Collins Aerospace EASA % 1
E A SA ForMuLA IPExtract %‘& gg:!;';space

European Union Aviation Safety Agency

Innovation Network
EASA Al Task Force

Collins Aerospae

Report
Formal Methodsuse for Learning Assuran¢é&orMuLA)

Public extract

April 17, 2023

Version 1.0

—— © 2023 Collins Aerospace
B European Union Aviation Safety Agency. All righgerved. ISO9001 Certified.
Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.

*

* *
* *
* ok

An agency of the
Eurcpean Union



. E A SA Collins Aerospace EASA %\x/é Collins
= Aerospace

European Union Aviation Safety Agency ForMuLA IP€xtract

Authors (in alphabetical order)

Collins Aerospace

Dr. Massimo Baleani
Arthur Claviéere
Dr.Darren Cofer

Eric DeWind

Dr. Luigi Di Guglielmo
Dr. Orlando Ferrante
Giacomo Gentile

Dr. Dmitrii Kirov

DavidF. Larsen
Dr.Leonardo Mangeruca
Dr. Simone Fulvio Rollini

ipc-formula@collins.com

EASA

Giovanni Cima
Ralf Schneider
Hassan Semde
Guillaume Soudain

ai@easa.europa.eu

Citing this report
EASA and Collins Aerospaeermal Methods use for Learning Assurance (ForMéphi) 2023.
@techreport{ ForMuLA

author = {EASA and Collins Aerospace},
title = { Formal Methods use for Learning Assurance  ( ForMuLA},

month = 4,
year = 2023
}
Disclaimer

This document and all information contained or referred to herein are provided for information purposes only, in the
context of, and subject to all terms, conditions athitations expressed in the IPC contracERSA.IPC.017 of
September 20th, 2021, under which the work and discussions to which they relate were conducted. Information or
opinions expressed or referred to herein shall not constitute any binding accéhey shall create or be understood

as creating any expectations with respect to any future certification or approval whatsoever.

All copyright and other intellectual property rights in this document shall remain at all times strictly and exclusively
vested with Collins Aerospacny use of this publication, or of parts thereof, exceeding mere citations, as well as any
reproductionof images, must have the prior written consent@dllins Aerospace

* Principal authors

Page? of 110

o * ok
*
*
*

* ok

*
*
*

© 2023 Collins Aerospace
European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.
Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.

An agency of the
Eurcpean Union


mailto:ipc-formula@collins.com
mailto:ai@easa.europa.eu

. E A SA Collins Aerospace EASA %\x/é Collins
= Aerospace

European Union Aviation Safety Agency ForMuLA IP€xtract

Table of Contents

el (0] 017/ 0 T PP 5
(€] (0 FT== T o/ PP 6
LIST OF fIQUIES. ...ttt oot e et ek e e e e e e e et e e e e e e e b b e e e e e e e eannrnneeeeeeaannns 8
IS 0 = o] =SSP 9
EXECULIVE SUMIMABIY.....eeeiiiieiiiit ettt ettt e e e e e e e e e e e e e e e e e e e e e nb e e et e e e e e snn e e e e e e e e nnnnnees 10
A [ o1 (0T (U Td 1o o I TP PPPPP PP 11
I A = = Tod (o | {0 T PP 11
1.2 Scope Of the FOrMULA PrOJECT......evii ittt e e 15
1.3 OULNE OF tNE FEPOIT......eeeiiieiiiei e e e e e e e e e e e nnneees 15

2 Concept of Operations and USE CASE.........coeiieiiiiiiiiinriirrrrerirrr e e errrrreeeeeeeaaaaaaaaaaaaaaaaaaeaeees 17
2.1 ConOps and USE CaSE SEIECHON.............ooi i e e e e e 17
2.2 Definition of the MEDASEd SYSIEML......ccviiiiiiiiiiiiiieee e 20

3  Formal methods technologies for machine Iearning..............cooeeiiiiiiiiiieiniiiee e 30
3.1 What are formal MEthOUS?2.........ccoiiii e e e e e e e e e e e e e e e e e s e s ae e nnennen 30
3.2  Formal methods main definitioNS...........uueiiie i 31
3.3 Highlevel application categories of form@alethods..................oooo oo, 34
3.4 Property specifications for machine learning.............cccccoouiiireiieeiiiniiiiee e 34
3.5 Formal methods technologies applied to machine learning............ccccccovvvieeeeeeiiniiiieeeen. 39
3.6  Scalability limitations of formal Methods..............uuuiiiiiiiiiiii 45
3.7  Statistical MEthOUS..........ueiiiieiiee e e e snnnneeeeee e e s 4O
3.8  Hybrid verification ProCEAUIES.......ouiiiiiiiieeeee e 48

4  Applications of formal methods SPECIfIC t0 ML........cooiiiiiiiiiiiiee e 49
4.1  Formal methods for supporting the [earning ProCeSS.........ccuouiiiiiiiiieeei e 49
4.2  Formal methods for improving ML model robustness...............coo oo, 52
4.3  Other formal methods applications for machine learning.............c.ccccoe s 55

5 Assessment of the use of formal methods on the selected use.Case............cccvvveeeeiiiiiiieennenn, 60
5.1  Selection of FM applications to be demonstrated.............eveviiiiiiiiiiiiiieieee e 60
5.2 ASSESSMENT frAMEWOLK.......uuiiiiiiiiiiiiieiiieeee et e e e e e e e e et e e e e e e s e e e s e e e aeearrereeseaeeees 61
5.3 Data quality VErifiCaliON .....c..oviiiiiiieeee et a e e e e e e e aaa e 66
5.4  Formal verification of the trained ML model............ccooi e 69
5.5 Results of applying formal methods on the RUL USe CaSe..........cccccvvriirnriiiiiiiiiieieeeeeee e 89
5.6  Scalability and applicability assessment of formal methads.....................cooeee i, 91

6 Main conclusions Of the PrOJECT. ... ..o 96
] (=] €= o7 = U 99
Page3 of 110

e, © 2023 CoIIin_s Aerqspace _ 3
*.H‘; European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.

Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.

An agency of the
Eurcpean Union



. E A SA Collins Aerospace EASA %\\(‘/é CO“iI’IS
Aerospace

European Union Aviation Safety Agency ForMuLA IP@xtract

Appendix 1: Entire spectrum of FM applications in the ML context..........cccovveeiiiiiiiiiieiee e 104
Al.1. Machine learning development lifeCyCle...........ccco i 104
Al.2. V&V objectives for machine [arning............cooooiiiiiiiciiirr e e 106
Al1.3. V&V applications of formal methods in the ML development lifecycle............ccccveeerennns 108

Appendix 2. Requirements formalization for the RUL USE.CASE...........ccoviiiimmiiiieeiiiiiiiiiee e 109

Page4 of 110

o * ok
* *
* *
* *
* ok

© 2023 Collins Aerospace
European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.

An agency of the
Eurcpean Union

Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.



EIEASA

European Union Aviation Safety Agency

QA2 Collins

Collins Aerospace EASA Aerospdce

ForMuLA IP@&xtract

Acronyms
ASAM Association for Standardization of Automation and Measuring Systems
ATG Automated Test Generation
CAMO Continuing Airworthiness Management Organization
CBM ConditionBased Maintenance
CEX CounterEXample
Cl Condition Indicator
CNN Convolutional Neural Network
ConOps Concept of Operations
DAL DesignAssurance Level
DL Deep Learning
EASA EuropeanJnionAviation Safety Agency
EUROCAE BURopean Organization fa€ivil Aviation Equipment
FAA Federal Aviation Administration
ForMuLA Formal Methodsuse for Learning Assurance
FM Formal Methods
HUMS Healthand Usage Monitoring System
HW Hardware
ILP Integer Linear Programming
IPC Innovation Partnership Contract
MBSE Model-Based Systems Engineering
MILP Mixed Integer Linear Programming
ML Machine Learning
MoC Means of Compliance
MRO Maintenance, Repair an@verhaul
MTS Multivariate Time Series
NN Neural Network
ODD Operational Design Domain
OMT Optimization Modulo Theories
ONNX Open Neural Network Exchange
PDF Probability Density Function
PHM Prognostics and Healtlanagement
RelLU Rectified Linear Unit
RMSE Root Mean Square Error
RNN Recurrent Neural Network
RTA RunTime Assurance
RUL Remaining Useful Life
SAE Society of Automotive Engineegfmompany; current name SAE International
SME Subject Matter Expert
SMT Satisfiability Modulo Theories
SVM Support Vector Machine
SW Software
VHS Vehicle Health System
VNN Verification of Neural Networks
V&V Validation andVerification

*
*
*
*oax

o * ok
*

*
*

An agency of the
Eurcpean Union

Pagebof 110

© 2023 Collins Aerospace
European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.
Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.



. E A SA Collins Aerospace EASA %\x/é Collins
- Aerospace

European Union Aviation Safety Agency ForMuLA IP€xtract
Glossary

Formal methodsFormal methods are mathematically based techniques for the specification, development,
and verification of software aspects of digital systems. The mathematical basis of formal methods consists of
formal logic, disrete mathematics, and computeeadable languages. The use of formal methods is
motivated by the expectation that, as in other engineering disciplines, performing appropriate mathematical
analyses can contribute to establishing the correctness and robastaf a desigi].

Learning assuranceAll of those planned and systematic actions used to substantiate, at an adequate level
of confidence, that errors in a datédriven learning process have been identified @odrected such that the
system satisfies the applicable requirements at a specified level of performance, and provides sufficient
generalisation and robustness guarant¢2s

Operational Design Domain (OD@perating conditions under which a givenbalsed system is specifically
designed to function as intended, in line with the defined ConOps, including but not limited to environmental,
geographical, and/or timef-day restrictions. ODD defines the rangeoperating parameters within which

the Albased system is designed to operate, and as such, will only operate nominally when the parameters
described within the ODD are satisfiddthe ODD also considers correlations between operating parameters
in order torefine the ranges between these parameters when appropriate; in other words, the range(s) for
one or several operating parameters could depend on the value or range of another pard&jeter

Data completenessA dataset icompleteif it sufficiently (i.e., as specified in the data quality requirements)
covers the entire space of the operational design domain for the intended applidaiion

Data representativenessA dataset isepresentativewhen the distribution of its key characteristics is similar
to the actual input state space for the intended applicatigh

ML model. Mathematicalmodel that is generated as an output of a learning algorithm. Its parameters are
determined during the training process and fixed after it is finished.

ML inference modellmplementation of the trained ML modeln the target platform (software and/or
hardware).

ML constituent.A collection of traditional hardware and/or software items (e.g.,-precessing and post
processing elements) and at least one specialized hardware or software item that contains one dilmore
inference models

ML constituent ODD.Operating conditions under which a given ML constituent is expectedoidk as
intended

Learningalgorithm stability. Learning (training) algorithm s&ableif in the presence of perturbations in the
datasetin thetraining phaseof learning assurancée.g., replacement/removal of data points, additive noise,
labelling errors) it produces a model that is similar, in terms of its properties and characteristics, to the one
trained on the original dataseEor example, for classification mdsi¢his would mean that model decision
boundaries do not change significantly in case of training dataset perturbation.

1 Sometimesn this reportitid- f 4 2 NB T S8aaBIR mdoet. | a4 a
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ML model stability.ML model isstableif a small, bounded perturbation applied to its inputsnormal
operating conditions A ®S®>X GgKSYy GKS Ayllzia NB AyaiARS GKS a]
not cause a significant deviation in its output

ML model robustnessML mode is robustif it does not exhibit unexpected behavior neither in normal
operating conditions (i.e., the model is stable) noadverseconditions, for example, in response to eoft
distribution inputs, adversarial inputs, or edge/corner cases.

