

What are Sustainable Aviation Fuels (SAF) exactly?

Sustainable Pilot Training Webinar 14-15 June 2022

Working for quieter and cleaner aviation. Your safety is our mission.

An Agency of the European Union

The Challenge

Projections of international aviation emissions to 2050

Basket of Measures

- → Technology-Design, Operations, Sustainable Aviation Fuels (SAF) and Market Based Measures.
- → Expectation that drop-in SAF will play a significant role in the mitigation of aviation CO_2 emissions using the existing global fleet.
- → But what are Sustainable Aviation Fuels?

What are Sustainable Aviation Fuels?

→ Sustainable aviation fuel (SAF) is the main term used by the aviation industry to describe a sustainable, non-conventional, alternative to fossil-based jet fuel.

→ SAF is the preferred ICAO term, but other terms often used to describe types of SAF (e.g. renewable jet fuel, biojet fuel, e-fuels)

Drop-in fuels

→ Current SAF focused on so-called 'drop-in fuels'

- → Physical and chemical characteristics are almost identical to conventional fossil based jet fuel and can therefore be safely mixed (at various blend ratios).
- → Uses the same fuel supply infrastructure and doesn't require adaptation of current global fleet.
- → Drop-in fuels need to comply with international jet fuel specifications (e.g. ASTM D1655 and Def Stan 91-91)
 - → Contain requirements for composition, volatility, fluidity, combustion, corrosion, thermal stability, contaminants, additives etc.

Approved SAF pathways

Production pathway	Feedstocks	Certification name	Blending limit
Biomass Gasification + Fischer-Tropsch (Gas+FT)	Energy crops, lignocellulosic biomass, solid waste	FT-SPK	Up to 50%
Hydroprocessed Esters and Fatty Acids (HEFA)	Vegetable and animal fat	HEFA-SPK (up to 50%)	Up to 50%
Direct Sugars to Hydrocarbons (DSHC)	Conventional sugars, lignocellulosic sugars	HFS-SIP	Up to 10%
Biomass Gasification + FT with Aromatics	Energy crops, lignocellulosic biomass, solid waste	FT-SPK/A	Up to 50%
Alcohols to Jet (AtJ)	Sugar, starch crops, lignocellulosic biomass	ATJ-SPK	Up to 50%
Catalytic Hydrothermolysis Jet (CHJ)	Vegetable and animal fat	CHJ or CH-SK	Up to 50%
HEFA from algae	Microalgae oils	HC-HEFA-SPK	Up to 10%
FOG Co-processing	Fats, oils, and greases	FOG	Up to 5%
FT Co-processing	Fischer-Tropsch (FT) biocrude	FT	Up to 5%

Aviation Fuel Approval Tied to Aircraft/Engine Type Certificate

Source: FAA

Power-to-Liquid SAF

→ Power-to-Liquid (PtL) 'e-fuels' offer another alternative production pathway and feedstock Already ASTM approved, if

100 % SAF – Options, Open Questions

- Drop-in vs. Non Drop-in fuel
- Drop-in:
 - Has to have same composition and properties as conventional Jet A-1
 - Can be used on all aircraft without restrictions, no change to ground infrastructure
 - ASTM D4054 process applicable
 - Limits the pathways e.g. 100% Synth. Paraffinic Kerosin (SPK) cannot be used (density too low, material compatibility issues due to lack of aromatics)
- Non Drop-in:
 - New fuel grade, new fuel specification, approval process not addressed in detail in current D4054
 - Only for new aircraft, separate infrastructure required
 - Not bound to the limitation of Jet A-1 \rightarrow more flexibility regarding fuel production pathways

ASTM Task Force on 100% SAF standardization established in February 2021

SAF Sustainability

- \rightarrow Achieving a **net CO₂ emissions reduction** is the main objective for using SAF in order to meet the aviation sector's ambitious climate goals.
- → Various sustainability criteria (e.g. **CORSIA, EU RED**).
- → SAF must demonstrate a net carbon reduction through a lifecycle analysis (LCA)
- → Emissions from the combustion of drop-in SAF are comparable to fossilbased jet fuels, except for marginal efficiency gains, hence the majority of the reductions in GHG emissions originate from the production process

SAF Lifecycle Assessment

Well-to-Wake Pathway for Conventional Jet Fuel

Life Cycle Analysis (LCA)

Well-to-Wake Pathway for <u>Bio-Based</u> Alternative Jet Fuel

SAF Environmental Benefits

- → SAF can achieve CO₂ emission reductions of up to 80% on a lifecycle basis.
- → Fewer compounds (e.g. sulphur, aromatics) → improving air quality by reducing sulphur dioxide (SO₂) and particulate matter (PM) emissions.
- → Use of municipal waste biomass for SAF feedstock avoids it going to landfill.

SAF challenges

→ Challenges turning aspirational goal into reality, including:

- \rightarrow Price competitiveness
- → Ensuring sustainability
- → Meeting technical requirements, i.e. fuel specification standards
- → Fragmented policy landscape

ReFuelEU Aviation

- → Legislative proposal to ensure a **well-functioning aviation market** while accelerating decarbonisation with a gradual ramp-up of SAF
- → Ambitious binding SAF targets focusing on innovative, sustainable and scalable fuel technologies:

Total shares in the fuel mix (in %)	2025	2030	2035	2040	2045	2050
SAF ramp up:	2	5	20	32	38	63
Of which: sub-mandate on e-fuels	-	0.7	5	8	11	28

 \rightarrow Adoption expected in late 2022

Questions?

Andreas Busa Sustainability Officer andreas.busa@easa.europa.eu

Working for quieter and cleaner aviation.

Your safety is our mission.

An Agency of the European Union

easa.europa.eu/connect