VTOL Design Loads and Interaction of Systems and Structures

Emily LEWIS
Structures and Cabin Safety Expert

Your safety is our mission.

An Agency of the European Union
Design Loads VTOL MoC

→ General

→ Design Load Requirements:
 → VTOL.2200 Structural Design Envelope
 → VTOL.2215 Flight loads conditions
 → VTOL.2205 Interaction of systems and structures
 → VTOL.2220 Ground and water loads

→ Summary
General
Complexity of VTOL aircraft

Different safety objectives:

Flight control system interaction with flight envelope:
VTOL.2200 Structural Design Envelope

- Proposed MOC published 25 May 2020
- 15 comments reviewed and MOC under revision
VTOL.2200 Design Airspeeds

VTOL MODE (CS-27)

- $V_{rearward}$
- $V_{sideward}$
- V_{HVTOL}
- $V_{N EVTOL}$
- V_{DVTOL}

Constraints:

1. $V_{N EVTOL} \leq 0.9 V_{DVTOL}$
2. $V_{HVTOL} <= V_{N EVTOL}$

AEROPLANE MODE (CS-23)

- V_{VA} need not be $> V_{C}$
- V_{VC}
- V_{VNO}
- $V_{NO} < 0.89 V_{N E}$
- V_{VNE}
- $V_{VNE} \leq 0.9 V_{D}$
- V_{VHB} need not be $> V_{C}$
- V_{VC} need not be $> 0.9 V_{H}$
- $V_{VH} <= V_{N EV}$
- $V_{VH} <= V_{N EV}$

Constraints:

1. $V_{NO} < 0.89 V_{NE}$
2. $V_{VNO} < 0.89 V_{NE}$
3. $1.25 V_{C} \leq V_{D}$
4. $V_{VH} <= V_{N EV}$
5. $V_{VNE} \leq 0.9 V_{D}$
VTOL.2200 Design Airspeeds

All configurations and modes should be considered for design airspeed(s) definition: more than one airspeed definition set may be necessary.
VTOL.2215(a) Flight Load Conditions

- Proposed MOC published 25 May 2020
- 19 comments reviewed and MOC under revision

1g Symmetric Flight
- Symmetrical pull-up and recovery
 - Max positive load factor
 - Max associated pitch accelerations
- Symmetrical pushover and recovery
 - Max negative load factor
 - Max associated pitch accelerations

Rolling Flight Conditions
- 2/3 max positive load factor
 - Max associated pitch and roll accelerations

Gusts
- Vertical and horizontal

Yawing Conditions
- Max associated yaw acceleration
 - Max transient sideslip angles

Vertical TO
- Max slope

Unsymmetrical loads due to lift/thrust unit failure
 (failure case)

NEW!
Design Airspeeds / Flight Loads

ALL CONFIGURATIONS / MODES

ENHANCED ONLY

VB
User Defined

66 ft/sec gust
Max flight speed in turbulence (rough air)

VNO

VNO ≤ VNE
VNO ≤ VH

VD

VNE

VNE ≤ 0.9VD

VH

VH <= VNE

VH <= VH

VH <= VH

Level Flight
Symmetric Pullup
Symmetric Pushover
Rolling Pullup
30ft/sec gust
LTU failure

Yaw Manoeuvre
(VH or VNE whichever less)
50 ft/sec gust

Yaw Manoeuvre
(VH or VNE whichever less)

All critical speeds and configurations should be considered for each flight manoeuvre, up to the aircraft maximum defined: VD(s), VH(s) or VNE(s)
VTOL.2205 Interaction of systems and structures

System failures:

- Flight control systems (FBW)
- Autopilots
- Stability augmentation systems
- Load alleviation
- Flutter control
- Fuel / energy management
VTOL.2205 Interaction of systems and structures

→ MOC based on CS 25 Appendix K

CS 25 Appendix K
structure whose failure could prevent continued safe flight and landing

MOC VTOL.2205
any structure the loading of which may be changed by failure(s) of the system

→ Scenarios to consider:

<table>
<thead>
<tr>
<th>System fully operable</th>
<th>System in failure condition</th>
<th>Failure indication</th>
<th>Dispatch with known failure conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal condition</td>
<td>At time of occurrence</td>
<td>Detectability</td>
<td>Limitations may be established</td>
</tr>
<tr>
<td></td>
<td>Static Strength(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flutter (if failure causes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>velocity increase)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Continuation of the flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Static Strength(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual Strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibrations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flutter(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fatigue & Damage Tolerance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{(1)}\) For determination of **Safety Factor** and **Flutter Speed**, the probability will be consistent with the safety objective defined in SC VTOL for Category Enhanced and Category Basic (no. passengers)
Reference: MOC VTOL.2510 Equipment, systems, and installations

Table 1: Safety Objectives

<table>
<thead>
<tr>
<th>Category Enhanced</th>
<th>FS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td>[Note C and D]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Category Basic</th>
<th>Failure Condition Classifications</th>
<th>Allowable Qualitative Probability</th>
<th>Allowable Quantitative Probability (Note C and D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 to 9 passengers (Basic 3)</td>
<td>Minor</td>
<td>Probable</td>
<td>$\leq 10^{-3}$ FDAL D (see Note B)</td>
</tr>
<tr>
<td>2 to 6 passengers (Basic 2)</td>
<td>Major</td>
<td>Remote</td>
<td>$\leq 10^{-5}$ FDAL C</td>
</tr>
<tr>
<td>0 to 1 passenger (Basic 1)</td>
<td>Hazardous</td>
<td>Extremely Remote</td>
<td>$\leq 10^{-7}$ FDAL B</td>
</tr>
</tbody>
</table>

Factor of safety at the time of occurrence

$$FS \geq 10^{-X}$$

Factor of safety for continuation of flight

$$FS \geq 10^{-X}$$

P_j – Probability of occurrence of failure mode j (per hour)

Q_j – Probability of being in failure condition j
VTOL.2220 Ground and Water Loads

- **Ground conditions:**
 - Proposed MOC published 25 May 2020
 - 3 comments reviewed and MoC under revision

- **Water conditions:**
 - Seaplane and amphibian water landing loads to be addressed in Phase 3 MOC
Summary

→ **Complexity** in VTOL design load definition: different safety objectives, configurations and modes, and complex flight control systems

→ **Interaction of systems and structures** needs comprehensive analysis to consider all failures that could influence loading and flutter

→ Many valuable comments received during Phase 1 consultation will lead to **improvement and simplification** of the proposed design load MoCs

→ **Further design load MoCs** will be released for public consultation in Phases 2 and 3
Thank you for your attention

Feel free to submit your questions on our live event platform.....