In other words, the constant is 
an upper bound on the ratio between the variations of the outputs and the variations of the inputs of an ML 

model Ὢ (more generally, of some function Ὢ). The smaller the constant —, the more robust is the ML model 
with respect to perturbations. 

As shown in [24], neural networks with low Lipschitz constants offer better generalization capabilities 
together with stronger robustness against adversarial attacks. Thus, it is of major interest to enforce and to 
demonstrate the existence of such low Lipschitz constant.  

3.4.1.5 Monotonicity 

In certain applications, the function that is represented by the ML model is required to exhibit monotonic 
behavior. For example, given a monotonic change in some input feature(s), the output of the model should 
also change monotonically, i.e., increase or decrease. Monotonicity is a typical requirement for regression 
models of various kinds, such as those that perform monitoring of degradation conditions of various 
components, in particular, PHM applications. 

One possible definition of monotonicity of the ML model, adapted from [25], could be the following. Let 

Ὢȡὢᴼὣ be an ML model that approximates the function Ὢȡ ὢᴼὣ, and let Ὓ be the set of inputs of Ὢ (input 

features). The output of the model Ὢ is monotonically increasing in features ὛȭṖὛ if and only if each feature 
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in Ὓȭ is totally ordered and for any two inputs ὼȟὼᶰὢ that are (1) non-decreasing in features ὛȭȟᶅὭɴ
Ὓ  ὼὭ ὼὭ, and (2) are equal in all other features Ὧɴ Ὓʌ Ὓᴂȡ ᶅὯȟὼὯ ὼὯ, the output of the model 

Ὢ is non-decreasing: Ὢὼ Ὢὼ . From this definition, a global monotonicity property for monotonic 
increase can be defined in the following way: 

ᶪὼȟὼ ᶰὢ  ᶅ Ὥɴ Ὓ ὼὭ ὼὭ ᷈ Ὧᶅɴ Ὓʌ Ὓ ὼὯ ὼὯ 
 
ᵼ Ὢὼ Ὢὼ σȢρρ 

A similar formulation can be created for a monotonically decreasing (non-increasing) model output. 

It is also possible to define local monotonicity properties, which may be more amenable to verification using 
FM, given the complexity of the global formulation. A local property is formulated in the neighborhood of a 

given point ὼ in the input space ὢ of Ὢ. In case of monotonicity, ƎƛǾŜƴ ŀ ƳƻƴƻǘƻƴƛŎ άǎƘƛŦǘέ όŎhange) in selected 

features from the input point ὼɴ ὢ, a monotonic change (increase or decrease) in the output of Ὢ is imposed. 

As an example, consider a model Ὢ , with a one-dimensional input and output spaces ὢᶰᴙ and ὣᶰᴙ , 
where the output is expected to monotonically decrease with the increasing value of the input. Given an 
input point ὼ, one can define following local properties: 

 ᶅὼȡὼ  ὼ ὼ ᵼὪ ὼ‏ Ὢὼ σȢρςÁ 

 ᶅὼȡὼ ‏ ὼ ὼᵼὪ ὼ Ὢὼ  σȢρςÂ 

where ὼȭ is an input point in the neighborhood of ὼ, to which a monotonic shift ‏ has been applied. Equation 
(3.12a) is a forward decreasing monotonicity property stating that for any monotonic increase bounded by 
 the output must be non-increasing. Equation (3.12b) is a backward decreasing monotonicity that requires ,‏
that, locally to the point ὼ, decreasing value of the input shall lead to a non-decreasing output.  

Limited non-monotonicity. An additional term ‐ can be added to the right-hand side of the equations to 
account for non-monotonic behavior that is admissible. In this case, the properties impose that the output is 
allowed to have a limited change in the direction that is opposite to the expected one (but not an unlimited 
growth/decrease); such properties are locally applicable to show a bounded deviation from the desired 
behavior. The addendum ‐ turns the forward and backward decreasing local monotonicity properties, shown 
in Equations (3.12a)-(3.12b), into limited increasing monotonicity properties: 

 ᶅὼȡὼ  ὼ ὼ ᵼὪ ὼ‏ Ὢὼ ‐ σȢρσÁ 

 ᶅὼȡὼ ‏ ὼ ὼᵼὪ ὼ Ὢὼ ‐ σȢρσÂ 

Example of non-monotonic regions of Ὢ  are shown in Figure 12. Function Ὢὼ is shown in orange color, while 
the blue line represents an ideal decreasing monotonic behavior with increasing ὼ and is shown for reference. 
There are two non-monotonic regions. In the first (left) one, for a bounded increase ὼᴂ of the input ὼ around 

the point ὼ (ὼ ὼᴂ ὼ  ,there is an increase of Ὢ  that exceeds the admissible value of ‐, therefore ,(‏
the limited increasing monotonicity is violated around the point ὼ. Instead, for the second (right) region, a 

bounded increase ὼᴂ from the point ὼ (ὼ ὼᴂ ὼ  ,leads to only a slight increase in Ὢ  (less than ‐) (‏
hence, it does not violate the property. 
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Figure 12. Example of valid and invalid monotonicity properties in non-monotonic regions of the function. 

3.4.1.6 Other types of properties for ML 

Additional property types may also be considered for some types of ML models. For some input spaces, 
equivalence classes can be defined, each of them containing certain object types. These classes can be used 
to specify invariance properties, for example, enforcing that certain transformations of an object on an image 
(scaling, rotation, etc.) shall lead to the same output of the classifier. Such properties, sometimes also 
referred to as semantic invariance properties [26], are domain specific. For models that contain a state, such 
as recurrent neural networks, temporal specifications could be provided using conventional formalisms, such 
as temporal logics. Temporal behaviors can also be exhibited in reinforcement learning applications. The 
reader is referred to [26] for more details. 

3.5 Formal methods technologies applied to machine learning 

Current section provides an overview of existing FM-based technologies and tools applicable to or specifically 
developed for machine learning. A significant part of this overview focuses on property verification which is 
the main FM application in ML design and V&V. Interested readers may refer to [27] and [28] for more 
detailed discussions on formal verification tools. In addition, certain FM technologies also find their 
applications in ML development processes [27]. 

At present moment, neural networks (NN), in particular deep learning, is the most popular technology in ML. 
They have gained significant interest in the aviation industry due to their remarkable performance at solving 
complex problems, with potential applications in safety-critical avionics systems [29] [30]. In safety-critical 
contexts, assurance and verification of NNs is crucial. According to the state-of-the-art, verification of neural 
networks (VNN) is currently the main focus of formal methods applications to ML [27] [31]. For this reason, 
the FM technology overview in this report focuses on VNN. However, other FM approaches applicable to 
broader areas/types of machine learning are also discussed when this is relevant. 

3.5.1 Complete formal methods 

Complete formal methods refer to algorithms and solvers that are both sound and complete: they can 
precisely report whether a given property holds on a model, generally providing a counterexample in case 
the property does not hold. Such methods do not miss property violations stating that a property holds on a 














































































































































