
EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 1/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

EASA
NOTIFICATION OF A PROPOSAL TO ISSUE

A CERTIFICATION MEMORANDUM

EASA Proposed CM No.:

EASA Proposed CM - SWCEH – 002 Issue: 01

Issue Date: 10th of February 2011

Issued by: Software & Complex Electronic Hardware section

Approved by: Head of Certification Experts Department

Effective Date: [Standard date = 7 days after final CM Issue

date]

Regulatory Requirement(s): CS 25.1301 and 1309 for Large

Aeroplanes, CS23.1301 and 23.1309 for Small Aeroplanes,

CS27.1301 and 27.1309 for Small Rotorcraft, CS29.1301

and 29.1309 for Large Rotorcraft, CS E-50 (d,f) for engines,

CS-P, CS-APU and CS-ETSO.

In accordance with the EASA Certification Memoranda procedural guidelines, the

Agency proposes to issue an EASA Certification Memorandum (CM) on the subject

identified below.

All interested persons may send their comments, referencing the EASA Proposed

CM Number above, to the e-mail address specified in the “Remarks” section, prior

to the indicated closing date for consultation.

EASA Certification Memoranda clarify the Agency’s general course of action on

specific certification items. They are intended to provide guidance on a particular

subject and, as non-binding material, may provide complementary information and

guidance for compliance demonstration with current standards. Certification

Memoranda are provided for information purposes only and must not be

misconstrued as formally adopted Acceptable Means of Compliance (AMC) or as

Guidance Material (GM). Certification Memoranda are not intended to introduce

new certification requirements or to modify existing certification requirements and

do not constitute any legal obligation.

EASA Certification Memoranda are living documents, into which either additional

criteria or additional issues can be incorporated as soon as a need is identified by

EASA.

Subject

Software Aspects of Certification

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 2/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Log of Issues

Issue Issue date Change description

01 09.02.2011 Initial issue.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 3/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Table of Contents

1 INTRODUCTION ...6
1.1 Purpose and Scope...6
1.2 Regulatory References & Requirements...6
1.3 Abbreviations ..7
1.4 Definitions...9

2 BACKGROUND..11
2.1 Comparison Between the Contents of this Document and the Content of Existing
FAA Orders.. 11

3 EASA CERTIFICATION POLICY ...13
3.1 EASA Policy ... 13
3.2 Whom this Certification Memorandum Affects .. 13
3.3 Background ... 13
3.4 The Use of Eurocae ED-94B / DO-248B Clarifications .. 13

4 GUIDELINES FOR THE SOFTWARE REVIEW PROCESS...14
4.1 Purpose .. 14
4.2 Definitions... 14
4.3 Scope ... 14
4.4 Objectives of the Software Review Process .. 15
4.5 Interaction between the Software Review Process and the Software Life Cycle....... 16

4.5.1 Software Planning Review... 17
4.5.2 Software Development Review .. 18
4.5.3 Software Verification Review... 19
4.5.4 Final Certification Software Review .. 20
4.5.5 Summary ... 22

4.6 Additional Considerations for the Software Review Process 23
4.7 Preparing, Conducting, and Documenting a Software Review............................... 23

5 ORGANISATION, ROLE AND LEVEL OF INVOLVEMENT OF EASA AND

APPLICANTS IN SOFTWARE PROJECTS...26
5.1 Purpose .. 26
5.2 Background ... 26
5.3 Discussion... 27

5.3.1 Organisation and role of the SW/CEH group.. 27
5.3.2 Determination of EASA software level of involvement (LOI) 28
5.3.3 Influence of the LOI on the certification activities .. 29
5.3.4 Revision of LOI.. 31

6 RESERVED..32
7 GUIDELINES FOR THE APPROVAL OF FIELD LOADABLE SOFTWARE (FLS)33

7.1 Purpose .. 33
7.2 Background ... 33
7.3 The Use of Earlier Versions of ED-12 .. 33
7.4 Approval of Field-Loadable Software (FLS) .. 33
7.5 Installation Considerations .. 34
7.6 Maintenance and Part Marking Considerations.. 35

8 RESERVED..36
9 GUIDELINES FOR THE APPROVAL OF AIRBORNE SYSTEMS AND EQUIPMENT

CONTAINING USER- MODIFIABLE SOFTWARE ..37
9.1 Purpose .. 37
9.2 Scope ... 37
9.3 The Use of Earlier Versions of ED-12 / DO-178 .. 37
9.4 Safety Considerations ... 37
9.5 Considerations for Displayed Data .. 38
9.6 Modification of Aircraft and/or Engine Performance Parameters............................ 38
9.7 Protection ... 39
9.8 Tools Used to Protect Non-Modifiable Components ... 39
9.9 Data Requirements... 39
9.10 Other Considerations .. 40

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 4/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

10 GUIDELINES FOR APPLYING THE ED-12B / DO-178B LEVEL D CRITERIA TO

PREVIOUSLY DEVELOPED SOFTWARE (PDS) ..41
10.1 Purpose .. 41
10.2 Background ... 41
10.3 Discussion... 42
10.4 Procedures .. 43

11 GUIDELINES FOR THE QUALIFICATION OF SOFTWARE TOOLS USING ED-12B /

DO-178B...45
11.1 Purpose .. 45
11.2 Background ... 45
11.3 Discussion... 46
11.4 Procedures .. 47

12 GUIDELINES FOR THE CERTIFICATION OF SOFTWARE CHANGES IN LEGACY

SYSTEMS USING ED-12B / DO-178B...53
12.1 Purpose .. 53
12.2 Background ... 53
12.3 Discussion... 54
12.4 Procedures .. 56

13 OVERSIGHT OF SOFTWARE CHANGE IMPACT ANALYSES USED TO CLASSIFY

SOFTWARE CHANGES AS MAJOR OR MINOR ...59
13.1 Background ... 59
13.2 Procedures .. 59

14 GUIDELINES FOR APPROVING REUSED SOFTWARE LIFE CYCLE DATA60
14.1 Purpose .. 60
14.2 Discussion... 60

14.2.1 Software suitable for reuse ... 60
14.2.2 Safety considerations... 61
14.2.3 Factors affecting reuse ... 61

14.3 Procedures .. 62
15 PROPERLY OVERSEEING SUPPLIERS..63

15.1 Background ... 63
15.2 EASA Certification Policy ... 63

15.2.1 Supplier oversight aspects in plans and procedures 63
15.2.2 Supplier oversight: reviewing the applicant's plans 64

16 MANAGEMENT OF PROBLEM REPORTS ...66
16.1 Background ... 66
16.2 Objectives ... 66
16.3 Scope ... 66
16.4 Terminology .. 67
16.5 Typology of Open Problem Reports... 67
16.6 Guidelines on OPR management .. 68
16.7 Contents of Software Accomplishment Summary (SAS) 68
16.8 Content of System Certification Summary or equivalent document 69
16.9 Oversight of Problem Reporting ... 69

16.9.1 Problem reporting and supplier plans ... 69
16.9.2 Reviewing open problem reports ... 70

17 EMBEDDED SOFTWARE CONFIGURATION FILES...72
17.1 Background ... 72
17.2 Identification of Configuration Files... 73
17.3 Development Assurance Level ... 73
17.4 Identification and Configuration Control .. 73
17.5 Data Quality .. 74
17.6 Compatibility / Mixability... 75
17.7 Generation of Configuration Files ... 75

18 MANAGING THE SOFTWARE DEVELOPMENT AND VERIFICATION ENVIRONMENT76
18.1 Background ... 76
18.2 Controlling the Development and Verification Environment 76

19 THE USE OF OBJECT ORIENTED TECHNIQUES AT THE DESIGN OR SOURCE CODE

LEVEL ...78

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 5/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

19.1 Background ... 78
19.2 Guidance... 78

20 THE USE OF (OCC) OBJECT CODE COVERAGE FOR EQUIVALENCE TO MODIFIED

CONDITION DECISION COVERAGE (MCDC) ..82
20.1 Background ... 82
20.2 Guidance... 82

21 MERGING HIGH-LEVEL AND LOW-LEVEL REQUIREMENTS84
21.1 Background ... 84

21.1.1 ED-12B / DO-178B compliance concerns .. 84
21.1.2 Verification concerns.. 85
21.1.3 Re-verification concerns (modification of the airborne software) 85

21.2 Guidance... 85
21.3 Explanation of the Purpose of Traceability from ED-94B / DO-248B 86

22 CLARIFICATION OF STRUCTURAL COVERAGE ANALYSES OF DATA COUPLING

AND CONTROL COUPLING...88
22.1 Background ... 88
22.2 Clarifications.. 88

22.2.1 Purpose of data coupling and control coupling analyses................................ 88
22.2.2 The intent of objective 8 of table A-7 according to the authors of DO-178B..... 89
22.2.3 Data and control coupling FAQ from ED-94/ DO-248B 89
22.2.4 Design versus integration verification activity.. 90
22.2.5 EASA perspective on the purpose of data coupling analysis........................... 90
22.2.6 EASA Perspective on the purpose of control coupling analysis 91

22.3 Common Benefits and Problems With Applying Data Coupling and Control Coupling
Analyses ... 91

22.3.1 Benefits of good design and integration practices .. 91
22.4 Guidance for Satisfying the Data Coupling and Control Coupling Analyses Objective92

23 THE VALIDATION AND VERIFICATION OF FORMALISED AND MODEL-BASED

SOFTWARE REQUIREMENTS AND DESIGNS ..93
23.1 Background ... 93
23.2 Guidance... 93

23.2.1 Formalized designs, formalized requirements and higher-level requirements... 93
23.2.2 The system / software planning process ... 94
23.2.3 Types of system / software life-cycle ... 96
23.2.4 Type 1 – Formalized design replaces conventional ED-12B / DO-178B software
design 96
23.2.5 Types 2a and 2b – Formalized design replaces software high-level
requirements and software design .. 99
23.2.6 Types 3a and 3b - Formalized requirements replace software high-level
requirements ... 101
23.2.7 Verification of formalized designs .. 103
23.2.8 Simulation of executable formalized designs ... 103
23.2.9 Coverage of formalized designs ... 105
23.2.10 General principles and activities .. 105

24 THE USE OF PSEUDO-CODE AS LOW-LEVEL REQUIREMENTS109
24.1 Background ... 109
24.2 Problems With the Use of Pseudo-Code... 109
24.3 Can traceability compensate for non-productive structural coverage analysis? 110
24.4 Guidance... 110

25 STACK OVERFLOWS ...112
25.1 Purpose .. 112
25.2 Background ... 112
25.3 Guidance... 113

26 REMARKS ...114

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 6/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

The purpose of this Certification Memorandum is to provide specific guidance material to the
applicant on various aspects complementary to ED-12B/DO-178B.

1.2 REGULATORY REFERENCES & REQUIREMENTS

It is intended that the following reference materials be used in conjunction with this
Certification Memorandum:

Reference Title Code Issue Date

ED-12B / DO-
178B

Software Considerations In Airborne
Systems and Equipment Certification

EUROCAE
ED-12B

RTCA
DO-178B

B December
1992

ED-94B / DO-
248B

Final report for clarification of ED12B /
DO178B “Software Considerations in
Airborne Systems and Equipment
Certification”.

EUROCAE
ED-94B

RTCA
DO-248B

B October
2001

ED-79 /
ARP4754

Certification Considerations for Highly
Integrated or Complex Aircraft Systems.