ML modelgeneralization.The capability of the ML model to exhibit required performanceinseennputs
within its operational design domain, i.¢hose inputs that have not been part of training and validation
datasets.Generalization is typically evaluatedngia test (holdout) dataset in order to demonstrate that the
model has a reasonable btaariance tradeoff, i.e., does not underfit or overfit the training dathile such
testing approach measures ML model generalizataapability with respect to thechosentest dataset
additional analyticalapproachesmay be required t@ssessnodelgeneralization to the entiradmissible
input spacge.g.,see thediscussion ifi3]).

2Ly 3SySNIfs | RAaO2y i dyeddotiinéceskayily répkeSentatq instatdlitit. § th€@phengordcigsithat
the ML model describes has known discontinuities, i.e., large changes in the output in some input region, these should be
documented and considered expected during the ML model stability assessment.
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European Union Aviation Safety Agency

Executive summary

The aim of this report is to present the outcome of the collaboration between EASA and Collins Aerospace
on an Innovation Partnership Contract (IPC) timvestigaed the use offormal methods as part of the
learning assurance building blocktbé EASA Al Roadm{4). The project ran from Oct 2021 tdar 2023.

The IPC project titledFormal Methods use for Learning Assuragc&odMulLA focused onemphasizing
opportunities for the adoption oformal methods techniqus in the design assurance processnadichine
learning enabled system$his resulted in the folloing key achievements

1 Proposed use of formal methods as anticipated means of compliance for a set of key certification
objectives from the EASA Concept Paper for Level 1&2 Machine Learning Applicahimns.
supported the update oflefinitionsin the concept papeandthe clarification obbjective LM11 on
learning algorithm and trained model stabilitwhichhas been split into objectives M. and LM
12in the transition to the new version of the concept paper

9 Detailed discussion of relevarformal methods (FM) technologies and supporting statistical
methods,and their possible role in the development and validation and verification (V&V) of machine
learning enabled systems. Emphasis has been made on innovative FM applications specific to the
robustnessassessmendf machine learning models.

1 Practical demonstration of the use of formal methaus an industrial use case of a deep learning
based estimator for remaining useful life of mechanical bearings in airborne equipment. The output
of the estimator is used for eground maintenance applications. Demonstrations provided concrete
evidence of how FM and supporting statistical techniques can be used as part of the verification
activities to deal with data quality assessment, ML stabilibjpustness and intended behavior
verification.

The considerations summarized in the report applyrtachine learningn general, but particular emphasis
has been facedon specific challenges related to neural netwoiRscussion of formal methods applications
are purposefully kept generidhis report doesiot recommend specific methods or tools, bistrather
intendedto motivate opportunities from a theoretical perspective. Where applicableference is made to
corcrete methods and tools.

European Union Aviation Safety Agency (EA%A3 G KS OSYGSNLIASOS 2F GKS 9d
aviation safety. Its mission is to promote the highest common standards of safety and environmental
protection in civil aviationThe Agency develops common safety and environmental rules at the European
level. It monitors the implementation of standards through inspections in the Member States and provides

the necessary technical expertise, training and research. The Agency woarkénhaand with the national
authorities which continue to carry out many operational tasks, such as certification of individual aircraft or
licensing of pilots.

Collins Aerospacea Raytheon Technologies company, is a leader in technologically adwenttadelligent
solutions for the global aerospace andefence industry. Collins Aerospace has the capabilities,
O2YLINBKSY&aAOdS LRNIF2f{A2> yR SELISNIAAS G2 az2t gs
of a rapidly evolving global marketThe Applied Research& Technology (ARTdrganizationof Collins
Aerospacas an agile centrally held enterprise level technology organization that works to identify, develop
and demonstrate innovative technology solutions, products, services,irgatligent systems supporting

/| 2ftAya ! SNRP&aLI OS odzaAySaasSa oAGK GKS @QAaArzy 2F ¢
O2yySOGSR | yR &Adgaii of he/ARD drganizatiihdvEndzdViodel Based Engineering
Methods (AM2) department works to developmnature, and transfer modebased methods, technologies

and tools from conceptioto validation and verification of Collisoductsfrom sales to operation

o
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1 Introduction

Artificial Intelligence (Alp aviation is a disruptive technology that will impact various products and services.
The aviation industry is being increasingly driven towards the application of Machine Learning (ML) in new
products to assist human operators or implement enhanced auatiion. Such products, in particular safety

critical onesrequire certification andnust provide ahigh level of trustvorthinessand guarantee®f the
absence of unintended behaviorghis is achieved by providing design assurance, i.e., evidence tteahcer
guidelines and verification processes have been followed during the design prarcésst the product
possesses necessary safety features (e.g. redurydandime monitors, or safety nets)

The aiation industry currently does not have a consenign the design assurance of ML constituents
becausehey are not fully amenable to current design assurance processes and standiapisrticular ED
12CD0178C provides guidance to produce traditd(i.e., nonML) software that performs the intende
function with a level of confidence in safety that complies with airworthiness requirefbgnihe standard
focuses on a process for software design tsiarts from functional and nosfunctional requirementsand
transforms them intahe software code This codeshall be traced to and verified against the requirements
to ensure it is correct, i.e., it performs thatendedfunction, and, more importantly, does h@xpose
behaviors that areinintendedby the designeor unexpected by operators

ML constituent developmentinstead, islata-driven An ML model is trainethrough a learning procedure

that starts from data, not from requirementsThus, the use of aiceabilityof the implementation back to
requirements as a means to minimize the risk that the ML constituent includes unintended behaviors is not
effective Additionally, the use of structural coverage metrics may not be effeativéentifying unintendd

behavior inML models such as neural networfddN) [6]. Instead as part of learning process verification
activities, ML generalization and robustness assessment have been proposed as key criteria that, when
Fdzf FAEE SR Oly KStL) (2 YAGHDZRIEES 48 dr6eiomitsicriticaltoy § K &
identify promising methods to evaluate generalization and robustness of ML models.

This report providesa theoretical overview and practicaldemonstrations ofhow formal methods(FM)
techniquescan be leverageth the design assurance processMif-enabled systemsalsocalledlearning
assurancg?2], with particular emphasien thelearning process verificaticactivitiesdeaingwith ML stability
androbustness

According toED216/D0O-333[1], formalmethodscan be used as a source of evidence for the satisfaction of
verification objectives when a formal model of the software artifact can be established, and propeeyes
have to comply withcan be verified via formal analysis.is worth notingthat forma methods provide
comprehensive assuranof properties forthose aspects that are formalized in the formal moddie key
requirement of any formaverificationmethod issoundnessonly properties that are actuallyalid shall be
declared vad by a sound method (see the full definition in SecBo?).

The reportsummarize the progresseghat the research community is achievingy identifying proper
languages andormal modelsto capture ML modelsiconstituens and their properties, as wdl asin
developngnovel formal verificatiomlgorithms and tools able to extend the applicability of traditional formal
verificationcapabilitieso the assurance of ML robustness and beyond

1.1 Background

The path towards Mkertification is not yet defined, but several reports have been published by aviation
authorities and research groups addressing foundational certification aspects -ehatled systemsin
February 2020 the European Aviation Safety Agency (EASA) publisiredirtificial Intelligence Roadmap

31n fact, datasets mainplicitly represent some functioal requirements for the system.
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including the timeline shown ifigurel. TheroadmaBg a G 6 f A aKSa KS for tHeSsgfede Qa A
and ethicaldimensions of development d¥iL in the aviation domairf4]. Its main scope is to create a
framework for MLtrustworthinessandestablish conditiongor use ofML applicationsn aviation.

InMarch2020 andViay 2021 EASAeleasedwo technical reports entitledConcepts of Design Assurance for
Neural NetworkCoDANMNI and 11[3] [7]. These reports provide a detailed study of sevéatspecific
development and assurance aspects such as robustness, generalization and explainability topics, and propose
a Wshaped ML development procedsdure?) outlining the essential steps féearningassurance

In March 2021, he DEEL (Dependable and Explainable Learmiagification working group published a
whitepaper entitledMachine Learning in Certified Systef@8ssummarizing thenecessary conditionand
objectives for certifying ML-based systemsAuditability, data quality explainaldity, maintainability,
robustness, resiliencapecifiabilityandverifiability are theidentified certificationobjectives

In April 2021, he SAE G4/EUROCAE WI34 joint international committee orArtificial Intelligence in
AviationLJdzo t A A KSR | adl G§SYSy i 2 durredtsfasgdeifoftirate Chdrddrg and NS O )
system development standards usidthe certification/approval process of safetitical airborne and
groundbased systems,and assesing whether these standards are compatible with a typical artificial
intelligence (Al) andnachine learning (ML) development appro&¢é]. This wadollowed by a technical

paper[9] presenting a newL development lifecycle which will constitute the core of the new aeronautical
standard on ML called AS6983 jointly being developed by EUROCAE and SAE. The paper covers the desigr
assurance process at the item level (analogouslEBd2CDO178C for tradibnal avionics software) and
proposes development and V&YV lifecycle activities compatible with the ones identifiEASH

LYy 5SOSYOGSNJ Haumz 9! {! LJdzBirst AUsaki&SRidartce @) 2 ¢0€ $ Miachinel: LIS N
Learning applicationgn aviatior® §10] which is the first milestone in the implementation of the EASA
Roadmap. The guidance anticipates a set of assurance objectives (compatible with the ones proposed by
DEEL), and additionally proposes means of compliaupgporting applicants in the identification of
certification means for Mbased safetycritical systemsin February 2028ASAaspublishedthe update of

the concept paper, extendingtio Level 2 ML applicatiorjg].

2021 2022 2024
First usable First usable First usable 2026
guidance for guidance for guidance for Finalized 2028
Level 1 Al/ML Level 2z Al/ML Level 3 Al/ML guidance for Finalized 2029
(human assistance/ (human/machine (more autonomous Level 1 and 2Alf guidance for Adapt to further
augmentation) collaboration) machine) Level 3 Al/ML innovation in Al

lC T

_ Pt | ek

mc 2(21 zczz 2013 101-1 E}B ztzs 201r zou 1029 { 2030 | zc31 2012 2033 ma [ 2035 |

Al ROADMAP
DELIVERABLES

Ei_

2019 2025 2030 2035
First EASA Al/ML First approvals Single-pilot Autonomous
IPCs & applications of Alf/ML CAT operations* CAT operations*

EU INDUSTRY
PROGNOSTIC

* For Large Atrcrafts, based on roadmaps from major players

Figurel. EASA Al Roadmap

1.1.1 IPCCoDANN | and CoDANN Il

One important aspect of the development of machine learning systems is that it is based ondiidera
process. Specific activities on data managemetdtd collection, data preparation, and data quality
verification) need to be present in the proce&sirthermore, the development process cannot go directly
from requirements and data to programming, baustinclude a new paradigm éfarning i.e., creating ad
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training a mathematical model (ML model) from the data. This model can then be transformed to software
and deployed on a target computer. As partbé two IPCstitled Concepts of Design Assurance for Neural
Networks(CoDANN | and 3] [7], a new Al development process, called thend/del, has been proposed

It is illustrated inFigure2.

(Sub)system (Sub)system
requirements requirements
& design verification

Requirements Al/ML
allocated to constituent

Al/ML requirements
constituent verification

Independent data
Data .
and learning
management S
verification

Learning
process
management

Learning Inference model
process verification &
verification integration

Model training Model
implementation

Figure2. W-shaped development cycle fiorachine learningW-model)

The lefthand side of the Wnodel covers the development activities specific to ML components, including
the following:

1 Data managemenwhichincludes collection of the data (e.g., real, or synthetic data), itgppoeessing
(e.g., normalization, filtering, feature selection, annotation, labellingyl data quality verification.

1 Learning process managemewnthich covers all steps required prio training the model, such as model
architecture selection, training algorithm, quality metriagd hyperparameters.

