

MOC VTOL Doors and Landing Gear

Prepared by EASA Panel 4 (FCS & Hydromechanical Systems)

Presented by Jonathan Hall CEng FIMechE

Your safety is our mission.

Introduction – MOC VTOL Doors

- → The vehicles are unpressurised (as also per Rotorcraft today).
- → Covers retention of doors closed, not emergency egress.
- → Crew or passenger door opening in-flight is considered unsafe, and seat belt (or equivalent) is not considered adequate mitigation.
- → Thus means of retaining the door closed, and indicating the status, is introduced into the MOC.

Scope – MOC VTOL Doors

- → Includes any external opening, not limited to passenger or crew doors, depends on the criticality of the door being open in flight.
- → MOC pertains to system aspects to latch the door and indicate status.
 Structural and emergency egress aspects are covered elsewhere.
- → Specific reference to PRA (eg Bird Strike) is important, from service experience on other aircraft types.

Content – MOC VTOL Doors

- → MOC-VTOL-Doors will provide:
 - Definitions.
 - → A recognition of parts of the ASTM F3061 16a insofar as it pertains to Door latching and indication.
 - → Additional guidance material to address other specificities

Requirements – MOC VTOL Doors

- → Provides MOC material for the following SC-VTOL requirement:
 - → VTOL.2250 Design and construction principles
 - → (e) Doors, Canopies and Exits

"Doors, canopies, and exits must be protected against inadvertent opening in flight, unless shown to create no hazard, when opened in flight."

Topics Covered – MOC VTOL Doors

- Definitions and Exemptions
 - → To ensure the scope of what is a "Door" is clear.
- → Latching
 - → To prevent inadvertent or deliberate opening in flight, if this could be unsafe.
- → Passenger, Ground/Flight crew awareness of the Door status
 - → Directly on or by the door and on Flight Crew display
- → Particular Risks
 - → Especially Bird Strike, but not limited to.

Introduction – MOC VTOL Landing Gear

- → Usually take-off and landing are vertical (except possible emergency landing).
 - → With commensurate braking requirements
- → Conventional wheels/tyres/brakes. Skid, ski, float etc out of scope.
- → Ground resonance is addressed at aircaft-level.
- → Any ground steering function is limited to low speed taxi
- → No significant longitudinal engine thrust on ground.

Scope – MOC VTOL Landing Gear

- → LG Extension/Retraction
- → Braking System
- → Ground Control (steering) System
- → Wheels/Tyres/Brakes
- → Warnings and Indications
- → Structural Aspects of the LG (including drop test) are covered elsewhere.

Content – MOC VTOL Landing Gear

- → MOC-VTOL- Landing Gear will provide:
 - Scope and Definitions.
 - → Some limited reference to the ASTM F3061 16a as this is more applicable to the LG systems of fixed-wing aircraft whereby normal take-off and landing are running high-speed.
 - → Additional guidance material to address other specificities

Requirements – MOC VTOL Landing Gear

- → Provides MOC material for the following SC-VTOL requirement:
 - → VTOL.2305 Landing Gear Systems

"VTOL.2305 Landing gear systems

- (a) The landing gear must be designed to:
- (1) provide stable support and control to the aircraft during surface operation; and
- (2) account for likely system failures and likely operation environment (including anticipated limitation exceedances and emergency procedures).
- (b) The aircraft must have a reliable means of stopping the aircraft with sufficient kinetic energy absorption to account for landing and take-off, in all approved conditions, and of holding the aircraft in position when parked.
- (c) For aircraft that have a system that actuates the landing gear, there must be:
- (1) a positive means to keep the landing gear in the landing position; and
- (2) an alternative means available to bring the landing gear in the landing position when a non-deployed system position would be a hazard."

Topics Covered – MOC VTOL Landing Gear (1/2)

- Definitions and Exemptions
 - → Typically as stated in previous slides
- → Absence of interaction between ground steering and extension/retraction
 - → To prevent unwanted interference with the locus of the LG.
- → Towing
 - → To prevent damage to the LG and its systems, or ensure this is detected prior to take-off
- Qualification of Wheels and Tyres
 - → Including wheel approval.
- → Brake Stopping Capability
 - → Assuming landings are vertical, except in case of emergency.

Topics Covered – MOC VTOL Landing Gear (2/2)

- → Park Brake Capability
 - → Unbalanced ground forces, emergency egress, 10 deg slope
- → Brake wear indication
- → Compatibility with airframe and other systems
 - → Ground Resonance not in scope
- → Indication of LG status
 - Including warning of LG not-extended
- → Emergency Extension
 - → For retractable LG not manually powered.

Conclusion / Next steps

- → Release for public consultation
- → Review Comments
- → Publish Comment Response Document
- → Publish MOC VTOL

Thank you for your attention

Feel free to submit your questions on our live event platform.....

easa.europa.eu/connect