EUROCAE
ED-79

SAE
ARP4754

- November
1996

AMC 20-115B Recognition of EUROCAE ED-12B / RTCA
DO-178B

AMC-20 Initial November
2003

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 7/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1.3 ABBREVIATIONS

The following abbreviations are used in this Certification Memorandum:

Abbreviation Meaning

A/C Aircraft

ABC Assembly Branch Coverage

AMC Acceptable Means of Compliance

CAST Certification Authorities Software Team

CEH Complex Electronic Hardware

CF Configuration File

CID Configuration Index Document

CM Certification Memorandum

COTS Commercial Off-the-shelf

CRC Cyclic Redundancy Check

CRI Certification Review Item

CS Certification Specification(s)

CSCI Computer Software Configuration Item

DAL Development Assurance Level

DOA Design Organisation Approval

EASA European Aviation Safety Agency

EIS Entry Into Service

FAA Federal Aviation Administration

FAQ Frequently Asked Question

FHA Functional Hazard Analysis

FLS Field-Loadable Software

GM Guidance Material

HLR High-level Requirement

IFCA Instructions for Continued Airworthiness

IMA Integrated Modular Avionics

JAA Joint Aviation Authorities (predecessor of EASA)

LLR Low-level Requirement

LOI Level of Involvement

MCDC Modified Condition Decision Coverage

MEL Minimum Equipment List

OCC Object Code Coverage

OOT Object-oriented Technique

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 8/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Abbreviation Meaning

OPR Open Problem Report

P/N Part Number

PCM Project Certification Manager

PDS Previously-Developed Software

PID Project Information Document

PSAC Plan for Software Aspects of Certification

PSSA Preliminary System Safety Analysis

RBT Requirement-based Testing

RTC Restricted Type Certificate

SAS Software Accomplishment Summary

SCI Software Configuration Index

SCMP Software Configuration Management Plan

SDP Software Development Plan

SECI Software Life Cycle Environment Configuration Index

SOI Stage of Involvement

SQAP Software Quality Assurance Plan

SW Software

SW/CEH Software / Complex Electronic Hwr

STC Supplemental Type Certificate

SVP Software Verification Plan

TAS Tool Accomplishment Summary

TC Type Certificate

TGL Temporary Guidance Leaflet

TOR Tool Operational Requirements

TQP Tool Qualification Plan

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 9/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1.4 DEFINITIONS

Some terms of this CM are defined below; however, in order to improve the readability of
this CM, some sections contain specific definitions (e.g. section 2). The reader may also need
to refer to the definitions contained in certain Eurocae standards (e.g. ED-12B/DO-178B) as
they are not repeated below.

Definition Meaning

Aeronautical

Data (ED-
76/DO-200A)

Data used for aeronautical applications such as navigation, flight
planning, flight simulators, terrain awareness and other purposes, which
comprises navigation data and terrain and obstacle data.

Aeronautical

Database (ED-
76/DO-200A)

An Aeronautical Database is any data that is stored electronically in a
system that supports airborne or ground based aeronautical applications.
An Aeronautical Database may be updated at regular intervals.

Configuration

Files

Files embedding parameters used by an operational software program as
computational data, or to activate / deactivate software components (e.g.
to adapt the software to one of several aircraft/engine configurations).
The terms ‘registry’ or ‘definition file’ are sometimes used for a
Configuration File. Configuration files such as symbology data, bus
specifications or aircraft/engine configuration files are segregated from
the rest of the embedded software for modularity and portability
purposes.

Database (ED-
12B/DO-178B)

A set of data, part or the whole of another set of data, consisting of at
least one file that is sufficient for a given purpose or for a given data
processing system.

Field-loadable

software

software that can be loaded without removal of the equipment from the
installation. Field-loadable software can refer to either executable code or
data. (Refer to ED-12B / DO-178B, Section 2.5.)

Higher-level

Requirements

In order to produce either a set of Formalized Requirements or a
Formalized Design, a set of requirements at a higher-level of abstraction
is needed in order to capture the requirements for the Formalized
Requirements or Formalized Design and to describe what the resulting
formalized item should contain. Such requirements are therefore known
hereafter in this Certification Memorandum as ‘higher-level
requirements’. The data item(s) that act as higher-level requirements
should be identified during the planning stage.

Option-

selectable

software

Software that contains approved and validated components and
combinations of components that may be activated by the user, either
through selection by the flight crew or activation by ground personnel.
(Refer to ED-12B / DO-178B, Section 2.4.)

SW/CEH Group SW/CEH panel plus SW/CEH assistant specialists where applicable.

NOTE: the size of the SW/CEH group can vary, depending on the size of
the certification project and the number of pieces of digital equipment to
be qualified. For small projects, the SW/CEH group (and panel) may be
limited to one person taking charge of the complete spectrum of tasks
and responsibilities described in this section (including coordination).

SW/CEH Panel EASA nominated specialist(s).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 10/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Definition Meaning

User-

Modifiable

Software

As the term is used in ED-12B / DO-178B, is software intended for
modification by the aircraft operator without review by the certification
authority, the airframe manufacturer, or the equipment vendor.
Modifications by the user may include modifications to data, modifications
to executable code, or both. (Refer to ED-12B / DO-178B, Section 2.4.)
NOTE: Modifications by the user to user-modifiable software may include
modifications to data, modifications to executable code, or both, if within
the modification constraints established during the original certification
program.

Validation The determination that the requirements for a product are sufficiently
correct and complete.

Verification The evaluation of an implementation of requirements to determine that
they have been met.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 11/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

2 BACKGROUND

Current aircraft systems include pieces of digital equipment that contain software
components. Compliance with CS 25.1301 and 13091 is partly addressed through
development assurance activities conducted on the system itself. Additionally, in accordance
with AMC 20-115B, the applicant may choose EUROCAE ED-12B/RTCA DO-178B as an
approved method to secure software approval.

The EUROCAE ED-12B /RTCA DO-178B document does not, however, provide sufficient
guidance regarding some important aspects such as the software review process, field
loadable software, user-modifiable software, software changes in legacy systems, software
tool qualification, software change classification or the re-use of life cycle data. Other items
that require further guidance include the use of configuration files, object-oriented
technology, the use of assembly branch coverage in structural coverage analysis, the
management of open problem reports, the oversight of suppliers and Formalised and Model
Based requirements and designs.

The aim of this Certification Memorandum is to provide additional guidelines to the applicant
on these aspects.

2.1 COMPARISON BETWEEN THE CONTENTS OF THIS DOCUMENT AND
THE CONTENT OF EXISTING FAA ORDERS

The format of this Certification Memorandum in terms of the order of the sections is intended
to harmonise this EASA guidance material with the existing FAA guidance material. Sections
3 – 14 of this Certification Memorandum correspond to chapters 1 – 12 of FAA Order
8110.49. Sections 15 – 18 of this Certification Memorandum correspond to chapters 1 – 4 of
FAA Notice 8110.110. This may facilitate recognition of the various sections of the guidance
when certification credit is requested.

Applicants should note, however, that apart from some minor differences in wording and
paragraph numbering, in some cases, the content of the guidance contained in this
Certification Memorandum is different from the guidance contained in FAA Order 8110.49
and Notice N8110.110. The major differences are described below.

a) The following sections of this Certification Memorandum contain some significant

differences from the guidance provided by the equivalent chapters of the FAA Orders and

Notices that exist at the time of publication of this document –

• Section 5 – 5.3.1, Organization, Role and Level of Involvement of EASA and

Applicants in Software Projects – these sub-sections differ from the contents of

chapter 3 of FAA Order 8110.49 in that they describe the role of the EASA software

panel and include the determination and documentation by an applicant of their level

of involvement in the software of each system on an aircraft.

• Section 6 - this section has no content in this Certification Memorandum, whereas

chapter 4 of FAA Order 8110.49 covers Software Conformity Inspection.

• Section 7 - the note on MEL in chapter 5 of FAA Order 8110.49 has been deleted from

this section, as the MEL considerations are developed according to specific EASA

guidance.

1 This applies for Large Aeroplanes. For other products, please refer to CS23.1301 and 23.1309 for Small
Aeroplanes, CS27.1301 and 27.1309 for Small Rotorcraft, CS29.1301 and 29.1309 for Large Rotorcraft, CS E-50
(d,f) for engines, CS-P, CS-APU and CS-ETSO.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 12/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

• Section 8 - this section has no content in this Certification Memorandum, whereas

chapter 6 of 8110.49 covers Approval of Field-Loadable Software (FLS) by Finding

Identicality Through the Parts Manufacturer Approval (PMA) Process.

• Section 13 – this section on the Oversight of Software Change Impact Analyses Used

to Classify Software Changes as Major or Minor differs considerably from the content

of chapter 11 of 8110.49.

• Section 16.1 -16.7 - Management of Open Problem Reports – the contents of these

parts of this section differ from the contents of chapter 2 of Notice 8110.110, which is

entitled Software Problem Reporting.

• Section 17 - this section on Embedded Software Configuration Files differs from

chapter 3 of Notice 8110.110, which is entitled Assuring System Databases and

Aeronautical Databases.

• Section 18.2 2) - the wording of this sub-section differs from the wording in chapter 4

of Notice 8110.110 on Managing the Software Development and Verification

Environment.

b) The following sections of the guidance of this Certification Memorandum do not

correspond to the contents of the existing FAA Orders or Notices, but they do correspond

to the contents of existing CAST Papers -

• Section 20, The Use of Object Code Coverage for Equivalence To Modified Condition

Decision Coverage (CAST 17).

• Section 21, Merging High-Level and Low-Level Requirements (CAST 15).

• Section 22, Clarification of Structural Coverage Analyses of Data Coupling and Control

Coupling (CAST 19).

c) The sections of this Certification Memorandum whose contents neither directly

correspond to the contents of the existing FAA Orders or Notices available at the time of

publication of this document nor to the contents of any existing CAST Papers are as

follows –

• Section 19, The Use of Object-Oriented Techniques at the Design or Source Code

Level.

• Section 23, The Validation and Verification of Formalized and Model-based Software

Requirements and Designs.

• Section 24, The Use of Pseudo-Code as Low-level requirements.

• Section 25, Stack Overflows.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 13/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

3 EASA CERTIFICATION POLICY

3.1 EASA POLICY

AMC 20-115B recognises Eurocae ED-12B / RTCA DO-178B as an acceptable means of
compliance with EASA Certification Specifications. Accordingly, EASA policy on software
aspects of certification is to permit applicants to use ED-12B / DO-178B as an acceptable
means of compliance against chapters 1301 and 1309 of the various Certification
Specifications or CS-E 50 (d,f), supplemented by the guidance provided in this Certification
Memorandum.

3.2 WHOM THIS CERTIFICATION MEMORANDUM AFFECTS

The guidance contained in this Certification Memorandum applies to any applicants seeking
approval from EASA for software embedded in aircraft systems or engines that is intended to
comply with ED-12B / DO-178B. It also applies to any personnel involved in the ED-12B /
DO-178B activities related to the airborne software of those applicants.

For TCs and STCs, applicants should ensure that they use the appropriate version of the
Certification Memorandum called up in the applicable CRI.

For an ETSO, the applicant may decide to take into account all or part of this guidance
contained herein, and may substantiate the details of their compliance in specific
documentation (i.e. Declaration of Design and Performance, Software Accomplishment
Summary, Hardware Accomplishment Summary or equivalent). Caution should be taken as
the content of Certification Memoranda may have changed by the time the equipment is
installed in the Aircraft/Engine. In any case, the installed equipment should finally comply
with the Aircraft/Engine Certification Basis (including certain Certification Review Items).

When this Certification Memorandum is used outside of the scope of a TC, STC or ETSO (e.g.
for pre-consultancy, pre-application , etc.), this guidance is provided for information only
and caution should be taken as the content of the Certification Memorandum may have
changed by the time of the application.

3.3 BACKGROUND

This Certification Memorandum was originally extracted from JAA leaflet n°5 (JAA interim
guidance material on Software Aspects of Certification in addition to Eurocae ED-12B / RTCA
DO-178B) and updated to take EASA requirements and procedures into account. It also
incorporates some material that was formerly provided in separate Certification Memoranda
and Certification Authorities Software Team (CAST) papers.

It should be noted that the term ‘Type Certificate’ (TC) in this Certification Memorandum
refers both to Type Certificates (TCs) and to Restricted Type Certificates (RTCs).

3.4 THE USE OF EUROCAE ED-94B / DO-248B CLARIFICATIONS

The purpose of ED-94B / DO-248B is to provide clarification of the guidance material in ED-
12B / DO-178B.

ED-94B / DO-248B may be used for any or all of the following purposes:

• Resolution of content errors in ED-12B / DO-178B.

• Clarification of a specific section or topic of ED-12B / DO-178B.

• Resolution of an inconsistency between ED-12B / DO-178B and any other relevant
civil aviation standards.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 14/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4 GUIDELINES FOR THE SOFTWARE REVIEW PROCESS

4.1 PURPOSE

This section provides guidelines for conducting software reviews during the software
development life cycle of airborne systems and equipment that are developed to meet the
objectives of ED-12B/DO-178B. The guidelines below are used by SW/CEH experts and may
be used by the applicant as indicated in section 4.3.

4.2 DEFINITIONS

For the purpose of this section, the following definitions apply:

Review is the act of inspecting or examining software life cycle data, software project
progress and records, and other evidence produced with the intent of finding compliance
with ED-12B/DO-178B objectives. Review is an encompassing term and may consist of a
combination of reading, interviewing project personnel, witnessing activities, sampling
data, and participating in presentations. A review may be conducted at one’s own desk, at
an applicant’s facility, or at an applicant’s supplier’s facility.