1 Model training a selfexplanatory step in ML to find a begerforming model.

The key element in the process, which transforms thet®¥ a W, is thd_earning process verificatipwhere
specific tests and analyses must be applied to ensure that the trained model meets the key c¢riteria
generalization and robustnesghe former means that the model performs well on previously unsesa.d

The latter demonstrates that the performance of the model does not degrade in case of perturbations
applied to its inputsand in case ofdverseinputs, such as adversarial attacksd outof-distribution data.

Both criteria are key challenges ML and must be fulfilled to demonstrate the absence of unintended
functionality in these typically bladkox systems, which is a crucial condition for their certificaipaviation
authorities

¢KS Y2RSt @GSNATFAOFGAZ2Y &S 1eWmadel Fntt dne ndofeRlevéldpmenitK S
activity,Model implementation This phase covers creation of code that implements the trained model (also
called theinferencemode) and its deployment on target hardware, as well as verification and integration
activities of the inference model to ensure that the properties of the trained model are preserved in the
deployed version.
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1.1.2 EASAoncept papefor level 1&2 ML applications

¢ KS 9CoficepDRaper: Guidander Level &2 ML Applicationd dintroduces a first set of objectives, in
order to anticipate future EASA guidance and/or requirements to be complied with by-reddétgl ML
applications. Where practicable, a first set afticipated Means Of ComplianceMOQ has also been
developed, irorder to illustrate the nature and expectations behiheé objectivesThe aim is to provide
applicants with a first framework to orient choices in the development strdtagylL solution§[2]. Among
the proposed MOGdormal methods are considered promisingspeciallyor the verificationof stability and
robustnesropertiesof the trained and inference models.

The concept papealso provides the following definition ¢ééarning assurancé Alléof those planned and
systematic actions used to substantiate, at an adequate level of confidence, that errors in-dridata
learning process have been identified and corrected such that the system satisfies the applicable requirements
at a specified level of performance,daprovides sufficient generalisation and robustness guararitees

1.1.3 ED216/D0O-333formal methods supplement

In commercial aviation, the use of formal methods in the development of softlvased aerospace systems

is allowed through th&DB216/D0-333[1] supplement to theED12CDG178(5] standard.The supplement
identifies the modifications and additions €£D12CD0O178C objectives, activities, and software life cycle
data that should be addressed when formal methods are used as part of the software development process.
The standard highlights thahe extent to which formal analysis can be used varies accorditiyetability

to construct appropriateformal models, the choice of analysis techniques, and the availability of tools.
Therefore it is critical to define formal models provided with the appropriate level of detail represeating
conservative appximation of the important software properties and of the properties stated by the natural
language requirementsand to adopt tools able to process such models and perform analyses leveraging
mathematical reasoning

1.1.4 Limitations of formal methods

As discussed in D8B3, applicability of formal methods to any particular software development activity is
bounded by the ability to construct an appropriate formal model. Requirements specified in natural language
may include properties that cannot be ifid with a formal method. Models can also be insufficiently
detailed to allow meaningful analysis of some properties and yet be perfectly adequate for others. Despite
these limitations, formal methods can be a means of completely and accurately deséniigartant
software properties. Formal analyses can then be applied to provide assurance of these prdperties

In recent years, new approachesincluding the use of formal methods have been proposed for the
verification of ML components and Minabled systems. Furthermore, ndarmal methods tools are in
development that permit mathematical analysisME models, such aseural networls. These are currently
limited by scale and theeed to precisely define requirements for analy<isrrent stateof-the-art tools
todaycould not be applied to large open input spaces and complex ML models, such adasedmodels
Howeverthey are making rapid progress and have been @setappied at scaldéor low-complexity models
(e.g., shallow NNs) with wedkefined input spacew prove critical robustness properties for real systerts

the same time, the research community is actively working on overcoming the existing barridéfgad|&
scalability bydevelopingnovel techniques and tools that may be able to address higher complexity ML
verification problems in the future.

4 Forshort, in the remainder of the repoitisNBE F SNNBR G2 a a9! {! 1L /2yOSLIi t I LISNEO®
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1.2 Scope othe ForMuLAproject

The ForMuLAproject focuses on identifyingopportunities for adoptg formal methodsas means of
complianceor the assurance and certificatiavbjectivesfor ML constituents The bllowing topics have been
addressed:

9 Identification of available statef-the-art FM technologiespecific to ML Such technologiekave
been adapted to or specifically developed for machine learaing are able tosupport several
development and V&V activitiegcludng data quality assessment, improvement of the learning
processML model stability and robustness verificatiang explanability. For those activities, where
FM may face scalability or applicability limitations, statistical methods have also been explored as
supporting means for the analysis.

1 Identification of key FM applications for thdearning processverification espedally for the
assessment of ML model stabilitpbustness and verification of intended behaviors. To overcome
current limitations of FM tools in verifying global properties, the project identifies a method that
reduces the problem of global properties rification to a set of local pointwise verifications
performed relying on a conservative approximatidrnis methoctould be acceptable ihe selected
points and corresponding properties are representative of thecktistituent ODD.

1 Practical demonstratin of the use of formal methods on an industrial use case of a deep learning
based estimator for remaining useful lifRUL)of mechanical bearingms aircraft equipmentin
support ofon-ground maintenancectivities. A number ofinnovative FMtechnologies havéeen
selected based on their applicability to the use casd used to evaluate the ML model stability,
robustness and compliance with intended behaviors. At the same 8electedtechnologies have
been evaluated in terms of efficieneynd effectiveness. Furthermore, the use of statistical methods
for data quality assessment has also been demonstrated.

Based on both theoretical and experimental studies, the project has agwéth proposals for theuse of
formal methods as anticipated eans of compliance for a set of key certification objectives fEXNSAAI
Concept Papef2]. It supporied the update of definitionsin the concept papeand the clarification of
objectiveLM-11 on learning algorithm anttained model stabilitywhichhas been split into objectés LM
11 and LM12in the transition to the new version of the concept paper

1.3 Outline of the report

After the brief introduction provided iBectionl summarizing the scope of the ForMuLA project and the
related backgroundSection2 presents a concrete use case that will be used to contextualize the discussions
in the following sections of the document. The selected use case consists oflaaskil. Remaining Useful

Life (RUL) estimator vidh is used in the context of Rrognostics and Health Management (PHiyigtem.

After a short description of what RUL is and what solutions can be adopted to implement it, the ConOps and
the architecture of the Mibased system incorporating the RUL functibty are described. Several details

are offered to clarify the ML constituent operational design domain, the sydteel and the Mlconstituent
requirements, the datsets, theML model characteristics, and, finally, the safebnsiderationgelated to

the use case.

Section3 provides the necessary background on formal heels, covering their capabilities and range of
applications. Definitions are offered to help the reader to understand the FM taxonomy and associated
technologies. Examples complement the technology overview to guide the reader in gaining confidence on
how formal methods can be used for validation and verification activities, as well as for supporting some
development activities for ML. Complementary to FM technologies, selected statistical methods are
discussed that can support the analysis for key ML as®er objectives for which FM are either not
applicable or not scalable.
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Sectiondis the core of the report, as it describes the innovative applications of farretiiods in the context

of ML assurance. These approachesggond the traditional V&V applications of FM that are described in
existing standards (e.geD216/D0O-333).The intent is to stress that FM can be used as anticipated means of
compliance for the objectives that address new challenges specific to ML, such as robustness of ML models,
as prescribed by existing guidance.

Section5 demonstrates the application of formal methods on the use case described in Séctide
demonstration focuses on a selected subset of FM approaches that includes data representativeness
assessment and verification of ML model stability, robustness, as well as several other use case specific
properties defined based on the ML model requirertee An example toolchain is described to offer practical
insight of how the existing technologies can be combined, and the experimental evaluations provide an idea
of the applicability and the scalability of the described toolchain solution.

Finally,Section6 (Conclusions) reviews the current accomplishments and discusses subjects for future work.
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2 Concept of Operations and use case
2.1 ConOps and use case stien

2.1.1 Background

Remaining Useful Life (RUL) is a widely used metric in Prognostics and Health Management (PHM) that
manifests the remaining lifetime of a component (e.g., mechanical bearing, hydraulic pump, eBgising

RUL calculation procedures often ysteysicsbased degradationmodels[11]. Such models typically include

a set of coefficients, such as component degradation coefficient and operating environment coefficient,
which can come from engineering knowledge or be estimated wsistgm identification methods. Another

group of methods aresimilarity-based methodg412], where condition indicators of the component are
compared to degradation trends of similar components available from historical data.

While modelbased approaches for RUL estimation tend to be more accurate if the complex system
degradation is modeled precisely, they require extensive prior knowledge about physical systems, which is
often unavailable in practice. Therefore, creation of aate physicsdhased moded may not be possible.
Similaritybased methods often suffer from poor accuracy. In the recent decade, the focus has been gradually
shifting towardsdata-driven approaches that are able to model the degradation characteristics based on
historical sensor data and infer the underlying correlations and causalities in the collected data without
relying on a physics model. Various machine learning approaches havetmpersed[13] [14] [15], out of

which the use ofleeplearning(DL)is of particular relevancgl6]. The main advantage of applying DL ifnPH

is that highlynonlinear, complex mukilimensional systesican be modeled without prior expertise on the
system behavioprovided that enough data is availabRaw sensor readings can be directly used as inputs

to DL models, andheir automatic tature extraction capabilities can be leveraged to discover the
relationships between the inputs, the degree of impacttba RUL, as well as other contributionsthe RUL

that may be unknowro the expert[17]. This is similar, for example, to image data, where raw inputs to a
neural network are pixels, while various features on the input im@ge., presence of different objects,
forms or shapesyre internally extracted by the network the hidden layersTherefore, DL methods require

less domain expertise as they alleviate the need of feature engineering activities, which could be difficult and
time-consuming, since it requirgsior knowledge of machine health prognostics and signal processing

The Mkbased(more precisely, Dhased)RUL estimation component is expected to acdepe series data

¢ a sequence of input values taken at several subsequent time steps, i.e., within a time wib@low
Therefore, a 2D input is expected, where the first dimension corresponds to the number of time steps (e.qg.,
historical) and the second dimension corresponds to the number of input features. Considering a reasonable
time window size and alML constituent ODDinputs (seeTable1 and Table2 in Section2.2.3, the total
number of input values.e., the number oéntries in the time windw (number of featuresc number of time

stepg, may be on the order of(®, which is a higldimensional inputThis motivates to apply a deep learning
solution to this use caseMore detailsabout the inputsare available ifsection2.2.

Additionally,current application scopes limited to offline training only A trained ML model is assumed to
be frozen, i.e., no further (online) updatesttee model are made during operation.

Remark As mentioned above, DL can perform automatic feature extraction from raw data. Extracted
features, such as, for example, filters in the hidden layers of a convolutional neural network, may not be
interpretable by system developers and users. Understartimgneaning of such features shall play an
important role both for developers and users of the ML syskman though explainability is not the central
topic of the ForMuLA report, its ralethe development anéor the end user are highly acknowledgaad
relevant aspects are discussed in the report whenever applicable.

Pagel7of 110

o, © 2023 Collins Aerospace
European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.
Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.

An agency of the
European Union



. E A SA Collins Aerospace EASA %\x/é Collins
= Aerospace

European Union Aviation Safety Agency ForMuLA IP€xtract

2.1.2 ConOps alternatives
RUL estimation function can be used in the following application categories:

1. Onground

a. ConditionBased Maintenance (CBIhere the estimated RUtould contribute tosuch tasks
as augmented manual inspection of components and scheduling of maintenance cycles for
components, such as repair or replacemetiitys moving frompreventive maintenance to
predictivemaintenance (do maintenance only when needed, based on compan® & O dzNNXB
condition and estimated future condition)hiscould allow to eliminate or to extend service
operations and inspection periodgreventunsafe component conditiongptimize component
servicing (e.g., lubricant replacemengjenerate inspection and maintenance schedules, and
obtain significant cost savings.

