

VTOL Design Loads and Interaction of Systems and Structures

Emily LEWIS Structures and Cabin Safety Expert

Your safety is our mission.

An Agency of the European Union

Design Loads VTOL MoC

- → General
- → Design Load Requirements:
 - → VTOL.2200 Structural Design Envelope
 - → VTOL.2215 Flight loads conditions
 - \rightarrow VTOL.2205 Interaction of systems and structures
 - → VTOL.2220 Ground and water loads
- → Summary

Different safety objectives:

Different configurations and modes:

Flight

Envelope

Flight control system interaction with flight envelope:

Flight Control System

E

VTOL.2200 Structural Design Envelope

- → Proposed MOC published 25 May 2020
- → 15 comments reviewed and MOC under revision

MOC PHASE 1

VTOL.2200 Design Airspeeds

All configurations and modes should be considered for design airspeed(s) definition: more than one airspeed definition set may be necessary

MOC PHASE 2

VTOL.2215(a) Flight Load Conditions

- → Proposed MOC published 25 May 2020
- → 19 comments reviewed and MOC under revision

Symmetrical pull-up and recovery Max positive load factor Max associated pitch accelerations

Symmetrical pushover and recovery Max negative load factor Max associated pitch accelerations

1g Symmetric Flight

Rolling Flight Conditions 2/3 max positive load factor Max associated pitch and roll accelerations

Design Airspeeds / Flight Loads

EASA

All critical speeds and configurations should be considered for each flight manoeuvre, up to the aircraft maximum defined: VD(s), VH(s) or VNE(s)

VTOL.2205 Interaction of systems and structures

System failures:

VTOL.2205 Interaction of systems and structures

ADAPTED

MOC VTOL.2205

any structure the loading of which may

be changed by failure(s) of the system

 \rightarrow MOC based on CS 25 Appendix K

CS 25 Appendix K structure whose failure could prevent continued safe flight and landing

→ Scenarios to consider:

System	System in failure condition		Failure	Dispatch
fully	At time of occurrence	Continuation of the flight	indication	with known
operable	Static Strength ⁽¹⁾	Static Strength ⁽¹⁾		failure
	Residual Strength	Residual Strength		conditions
Nominal	Vibrations	Vibrations	Detectability	Limitations
condition	Flutter (if failure causes	Flutter ⁽¹⁾	· ·	may be
	velocity increase)	Fatigue & Damage Tolerance		established

⁽¹⁾ For determination of **Safety Factor** and **Flutter Speed**, the probability will be consistent with the safety objective defined in SC VTOL for Category Enhanced and Category Basic (no. passengers)

Reference: MOC VTOL.2510 Equipment, systems, and installations

VTOL.2220 Ground and Water Loads

Ground conditions:

- Proposed MOC published 25 May 2020
- ✓ 3 comments reviewed and MoC under revision

Water conditions:

• Seaplane and amphibian water landing loads to be addressed in Phase 3 MOC

Summary

- → Complexity in VTOL design load definition: different safety objectives, configurations and modes, and complex flight control systems
- → Interaction of systems and structures needs comprehensive analysis to consider all failures that could influence loading and flutter
- → Many valuable comments received during Phase 1 consultation will lead to improvement and simplification of the proposed design load MoCs
- → Further design load MoCs will be released for public consultation in Phases 2 and 3

Thank you for your attention

Feel free to submit your questions on our live event platform.....

An Agency of the European Union