Sampling is the process of selecting a representative set of software life cycle data for
inspection or analysis to attempt to determine the compliance of all the software life cycle
data developed up to that point in time in the project. Sampling is the primary means of
assessing the compliance of the software processes and data. Examples of sampling may
include any or all of the following:

- An inspection of the traceability from system requirements to software high-level
requirements to software low-level requirements to source code and from
software requirements to test cases and procedures to test results.

- A review of any analyses used to determine the system safety classification and
the software level or of any reviews or analyses used to meet any ED-12B/DO-
178B objective (e.g., timing analysis or code review).

- An examination of the structural coverage of multiple samples of source code
modules.

- An examination of multiple samples of software quality assurance records and
configuration management records.

Finding is the identification of a failure to show compliance with one or more of the
objectives of ED-12B/DO-178B or of this Certification Memorandum.

Action: is the description of the activity to be performed by the applicant/supplier in order
to resolve a finding or any other deficiency detected by the auditor. By default, actions
should be completed and closed before approval.

Observation is the identification of a potential software life cycle process improvement.

Recommendation: is the description of the activity to be performed by the
applicant/supplier in order to resolve an observation identified by the auditor.
Implementation of recommendations is not mandatory prior to approval.

4.3 SCOPE

a. Section 9 of ED-12B / DO-178B describes the certification liaison process. The
certification liaison process is the vehicle to establish communication and understanding
between the applicant and the certification authorities. Sections 9.2 and 10.3 of ED-12B /
DO-178B state that the certification authority may review the software life cycle
processes and data to assess compliance with ED-12B / DO-178B. This section does not

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 15/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

change the intent of ED-12B / DO-178B with regard to the software review process, but
it clarifies the application of ED-12B / DO-178B.

b. The applicant should perform an equivalent software review process meeting the same
objectives as described in this section. The review reports are usually requested by
EASA.

c. Although desktop reviews may be used to successfully accomplish the software review
process, this section of the Certification Memorandum primarily focuses on on-site
reviews. The desktop review uses similar techniques as the on-site review but does not
have the advantages of being on-site (e.g., access to software personnel, access to all
automation, access to the test set-up). Both on-site and desktop reviews may be
delegated to the properly authorised staff responsible for conducting certification-related
activities. Practical arrangements with the software developer for on-site reviews by
certification authorities should include:

(1) Agreement on the type of review(s) that will be conducted (i.e., planning,
development, verification, or final certification)

(2) Agreement on date(s) and location(s) of the review(s).

(3) Identification of the certification authority personnel involved.

(4) Identification of any staff responsible for conducting certification-related activities
who are involved.

(5) Development of the agenda(s) and expectations.

(6) Listing of software data to be made available (both prior to the review(s) and at the
review(s)).

(7) Clarification of the procedures intended to be used.

(8) Identification of any required resources.

(9) Specification of date(s) and means for communicating review results (may include
corrective actions and other required post-review activities).

d. The objectives of the software review process are found in paragraph 4.4 of this section.
Paragraph 4.5 of this section primarily addresses the integration of the software review
process with the software development life cycle. Paragraph 4.5 also identifies the four
types of reviews and the software life cycle data and data assessment criteria for each
type. Paragraph 4.6 of this section addresses additional considerations for the software
review process. Paragraph 4.7 of this section provides guidelines for preparing,
conducting, and documenting a software review.

4.4 OBJECTIVES OF THE SOFTWARE REVIEW PROCESS

a. The certification authorities may review the software life cycle processes and associated
data at their discretion to obtain assurance that a software product submitted as part of
a certification application complies with the certification basis and the objectives of ED-
12B / DO-178B. The software review process assists both the certification authorities and
the applicant in determining whether a particular project will meet the certification basis
and ED-12B / DO-178B objectives by providing:

(1) Timely technical interpretation of the certification basis, the ED-12B / DO-178B
objectives and CRIs.

(2) Visibility into the compliance of the implementation and the applicable data.

(3) Objective evidence that the software project adheres to its approved software plans
and procedures.

(4) The opportunity for the certification authorities to monitor the activities of staff

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 16/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

responsible for conducting certification-related activities under the applicant’s DOA
system.

b. The amount of certification authority involvement in a software project should be
determined and documented as early as possible in the project life cycle. The type and
number of software reviews will depend on the software level of the project, the amount
and quality of support from the staff responsible for conducting certification-related
activities, the experience and history of the applicant and/or software developer, any
history of service difficulties, and several other factors. Section 5 of this Certification
Memorandum provides specific guidelines for determining the EASA level of involvement.

4.5 INTERACTION BETWEEN THE SOFTWARE REVIEW PROCESS AND THE
SOFTWARE LIFE CYCLE

a. The review process should begin early in the software life cycle. Early certification
authority involvement will mitigate the risk that the system, software, and planning
decisions will not comply with the ED-12B / DO-178B objectives. This requires timely
communication between the applicant and the certification authorities regarding those
planning decisions that may impact the software product and processes. Typically, the
development of software associated with an aircraft/ engine component may take several
months or years. Since the guidance of ED-12B / DO-178B is process orientated, then if
it is to be meaningful, the review process should be integrated throughout the software
life cycle. This means that regular contact between the applicant and certification
authorities should be established. This contact should provide gradually increasing
confidence in the software life cycle processes and in the resultant product to both the
applicant and the certification authorities. The four types of reviews are described as
follows:

(1) A software planning review should be conducted when the initial software planning
process is complete (i.e., when most of the plans and standards are complete and
reviewed). This review is commonly referred to as stage of involvement (SOI) #1.

(2) A software development review should be conducted when at least 75% of the
software development data (i.e., requirements, design, and code) are complete and
reviewed. This review is commonly referred to as SOI #2.

(3) A software verification review should be conducted when at least 75% of the software
verification and testing data are complete and reviewed. This review is commonly
referred to as SOI #3.

(4) A final certification software review should be conducted after the final software build
is completed, the software verification is completed, a (preliminary) software
conformity review has been conducted, and the software product is ready for formal
system certification approval. This review is commonly referred to as SOI #4.

b. The availability of software life cycle data does not imply that the data is always
complete. However, the data should be sufficiently mature so that a reasonable review
can be conducted. Similarly, not all transition criteria may necessarily be complete at
that time in the project, but sufficient transition criteria evidence should exist to ensure
they are being applied to the project.

c. Discussions between the applicant and the certification authorities should occur early in
the project life cycle and should determine the types, need, number, depth, and format
of the software reviews. For the purpose of this section of the Certification Memorandum,
four reviews are identified to assess compliance with ED-12B / DO-178B objectives.

d. The following paragraphs define the basic goals of each of the four types of software
reviews, the criteria for each type of review (e.g., type and availability of data, type of
transition criteria), and the appropriate evaluation criteria. Paragraph 4.6 of this
Certification Memorandum identifies additional considerations that may impact the type
and timing of reviews.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 17/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4.5.1 Software Planning Review

a. Identification of the Software Planning Review. The software planning process is
the initial process in the software life cycle for any software project. The planning process
establishes the various software plans, standards, procedures, activities, methods, and
tools required to develop, verify, control, assure, and produce the software life cycle
data. The intent of the software planning review is to determine whether the applicant's
plans and standards provide an acceptable means for complying with the objectives of
ED-12B / DO-178B. This review can also reduce the risk of an applicant producing a
software product that is inconsistent with the certification criteria and which will not
support the continued airworthiness requirements of the product. The software planning
review should take place after the initial completion of the software planning process.
Although the software planning process may continue throughout the software life cycle,
and plans and standards may change as the project progresses, it is generally considered
complete when the associated initial transition criteria are satisfied. The following
transition criteria are indicative of typical software planning process completion criteria:

(1) Software plans and standards have been internally reviewed, based on company
specified criteria and deficiencies have been resolved.

(2) Software plans and standards have been evaluated by software quality assurance and
deficiencies have been resolved.

(3) Software plans and standards have been approved and placed under configuration
control.

(4) The objectives of ED-12B / DO-178B, Annex A, Table A-1 have been satisfied.

b. Data Required for the Software Planning Review. The applicant should make the
software plans and standards shown in Table 4-1 available to the certification authorities.
The supporting software data should be under configuration control, appropriate for the
software level, prior to the software planning review.

Software Data ED-12B / DO-
178B Section

Plan for Software Aspects of Certification 11.1

Software Development Plan 11.2

Software Verification Plan 11.3

Software Configuration Management Plan 11.4

Software Quality Assurance Plan 11.5

*Software Requirements, Design, and Code Standards 11.6, 11.7, 11.8

Tool Qualification Plans, if applicable 12.2, 12.2.3.1

*Software Quality Assurance Records as applied to the
planning activities

4.6, 11.19

* Not required for Level D, per ED-12B / DO-178B, Annex A, Table A-1.

Table 4-1 Data Availability for Software Planning Review

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 18/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

c. Evaluation Criteria for the Software Planning Review. The objectives that apply to
planning in ED-12B / DO-178B Annex A, Tables A-1 (all objectives), A-8 (objectives 1-4),
A-9 (objective 1), and A-10 (objectives 1-2), should be used as the evaluation criteria for
the software planning review. The plans should also be evaluated to ensure that, when
they are followed, all applicable RTCA/DO-178B objectives would be satisfied.
Additionally, the applicant’s safety assessment, failure conditions, and software level(s)
should be assessed. Additionally, the applicant’s safety assessment, failure conditions,
and software level(s) should be assessed. The relevance of the software plans and
standards to the software level should also be evaluated.

4.5.2 Software Development Review

a. Identification of the Software Development Review. The software development
processes are the software requirements, design, code, and integration processes. The
development processes are supported by the integral processes of software verification,
configuration management, quality assurance, and certification liaison processes.
Therefore, the software development review should assess the effective implementation
of the applicant's plans and standards through examination of the software life cycle
data, particularly the software development data and integral processes’ data associated
with it. During this review, the applicant and certification authority representatives may
come to agreement on changes to or deviations from plans and standards that are
discovered during the review. Before conducting a software development review, the
software development data should be sufficiently complete and mature to ensure that
enough evidence exists that the developer is complying with their approved plans,
standards, and transition criteria. The following are typical criteria for a sufficiently
mature software development process:

(1) High-level requirements are documented, reviewed, and traceable to system
requirements.

(2) The software architecture is defined, and reviews and analyses have been completed.

(3) Low-level requirements are documented, reviewed, and traceable to high-level
requirements.

(4) The source code implements and is traceable to the low-level requirements and has
been reviewed.

b. Data Required for the Software Development Review. For a software development
review, the software data shown in Table 4-2 should be made available to the
certification authorities. The supporting software data should be under configuration
control, as appropriate for the software level, prior to the review. The data listed in table
4-1 should also be available during the development review.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 19/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Software Data ED-12B / DO-

178B Section

*Software Requirements, Design and Code Standards 11.6, 11.7, 11.8

Software Requirements Data 11.9

Design Description 11.10

Source Code 11.11

Software Verification Procedures (as applied to ED-12B / DO-
178B, Annex A, Tables A-2 through A-5)

6.3.1, 6.3.2,
6.3.3, 6.3.4,
11.13

Software Verification Results (as applied to ED-12B / DO-178B,
Annex A, Tables A-2 through A-5)

6.3.1, 6.3.2,
6.3.3, 6.3.4,
11.14

Software Life Cycle Environment Configuration Index 11.15

Problem Reports 11.17

Software Configuration Management 11.18

Software Quality Assurance Records (as applied to ED-12B / DO-
178B, Annex A, Tables A-2 through A-6)

11.19

* Not required for Level D, per ED-12B / DO-178B, Annex A, Table A-1.

Table 4-2 Data Availability for the Software Development Review

c. Evaluation Criteria for the Software Development Review. The objectives which
apply to development in ED-12B / DO-178B, Annex A, Tables A-2 (objectives 1-6), A-3
(all objectives), A-4 (all objectives), A-5 (objectives 1-6), A-8 (objectives 1-4, 6), A-9
(objectives 1-2), and A-10 (objective 3), should be used as evaluation criteria for this
review. Additionally, the software life cycle data should be evaluated to determine the
effectiveness of the applicant’s implementation of the plans and standards in the
development process.