2. In-flight

a. Pilot decision supportwhere estimated RUIs directlyprovided to the pilot via a dedicated
screen/interface (e.g., cockpit display), so that they can be aware of the current state and
remaining life of different components of the aircraft and take corresponding decisions in the
scope of current flight missn. For example, low RUL value of an engine provides the pilot with
critical information for managing a hazardous contingent situation, e.g., suggests to immediately
abort the current mission (e.gnitiate emergency landing) or #plan the mission (e.gdiscard
some objectives, land at the nearest runway, etc.).

b. Airborne software applications,where RUL is communicated to other aviorscftware SW
components, such as automated planners and decision makers. Such applications can use the
RUL information to recommend appropriate mitigations (e.g., suggest an altitude change), direct
the crew in case of missed recognition of hazardous situations, #sawerovide reatime
decision aids in the scope of the current flight mission

Aforementioned applications of RUL estimation provide support to information analysis (RUL value is more
comprehensible by the pilot/maintenance engineer than raw congrd sensor measurements or statistical
condition indicators) and support to decision/action selection (pilot can use RUL to take nnilsimal
decisions such amissionabort or replanning; similar case for maintenance; decisions and mitigations can
also be suggested by avionics software). Therefore, they map batel 1Aand Level 1Bin the EASA
classificatior{2]. In future products (in particular, for 2bAirborne applications) higher autonomy may be
introduced, so tlat the use of RUL estimation functionliavel 2 HumanAl collaboration applications, may

be expected.

It is currentlyprematureto detail the use of irflight RUL applications 2@~ A ®>-§ ®#Y Sa N® |} f LINBR
of aircraft components, in the civil aviation context. First, rapiflight component degradation is unlikely

due to periodic maintenance and inspections. Therefore, timely d&e of degradation and possible

failures isperformed by onground operations. Second, refihe RUL monitoring appears to be more
applicable in dynamic contexts with rapidly changing conditions (one may consider military applications or
unmanned aerial’ehicleswith short dynamic missions). Finally, required Design Assurance Level (DAL) of
avionic SW functiongthat predict RULn-flight would likely be one of the highest, i.e., DALBA which
currently has manyopen challengeslue to stricter assurancebgectives Therefore ForMuLAIPCconsiders
anon-ground application for RUL as a support for flight preparation.

2.1.3 Selected use case and associated ConOps

As discussed in Secti@ril.2 RUL estimation functiois aPHMmetric that shalbe usedor condition-based
maintenanceto support aircraft maintenance and flight preparaticRUL estimatiorcould contribute to
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augmented manual inspection of componeatsd scheduling of maintenance cyclB$JL could also highlight
areas for inspection during the next planned maintenance, i.e., it could be used to mdyeiaitize) a
maintenance/inspection action to prevent component failure. Additionally, theufaibrobability of the
component during the next flight mission could be estimated based on RUL.

RULestimationdiscussed in the ForMuLA IB(erformed for anechanical bearingomponentinstalled in
the drivetrain assembly of eotorcratft.

End users thaare intended to interact with theML-based RUL function include th¢RO (Maintenance,

Repair andverhau) team the CAMO(Continuing Airworthiness khagement Organizatigriean®, and the

pilots. MROcould use the RUL as a support for ongoing maintenance actions (e.g., collecting additional
AYF2NXEGAZ2Y 2y O02YLRYSy(dQa aiwhileSCAMGcBuld Gsa tXor I G SR
planning/scheduling future inspection activities. Th#ot could consult the estimated RUL of different
aircraft componensduring preflight checks to detect possible problems and expected failures, so that they
can be reported to omground services Pilotsshall interact with the RUL function via a cockpit disgléye

function canbe integrated imo an existing displayVRO/CAMO users shall uaground station display to
consult the RUL value.

The CBMapplication of RUL estimation proviigupport to information analysis, because RUL value is more
comprehendile bya human(pilott MRO/'CAMO than raw component sensor measurements or statistical
condition indicators. RUL can also provédeport to decision/action selectiofior example, during prélight
check the pilot may decide to abort the departure and to communicate a possible compprodsiéem to
MROCAMQ MRO may decide to prioritize some maintenance/inspection acti&AMO may decide to
adjust the maintenance schate of the aircraft.Therefore, theuse casenaps ontolLevel 1AandLevel 1Hn

the EASA classificatig@], because estimated RUL does not automatically drive the maintenance and
inspection tasks, but only supports theman user in taking a related decision

ML-based RUL estimator is a part of ttiehicle Health System (VHZ software system that monitors the
health state of the aircraft and its components/subsystems. It constitutes a RUL estimation function to be
implemented as an ML constituent (segure3). It accepts a set of statistical indicatoatsp called:ondition
indicatorsg Cls) describing the state of the monitored component, as wethasnformation about the
current flight phase, mission and environment, and outputs phredicted RUL value (timo-failure).
Therefore,ML model performs aegressiortask.PredictedRUL value corresponds to the remaining life of
the monitored mechanicdbearingand is providedto the pilot via a cockpit scree(see examplén Figure

3a), to the MRO/CAMO team member via a ground dispbny] to the failure prediction function that
computes the current probability of failure of the compondtite latter is out of scope of RElULA)

5 CAMO isa civil aviation organizationauthorized to schedule and control continuing airworthiness activities on aircraft and their
parts fittps://en.wikipedia.org/wiki/Continuing_airworthiness management_organizatignCAMO can also be the operatotiod
aircraft. The term CAMO is used in tliropean UnionCAMOsre audited by EASAIRO performs the scheduled maintenance
under the requirements of CAM@imilarly, in the U\ operators are required tdhave aContinued Airworthiness Maintenance
Program(CAMPYhat must be approved by FAA. MRO performs the scheduled maintenance under the requirements of the CAMP.
Hereafter, the term CAMO is used for the entity that plans and schedules maintenance activities (for the US thigicallidnean

the operaor of the aircraft).

6 Note that ground services and pilots may requo@bserve the degradation trend within different timeframes (a longer trend may
be required by MRD

7 In future products one maplso expect higher autonomy levels, for exampfer automated scheduling and optimization of
maintenance cycles, automated pfigght checks with singlgilot operatiors. Therefore, in the futureCBM application of RUL may
also fall undetevel 2¢ HumanAl ®llaboration. This is outf scope ofthe current use casand theForMuLAproject.
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Figure3. (a) VHiewon a cockpit displagexample) (b) ML subsystem and ML constituent

Remark:VHS monitors the health state of different aircraft components (e.g., engines, bearings, hydraulic
system, fans). These components may or may not have a dedicated RUL estimation function. If present, the
RUL estimation function may be implemented butith and without ML. There may be multiple ML
constituents implementing the RUL function, each of them dedicatedliféeaentaircraft component. Each

ML constituent is part of th&IL subsystem thatmay also includdéunctional elements implemented with
traditional software, e.g, signal processing from raw sensor data to compute inputs for the ML constituent.

2.2 Definition of theML-based system

2.2.1 System architecture

VHS isan ML-based systersince it includes a component/function based machinelearning namely the
RUL estimation functiart is assumed to be the only Miased function in the VHShe concept architecture

of the VHSs illustratedin Figure4. It includes multiple subsystert®mponents among which aML-based
subsystenis responsible for estimating thstate of the mechanical bearing component mentioned above. It
incorporatesan ML constituenthat is a deep learning based RUL estimétiother detailed in Sectiog.2.2

The constituent includes an Miased RUL estimation function (ML inference modeigd pre/post
processing elements implemented in traditional softwatealth and Usage Monitoring System (HUM&)
well as other avionicsystems, provide inputs to the ML constitueML subsystem additionally includes
traditional SW components that perform other, ndi-based functions, for example, estimation of failure
probability of a mechanical component given its predicted RUL (aaagde othe ForMuLAproject).

8 HUMS is @eneric term given to activities that utilize data collection and analysis techniques to help ensure availability, yeliabilit
and safety of vehiclefhttps://en.wikipedia.org/wiki/Health_and usage monitoring_systems
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Figure4. ML-based systemyiL-based subsystem and ML constituenthe ForMuLA use case.

2.2.2 Machine learningonstituent

Theuse casef ForMuLAfocuseson a single ML constituent that implements the RUL estimation function
for a mechanical bearingnstalled in a drivetrain assembbf a rotorcraft It is monitored by avibration
sensor which is a single axis piezoelectric accelerometer mounted on tk&dsuof the gearbox near the
bearing. Fom this sensor measurements,set of Condition Indicators (CIs) is computgdhe HUMS using
signal processing algorithnfthis computation is done outside of ML constituemtypical Cl i@an energy
value, e.g.Ballenergy for the bearing, that manifests some degradation pattern.

Additional inputs are provided by other avionics systeoasrent flight regime (e.gascent,cruise), current
mission,and current environment. The main factor that affedisaringdegradation and its RUL iew the
component is usedThis depends on the load of tHeearing which is differentacrossflight regimes,and,
consequently, on the flight missions that the aircrateeutes, becauseach mission is a sequence of flight
regimes; also duration of each regime varies across miss@ret of mission pattern@ypes)that may be
executed is knowmand specified in the operational design domain of the aircraft. RUL islefmndent on
the environment conditions.

Inputsto the ML constituent represera time window, i.e.an ordered sequence afnapshos of bearing
state (represented byCls and other quantities described abav@&hapshots can be rexted both between
andduring flight missionsThe datasrecorded with dixedtime step and stored in memory to be later used
in predictions.

Figure5 illustratesthe ML constituent that includes the ML modeleg€p learning see Sectior?2.2.6 for
description) and pre/post-processing componenimplementedin traditional software andused for feature
computation, (de) normalization, monitoringf ML constituent ODPand other reévant tasks. The output
of the RUL estimator is provided to human users (MRAMO,pilot) for CBM purposes, and to the
component failure probability estimation functioBata recording and generation/update of time windows
is performed outside of the MLoastituent and, therefore, it is not part of its preprocessfogctions

9 All inputs to the RUL function amdsoavailable during flightThis means thatin principle RUL estimation can also be performed
in-flight. Corresponding airbornagpplicationsare not part of the use case discussed in this report.
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Figure5. Overview of the Mlconstituentfor RUL estimation, and its operating environment
2.2.3 ML constituent perationaldesigndomain

2.2.3.1 Definition

Operational design domain of the Mtonstituentis defined atits boundary. Dimensions of theML
constituent ODD, as well as thaikpected limits and/or probability distributiongre summarized in the
following subsections.

The aircraft operates by flying a set of missions. The bearing component is expected to operate under
different loads that depend on the flight regime and, consequently, on the mission. Therefore, current
mission, being part of thaircraft-levelODD, is also part tfie MLconstituent ODDDuration of flight regimes

in different missions follow a Gaussian distribution (with different parameters across different regimes).
Condition indicatordor the bearing component, provided by HUMS, atsoexpected tofollow specified
probability distributions Theaircraft is expected to operate undatifferent environment conditions. All
these dimensionsframe the ODD of the ML constituenfheir descriptions, measurement units (if
applicable)data types and sources aseammarizedn Tablel. Numerical values for ODD dimensions (ranges,
categorical values, distribution parameters) are availabl&adble2.

ML constituent ODDdoesnot include abnormal loads, abnormal (unexpected) CI values, unknown flight
regimes and missions, unexpected environment. These should be veb§iabbustness veri€ation
methods In general,adverseinputs should be prevented from entering the ML model. For thamtime
monitoringtechnigues came employeddiscussed in Sectidh2.3.2.

Tablel. ML constituent ODBimensiongAvS= Avionic$Software G ~ m/3).

