Student Pilot Footprint Thomas Leoff - IAAPS

14.-15.06.2022 EASA Sustainable Pilot Training Webinar

Internal

lufthansa-aviation-training.com

Internal

EASA @EATS 2021

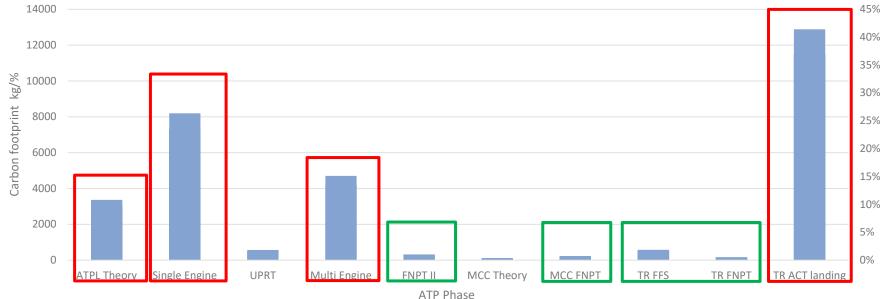
Sustainable Aviation Programme

- → Promote and develop eco-friendly, -aware and responsible pilot training organisations
- → Introduce environmental sustainability & awareness into existing pilot training courses
- → Launch research study to optimize environmentally sustainable allocation of training media (aircraft vs. FSTDs) in pilot training

ZEASA

Internal

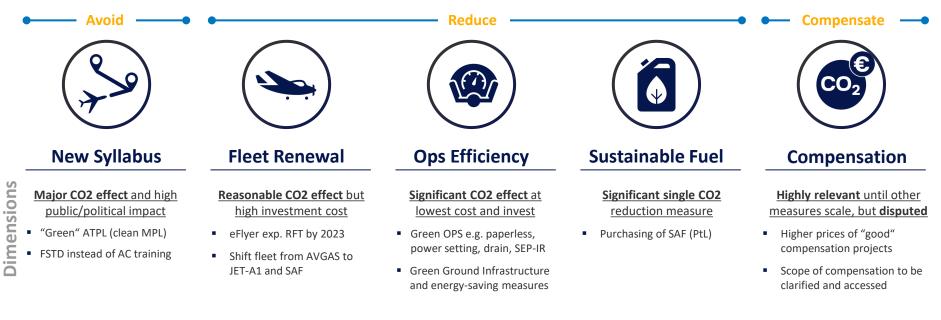
Exemplary CO₂ footprint & share per ATPL Student Pilot


	Type Rating 12,1 t CO ₂							
	Type Rating A320							
Theory @BRE Classroom	Various* FNPT II	SEP* DA40 NG	UPRT* G120A			FTD A320* FNPT/FFS	Landing TRG* A320	
3,0 t CO ₂	,,3 ,,3 , t CO₂		•••• 0,5 t CO ₂	↔ 4,2 t CO ₂	, ₽ 0,3 t CO ₂	 ✓ ✓	11,5 t CO ₂	
750h	55h	107h	3h	30h	40h	58h	6 T/O	
٢	\bigcirc	٢	\bigcirc	٢	\bigcirc	\bigcirc		
11%	1%	26%	2%	15%	1%	3%	41%	

*all data: only direct CO2 emissions of flight training (product carbon footprint i.e. w/o consideration of nominal vs. actual consumption, airport, maintenance, training location, additional briefing/classroom, housing, transport etc.

Internal

Exemplary CO₂ footprint & share per ATPL Student Pilot



ATPL Student Pilot Carbon Footprint

AIFFIIdSE

Green Flight School – avoid, reduce, compensate

• High relevance of holistic and flexible measures and approaches

• Evidence for every change inevitable

Good approach: Final version of RMT 190 based on data from cooperation Ab Initio ATO & AoC holder

Conclusions

- ATOs must be enabled to perform training development projects with the perspective for approval, provided it can be demonstrated, that the training outcome is as good or better than the "old/traditional" training
- NAAs must be supported in the oversight and monitoring of such training development projects
- A cooperation between EASA, NAAs and industry should be initiated to enable the start of such training development projects.

lufthansa-aviation-training.com

Excel source

		idix 3 to Annex (HG Type Ratir	0		Total kg/CO2	10101 (7002
Phase	ATPL Theory	Single Engine	UPRT	Multi Engine		MCC Theory		TR FFS	TR FNPT	TR ACT	landing		
required hours	750									286 T/O			
carbon footprint	3000	7307	505	4190	284	100	207	51	.7	145	11485	27740	27,
share	11%	6 26%	2%	15%	1%	0%	1%	25	%	1%	41%	100%	
remarks	exemplary	DA40 NG	G120A	DA42-IV	CAE 500XR		CAE 500XR	CAE 7000XR	CAE 500XR	A320			
all data: or	nly direct CO2	emissions of fligh	nt training (p	roduct carbon		w/o considerat assroom, hous			nsumption, air	port, maint	enance,	training location,	additional
* @60%/65% Pov	versetting (OEI	M Factsheet)											
** Source: interna	al estimation												
*** Source: DIN E	N 16258:2012	S. 23											
**** German ene	ergy mix 2021;	Source: IEA Emis	sions Factor	s 2021									
***** Airfiled tra	ffic pattern mi	x consumption e	stimate										
				emission fact									
Aircraft	fuel type	liter/h cons.*	/		well-to-wheel (gw)	kg/CO2/h (gw)							
DA42-IV	Jet A-1	45	0,8										
DA40	Jet A-1	22	2 0,8	3,18	3,88	68,3							
SR20	AVGAS	35	0,8	3,13	3,76	105,3							
Grob G120A	AVGAS	56	0,8	3,13	3,76	168,4							
4320 *****	Jet A-1	3700	0,8	3,18	3,88	11484,8							
					emission								
FTD / AC	power	kWh cons.**	FTD type		factor****	kg/CO2/h							
A320 FNPT	Electric		CAE 500XR		0,34	5,1675							
			CAE										
4320 FFS	Electric	50	7000XR		0,34	17,225							