4.5.3 Software Verification Review

a. Identification of the Software Verification Review Process. The software
verification process is typically a combination of inspections, demonstrations, reviews,
analyses, tests, and test coverage analysis. As with the other reviews, the software
configuration management and quality assurance processes are also active during these
verification activities. The verification activities confirm that the software product that
was specified is the software product that was built. The software verification review
should, therefore, ensure that the software verification processes will provide this
confirmation and will result in objective evidence that the product has been sufficiently
tested and is the intended product. The purpose of the software verification review is to:
assess the effectiveness and implementation of the applicant's verification plans and
procedures; ensure the completion of all associated software configuration management
and quality assurance tasks; ensure that the software requirements, design and the
integration of the code have been verified; and ensure that the software verification
process will achieve the requirement-based test coverage and structural coverage criteria
of ED-12B / DO-178B, Annex A, Table A-7. Before conducting a software verification
review, the software verification process should be sufficiently complete and mature to
ensure that representative verification data exists to assess that the applicant’s approved
plans and standards are being complied with and evidence exists that transition criteria
have been met. The following criteria are indicative of a mature verification process:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 20/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(1) All development data items (e.g., requirements, design, source code, object code,
linking and loading data, executable image) are complete, have been reviewed, and
are under configuration control.

(2) Test cases and procedures are documented, reviewed, and placed under configuration
control.

(3) Test cases and procedures have been executed (either formally or informally).

(4) Completed test results are documented, as agreed to in the planning documents.

(5) The software testing environment is documented and controlled.

b. Data Required for the Software Verification Review. For the purpose of compliance
findings for the software verification review, the software data shown in Table 4-3 should
be made available to the certification authorities. The supporting software data should be
under configuration control, as appropriate for the software level, prior to the review. The
data listed in tables 4-1 and 4-2 should also be available during the verification review.

Software Data ED-12B / DO-178B
Section

Software Requirements Data 11.9

Design Description 11.10

Source Code 11.11

Software Verification Cases and Procedures 6.3.1-6.3.6, 11.13

Software Verification Results 11.14

Software Life Cycle Environment Configuration Index (test
environment)

11.15

Software Configuration Index (test baseline) 11.16

Problem Reports 11.17

Software Configuration Management Records 11.18

Software Quality Assurance Records 11.19

Software Tool Qualification Data 12.2.3

Table 4-3 Data Availability for Software Verification Review

c. Evaluation Criteria for Software Verification Review. The following ED-12B / DO-
178B, Annex A, objectives apply to the software verification review and should be used
as the evaluation criteria for the review: Tables A-1 (objective 3), A-5 (objective 7), A-6
(all objectives), A-7 (all objectives), A-8 (all objectives), A-9 (objectives 1-2), and A-10
(objective 3).

4.5.4 Final Certification Software Review

a. Identification of Final Certification Software Review. The final software build
establishes the configuration of the software product considered by the applicant to
comply with all the objectives of ED-12B / DO-178B. It is the version of the software that
is intended to be used in the airborne application. The purpose of this review is to:
determine compliance of the final software product with the objectives of ED-12B / DO-
178B, as defined by the software level and other software policy and guidance; ensure
that all software development, verification, quality assurance, configuration
management, and certification liaison activities are complete; ensure a software
conformity review has been completed and the software complies; and review the final
Software Configuration Index documents (SCIs) and the Software Accomplishment

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 21/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Summary (SAS). The final certification software review should take place when the
software project is completed and includes the following criteria:

(1) The Software conformity review has been performed and any deficiencies resolved.

(2) The Software Accomplishment Summary and Software Configuration Indexes have
been completed and reviewed.

(3) All software life cycle data items have been completed, approved, and placed under
configuration control.

b. Data Required for Final Certification Software Review. For the purpose of this
review, all the software life cycle data items of ED-12B / DO-178B should be available to
the certification authorities. However, only the data shown in Table 4-4 is of special
interest for this review. The supporting software data should be under configuration
control, appropriate for the software level, prior to the review.

Software Data ED-12B / DO-178B
Section

Software Verification Results 11.14

Software Life Cycle Environment Configuration Index 11.15

Software Configuration index 11.16

Software Configuration Management Records 11.18

Problem Reports 11.17

Software Quality Assurance Records (including the Software
Conformity Review Report)

11.18

Software Accomplishment Summary 11.20

Table 4-4 Data Availability for Final Certification Software Review

c. Evaluation Criteria for Final Certification Software Review. Evaluation criteria for
this review include all the objectives of ED-12B / DO-178B, Annex A. Additionally, all
software-related problem reports, action items, certification issues, etc. must be
addressed prior to certification or authorisation.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 22/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4.5.5 Summary

The following table provides an overview of the information presented in the preceding sub-
sections in relation with the scope of the various software reviews and audits.

Audit N° Major Reviewed Devices Documentation available
during the audit

Entry Criteria

1
Software
Planning
Review

Planning.
SW partitioning.
Safety objectives.
Software tools / tools
policy.
QA policy.

System requirements.
PSAC*, SDP*, SVP*,
SCMP*, SQAP*.
Software requirements,
design and code standards.
TQP*.
Life cycle data of qualified
tools.
Verification, configuration
management and process
assurance records.

As soon as
possible.

2
Software
Design
Review

Software Requirements
vs. System requirements
(traceability).
Software design vs.
design standards.
code vs. standards.
Verification Plan vs.
Software requirements
and design.
Design verification
activity.
Follow-up of the
previously open actions.

Software requirements data.
Software design data.
All life cycle data down to
code.
Verification, configuration
management and process
assurance records.
All data previously
mentioned.

When at least
75% of the
design life cycle
data is available
at maintained in
configuration.

3
Software
Verification
Review

Software requirements
coverage (correctness
and robustness).
Follow-up of the
previously open actions.

Software Verification Cases
and Procedures
Software Verification Results
Verification, configuration
management and process
assurance records
Problem reports
All data previously
mentioned

When at least
75% of the
verification data
is available at
maintained in
configuration.

4
Final

Software
Certification

Review

Coverage of tests
(integration / validation)
Traceability of the final
documentation package
Traceability of change
request / Problem
Reports
Status of open actions.
Supplier quality actions

Evolution/Problem reports.
Records.
SAS*.
SCI*.
TAS for
development/verification
tools.
Verification, configuration
management and process
assurance records.

Once all SW
activities are
finished and at
least 1 month
prior to final
system /
equipment
certification
review.

* To be submitted to the authorities at least ten working days before the audit

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 23/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

4.6 ADDITIONAL CONSIDERATIONS FOR THE SOFTWARE REVIEW

PROCESS

a. Although this section of the Certification Memorandum proposes four types of on-site
reviews, the type, number, and extent of those reviews may not be suitable for every
certification project and applicant. Additional considerations and alternative approaches
may be appropriate. The following list of considerations may influence the level of
involvement of the certification authorities in the software review process:

(1) The software level (s), as determined by a system safety assessment.

(2) The product attributes (e.g. size, complexity, system functionality, software design).

(3) The use of new technologies or unusual design features.

(4) Proposals for novel software methods or life cycle model(s).

(5) The knowledge and previous success of the applicant in software development to
comply with the objectives of ED-12B / DO-178B.

(6) The availability, experience, and authorisation of staff responsible for conducting
software certification-related activities.

(7) The existence of issues associated with Section 12 of ED-12B / DO-178B in the
project.

(8) The issuance of CRIs for software-specific aspects of the certification project.

b. On-site software reviews may be increased or decreased in number. Four reviews is a
typical number for a Level A or Level B project. Fewer or no reviews may be appropriate
for some equipment manufacturers. Furthermore, reviews may be merged into a
combined review. It is the responsibility of the certification authority representative to
determine the desired level of investigation, to plan the reviews, and to co-ordinate with
the applicant.

4.7 PREPARING, CONDUCTING, AND DOCUMENTING A SOFTWARE

REVIEW

This paragraph of the Certification Memorandum provides guidelines for preparing for an on-
site review, conducting an on-site review, and recording and communicating the results of
the review:

a. Prepare for the On-Site Review. The responsible certification engineer should
assemble the review team. The team should include at least one person knowledgeable
in software engineering, one person familiar with the type of system being evaluated,
and a manufacturing inspector knowledgeable in software quality assurance and
configuration management (if available). The certification engineer should co-ordinate
with the applicant regarding the upcoming software review at least six weeks in advance
and propose an agenda. To optimise the efficiency of the review team while on-site, the
certification authorities should request the applicant to send each team member the
software plans identified in ED-12B / DO-178B, Section 4.3, 15 working days prior to the
review (if not agreed differently between EASA and the applicant). Each team member
should review the plans prior to arriving at the applicant's facility. The certification
engineer should prepare a short entry briefing to introduce the team members, restate
the purpose of the review, and review the agenda. The applicant should provide a short
briefing to facilitate an understanding of the system under review, the software life-cycle
model, processes, tools used, and any additional considerations.

b. Notify the Applicant. The responsible certification authority representative should
notify the applicant in writing regarding the certification authorities’ expectations in the
software review. The following information should be included in the notification letter:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 24/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(1) The purpose of the review and the type of review (i.e., planning, development,
verification, or final).

(2) The date and duration of the review.

(3) A list of certification authority review participants with contact information.

(4) A request that the software plans identified in ED-12B / DO-178B, Section 4.3, be
sent to each review participant.

(5) A request that all pertinent life cycle data should be made available at time of review.

(6) An indication of which ED-12B / DO-178B objectives will be assessed.

(7) A suggestion that the applicant should conduct their own self-assessment prior to the
review.

(8) A request that the responsible managers, developers, verification, configuration
management, and quality assurance personnel be available for questions.

c. Conduct the On-site Review. A typical on-site review includes the following elements:

(1) Certification Authority Entry Briefing to Include: introduction of review team
members; restatement of purpose of the review; and overview of the review agenda.

(2) Software Developer's Briefing to Include: availability of facilities; availability of life
cycle data; personnel schedule constraints; overview of the system; interaction of the
system with other systems; system architecture; software architecture; software life
cycle model (including tools and methods); progress against previous action items or
CRIs (if appropriate); current status of the development; and any additional
considerations (per ED-12B / DO-178B, Section 12).

(3) Certification authorities’ review of the applicant/developer’s processes.

(4) Certification authorities’ review of the product.

d. Record the Review Results. The review results should be recorded; the records should
include the following, as a minimum:

(1) A list of the each life cycle data item reviewed to include: document name; control
identity; version and date; requirement identification (where applicable); source code
module (where applicable); paragraph number (where applicable); and review
results.

(2) The approach taken to establish the finding or observation.

(3) An explanation of the findings or observations as related to the objectives of ED-12B
/ DO-178B (documented with detailed notes). Each unsatisfied objective requires a
summary of what was done and a discussion as to why the objective was not
satisfied. Examples should be included, when necessary. This will ensure that the
approach and findings can be understood and reconstructed at some future date.

(4) Any necessary actions for either the applicant or the certification authorities.

(5) Listing of all current or potential CRIs.

e. Deliver an Exit Briefing. The final briefing to the applicant and / or the developer under
review should be factual and positive and should summarise the findings and
observations from the review. Findings and observations should be presented with
specific reference to ED-12B / DO-178B, the certification basis, policy, guidance, or other
certification documentation. The applicant and/or developer should be given the
opportunity to respond to the findings and observations.

f. Prepare a Review Report. During the review, the applicant should produce a review
report to summarize all the review findings, observations, and required actions. The
report should be reviewed and agreed with the certification authority representative and

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 25/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

the developer before the end of the review.

g. Identify and Prepare CRIs (as needed). CRIs are a means of documenting technical
and certification issues that must be resolved prior to system certification. They provide
the necessary communication between applicant and certification engineer and
management. CRIs should be identified, prepared, and resolved as soon as possible after
the issue is discovered. Co-ordination with the PCM and/or EASA should be established,
as dictated by the applicable project procedures.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 26/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

5 ORGANISATION, ROLE AND LEVEL OF INVOLVEMENT
OF EASA AND APPLICANTS IN SOFTWARE PROJECTS

5.1 PURPOSE

The purpose of this section is to present (for information) the role of the EASA software
panel and the EASA SW/CEH group, how they determine their level of involvement in a
certification project and to describe their relations with the other EASA system panels.

In a similar manner to the one described in this section, an applicant may choose to tailor
the software review process (described above in section 4) with respect to specific criteria
such as software DAL, complexity, supplier experience, the presence of novelties etc., so as
to determine their own level of involvement in the software of each system. This tailoring
may be performed at the company level or at the product level.

When an applicant has determined their own level of involvement for the software of each
system, the applicant should produce a document for EASA concurrence that lists the CSCIs
in all the systems on the aircraft and shows the DAL and the applicant’s planned level of
involvement for each CSCI.