Input name ' Description Unit Data type Source
Ball energy Condition Indicator (CI) GHz | Numeric (float) HUMS
Cage energy Condition Indicator (CI) G/Hz | Numeric (float) HUMS
Inner race energy| Condition Indicator (Cl) GYHz | Numeric (float) HUMS
Outer race energy Condition Indicator (Cl) G/Hz | Numeric (float) HUMS
Shaft order 1 Condition Indicator (CI) G Numeric (float) HUMS
Shaft order 2 Condition Indicator (CI) G Numeric (float) HUMS
Shaft order 3 Condition Indicator (CI) G Numeric (float) HUMS
Torque Aircraft Parametric Data % Numeric (float) HUMS
Current regime Current flight regimefl(ight phase) n/a Categorical (string) AVS
Nominal load Nominal load of the component. Eaq n/a Numeric (float) AvVS
flight regime has a different nominal load
Current  mission Information about current mission of th( n/a Regimes: Categoricatfings) | AvS
profile vehick: sequence of flight regimeg Durations: Numericiiftegers)
duration in each regime.
Environment Condition, in which the mission is flown | n/a Categorical (string) AvVS
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Table2. ML constituent ODEanges

Limits

A2 Collins
Aerospace

' Comment

Dimension name |

Ball Energy Weibulldistribution _  p& @ mHQ 18 p w | _¢scale, O shape
Cage Energy Weibulldistribution (w8t ® nHQ 1@ T ¢ | Same as above
InnerRace Energy | Weibulldistribution (. x&® ® nbQ 1™ 1t w | Same as above
Outer Race Energy | Weibulldistribution (& ® m1HQ 1@ X | Same as above
Shaft Order 1 Weibulldistribution (1§ hQ 0® w Same as above

Shaft Order 2 Weibulldistribution (_  1& QiR c¢8tu @ Same as above
Shaft Order 3 Weibulldistribution (@0 xfQ c& ¢ @ Same as above
Torque Min: 0; Max: 160

Current regime

One of the following: Ground, Takeoff, Ascen

Forward Flight, Descent, Hovernida

Nominal load

One of the following values:

2.1 (Ground)

9.2 (Takeoff, Land)
8.2 (Ascent)

4 (Forward Flight)
7.6 (Descent)

7 (Hover)

= =4 =4 -4 -4 -4

Nominal load is the mean of th@aussian distribution
with the following parameter§NOTE:only positive

values are allowed)

T Ground: c¢®and, T

i Takeoff «® and, pd

1 Ascent! (& and, pd®

1 Hover: xand, p8t

1 Forward Flightt Ttand, p®
1 Descent: x#&and, pd

T Land® 8 and, T®

There is no easway of
measuring current (actual)
component load during
operation. Statistically, in each
flight regime, atualloadshall
be within , of the provided
probability distribution.

NOTEHiIgher loadsnayoccur

during a flight regime if thex is
an abnormal maneuver (e.qg.,
banked turn).

Current mission

Sequence of mission regimes one of the pre

defined patterns

Example of a mission patternGroundc¢ Takeoff¢

Ascentc Forward Flight (Short) Descent; Land

Flight egimeduration:

Within ,, of the Gaussian distribution with
1 Ground:* prand, U
1 Takeoff:* pand,
1 Ascent:* prmnd, U
1 Hover (Short)! vand, o
1 Hover(Long)! prmand, pTt
1 Forward Flight (Short): v Tand,, ¢ 1
1 ForwardFlight(Long): p @and, ¢ T
1 Descent* prmand, U
Land:* pand, T

Fulllist of mission patterns is ng
provided here for brevity.

Environment

condition

One of the following: desert, normal (natesert)

>

* *
* .
* *

* oy *
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2.2.3.2 ML constituent ODDmonitoring aspects

Correct function of the RUL estimatdML constituent)shall be guaranteed inside its operational design
domain.During operation, unexpectedflverseinputs may occurfor example, due to abnormal maneuvers

of the aircrdt, unexpected environmentipenomena2 KA f S a[ Y 2 RS subhiinpuisSKall @A 2 NJ
evaluated via robustness verification methods gpropriate risk mitigatiorfor preventingadverseinputs

and possible unintended behaviof the modelis the use of runtimenonitoring in the M. constituent, in
particular, theML constituent ODDnonitoring.

In case of the RUL estimategme checks on the quality of certain model inputs, such as condition indicators,
shall be performed outside of ML constituent by the HUMENg data quality indcators As further
elaborated in Sectiob.4.3.1 suchchecks can detect, for example, fluctuations in the CI values over multiple
time steps in the time windowflag the incoming data correspondingly, and block it from entering the ML
constituent (in this case no RUL prediction will be provided).

Other checkdgor out-of-ODD inputs can be implemented m®nitorsinside the ML constituertb perform,

for example, ange checks for inputs, which have min/max values prescribed bitheonstituent ODD

(e.g., Torque)correctness of onéot encoded categorical inputs (e.$,EIF Ot & 2y S OF G532 NE
at every time step)and outof-distribution checks. Furthediscussiorand investigation bODDmonitoring,

in particular, é out-of-distribution detection, is out of scope of the ForMuLA report.

2.2.4 Requirements

Provided lists of requirements are not complete and have exemplary purpose for the discussion| and
demonstration of formal methodscarried out in the ForMuLA IPC.

Thissection provides information about the functional requirements both at the level of thedRtithator
function and athe system level. It also describes the main categorigmaffunctionalrequirements for the
ML constituent.

2.2.4.1 Functionalrequirements

Table3 providesseveralfunctional requirements for the aircraft/vehicle (Yldnd its maintenance that are
related to the RUL function of the Vehicle Health System (VHS). A selected list of-lgys&tlefunctional
requirementsfor the VHSNIL system) is shown iffable4. These requirements can be refined into more
detailed requirements for the RUL Mbnstituent, provided inTable5.

Table3. Selected aircraft (vehickigvel requirements related to RUL.

ID ' Requirement

VH1 The vehicle shall operate in two different environmentesert and non-desert fiormal), which
differently affect the degradation of the mechanical bearing component.

VH2 The vehicle shall execute a set predefined flight mission types Eachmission type (pattern) is al

ordered sequence of flight regimes
PHM1 The vehicle shall provide means for estimation of RUL of the bearing component on ground, i.e.,
flight preparation.

Table4. SelectedVL systemlevel requirements (VHS).

ID ' Requirement
VHS1 The VHS shall provide a function for estimation of RUL of the bearing component
VHS2 The VHS RUL function shall accept as inputs statistical condition indicators for the bearing com

current flight regime, nominal load in theurrent flight regime, current environment conditigrand
current mission.
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VHS3 The VHS RUL function shall compute the &idlertic and nordesertic environments.

VHS4 The VHS shall accept a sequence of input snapshots within a time wifitlevlast snapshot in the tim
window shall correspond to most recent timestamp.

VHS5 The VIS shall store snapshots for current and preceding time steps in memory and update it at
time step.

VHS6 The VHS RUL function shall operatgde its operational design domain

VHS7 The VHS RUL function shall have a maximum admissible er80%§ (RUL ovastimation) and-10%
(RULundeSaGAYF A2y 0 Ay GKS ay2NX¥IFfé NIFy3ISI Ad
low/critical.

VHS8 The VHS RUL function shall have a maximum admissible error of +5% (REktimation) and-15%
(RULuderSaidAYFGA2Y 0 AY GKS GONRGAOIFT ¢ NI y3aST A
¢ greater prediction accuracy is required for degraded component to avoid incorrect decisiof
component inspection and maintenance.

VHS9 The averagabsolute error of the RUL function shalltrexceed 15 hours.

Table5. Selected functional requirements for the RUL ML constituent.

ID Requirement

RUEML-1 The ML constituent shall return a numerical vatweresponding to the predicted remaining usei
life of the bearing component in hours.
RULEML-2 The ML constituent inputs, encoded as numerical features, shall include statistical cor

indicators for the bearing component, current flight regime, rioat load in thecurrent flight
regime, current environment conditigand current mission.

RULEML-3 The ML constituent shall have a categorical feature related to current environnitentdlomain
shall includegwo values desert andnon-desert.

RULML-4 The ML constituent shall accept multivariate time series data as input.

RULML-5 The time series data shall be organized as$wa-dimensionalarray, where rows represen
consecutive time steps and columrepresentinput features.

RULEML-6 The time step for the time series data shall be equaQaninutes.

RULEML-7 The number ofime stepsin the time series data array shall be equatith

RULEML-8 The ML constituent shall update the input and perform inference with the new input &@r
minutes.

RULEML-9 The ML constituent shall ensure correct function within the input ranges spediffethe ML

constituent ODD

RULML-10 TheoverSAGAYF GA2Y SNNRN 2F GKS a[ O2yadAiddzsSy,
RULML-11 TheundersSAa GA Yl GA2Y SNNBNJ 2F (GKS a[ O2yaiAadiddzsS
RULML-12 TheoverSAGAYF GA2Y SNNRN 2F GKS a[ O2yadAiddzsSy]
RULML-13 TheundersSA GA Yl GA2Y SNNBNJ 2F (GKS a[ O2yaiAaiddzsS
RUEML-14 ¢CKS GONRGAOIf & NI y3SwmuK K2 dzNE2 NN ad 2W1 B2 Viiy
shall correspond tall hours before the last 100 hours.

RULML-15 The ML constituent average RMSE on the test dataset shall not exceed 15 hours.

The mainperformancerequirement for the RUL estimator ibe accuracyof the estimation (percentage of
admissible error) that can be measured by comparing the estimation accuracy at each input point in the test
dataset to the ground truth. Metrics, such as RMSE, can also be applied to quantify tHd&)reespective
requirements include the bound on ovestimations and undeestimations of the RUL, in particular, in the

a ONX ( A.RUILE estimatigh@écuracy also has safety considerations, as elaborated in S€cfion

2.2.4.2 Nonfunctional requirements

In Table6, a selected list ohon-functional requirementsfor the RUL estimatois provided. Thginclude
stability and monotonicityof the estimator(formal definitionsof these propertiecan be found in Section
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3.4), as well as the impact of the operating environment on RidLprediction. These requirements can b
formalized agroperties and verified usingprmal methods, as demonstrated in Sectidr.

Table6. Selectechonfunctionalrequirements for the RUML constituent.

ID Requirement
RULML-Stab1 | The maximumadmissible perturbation that can occur to a condition indicator inghallbe equal
to 40%o0f the averagenitial value of thatClthat corresponds to a fully healthy state of the beari
component.This value is estimated from available degradation data folb#mering
RULML-Sab-2 | For aperturbation of a single condition indicatoat a single time step withirmany input time
window in the ML constituent ODthe output deviation of the RUL estimator shall not excééd
hours. Themaxperturbation value for which the requirement must hold corresponds to-RIUL
Stab1. Requirement applies to each condition indicator.
RULML-Stab3 | For a simultaneous perturbatioof all condition indicatorsat a single time step (e.g., due to
resonane frequency)within any time windowin the ML constituent OD[Xhe output deviation
of the RUL estimator shall not exceg@ hours The maximum perturbation value for which tf
requirement must hold corresponds to RML-Stab1.
RULEML-Mon-1 | For an increased growth rate o& singlecondition indicator(may occur, for example, when
particularfailure/damage occurs in the bearing, which increases its degradatiitinin any input
time windowin the ML constituent OD[Xhe estimator shall output non-increasing value of thg¢
RULRequirement applies to each condition indicator.
RULML-Mon-2 | For a1 increas&l growth rate of all condition indicators(may occur, for example, due t
simultaneous development of a numberfailuresor due to excessive lodaithin any input time
window in the ML constituent OD[the estimator shall output a noincreasing value of the RU
RUEML-Env1 RUL estimator shalpredict a smaller RUL fax desert environment than for a nedesert
environment, all other inputs being equal.
(A desertoperating environment has higher impact on the bearing degradation than alaeart
environmenj

2.2.5 Datadescription

e

Presented use case does not represent amgncrete product of Collins Aerospace. ForMuLA project o
used synthetic data from simulations, both for training and testing, because real data from the field
not immediately available during IPC execution for the selected application and mechan@malponent.
The main goal of ForMuLA is taealysis of applicability of F&& means of compliance for the assurance
certification objectives for ML constituengmd practical demonstration on a use case, not the verificatio
certification of a final product. Therefore, synthetic data was sufficient for the project. However, in g¢

nly
was

and
n or
sneral

the importance of using real data, in particular for testing, is highly acknowledged.