NOTE: In addition to this section, the description of the EASA organisation, its role and level
of involvement in each specific software project may be extended in the Project Information
Document (PID) where it is applicable.

5.2 BACKGROUND

a. Modern aircraft and engine designs include many items of integrated digital equipment,
some of which perform critical functions. The certification activities of the software panel
need to be well organised and closely coordinated with the activities of each system
panel. The system panels involved include:

Panel 1: Flight

Panel 2: Performance

Panel 3: Structures

Panel 4: Hydro Mechanical systems

Panel 5: Electrical systems

Panel 6: Avionics systems

Panel 7: Powerplant and fuel systems

Panel 8.1: Cabin Safety

Panel 8.2: Environmental Control systems

Panel 12: Safety

The system/software integration of many types of equipment brings the need for close
coordination between system and software specialists. Each panel that is in charge of a
system expected to use digital equipment shall be the primary panel for the certification
requirements relevant to that system. The software panel stands as the secondary panel
for some of those requirements (mainly chapters 1301 and 1309 from Certification
Specifications or CS-E 50 (d,f)). The SW/CEH experts will perform the verification
activities for the software documents under their responsibility and will issue
recommendations for compliance statements to the software panel as well as to the
relevant system panels.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 27/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

b. EASA relies on the applicant’s DOA system so they can be confident that compliance with
the certification requirements applicable to the software has been achieved.

Within the scope described in Subpart J of Part 21 (particularly cf. § 21A.239, 21A.257
and 21A.263), the applicant shall be entitled to perform design activities and to propose
documents for acceptance without further verification by EASA.

The level of involvement of the EASA SW/CEH group for each piece of equipment in a
given project can vary between the levels of NONE, LOW, MEDIUM or HIGH involvement
in the certification activities. Additionally, depending on the stage of advancement and
the quality of the certification activities already performed, the level of involvement
initially agreed by EASA for a given piece of equipment may evolve during the project.

5.3 DISCUSSION

5.3.1 Organisation and role of the SW/CEH group

a. Coordination within the SW/CEH group (when applicable)

(1)The coordinator

The software coordinator is in charge of coordination of the software aspects of
certification for the program on behalf of the EASA team. He is a member of the software
panel.

i. Within the SW/CEH group, the coordinator

• is the focal point in the case where no member has been designated for the
software aspects of certification for some on-board equipment and in this
case, he/she may propose another SW/CEH group member to be designated

• is the focal point in the case of the relevant SW/CEH expert being unavailable
due to conflicting priorities and in this case, he/she may propose an alternate
SW/CEH expert to be designated

• is the focal point within the EASA team for resolving generic issues linked to
software development/certification policy.

ii. In addition, the coordinator should be informed:

• by the applicant and/or by the relevant EASA systems specialist or SW/CEH
expert of new developments affecting the certification of the software installed
on the aircraft (except for minor changes)

• periodically (at least twice a year) by the applicant of the overall software
certification activities scheduled and should ensure that all SW/CEH group
experts are adequately allocated in order to carry out the associated software
certification activities in due time.

iii. Finally, the coordinator should report to the PCM :

• periodically (at least twice a year) the results of the overall software
certification activities carried out and attend relevant status meetings (e.g.
Type Board Meetings)

• on PCM request, any relevant software certification activity findings made by
the SW/CEH group.

(2)Work distribution among the SW/CEH group

The SW/CEH panel is responsible for the definition and acceptance of the software
certification basis and the acceptable means of compliance.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 28/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

The SW/CEH group is responsible for the acceptance that the software development
process is in line with the certification basis (including methodologies for software
development) and consistent with the DAL allocated by the relevant system panel.

b. Coordination with system panels

(1)Determination of the Certification basis and the Acceptable Means of

Compliance.

The relevant SW/CEH group member should be invited to the familiarisation meetings for
systems that embed software features for which the SW/CEH group will have to assess
compliance. The SW/CEH group member should assist the applicant and the relevant
system panel in the determination of the certification basis. This task includes the
definition of the applicable requirements and interpretative material as well as the
identification of the generic software CRIs that are applicable to the system.

In addition, the designated SW/CEH group member may recommend the system
specialist and SW/CEH panel to open a new CRI and may submit proposals. The draft CRI
will then be further developed by the SW/CEH panel with support from the relevant
SW/CEH group member and the relevant system panel if needed. The endorsement of
the SW/CEH panel is necessary to issue the EASA position on this issued CRI.

(2)Development Assurance Level (DAL) allocation

Acceptance of the DAL allocation at system level is the responsibility of the system
specialist, based on the Functional Hazard Analysis (FHA) or the Preliminary System
Safety Analysis (PSSA). In order to assess the DAL allocation proposed by the applicant,
the system specialist may request advice from the relevant SW/CEH group member.

This SW/CEH group member is responsible for assessing the DAL allocation within
software components, provided this allocation remains consistent with the system DAL
allocation.

For this purpose, the applicant or the system panel should provide the SW/CEH group
with the system FHA and any document justifying the DAL allocation, including a DAL
downgrading justification (if applicable).

(3)Compliance statement

The SW/CEH group member is responsible for the compliance verification activities that
he/she performs: at the end of the compliance verification, he/she shall issue a
compliance statement to the PCM and send a copy of it to the system panel that is the
primary panel for the system with a copy to the SW/CEH co-ordinator and applicant.

The SW/CEH panel co-ordinator is responsible for issuing the final software panel
compliance statement. As the primary panel, the system panel is responsible for the final
compliance statement. If there is any inconsistency between the system panel
compliance statement and the software compliance statement (for example, where a
system panel issues a compliance statement even though some of the corresponding
software documents have not received a compliance statement recommendation from
the SW/CEH group), the issue shall be brought up and solved at PCM level.

5.3.2 Determination of EASA software level of involvement (LOI)

a. General

The software certification process involves both the EASA software and CEH experts and the
applicant’s DOA system.

Early coordination should take place between the EASA SW/CEH group and the applicant
during an initial certification meeting in order to specifically address their involvement in the
software certification activities.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 29/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

The agenda and objectives of the initial certification meeting should cover the following
topics:

(1) The applicant should present to EASA the characteristics of the software as well as
the organisational context of the software development and certification (including
the identification of the suppliers).

(2) The applicant should present to EASA the activities they plan to monitor (a list of
reviews and a schedule) and state the rationale for the activities they plan to conduct
under their DOA system.

(3) The EASA SW/CEH group should present their intended overall level of involvement.

(4) The EASA SW/CEH group should present their audit planning and define the
documentation to be delivered before each audit.

Agreement on the level of involvement, audit planning and documentation to be submitted
to EASA should be ideally reached during the initial certification meeting. The final decision
and a reference to the rationale will be documented in the system certification plan.

b. Determination of the LOI

The outcome of the assessment performed during the initial certification meeting will result
in a level of involvement of NONE, LOW, MEDIUM or HIGH for the EASA SW/CEH group in
the certification activities. There are five major criteria that can influence the outcome of this
assessment:

(1) The Software Criticality Level

(2) The complexity of the software development

(3) The software certification experience of the development team and/or applicant

(4) The service history of the software

(5) The need for a new EASA policy due to any novelties (such as new technology, new
design methods, unusual tools, etc.)

5.3.3 Influence of the LOI on the certification activities

a. EASA Software audits

Section 4 of this Certification Memorandum provides information regarding the software
review process. Depending on the level of involvement agreed, the number of software
audits can be adapted as described in table 5-1:

LOI Software audits

HIGH At least 2 on-site audits (e.g. SOI#1 + combined SOI#2 and
SOI#3)

+ desktop reviews (e.g. SOI#4)

+ additional technical meetings (e.g. novelty)

+ Review of applicant Review Reports (cf. b.)

MEDIUM At least 1 on-site audit (e.g. combined SOI#2 and SOI#3)

+ desktop reviews (e.g. SOI#1+ SOI#4)

+ additional technical meetings

+ Review of applicant Review Reports (cf. b.)

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 30/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

LOI Software audits

LOW 1 on-site audit or desktop reviews

+ Review of applicant Review Reports (cf. b.)

NONE Eventual review of applicant Review Reports (cf. NOTE)

Table 5-1 Software audits depending on LOI

NOTE: In particular cases, EASA can increase their involvement.

b. Applicant Software Review Reports

For each development that is not completely performed under the applicant’s DOA system, a
status report will be presented by the staff member responsible for certification during each
software audit, in particular covering the software review activities performed by the
applicant and the Action Items in progress.

The applicant should report to EASA about their own monitoring as follows:

(1) Software Review Reports will be sent for information to the EASA SW/CEH group until
the Entry Into Service (EIS) of the product.

(2) Software Review Reports should be made available to the EASA SW/CEH group at
least 15 working days (if not agreed differently between EASA and the applicant)
before a planned EASA software audit, or 15 working days before the target date for
EASA software approval. In any case, Software Review Reports shall be available for
consultation during EASA audits.

c. Documentation to be submitted to EASA

The SW/CEH group experts and the system specialists should agree with the applicant early
in the project on the categories of documents they wish to review or receive for information.

The applicant will send software certification documents to the SW/CEH group and send
system certification documents to the relevant system panels. In addition, some system
documents may be sent to the SW/CEH group for information only (e.g. the FHA), and some
software documents may be sent to system panels (e.g. SAS) for information only. The
allocation of certification documentation between the system panel and the SW/CEH group
shall be clearly documented in the system certification plans.

The table 5-2 gives an example of the documents that fall under the responsibility of the
SW/CEH group, depending on the LOI:

 Certification Documents to be provided

LOI PSAC SAS CID Other SW
plans

Software

Review
Reports

HIGH For
agreement

For
agreement

For
information

For
information

For
information

MEDIUM For
agreement

For
agreement

For
information

For
information

For
information

LOW For
information
(in cases of
no EASA
involvement)

On request On request On request For
information

NONE On request On request On request On request On request

Table 5-2 Documentation to be provided depending on LOI

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 31/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

NOTE: the classification “for agreement”, “for information” and “on request” can be classified
in categories, e.g.:

CAT1 = “for agreement”

CAT2 = “for information”

CAT3 = “on request”.

5.3.4 Revision of LOI

At any time, the level of involvement initially agreed between EASA and the applicant for a
given item of equipment may be revised. It can evolve either towards more involvement or
towards less involvement, depending on the stage of advancement and the quality of the
certification activities already performed.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 32/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

6 RESERVED

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 33/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

7 GUIDELINES FOR THE APPROVAL OF FIELD LOADABLE
SOFTWARE (FLS)

7.1 PURPOSE

This section provides guidelines for approving field-loadable software (FLS). These guidelines
are applicable to software data approvals related to type certification, supplemental type
certification and approvals of changes to type design.

7.2 BACKGROUND

Through technological advances, the field loading of software has become a common
process. This process reduces aircraft down-time for maintenance and increases the
efficiency of maintaining airborne equipment. ED-12B / DO-178B, Section 2.5, provides
some system design considerations for FLS; however, the existing guidance for the approval
of FLS through the processes for TCs, STCs and the approval of changes to type design is
limited. This section provides additional guidelines for the approval of FLS using the
processes for TCs, STCs or approvals of changes to type design.

7.3 THE USE OF EARLIER VERSIONS OF ED-12

Versions of ED-12 earlier than revision B do not provide any guidance regarding FLS, and
should not be used as a means of compliance for FLS approvals. For software developed to
previous guidelines, at least the field-loadable component and the protective schemes of the
component should be demonstrated to meet the guidelines contained in ED-12B / DO-178B
or an alternate means of compliance, as agreed to between the applicant and the
certification authorities.

7.4 APPROVAL OF FIELD-LOADABLE SOFTWARE (FLS)

The following procedures should be implemented as part of the processes for TCs, STCs or
approvals of changes to type design for the approval of FLS:

a. It should be confirmed that the software meets the objectives of ED-12B / DO-178B or
another acceptable means of compliance, as agreed to between the applicant and the
certification authorities.

b. It should be confirmed that the considerations outlined in ED-12B / DO-178B, Section
2.5, have been addressed.

c. It should be confirmed that the software and hardware configuration were verified/tested
together during the verification process (i.e., the software must be installed on the target
computer in which the approval was granted).

d. There should be a Configuration Management process in place to assure that the
installation configuration (i.e., software part number, the hardware part number, the
aircraft/ engine model, and the aircraft/engine serial number combination, as applicable)
is the same configuration that was approved during the TC, STC or approvals of changes
to type design process.

e. If redundant parts on the aircraft or engine are field-loadable, the applicant should define
the following: (1) the requirements for intermixing different software loads on the parts,
(2) requirements for partially successful and partially unsuccessful loads, and (3) the
aircraft or engine dispatch ability effects of successful and unsuccessful loads on
redundant parts.

f. There should be a process in place to assure that the software loaded is the software

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 34/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

approved and that the software has not been corrupted (e.g., verification with an
appropriate data transfer integrity check, such as a Cyclic Redundancy Check (CRC)).

NOTE 1: A “product” is an aircraft, an engine or a propeller.

NOTE 2: Different CRC algorithms give different assurances that the data transferred is
correct. The applicant and approving authority should assure that the algorithm used is
sufficient for the integrity required for the software level of the data being loaded.

g. If there is no process in place to assure that paragraph 7.4f above has been addressed,
the applicant should plan and provide alternative means to systematically verify the
proper loading of the FLS after each loading (e.g. by means of an installation test
procedure). It should be ensured that the on-board loading system is approved
considering the following items:

(1) The applicant should demonstrate that the on-board loading system complies with the
guidelines of ED-12B / DO-178B, Section 2.5 or an alternate means of compliance as
described in paragraph 7.4 of this Certification Memorandum.

(2) The applicant should provide documentation defining the operation of the on-board
loading system and the recommended means for maintaining configuration control of
equipment by the operator. This documentation should include guidelines for the
configuration control processes that meet the guidelines outlined in this Certification
Memorandum.

(3) The applicant’s on-board loading system and procedures should be approved by the
certification authorities. Depending on the implementation, this approval may include
the data loader, as well as the procedures. (Note: Many approaches to data loading
do not require evaluation of the data loader because integrity checks are built into the
data and the data transfer process, see paragraph 7.4 f of this Certification
Memorandum).

(4) If the applicant proposes more than one medium for on-board loading (e.g. diskette,
mass storage, etc.), loading from all mediums should comply with the guidelines in
this section of the Certification Memorandum.

h. The applicant should demonstrate the ability to verify the airborne equipment software
part number with on-board equipment, carry-on equipment, or other appropriate means.

i. It should be confirmed that any changes to FLS will undergo a software change impact
analysis to determine the safety impact and the classification of the changes as major or
minor.

j. FLS which is also user-modifiable and has been approved by the certification authorities
as user-modifiable does not require further determinations of compliance for
dissemination and installation (reference ED-12B / DO-178B, Section 2.4).

7.5 INSTALLATION CONSIDERATIONS

The approved FLS may be installed on the aircraft via a Service Bulletin, Engineering Change
Request, or another means approved by the certification authorities. The approved means of
installation may vary, depending upon the method for granting approval. Whether the FLS
approval is through TC, STC, approvals of changes to type design or some other approval
process, the document used to install the FLS should be approved by the certification
authorities or under DOA privileges. The document should specify the following elements:

a. The aircraft/engine and hardware applicability.

b. Verification procedures to assure that the software was correctly loaded into an approved
and compatible target computer.

c. Any post load verification and/or test procedures required to show compliance with the
guidelines specified in this section of the Certification Memorandum.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 35/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

d. Actions to be taken in the event of an unsuccessful load (for example, to prohibit the
dispatch of the aircraft).

e. Reference to an approved loading procedure.

f. Maintenance record entry procedures required to maintain configuration control.

g. Reference to the Aircraft Flight Manual or Operations Manual of the aircraft, as
appropriate.

7.6 MAINTENANCE AND PART MARKING CONSIDERATIONS

Maintenance and part marking for FLS should be performed in accordance with Part 21 and
the appropriate parts of the Certification Specifications. Additional maintenance and part
marking considerations that apply specifically to FLS using TC, STC or approvals of changes
to type design processes are discussed below:

a. The applicant’s Aircraft Maintenance Manual or Instructions for Continued Airworthiness
(ICA) should include the procedures to be followed when conducting maintenance on
airborne equipment using field-loadable software.

b. The applicant’s Aircraft Maintenance Manual or IFCA should include a procedure that
requires maintenance personnel to verify the software part number configuration before
and after maintenance is performed on the airborne equipment.

NOTE: If the software loading cannot be verified (e.g., procedures do not render proper
results, checksum fails, part number does not match approved part number, etc.), the
system should not be considered functional and the aircraft should not be dispatched.

c. It is the responsibility of maintenance personnel to ensure the FLS part number is
recorded in the necessary maintenance logs.

d. For airborne equipment having separate part numbers for hardware and software, the
software part numbers need not be displayed on the outside of the unit, as long as they
can be verified through some kind of electronic query. It is the maintenance personnel’s
responsibility to ensure that the software part number has been logged. When new
software is loaded into the unit, the same requirement applies and the approved software
part number should be verified before the unit is returned to service.

e. For airborne equipment having only one part number, which represents a specific
configuration of software and hardware, the unit identification on the nameplate should
be changed when the new software is loaded. When new software is loaded, the software
part number stored in the target computer after data loading should be verified
electronically. It should be verified that the electronic software part number and the unit
part number displayed on the nameplate are an approved configuration prior to returning
the unit to service.

f. Changes to software part number, version, and/or operational characteristics should be
reflected in the Operations Manual, Aircraft Flight Manual, IFCA, and/or any other
appropriate document.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 36/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

8 RESERVED

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 37/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

9 GUIDELINES FOR THE APPROVAL OF AIRBORNE
SYSTEMS AND EQUIPMENT CONTAINING USER-
MODIFIABLE SOFTWARE

9.1 PURPOSE

This section provides guidelines regarding the application of ED-12B / DO-178B for approval
of airborne systems and equipment designed to contain user-modifiable software
components. These guidelines are applicable to the approval of airborne systems and
equipment and the software aspects of those systems related to type certificates (TC),
supplemental type certificates (STC) and approvals of changes to type.

9.2 SCOPE

This section applies to user-modifiable software only. The guidance provided below applies
neither to option-selectable software nor to field-loadable software, except where such
software is also user-modifiable. For guidance on field-loadable software see section 7 of this
Certification Memorandum.

9.3 THE USE OF EARLIER VERSIONS OF ED-12 / DO-178

Versions of ED-12 / DO-178 prior to version B did not provide any guidance regarding user-
modifiable software, and should not be used as a means of compliance for user-modifiable
software approvals. For software developed to previous guidelines, at least the user-
modifiable component, the protective schemes, and any affected aspects of the non-
modifiable component should be developed to ED-12B / DO-178B or another acceptable
equivalent means as agreed to between the applicant and the certification authorities. ED-
12B / DO-178B guidance for user-modifiable software is contained in Sections 2.4, 5.2.3,
7.2, 11.1, and 11.10 of that document. ED-12B / DO-178B also provides guidance for
upgrading software from previous guidance in Section 12.1.4.

9.4 SAFETY CONSIDERATIONS

a. User-modifiable software is software within an airborne system approved for user
modification. Users (e.g., airlines, operators) may modify user-modifiable software within
the specified modification constraints and with approved modification procedures without
any further involvement by the certification authorities. It is intended that once the
system with the user-modifiable software has been certified, the certification authorities
should require no further visibility, review, or approval of modifications made to that
user-modifiable software component. Therefore, modification of the user-modifiable
software by the user should have no effect on the aircraft safety margins or operational
capabilities, flight crew workload, any non-modifiable software components, or any
protection mechanisms of the system.

b. A user-modifiable software component is that part of the software within the airborne
system that is designed and intended to be changed by the user. A non-modifiable
software component is one that is not designed or intended to be changed by the user.
Modification constraints for UMS should be developed by the applicant and provided to
the users. Any change that affects safety margins, operational capabilities, flight crew
workload, any non-modifiable software components, protection mechanisms, or software
boundaries, or that results in exceeding a pre-approved range of data, parameters, or
equipment performance characteristics warrants the rescinding of the classification of the
software as user-modifiable, and requires design approval under the applicable
regulations.

NOTE: Multiple trim values used as user-modifiable software that may affect safety

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 38/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

require special attention. In general, it is not acceptable to simply test the trim value
throughout its trim range, because of the uncertainty for acceptability of all the
combinations of the trims. In most cases, it is not possible to verify all possible
combinations of multiple trims. Therefore, in the case of multiple trims used as user-
modifiable software, acceptance of verified sets of trims is generally required.

c. The potential effects of user-modifiable software modification must be determined by the
system safety assessment and mitigated by system and software design means,
development and verification assurance, approved procedures, and approved tools (if
applicable). When evaluating data as part of the ED-12B / DO-178B process, the
applicant and the certification authorities representatives involved should ensure that the
protective mechanisms, verification, and user-modification procedures do not interfere
with the non-modifiable components or with protection integrity. The applicant should
obtain the concurrence of the certification authorities early in the program as to the
acceptability of the protective mechanism, protection verification, and modification
procedures and tools.

NOTE: The purpose of the protective mechanism is to ensure that the user-modifiable
component does not interfere with the non user-modifiable component. This protective
mechanism should be evaluated during the initial approval of the system that contains
user-modifiable software. It should be assured that no modification of the software by
the user affects the protective mechanism. Paragraphs 9.7 and 9.8 of this section will
further address protection.

9.5 CONSIDERATIONS FOR DISPLAYED DATA

Where information is displayed to the flight crew and is derived from UMS, the information
should be identified to distinguish it as “advisory data only” that has not been approved as
part of the aircraft and/or engine type design by the certification authority. If the information
displayed has received an operational approval as part of the operational procedures of the
aircraft and/or engine by an appropriate operation approval authority, this distinction may
not be necessary. If the design or inherent nature of the equipment or user-modifiable
component makes the distinction between approved and unapproved information so readily
apparent to the flight crew that errors distinguishing the two types of information are
reasonably precluded, explicit identification of the information as “advisory data only” may
not be required. Such identification, where required, should be provided by a non-modifiable
component and allow the flight crew to readily distinguish between information approved or
accepted by the certification or operational approval authority. “Advisory data only”
information should be verifiable by the flight crew from another source on the aircraft and/or
engine, should not be used to display any information where the potential worst case failure
condition for displaying misleading data is any greater than minor, or should not be used by
the flight crew in performing any aircraft and/or engine operational procedures (for example,
supplemental situational awareness only).

9.6 MODIFICATION OF AIRCRAFT AND/OR ENGINE PERFORMANCE
PARAMETERS

Modifications that could affect the safety margins, operational capabilities of the aircraft
and/or the engine, or crew workload include modifications of displayed data or other data
used by the flight crew to determine aircraft and/or engine performance parameters. These
types of modifications require certification authority approval. Modification of the user-
modifiable component to provide or revise these parameters, regardless of whether they are
provided as primary or advisory information, requires certification authority approval. Such a
change would warrant rescinding the classification of the software as user-modifiable and
would require design approval and part number revision.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 39/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

9.7 PROTECTION

Non-modifiable software components of the airborne system should be protected from user-
modifiable software components. The system requirements should specify the protection
mechanisms that prevent the user modification from affecting system safety, operational
capability, or flight crew workload. If the system requirements do not include provisions for
user modification, the software should not be modified by the user. The protection
mechanism should be assigned the assurance level associated with the most severe failure
condition of the system as determined by the system safety assessment. If software
provides the protection mechanism for user-modifiable software, that software protection
should be assigned the highest software level of the system as determined by a system
safety assessment. The protection should prevent any modification or failure of the user-
modifiable software from causing a loss of protection. Protection integrity cannot depend on
any activities being accomplished by the user. The protection integrity should be such that it
can neither be breached accidentally or intentionally. The applicant-provided means of
modification of the user-modifiable software should be shown to be the only means by which
the modifiable component can be changed.

9.8 TOOLS USED TO PROTECT NON-MODIFIABLE COMPONENTS

a. ED-12B / DO-178B, Section 5.2.3, requires that the non-modifiable software components
be protected from modifiable components in order to prevent interference with the safe
operation of the non-modifiable software components. To enforce this protection, the use
of the tools to make the changes to the modifiable component is allowed. If such tools
will be used to enforce this protection, then the following information should be provided
to the certification authorities for approval:

(1) plans for controlling the tool version;

(2) plans for controlling tool usage;

(3) plans for qualifying or verifying the tool; and

(4) procedures for performing modifications to the tool.

b. Software forming a component of the tool and used in the protective function should be
developed to the software level associated with the most severe failure condition of the
system, as determined by a system safety assessment.

c. The use of software tools as (part of) the protective function requires tool qualification
and approval of procedures to use and maintain the tool. Changes to the tool or
procedures may require re-qualification of the tool.