The data for the RUL use case is in a forrmoltivariate time serie¥ that describe the degradation of
bearings installed in the same type of assembly (drivetrdda}a is related to a specific type of aircraft
(rotorcraft) and specific type afensor which is a single axis piezoelectric accelerometer mounted on the

outside of the gearbox near the bearinthetime seriesstart at a healthy state and end at a failure state
the bearing. Additional sequences may be provided that either do not statl®t0% healthy state or en
earlier than the component fails.

Currently available data comes frogimulations Collins Aerospace possessplysicsbased bearing
degradation models that can be configured to run the data collection process under a setwhtion

of
d

scenarios Following model parameters can be varied: component and crmm®iponent degradation
coefficients, environment factor (imitates déffent operational environments; affects the degradation rate),

10 In the remainder ofthis report, they are referred to aslegradation sequencethat capture runto-failure conditions of the
component
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which allows to collect data for different types of bearings installed in different mechanical assemblies, as
well as model the uncertainties (e.g., manufacturing, installation) within the corapt. These simulation
parameters have associated probability distributiodsiditional parameters can be introduced in the
simulation model to consider other important types of uncertaintifes example, aberrations and/or aging

of sensors that monitor the component.

Each simulation is traced tosamulation scenarioThe latter consists of a sequence of flight missions, while
every mission, in turn, includes a sequence of flight phases. Each flight phase has a duratioadibgaib
Gaussian distributiorfsee Table 2). To generate a new executable scenario, a sequence of missions is
randomlysampledfrom a set of predefined mission patterrseg example of a mission patteimTable2).

The scenario is then simulated to obtain a new-tafailure sequence. Altogether, these sequences form
the dataset that undergoes data preparation activities (e.g., nhormalization, labeling, feature engineering) and
is split into taining, validation and test sets

Summary of bearing datasets to be used in the RUL use caseRurideLAPC is provided ihable7. There

is a number oflegradation sequenceg&ach such sequence hsamplescorresponding to subsequent time
steps. Each sample is a snapshot of inputs (e.g., condition indicators) at a given tinSastgfes are labeled
with RUL valugat current time step. The average number of samples in the sequences is also provided.

Table7. Summary of the available bearing degradation data.

Item Value

Number ofdegradation sequences 100 (more can be generated)

Number of features 21 (some are categorical)

Number of categorical features 3

Averagesequence length (steps) 631

Time step duration 1 (flight) hour

Missing or wrong data entries None

Data preparation toolchain Available Includes feature engineering, labeling, normalization, s
into training/validation/test datasets.

Metadata Available Includes simulation scenario (for traceability), simulat
model version and timestamp, random seed, environment conditio

2.2.6 ML modeldescription

The MLmodelis trainedoffline using availabléme series datand asupervised learningnethod.

To achieve an accurate RUL prediction at current time step, the snapshot of inputs (e.g., Cls, flight phase,
current component load) taken at this single step is often not sufficient. Insgsagdiscussed in Secti@ril. ],

RUL estimation functions typically accept a sequence of inputs, also céiteed window[16]. The last row

in this window is the current time step, i.e., the step at which the RUL is being estimated, while all preceding
NREgad NB aKAAG2NRAOIf ¢ 0O LINBiOBdohay2D)inputistructbre, with Sé st ¢ K A
dimension beinghe number of time steps in the window, and the second dimension being the number of
features. Based on the available bearing degradation datanber of condition indicators and other
features)and considering that categorical featuragedto be onehot encoded, the total number of input
features at each time step . Similarly 40 hoursis thereasonablesize of theime windowvalidatedwith

Collins Aerospace SMe&ach step is 1h, therefore, the number of time steps is 40 as medledto get an
accurate RUL predictioAltogether, the number of inputs to the ML modek., thecumulativenumber of

entries in the time windowor all time stepsis on the order of 1000.

Given thecomplexity of the input spaceadeep learningsolutionhas been selected for the RE&timator,
namely,a convolutional neural network (CNNJThe choice of CNN is justifiaith the fact that this type of
neural network is capaél of automatically extracting features from a large number of raw inputs, thus
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reducing or completely removing the need of manual feature engineefiihgs is particularly relevant to
images where raw data is represented by pixeladcraftinginterpretablefeaturesfrom pixel data is often
impractical. Twedimensionalinput to the RULestimator is similar to the image input representation.
Moreover, despite the fact that certain inputs, such as Cls, are precomputed outsidecofsituent bagd

2y &aSyaz2NJ RFEGF 0AdSdI K Shigherlevd FedtudeNFoa RUL NBy ingl@dé  LJdz

degradation trendsDomain experience may not be sufficient to define such trends and consider them in
predictions.Such trends could be automatica#ixtracted by a CNN.

Neural network architecture of the RUstimatoris adapted from{17] and is summarized imable 8. As
discussed above, it accepts as input a sequence of time.séepamber of convolutional layers is used to
apply onedimensional convolutions along the time sequence directibiis extrating trends in separate
features Thesedrends are th& merged together via a fully connected layer. Activation functions at all layers
are Rectified Linear Units (ReLU3)opout is used to mitigate overfitting.he CNN performs r@egression
task and outputs a numerical value, which is the predicted RUL value.

Table8. Summary of th€NN architecture for the Ri@ktimator.

ltem ' Value

Input size two-dimensiona] 40x40window
Output size 1

Model type convolutional neural network
Model task regression

Number of convolutional layers 4

Type of conelutions one-dimensionakonvolutions
Types of layers convolutional, fully connected
Type of activations RelLU

Total number of layers 12

Totalnumber of learnable parameters 94500

Dropout probability 0.1

2.2.7 Safetyconsiderations

Provided lists of failure conditions are not complete arade providedfor exemplary purposeo support
the discussion and formal methods demonstration carried adbe ForMuLAIPC.

Rationales in EASAPN 202203 guidance on (dVHM (vibration health monitoring)system safety
requirements[19] have been considered to derive the proposed classification. For an actual certification
project associated assumptions would be listed in fimectional hazard analysend validated during the
project.

Remainingusefullife estimation function can beubject to various functional failurdbat may affect the
safety, therefore, the use case is safety relevant. This is illustiat€dble9, where a set of representative
failures of the RUL function, corresponding failure effects and the classification based on severity of the
failure conditions effect$MAJ = Major; MIN = MinoHas been captured
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ID | Failure description | Failure effect Class | Rationale

FC1| Undetected loss of MRO or Pilot mistakenly | MAJ Loss of RUL function may leadadtoth
RUL function considers the componen under-estimation and oveestimation
combined with a w![ aadzFFAOo of the RUL. In the latter caghere is a
critical degradation of | execute the flight missior possible safety impact, i.dack or
the bearing or an without an inspection or delay in critical decision making
actual failure. maintenance action (in pilot/MRO does not know that the

reality the component
may develop a failure).

FC2| Norrmonotonic Same as above MAJ
variation of RUL

FC3| Frozen value of RUL | Same asibove MAJ

F@ | Undetected loss of Same as above MAJ
runtime monitoring of
ML constituent ODD

FG& | Use of outdated Same as above MAJ
(untimely) inputs

© 2023 Collins Aerospace

componentmayfail soon and starts
the flight missiorg large reduction in
safety margins.

Qritical inspection of the component
may be mistakenly skippd@specially
if the variation is near the decision
threshold)

Qritical inspection of the component
may be mistakenly skippg@specially
if the variation is near the decision
threshold)

Out-of-ODD input value may not be
detected due to runtime monitor
failure. Correctness of ML model
outputsfor out-of-ODD inputs may not
be guaranteed, therefore, an
undetected incorrect RUL prediction
may appear (e.g., an overestimation),
which may led to skipping a critical
inspection of a component thaead to
an unexpected failure.

Out-of-date inputs may reflect some
previous component state with less
degradationcomparedto the actual
state. Consequently, the system may
predict the RUL that is higher than ree
one, which may lead to skipping a
critical inspection of the component.
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3 Formalmethods technologies fomachinelearning

This chapteprovides necessary background on formal methods, including main definitions adévgbh
application categoriedt then discusseproperty specifications and formal methods technologies that have
been adapted to or specifically developed for machiamiag.In additionthe chapteroffers a discussiorfo
other categories of methods, such as statistical methods, that can complemerantigsisfor some
assurance objectives where formal methods are not applicable or face scalability limitations.

3.1 Whatare formalmethods?

FormalMethods (FM) are typically defined asathematical techniques used developsoftware systems
and verifytheir correctness.In commercialaviation, the use of famal methods in the development of
software-based aerospace systefisallowed through theeD216/D0O-333[1] supplement of theeD12CDO
178C[5] standard.ForMuLA report referso the following definition oformalmethodstaken from D@EB33:

Formal methods are mathematically based techniques for the specification, development, and verification of
software aspects of digital systems. The mathematical basis of formal methods consists of formal logic,
discrete mathematics, and computeradable dnguages. The use of formal methods is motivated by| the

expectation that, as in other engineering disciplines, performing appropriate mathematical analyses can
contribute to establishing the correctness and robustness of a design. For example, formalsiaticause
of their mathematical basis, are capable of:

wUnambiguously describing requirements of software systems.

wEnabling precise communication between engineers.

wProviding verification evidence such as consistency and accuracy of a formafigdpepiesentation of
software.

wProviding verification evidence of the compliance of one formally specified representation with another.

Paossible pplications offormal methodsspan across the entire development lifecycleacfoftware system
including(1) formal specificatiomf the system and its requirements usidifferent mathematical formalisms
(e.g., firstorder logic, finite state machine#)at areusedby effective reasoning tools; (8upport forsystem
development activitigssuch as design exploration and architecture/program synthesid (3)formal
verificationthat aims toprovide formal proofs oforrectness of intendedlgorithms, programs, and ggsns.
Verification is the largest arghat includes a number of tradition&M application¥. For examplemodel
checkingprovides a sound, complete, and automatic verification metfardinite-state models of software

and hardwareagainstspecifications by exhaustive explorattérProof assistarstare able to produce reliable
proofs of mathematical theorems, often in an interactive fashidtatic program analysigechniques
performa direct and automated analysis of programs without executing them (for example, this is often used
in compilers)ForMuLAreport focuseson the use oformalmethods formachinelearning thus leaving out

of scope the detailed discussion of aforementioned traditional approaches. We refer an interested reader to
FM survey works, such g20].

Remark Formalmethods are traditionallyassociated with rigorouand exhaustive analysesio explorea
broader scope of techniques BBsurance and verification of MEgrMuLAalso considegstatistical methods
The use of statistical methods iigrinsic to the design assurance process for BH possible means of
compliance for such objectives as data quality and ML model generaliz&tiey can also be appli¢d
property verification of ML models, for example, to mitigate scalability issues of exhaastieses of
traditional FM while increasing théhoroughnesof the analysis.

11 Of coursepoth development and verification applications of Ek&informed bya formal specification.
12 Extensions exist to addre#i®e tractability of the analysisf¢r example bounded model checking, symbolic mode checking)
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3.2 Formalmethods maindefinitions

This section provides a set kdy definitions related toformal methods.Some definitions (e.g., soundness,
completeness) are provided in the contextmbperty verification,. However, they similarly apply to other
applications of FM.