9.9 DATA REQUIREMENTS

a. The applicant should identify in the Plan for Software Aspects of Certification (PSAC) their
intention to develop an airborne system that will contain a user-modifiable software
component(s). The PSAC should also describe the means of complying with ED-12B /
DO-178B (including the design considerations of ED-12B / DO-178B Section 5.2.3), the
protection mechanism, and the means of ensuring the integrity of the protection
mechanisms. If software tools will be used for the modification, the PSAC should also
identify tool qualification plans or verification procedures to ensure that the tool has
modified the user-modifiable software to approved procedures and constraints and has
not affected the non-modifiable software or protection mechanisms.

b. The Software Development Plan and the software design data should specify the design
methods and details of implementation for ensuring protection from user modifications.

c. The Software Configuration Index should identify the approved procedures, methods, and
tools for making modifications to the user-modifiable software, including tool qualification
data, if applicable. There is no need to update the Software Configuration Index of

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 40/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

equipment containing user modifiable software if the changes are limited to the user
modifiable component, and made within the constraints established during the original
certification project.

d. The Software Accomplishment Summary should summarise the entire development and
verification of the non-modifiable software components, user-modifiable software
component(s), protection mechanism, and modification procedures and tools, including
tool qualification, if applicable. There is no need to update the Software Accomplishment
Summary of equipment containing user modifiable software if the changes are limited to
the user modifiable component, and made within the constraints established during the
original certification project.

9.10 OTHER CONSIDERATIONS

At the time of the user modification, the user assumes responsibility for all aspects of the
user-modifiable software components and tools used for modifying the software, including
software configuration management, software quality assurance, and software verification.
User modifications should be performed according to approved procedures established by the
system requirements and software data, using approved tools. If the user makes any
modification to the non-modifiable software components, the protection mechanisms, the
approved procedures, or the approved tools, other than those established by the system
requirements and approved procedures, then they have violated the type design, and the
type certificate of the aircraft and/or engine may be rescinded.

NOTE: A system to track or log software modifications that fall under the description in this
section should be considered where appropriate so that both the Certification and Continued
Airworthiness aspects of the modifications may be reviewed by the cognizant authorities, as
needed.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 41/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

10 GUIDELINES FOR APPLYING THE ED-12B / DO-178B
LEVEL D CRITERIA TO PREVIOUSLY DEVELOPED
SOFTWARE (PDS)

10.1 PURPOSE

This section provides guidelines regarding the application of ED-12B / DO-178B to previously
developed software (PDS) that has been categorised as contributing to no more than a Minor
failure condition on the aircraft. AMC 20-115B recognises ED-12B / DO-178B as a means to
secure EASA certification of digital computer software. ED-12B / DO-178B assigns a software
level of D to any software that can cause or contribute to no more than a Minor aircraft
failure condition. However, the application of the objectives associated with Level D software
are frequently misinterpreted, especially when applied to software that was not originally
approved using ED-12B / DO-178B (i.e., PDS). This section should be used to apply ED-12B
/ DO-178B to PDS that is categorised as Level D.

10.2 BACKGROUND

ED-12B / DO-178B provides for five different levels of software based on the contribution of
the software to potential failure conditions. These software levels represent differing levels of
development process rigor based on the severity of the potential failure conditions that the
software can cause or to which the software can contribute. Level D is assigned to software
that can cause or contribute to no more than a Minor aircraft failure condition.

ED-12B / DO-178B contains 28 objectives for Level D software that should be satisfied
before certification is granted.

To be consistent with a Minor aircraft failure condition, the intent of Level D software
objectives is to provide a thorough investigation of the functional behaviour of the software
and to provide the necessary configuration control. However, some of the required
objectives for Level D have been misinterpreted when considered with the overall objective
of establishing correct functional behaviour.

Due to confusion over Level D objectives, the application of ED-12B / DO-178B for these
systems has not been consistent over different projects. Many developers may decide to do
more than the stated requirements for Level D; however, this section of the Certification
Memorandum concentrates on the minimum requirements. Proper application of Level D
objectives permits the use of PDS, which is software that was not originally approved using
ED-12B / DO-178B (e.g., Commercial-off-the-shelf (COTS) software, software developed
using military standards, software developed using ED-12 / DO-178 or ED-12A / DO-178A,
software developed using other industry standards). Refer to Section 12.1 of ED-12B / DO-
178B for additional guidance for using PDS. In particular, Section 12.1.4 should be
referenced for additional considerations when upgrading a previous development baseline.
While this section addresses PDS, these guidelines may also be applicable for other software
that is required to meet the ED-12B / DO-178B Level D objectives.

Section 12 of this Certification Memorandum contains guidance for the certification of
software changes to legacy systems.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 42/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

10.3 DISCUSSION

A consistent interpretation of ED-12B / DO-178B for Level D software is important for the
certification of PDS software. Of the 28 objectives found in ED-12B / DO-178B for Level D
software, experience has shown that there are five objectives that are frequently
misinterpreted. One of the objectives is related to integral processes; the remaining four
objectives are related to source code, software architecture, and low level requirement
definitions. The discussion presented in this section is applicable to any ED-12B / DO-178B
Level D software certification. Paragraph 10.4 of this Certification Memorandum provides
specific procedures for the certification of Level D PDS.

a. Objective 1 in ED-12B / DO-178B, Annex A, Table A-1, “Software development and
integral processes activities are defined.” A number of field-experience comments point
to the absence of any requirement for Level D software to comply with Objective 6 in ED-
12B / DO-178B, Annex A, Table A-1 which states "Software Plans comply with this
document (i.e., ED-12B / DO-178B)" and have concluded that there should not be a
requirement to comply with Objective 1 which states "Software development and integral
processes activities are defined." However, Objective 1 ensures that even for Level D
software: (1) there are some plans (e.g., Plan for Software Aspects of Certification,
Software Development Plan, Software Configuration Management Plan, Software Quality
Assurance Plan, Software Verification Plan), even if the plans themselves do not comply
with ED-12B / DO-178B, and (2) those plans are followed (see Objective 1 in ED-12B /
DO-178B, Annex A, Table A-9). Additionally, the plans should enable compliance with the
ED-12B / DO-178B objectives applicable for Level D software.

b. Objective 4 in ED-12B / DO-178B, Annex A, Table A-2, “Low-level requirements are
developed.” For Level D software, the intent of this objective is to assure that the low-
level requirements are defined. However, Table A-4 objectives related to the architecture
and low-level requirements require no explicit verification of the software architecture
and low-level requirements for Level D software, except for verifying the integrity of any
software partitioning. Therefore, Objective 4 of Table A-2 is satisfied implicitly by
satisfying Objectives 1 and 2 in ED-12B / DO-178B, Annex A, Table A-6. The satisfaction
of Objectives 1 and 2 demonstrate that the executable object code complies with and is
robust with high-level requirements. Since there is no objective for Level D to ensure
that the executable code is compatible with the low-level requirements, it is not
necessary to ensure for Level D software that the low-level requirements are traceable to
the high-level requirements.

c. Objective 3 in ED-12B / DO-178B, Annex A, Table A-2, “Software architecture is
developed.” The logic as applied in paragraph 10.3(b) above may be applied to Objective
3 (i.e., Objective 3 is implicitly satisfied by other objectives and does not need to be
explicitly satisfied for Level D PDS, since Table A-4, Objectives 8 through 12, do not
require verification of the software architecture).

d. Objective 5 in ED-12B / DO-178B, Annex A, Table A-2, “Derived low-level requirements
are defined.” The referenced Section in ED-12B / DO-178B for Objective 5 (i.e., Section
5.2.1b) states that “Derived low-level requirements are provided to the system safety
assessment process,” rather than just “defined.” As with the low-level requirements and
software architecture, there is no explicit verification of derived low-level requirements
for Level D software. The satisfaction of this objective is implied by satisfying Objective 2
in ED-12B / DO-178B, Annex A, Table A-2, “Derived high-level requirements are defined”
and the associated verification of high-level requirements.

e. Objective 6 in ED-12B / DO-178B Annex A, Table A-2, “Source code is developed.” The
actual ED-12B / DO-178B referenced text for Objective 6 (i.e., Section 5.3.1a) states,
“Source code is developed that is traceable, verifiable, consistent, and correctly
implements low-level requirements.” However, according to Annex A, Table A-5, there
are no verification objectives for Level D source code. Therefore, there is no requirement
to establish consistency between source code, low-level requirements, and high-level
requirements. The consistency requirement is between the executable code and the high-

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 43/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

level requirements for Level D. The objective is for the executable code to meet all of the
functional requirements. Furthermore, the existence of object code implies the existence
of source code so that Objective 6 of ED-12B / DO-178B, Annex A, Table A-2 is
reasonably covered by satisfying other objectives (i.e., Objectives 1 and 2 of Table A-2;
Objective 2 of Table A-3; Objectives 1 and 2 of Table A-6; and Objective 3 of Table A-7)
for level D software.

10.4 PROCEDURES

For a project involving the approval of Level D PDS, the procedures listed below should be
followed either by the cognizant certification authority specialist or included as appropriate in
DOA procedures:

a. Software reviewers should review the software plans to assure that: (1) some plans exist
(e.g., Plan for Software Aspects of Certification, Software Development Plan, Software
Configuration Management Plan, Software Quality Assurance Plan, Software Verification
Plan); (2) those plans are followed (reference ED-12B / DO-178B, Annex A, Table A-9,
Objective 1); and (3) the plans enable compliance with ED-12B / DO-178B objectives for
Level D software.

b. Software reviewers can ensure that low-level requirements, software architecture,
derived low-level requirements, and source code are defined and exist for Level D
software; however, software reviewers should not assess the quality or compliance of
these artefacts with ED-12B / DO-178B objectives and software life cycle data content
requirements, except where necessary to ensure that software partitioning integrity is
confirmed (Objective 13 of Table A-4). The intent for Level D of these objectives will be
satisfied by the objectives for Level D for Tables A-6 and A-7.

c. When evaluating the PDS, the following steps should be followed:

(1) The applicant should verify that a failure condition or malfunction of the Level D
software can cause or contribute to no more than a Minor failure condition.

(2) The applicant should identify the functions to be used from the PDS, and any software
developed to specifically mitigate any failures or malfunctions of the PDS (for
example, wrapper code, partitioning, or monitors). The certification authority should
confirm that safety implications are addressed.

(3) The applicant should ensure that the PDS cannot result in any unacceptable failure
condition in the target application.

d. In cases where there are multiple software levels within a given system and/or
component, the protection and associated mechanisms between the different software
levels (such as partitioning, safety monitoring, or watchdog timers) should be verified to
meet the objectives of the highest level of software associated with the system
component. This can occur when there are multiple functions in a component (e.g.,
maintenance and navigation) or when there are different categorisations of types of
failure conditions, such as loss of function versus a corrupted function (e.g., misleading
display data). An example of the latter case is a navigation system supported by a PDS
operating system. The loss of the navigation function can be shown to produce only a
Minor aircraft failure condition, whereas misleading navigation is usually considered to be
a Major aircraft failure condition. If the navigation function is protected (partitioned) from
the operating system in such a way that any failure of the operating system can be
shown to produce only a loss of function, then the operating system only needs to be
evaluated to Level D criteria. However, the applicant needs to verify that the operating
system can really only contribute to a loss of navigation function and not to a misleading
navigation failure condition. The applicant also needs to verify that common-cause and
common-mode losses of identical functions or common resources cannot result in a
worse failure condition than was originally assigned to the individual system. In this
case, part of the development effort would be to demonstrate that the PDS can be shown
to meet all the Level D objectives, as outlined above.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 44/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

e. It is theoretically possible for Level D software to operate in conjunction with software of
other levels. In this case a thorough protection/partitioning analysis should be performed
in conjunction with the system safety assessment. However, discussion of protection/
partitioning is outside the scope of this section and will not be further discussed.

f. See ED-12B / DO-178B, Section 12.1, for additional guidance on the use of PDS.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 45/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

11 GUIDELINES FOR THE QUALIFICATION OF SOFTWARE
TOOLS USING ED-12B / DO-178B

11.1 PURPOSE

This section provides guidelines regarding the application of ED-12B / DO-178B to the
qualification of software verification and development tools. AMC 20-115B recognises ED-
12B / DO-178B as a means to secure EASA certification of software in airborne systems and
equipment. Section 12.2 of ED- 12B addresses tool qualification; however, the Section 12.2
criteria are often misinterpreted, resulting in inconsistent application in the field. This section
of the Certification Memorandum clarifies the application of ED-12B / DO-178B in the area of
tool qualification but does not change the intent of ED-12B / DO-178B in this area. The
guidelines in this section of the Certification Memorandum should be used in applying the
criteria in ED-12B / DO-178B for the qualification of tools.