Property. A property is a mathematical statememe.,a declarative sentence which is either true or false. A
formal methodcan be used to determine whether a given propertyatid or invalid

For example gt "(be afunction®© @& wandwbeing, respectivelythe input space (domain) arttle output
space (codomain) 6RAlso, let both input and output d€be two-dimensional, i.eON a1 and®N a . For
a given subset of inpygoints® O &, the following propertyd can beformulated-;

0d N dh Qo N © ohd Va s o oP
whered® O Gis a region of the output spacd An equivalent formulatiors given below
0dQd P @ og,
where"Q® is theimageof eby "Qi.e.,the set of all elements of the output spacge' s that correspond

to the output of Qwhen applied to inpupointsin cadormally, it isdefined asQw "Qw SwN e Image
"Q is often referred to ashe set of outputs reachable from the inpudsgeor output reachable set

A property isvalid (resp.invalid) if it evaluates toTruefor each inputwin dedresp. Falsdor at least one
input win e An illustration of a valid property is shownin Figure6. Here, theoutput reachable s€Qd

is fully contained in theegion palf-spacg @ whd ¥ a s& « hherefore, theproperty is valid
w.r.t. the input subsetty O &. Instead, an invalid property is illustratedin Figure7. Here, part of the
output set" Q@ isout of the requiredregion i.e.,certain inputsfrom & O &lead to outputs that violate
the condition®d &, thus invalidating) .

A property issatisfiable(SAT) if there existd &ast oneinput that makes it evaluate to Trudhe propertyis
unsatisfiablg UNSATIN the opposite case.

Y2 ! / Y2 ! 7/
Y, Y
/s Yi=)Y2 /S V1i=)V2
v
/7 7/
/7
/s
d
d
/7 4
// //
! I ! !
/. fX) ey / fX) €Y
7 Y1 7 Y1
e 7/
PLET Py EL
Figure6. An example of &alid property. Figure7. An example of minvalidproperty8
BegKAAE SEFYLIES 2F LINBLISNIE& Aa | dzy A @S Nallnfemberd & & 9¢d, whicH igespressad G SY S

through a universal quantifier. Such properties are most common, and the remainder of this report focuses on such universal
statements (i.e.q FTAINY Lldziathet thana 6 KSNB SEA&aGa &aRYS Ay lLizi &dzOK GKI GX¢

14 Comnonly used gnonyms:true (false)property, the propertyholds(does not hold)Mathematically,valid property is written as

0 (U ("P entails Tru8 and invalid property is written a8 @ U ("P entailsFalsg).
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Counterexample Consider a propertyd, which is a universal statemerAcounterexampléCEX) ta is an
instancewin ¢afor which the negation 0 is true. If there exists a counterexampleto then isinvalid
Inversely, if there exists no counterexampleitptheno isvalid

An illustration of a counterexample to an invalid propedtyis gvenin Figure8. 0 is as in the previous
example,i.ep) QO P ® who VA sw ® 8Acounterexample is an elemeatt & such that
U is true,i.e.,such thatQw © Qee

Y2 4 /
Y /
/S Y1 =2
/
/

; CEX:IX € Xy, f(®) ¢ V'
/ J—!
/
S f(x) ¢y
7 Y1
4 P,EL

Figure8. A counterexample torainvalid property.

Falsification The falsification approads a common way of property verification usitogmal methods that

aims at finding a counterexample for the property. To dptke negation of the property (0) is considered.

If a formal method can identify at least one input from the input (sub)space specifiedtfat makes this

negation evaluate to True, iy consequently, disproves. This is because the universal statemendin

becomes false, i.e., the property does not hold for all required inputs. Instead, if the verification problem for
0 has no solutions then is declared valid.

To reason abouthe validity of properties, FM may rely ampproximations For examplerather than
reasoning oran exact property formulatiorddQd P &, the method may consider an approximation
0dQd P &,where’Qd approximates the seQd . Approximations in FM have practical value as they
can be less computationally expensive to verifjan the original property. Howevergonsiderations on
method soundness exist, discussed below.

SoundnessA verificationmethodis soundif for any propety U it returns thatd isvalidONLY IB isvalid In
other words, a sound metid neverhas amissed violationi.e.,an invalidproperty is never declared valid

Remark:Missed violations are often referred tofasse negative® LYy GKAa OFasSs ayS3ar da
falsification problemi.e.,ds there some point that violates the prop&@éyA negative answ& A o &hdr& G b 2 3
arenopointstha@A 2 f I 1S (1 KS thiNEheISopdrts dsalf isWaidThér@fore, false negative

means that the property has been mistakenly declared vihlid,is, a property violation has been missed.

If asoundmethod relies on an approximatiahof 0, then this must bea conservative approximation

0dn this case, if the method can prove thaholds and returndrue, then necessarilfp isvalid. For instance,

a conservative approximation 6fQ¢ P & could be a propertpdQd P & where™Qd is a superset

of "Q& i.e., such that'Qd p "Qa . Figure9 illustrates an output set'Qd® of the function™Qand its
conservative approximatiofQé for avalid propertyd . It can be seen that the approximation subsumes

(KS aNBFté 2dziLidzi 4802 6KA OK if thekappgodimatioi Eneet® the/GutBuNIs | (i A
constrainte @, it can be cacluded thatd is valid.Figure10illustrates that whera property is invalid

(0 on the figure), the conservative approximatid®® p "Q& captures the invalidity as well.
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Figure9. An example of a conservative approximation fc Figure10. An example of a conservative approximation for

avalid property. invalid property8

CompletenessA verificationmethod is completeif for any propertyd it returns that0 is validIF0 is valid.
In other words, if a solution to the falsification problem exists, it will always be found by a complete ritethod
afalse alarm®is never raised,e., a valid propertys neverdeclared invalid

Anexample of a false alarmpsovidedin Figurell. It illustratesavalidpropertyd dQc¢ O &eeall possible
outputs"Qd  of the function"Cbelong to the correct halépace who M a s @ . The figure
also shows the output of a sound method thisals witha conservativapproximation o) ,"Qé& , where
QM p QO has a red rectangular are@he ottom right part of thisconservativeover-approximation
Q& lies outside ofeeTherefore,such methodmaydeclared invalid as it intersects with an undesired
region, while in fact the property is valid. The method may also retucaumterexamplei.e., some input
from theregion" Q& * dethat isaspurioug(misleadingounterexampldor verification i.e.,afalse alarm.

f(X3)
Y2 / 3Y' /

/7
s YVi=Y2
7/

N

4

,\/’__{f (X3) ¢ V'

Vil \ fXx3)cY
e
//
/. fX3) ey’
e Y1

P3ET

Figurell. An example of a falsslarm (false positivefpr avalid propertyd

4

Soundness is mandatoryrequirementfor a formal method Some FM areound and completei.e., they
can correctly prove or disprova@ny property that can be expressed in the formalism used by the method.
Such methods do not rely on approximations and mexmaximum precision of the analysis. Other typé

15Note that no assumption is made time methodscalability i.e.,even if the solution is guaranteed to be eventually found, this may
not be donein reasonable timeScalability is a typical problem for FM, especially for complete methods

B0ftenreferredi2 & | aFlFftasS LIRaridArogsSéeo
Page330f 110
o, © 2023 Collins Aerospace
{ * European Union Aviation Safety Agency. All rights reserved. 1ISO9001 Certified.
il Proprietary document. Copies are not controlled. Confirm revision status through thelE#&8#et/Intranet.

An agency of the
European Union



. E A SA Collins Aerospace EASA %\x/é Collins
- Aerospace

European Union Aviation Safety Agency ForMuLA IP€xtract

FMareinsteadsound but incompleteSuch methods typically use conservative approximatiorpresene
soundnes, whilethey trade offcompleteness to reducthe computationalburden Asdiscussed abovehey
may not be able to prove property violation§o avoidreturning false alarmsthey typically return an
dunknowré |y @herihey determinethat the property is invalidThis is becausthe invalidity is with
respect to an pproximation which means thathe propertymayin factbe valid if the exact analysigthout
approximationis performed.

3.3 Highlevel application categories édrmal methods

Possible useof formal methods span across specification, development, and verification. \Whilg/sisis
considered the main FM activity (various formal analyses for systems and software exist, including ML), they
can also performsynthesisfunctions, i.e., generate artifacthat can be used during development and
verification.Generally FM applicatios belongto one of the three following areas:

Property Inferenceln the absence of, or in addition to, known properties to Verified, it maybe possible

to automatically infer characteristics amodel behavioyeither related tgpartsof the model or to the model

as a whole. In other words, this is a synthesis activitytHferproperties.For example, His isthe case for
neural networks, where techniques have been developed to extract layer properties or relationships
betweenNNinput and output.

Property Verification.Formal analyses can be employed to provide evidahat a property of interest is

valid on a given model. The applicability of this approach is constrained: it depends on the extent to which
the property is formalizable and verifiable from a theoretical and practical perspeGivéhe otherhand,

the formal model has to be eonservativaepresentation of the original artifact to guarantee thitthe
property holds for the modethen it holds for the artifact as well.

Automated Test GenerationManual testing is an expensive cdatime-consuming activity. Many different
methods have been proposed in the literature to automate the generation (synthesis) of test cases, according
to the availability of a model for the artifact under test and to tbleosentesting criteria: random and
adaptive random testing, seardiased testing, combinatorial testing, scenabiased testing, structural
coveragebased testing, and others.

3.4 Propertyspecifications fomachine learning

Formalmethods can be used to verify propertie§ machine learningnodels.As per the stateof-the-art,
existing FM technologies and topla particular those for neural networkenly addressa specific type of
property formalization thassociatea desired or a forbidden output region (or class) to a given input region
Such formalizations are referred to amput-output relationshipor input-output properties’. This section
provides an overview of key propertiésat are relevant to machine leaing. For a more detailed overview
the reader can considgR1] or [22].

The scope of ML properties can be either local or globaical propertyis definedfor a given input point
N Oor asubset ofpoints® O & of the input space). That is, local properties must hold fsomespecific
inputs. Aglobal propertyis defined over the entire input spaceof the ML model. Global properties must
hold forall inputs.

17Sometimes, alsthe termreachability propertys usedThe rationale is thaormal analysis computepossibly with approximation
all possible ML model outputs that areachablefrom (can be the result dfIL model computation fgra given set of inputs.
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3.4.1.1 Generic inputoutput relationship

Properties of ML models are typically expressed over their inputs and outputs, without involving internal
model structuré®. This is because application exjsecan use domain knowledge to require certain output
behavior of the ML model based on certain inputs, while the internal organization of the model is often a
black box to them (e.g., model architecture or learnable parameters, such as weights and. Biagaric

form of these properties is expressed asifathenrelationship:

ODawt 0 wh o®
where 0 & is a precondition on the inpub (premise), andd & is a postcondition over the outpub
(consequent. Both precondition and postcondition can be expressed differently depemditige type ofw
andw For example, for a numeric input a precondition may impose a range (or adimthsional subspace
if multiple inputs are considered), while for a cgteical value a set of admissible values (e.g., classes) may

be specified. Arithmetic and logical relationships betwethie inputs can also be imposed by the
precondition. The same applies tiwe outputs andthe postcondition

Let"Cbe an ML modehat approximates soméunction™@jo © . For the example below, I€b who ™
a and® whd N a . Aninputoutput propertycan be exemplified as follows

W MW 00 Wt W
This property requires thérst output w of the ML model to be strictly less than its second oufgytgiven
that the inputw is in the interval o and is greater than or equal to .

7

Al (i Ba8E (Iowest) level all ML model properties discussed below are expresseihmsg-output
relationships. They specify desired output behavior based on a set of constraints over the ML model input.

3.4.1.2 Stability

Following the definition of ML model stabifttythis type of properties limits the admissible deviation of the

ML model outmt, given a bounded perturbatiorof its inputs. Stability properties are defined for
perturbations innormal operating conditionghat is, perturbations over the inputs inside thi constituent

ODD Input perturbation is bounded by a value often referrtéml as| (delta). Similarly, the maximum
admissible deviatiof the output, sichl K § 0 KS 2 dzi LJdzi Ol y 0B5NJadAINNIOR
often denoted as (epsilon)¢ KA &4 NBadzZ 6a APLARE 272 F2 sl NyAperd@eR G R T

A OE T+ Qo Q -h o8
where N @ is the original inpubelonging to thenput spacew of the ML modelds? & is the perturbed

input,"Qc and'Qc are ML model outputs for, respectivetpandas? and- are as discussed abofer
A , and&Zis a norm that measures the distance between original and perturbed inputs and outputs. The

18 In general it is possible to define properties that also involve internal structure of ML models (e.g., hidden layers of a neural
network) if they have meaningful semantics and can be traced to somensirabdel requirements. In particulagxplainable Al
methods could help to understand the behavior of internal elements of models and to make use of these elements for improved
traceability and richer specificationSormalmethods can also be used to imferoperties from datasets and ML models, as discussed

in Sections3.5.1.1and4.3.1-4.3.4

19 Note the distinctiorbetweenstability and robustnes®of the ML model, where the former kahe scope of only normal operating
conditions, while the lattesubsumes it and considers both normal adlerseconditions (that is, stability, as well as edge cases,
adversarial cases, etcQurrentacademic literatureon the verification ofheural retworksdoes not make any distinction between
thetwotermsand® yf @ dzaSa aNRodzaliySaaé (2 RSEAONAROGS (KS LINRPLISNIASa®
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right-handside ofEquation (3.4) suggesta regression output. Instead,"®Jreturns a class, then a stability
property shall impose that the class does not change in the presence of an input pertuffiation

A E 1t Qo Qw8 od

If input/output perturbations, i.ej, and-, are relatived I f dzS dan iopBtp&tdrBatiod of 1%60 G KSy (K
following formwould applyfor a given input pointu

foNodm e 1AaE Qo Qo - Qw38 o

One can observe that @formulations abovecontain an implicationt (). Therefore, as discussed abovtkey
establish relationshipbetween ML model inputs and outputs.

Local stability.A property that captures the stability of the ML model around a given inpaint is a local
stability property a perturbation ofa concreteinput shall result in a slight ororchange in the output of the
model (e.g., bounded error in the case of regression or no change in prediction class in the case of
classification)Local stability properties are accepted by the majority of FM tools for ML{@ods,for neural
networksverification

Global stability.A more general formulation is global stabilgyoperty, that states that foranyinput point
FNRY (KS a[ Y2IRS O prapgryditrinulatedias@Eguation(3.4) must be validGlobal
stability can alsde expressed asbound on theratio betweenthe change in the output anthe change in
the input. This is a notioof Lipschitz continuity23] discussed irbection3.4.1.4

Perturbation measurementinput perturbations (and, respectively, deviations in the ML model outputs) can
be quantified in different ways using different types of norms. For example( theorm (also known as
Manhattan distance) and thé norm (Eucliéan distance) are different ways of measuring the distance
between the two inputs or outputs. Thefinity norm (0 ) that records the greatest perturbation magnitude
among all input elementis also widely used for measuring perturbations. The norms are defined as below:

0 dse es | A® s o A
0d e es W O o%A
0dw es W DS o%A

3.4.1.3 Robustness

As discussed above, in general ML model robustmaggures both the stability in normal operating
conditions, with respective property defined esSection3.4.1.2 as well as the capability of the ML model
to not exhibit unintended behavior in the presenceamfverseinputs, such as the ones outside of the ML
constituent ODD, as well as edge/corneregsadversarial cases, and aftdistribution cases. There is no
specific formalization of a robustness property that is different ftbmone defined abovéEquation3.4),
therefore, in this section we focus on certain variations of this formufetiiat can be used for identification
of adversarial examples, which can be consider@derseinputs.

20 Typically, rawoutputs of a classification model are probabilit@sscoresof different chsses Therefore, for classification models,

stability properties can also be formalized similarly to (3.4) imposing that the score ofcdassehalldeviate by no more than .

211t is a matter of input region where the property is defined; if the regioouiside of ODD or near the ODD boundary, then the

aLYS aGlroAtAGe LINBLISNI& YIFeé& 0S5 NBTSNNSRsoiisde dfthe ndriNarandss (0 y Saa  LIN.
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Some FM technologies, such as the ones based on optimization (e.g., MILP) can be employed to search for
AyLlzia GKFG FNB aOKI 6rexanyplisycH iaput¥ apbelokafed cope tovaieciSiond C
boundary of the model, such that a small perturbation would change the output class, or near an unknown
discontinuity of the function, such that the function output may deviate significantly iméighborhood of

an input. These challenging inputs may be used both as tests and as dataset augmentations to improve ML
model robustness and mitigate the risks of adversarial attacks. Several formulations of the optimization
problem can be used. The firshe aims at minimizing the input perturbation. To express it, the dgisilon
formulation inEquation (3.4) can be modified as follows

i ET o
i@y v Y
mohh dad @& 1+ Qe Qo -
Here,* is a cost function defined for the perturbatignand ¥ is a setof possible perturbations. The
formulation aims to find a minimuraost perturbation for the output deviation to exceed the bound oFor

instance, in the context of adversarial attacks, using a smallest/cheapest perturbation helps the attacker to
stay undeected. Another formulation aims at maximizing the loss:

AOCT A®Ry Q6 080
&g nYy
My OE ]

This formulation focuses on findingawoe8t 8 S SNNERNJ 6 4 KS aYvYz2ald AyO2NNBO:
of possible input perturbations.

3.4.1.4 Lipschitz continuity

Lipschitz continuity is a global property, characterizing the behavior of the ML model over its whole input
space. It consists ofldpschitz constanwhich measures the sensitivity of the model to input perturbations

Qe Qo Pad  oah o T
where £Zis a norm that measures the distance between original and perturbed inputs and opgpgit®
0 or0 norm, as irEquationg3.7a)- (3.7c), and—is the Lipschitz constanin other words, the constant is
an upper bound on the ratio between the variations of the outputs and the variatbtise inputs of an ML

model"more generally, of some functiof. The smaller the constant-the more robust is th&IL model
with respect to perturbations.

As shown in[24], neural networks with low Lipschitz constants offer better generalization capabilities
together with strongerrobustness against adversarial attackbus, i is of major interest to enforce an
demonstrate the existence of such low Lipschitz constant.

3.4.1.5 Monotonicity

In certain applications, the function that is represented by the ML model is required to exhibit monotonic
behavior. For example, given a monotonic change in some input feature(s), the output of the model should
also change monotonicallygi, increase or decrease. Monotonicity is a typical requirement for regression
models of various kinds, such as those that perform monitoring of degradation conditions of various
components in particular PHM applications.

One possible definition of mononicity of the ML model, adapted froif25], could be the following. Let
"0 O wbe an ML model that approximates the functi@o© &, and let"Ybe the set of inputs oX)input
features). The output of the modé&dis monotonically increasinip features™5P “Yif and only if each feature
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in "Wis totally ordered and for any two inputdto ¥ & that are (1) nordecreasing in featuredi "®
Y 0'Q o "Q ard (2) are equal in all other featurd&® “Y* " "Bt Q & "Q, the output of the model
"Qis non-decreasing™Qw "Qw . From this definition, ajlobal monotonicity propertyfor monotonic
increase can be defined in the following way:

boho v 1 YOQ 0 Q7 1™ Y™'YdQ o0+ Qe Qo o p
A dmilar formulation can be created for a monotonically decreasing {inoreasing) model output.

It is also possible to definecal monotonicity propertieswhich may be more amenable to verification using

FM, given the complexity of the global formulation. A local property is formulated in the neighborhood of a
given pointwin the input spacé of 'QIn case of monotonicitd A @Sy I Y 2 y hangeyis@lected K A F
features from the input poino™ &, a monotonic change (increase or decrease) in the outplifiefmposed

As an example, consider a mod€with a onedimensional input and output spaces™ s and @™ g,
where the output is expected to monotonically decrease with the increasing value of the input. Given an
input point@ one can define following local properties:

Logd @ o1+ Q0w "Qw op ¢ A

Ladgy 1 6o o Qo Q6 o &
whereabisan input point in the neighborhood @ to which a monotonic shift has been applied. Equation
(3.12a) is aforward decreasing monotonicityroperty stating that for any monotonic increase bounded by

1, the output must be notincreasing. Equatio(8.12b) is abackward decreasing monotonicttyat requires
that, locally to the pointy decreasing value of the input shall lead to a {u@ereaing output.

Limited nonrmonotonicity. An additional term can be added to the rigktand side of the equations to
account for noamonotonic behavior that iadmissibleln this casethe propertiesimposethat the output is
allowed to have dimited change in the direction that is opposite to the expected @mat not an unlimited
growth/decrease) such properties are locally applicable to show a bounded deviation from the desired
behavior Theaddendum- turns the forward and backward decrsing locamonotonicityproperties shown

in Equations3.12a}(3.12b), into limited increasing monotoniciiproperties:

logdy o ® 1+ Qo Qo - op o A

fodo 1 ® ot Qv "Qw - op A
Example of noimonotonic regions oKare shownin Figurel2. Function'Q is shown in orange colpwhile
the blue line represents an idedd¢creasingnonotonic behaviowith increasingoand is shown for reference.
There aréwo non-monotonic regons.In the first (left) one for a bounded increasaeof the inputwaround
the pointw (w @@ w 1), thereisanincrease olXhat exceeds the admissible value-ottherefore,
the limited increasing monotonicitig violated around the poind . Instead, for the second (right) regiam,

boundedincreaseusefrom the pointw (0w o w 1 )leads toonlya slight increase iifXless than ),
hence, it does not violate the property.
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Figurel2. Example ofalid and invalid monotonicity properties in romonotonic regions of the function.

3.4.1.6 Other types of propertiedor ML

Additional property types may also be considered for some types of ML moBelssome input spaces,
equivalence classean be definedeach of them containing certain object types. These classes can be used
to specifyinvariance propertiefor example, enforcing that certain transformations of an object on an image
(scaling, rotation, etc.) shalkkad to the same output of the classifi Such properties, sometimes also
referred to as semantic invariance propert{@6], aredomain specificFormodels that contain a state, such

as recurrent neural networksemporal specificationsould beprovided using conventional formalisprsich

as temporal logicsTemporal behaviors can also be exhibited in reinforcement learning applicafibmes.
reader is referred t¢26] for more details.

3.5 Formalmethods technologiegpplied to machine learning

Qurrent section provides an overview of existing-Bibked technologies and tools applicable to or specifically
developed for machine learning\. sgnificant part of this overview focuses gnopertyverificationwhich is

the main FM application in ML design and V&V. Interested readers may reférjtand [28] for more
detailed discussions on formal verification tools. addition certain FM technologies also find their
applications in ML development proces$2s].

At present moment, neural networK®N) in particular deep learnp, is the most popular technology in ML.
Theyhave gained significant interest in thiation industry due to their remarkable performance at solving
complex problems, with potential applications in safetjtical avionicssystemg29] [30]. In safetycritical
contexts assuance ad verification of NNs is crucidlccording to the statef-the-art, verification of neural
networks (VNNis currently the main focus oformal methodsapplicationsto ML [27] [31]. For this reason,
the FM technology overview in this repddcuseson VNN However, other FM approacheapplicable to
broader areas/types ahachine learningre alsodiscussedvhen this is relevant

3.5.1 Completeformal methods

Complete formal methodsefer to algorithms and solvers thatre both soundand complete they can
precisely reportwhether a given property holds onmodel, generally providing a counterexampledase
the property does not holdSuch methodslo notmissproperty violations statingthat a property holds on a
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