11.2 BACKGROUND

Section 12.2 of ED-12B / DO-178B states that qualification of a tool is needed when
processes in ED-12B / DO-178B “are eliminated, reduced, or automated by the use of a
software tool, without its output being verified as specified in Section 6” of ED-12B / DO-
178B. ED-12B / DO-178B states, “The objective of the tool qualification process is to ensure
that the tool provides confidence at least equivalent to that of the process(es) eliminated,
reduced, or automated.” The items below provide further information regarding tool
qualification:

a. Software development can be a very repetitive and human-labour intensive process. This
can result in errors, as well as high costs. For these reasons, various tools have been
developed to automate portions of this process. If the tools are dependable, then
improvements in productivity and lower numbers of in-service errors may be realised.

b. In order to certify systems developed with tool support, both certification authorities and
applicants need to obtain confidence by qualification that these tools are dependable. ED-
12B / DO-178B Section 12.2 was designed to provide criteria for establishing which tools
require additional confidence and the criteria and data needed to establish that
confidence. However, several provisions of this Section of ED-12B / DO-178B are difficult
to interpret. This section of the Certification Memorandum clarifies the intent of ED-12B /
DO-178B Section 12.2 and its application.

c. Some areas that have resulted in misinterpretation and inconsistent application of the
ED-12B / DO-178B tool qualification criteria are:

(1) When a tool should be qualified.

(2) Justification for the different criteria for qualifying software development tools and
software verification tools.

(3) Which criteria apply to software development tools and which apply to software
verification tools.

(4) Data to be produced for software development tools and for software verification
tools.

(5) Acceptance criteria for tool operational requirements.

(6) Tool determinism.

(7) Tool partitioning assurance and evidence.

(8) Tool configuration control.

d. These areas have resulted in inconsistencies in applying the criteria within ED-12B

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 46/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Section 12.2 to certification projects. This section of the Certification Memorandum is
designed to address the above problems by clarifying the intent and application of ED-
12B Section 12.2.

11.3 DISCUSSION

a. Not all software tools require qualification. According to ED-12B / DO-178B Section 12.2,
qualification of a tool is needed only when processes described in ED-12B / DO-178B are
eliminated, reduced, or automated by the use of that tool without its output being
verified as specified in ED-12B / DO-178B Section 6. This means that if the results of the
tool are being relied on to supply the sole evidence that one or more objectives are
satisfied, the tool must be qualified per ED-12B / DO-178B Section 12.2. If the output of
the tool is verified by some other means, then there is no need to qualify the tool. For
example, if all the outputs of a test case generator are reviewed to ensure that coverage
is achieved, then the tool does not need to be qualified.

b. ED-12B / DO-178B Section 12.2 identifies two types of tools: software verification tools
and software development tools. Each type will be discussed below.

c. ED-12B / DO-178B defines verification tools as "tools that cannot introduce errors, but
may fail to detect them."

(1) The following are examples of verification tools:

i. A tool that automates the comparison of various software products (e.g., code,
design) against some standard(s) for that product.

ii. A tool that generates test procedures and cases from the requirements.

iii. A tool that automatically runs the tests and determines pass/fail status.

iv. A tool that tracks the test processes and reports whether or not the desired
structural coverage has been achieved.

(2) Many claim that verification tools can be more reliable than humans in a number of
verification tasks, if their correct operation is demonstrated. In order to encourage
the use of verification tools, ED-12B / DO-178B Section 12.2 was designed to provide
an acceptable approach to qualifying verification tools.

d. ED-12B / DO-178B defines development tools as “tools whose output is part of airborne
software and thus can introduce errors.” If there is a possibility that a tool could generate
an error in the airborne software that would not be detected, then the tool cannot be
treated as a verification tool. An example of this would be a tool that instrumented the
code for testing and then removed the instrumentation code after the tests were
completed. If there was no further verification of the tool’s output, then this tool could
have altered the original code in some unknown way. Typically, the original code before
the instrumentation was introduced is what is used in the product. This example is
included to demonstrate that tools used during verification are not necessarily verification
tools. The effect on the final product must be assessed to determine the classification of
the tool.

e. The reason for the distinction between development and verification tools is based on the
likelihood of allowing an error into the airborne system. For development tools there is a
potential to introduce errors directly into a system. However, a verification tool can only
fail to detect an error that already exists in the product. Tools, therefore, need to be
deficient in two different processes to allow an error to get into the airborne software:
the development process introducing the error and the verification process failing to
detect the error. For this reason, ED-12B / DO-178B calls for different levels of rigor in
the qualification of verification and development tools.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 47/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

11.4 PROCEDURES

For any project involving the qualification of tools, certification authority representatives
should follow the procedures and guidelines listed in this sub-paragraph of the Certification
Memorandum:

a. Guidelines for determining whether a tool should be qualified:

(1) Whether a tool needs to be qualified is independent of the type of the tool
(development or verification). There are three questions to ask to determine whether
a tool needs qualification. If the answer is “Yes” to all of the questions below, the tool
should be qualified:

i. Can the tool insert an error into the airborne software or fail to detect an existing
error in the software within the scope of its intended usage?

ii. Will the output of the tool not be verified or confirmed by other verification
activities, as specified in Section 6 of ED-12B / DO-178B?

iii. Are any processes of ED-12B / DO-178B eliminated, reduced, or automated by
the use of the tool? That is, will the output from the tool be used to either meet
an objective or replace an objective of ED-12B / DO-178B, Annex A?

(2) Once it has been determined that a tool does not require qualification, the remainder
of ED-12B / DO-178B Section 12.2 is not applicable to that tool. In order to ensure a
timely response, the certification authority should be involved early in the tool
qualification agreements for the certification project.

(3) The Plan for Software Aspects of Certification (PSAC) should include a listing of all
software tools and justification for why each tool does or does not require
qualification.

NOTE: The inclusion of all software tools in the PSAC is encouraged to provide early
visibility of tools that may require qualification.

b. Guidelines for determining which tool qualification criteria apply to development tools and
which criteria apply to verification tools:

(1) Table 11-1 applies to tools requiring qualification and can be used to determine which
criteria of ED-12B / DO-178B Section 12.2 apply to which type of tool. Table 11-1
shows the similarities and differences in the qualification criteria for development and
verification tools. The column in Table 11-1 titled “Criteria” summarises the ED-12B /
DO-178B requirement; the column titled “Dev./Ref.” lists the applicability of the
criteria for development tools and the appropriate ED-12B / DO-178B Section
reference; and the column titled “Verif./Ref.” lists the applicability of the criteria for
verification tools with the appropriate ED-12B / DO-178B Section reference.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 48/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Criteria Dev./Ref. Verif./Ref.

Only deterministic tools may be qualified (to be further
clarified in paragraph 11.4f of this Certification
Memorandum).

Yes/12.2 Yes/12.2

Qualification should only be for a specific system; the
intention should be stated in the PSAC.

Yes/12.2 Yes/12.2

Combined tools should be qualified to ED-12B / DO-
178B, Section 12.2.1 unless partitioning can be shown
(to be further clarified in paragraph 11.4g of this
Certification Memorandum).

Yes/12.2.b Yes/12.2.b

Software configuration management and software
quality assurance process objectives should be applied
to tools being qualified (to be further discussed in
paragraph 11.4h of this Certification Memorandum).

Yes/12.2.c Yes/12.2.c

Qualification should satisfy the same objectives as the
airborne software.

Yes/12.2.1.a No

The software level of the tool may be reduced. Yes/12.2.1.b No

A trial period may be used as a means to demonstrate
compliance with the tool operational requirements.

Yes/ 12.2.1.c Yes/12.2.2

Tool Operational Requirements should be reviewed. Yes/12.2.1.d(1) Yes/12.2.2

Compliance with Tool Operational Requirements under
normal operating conditions should be demonstrated.

Yes/12.2.1.d(2) Yes/12.2.2

Compliance with Tool Operational Requirements under
abnormal operating conditions should be
demonstrated.

Yes/12.2.1.d(3) No

Requirements-based coverage should be analysed. Yes/12.2.1.d(4) No

Structural coverage appropriate for the tool’s software
level should be completed.

Yes/12.2.1.d(5) No

Robustness testing appropriate for the tool’s software
level should be completed.

Yes/12.2.1.d(6) No

Potential errors should be analysed. Yes/12.2.1.d(7) No

Table 11-1 ED-12B / DO-178B Criteria Applicable to Tool Qualification

c. Guidelines for data submittal and data availability to demonstrate tool qualification. The
guidelines for data to support tool qualification are listed throughout ED-12B / DO-178B
Section 12.2; however, there is no definitive guidance as to the minimum level/amount
of data to be submitted to the certification authorities for tool qualification. The data
submittals vary according to the type of tool being developed. Even though there are
some similar guidelines for the two tool types, the data requirements for each tool type
are different. Table 11-2 summarises the required tool qualification data. The column
titled “Data” lists the required data for tool qualification. The column titled “Applicability”
summarises whether the data is applicable for development tool qualification
(Development) or verification tool qualification (Verification). The column titled
“Available/Submit” summarises whether the data should be submitted to the certification
authorities or just available for certification authority review. The column titled “ED-12B /
DO-178B Ref.” lists the ED-12B / DO-178B Section(s) that reference the criteria. The
remainder of this paragraph discusses the tool qualification data summarised in Table 11-
2.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 49/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Data Applicability Available/Submit ED-12B / DO-

178B Ref.

Plan for Software
Aspects of
Certification (PSAC)

Verification &
Development (see
Note 1 below)

Submit 12.2, 12.2.3.a,
& 12.2.4

Tool Qualification
Plan

Development Only

(see Note 2 below)

Submit 12.2.3.a(1),
12.2.3.1, &
12.2.4

Tool Operational
Requirements

Verification &
Development

Available 12.2.3.c(2) &
12.2.3.2

Software
Accomplishment
Summary (SAS)

Verification &
Development

(see Note 1 below)

Submit 12.2.4

Tool
Accomplishment
Summary

Development Only
(see

Note 2 below)

Submit 12.2.3.c(3) &
12.2.4

Tool Verification
Records (for
example, test
cases, procedures,
and results)

Verification &
Development

Available 12.2.3

Tool Qualification
Development data
(e.g., for example,
design, and code)

Development Only Available 12.2.3

Table 11-2 Data Required for Tool Qualification

NOTE 1: For development tool qualification, the PSAC should reference the Tool
Qualification Plan and the SAS should reference the Tool Accomplishment Summary.

NOTE 2: The Tool Qualification Plan and the Tool Accomplishment Summary may be
developed for verification tool qualification, if the applicant so desires.

(1) Verification Tool Qualification Data. Of the two tool qualification types, verification
tools require the fewest data submittals and availability. Data for verification tool
qualification are discussed below:

i. For verification tools, the applicant should specify the intent to use a verification
tool in the PSAC (reference ED-12B / DO-178B, Section 12.2). The PSAC should
be submitted to the certification authorities and should include the intended tool
qualification schedule. This alerts the certification authority representative to
provide a response to the intended use of the tool and opens a dialogue on
acceptable qualification methods and documentation approaches. The certification
authority should provide a written response to the applicant on the acceptability of
the approach listed or referenced in the PSAC in a timely manner (i.e., the
verification tool qualification approaches in the PSAC should be reviewed and
approved or addressed in a timely manner).

ii. For verification tool qualification, the Tool Operational Requirements should be
documented and made available to the certification authorities (see ED-12B / DO-
178B, Section 12.2.3.2). The requirements for the Tool Operational Requirements
data are discussed in paragraph 11.4d of this Certification Memorandum.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 50/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

iii. Data showing that all of the requirements in the Tool Operational Requirements
have been verified should also be documented and available for certification
authority review. Sufficient verification data is needed to demonstrate normal
operation only and will vary depending on the complexity of the tool, the purpose
of the tool, and how the tool is used. The applicant may package these verification
data in any document they choose.

iv. An entry summarising the results of the verification tool qualification should be
included in the Software Accomplishment Summary (SAS). The SAS should be
submitted to the certification authorities. This allows the certification authority to
approve the results of the verification data and provides evidence of the tool
qualification status.

NOTE: The applicant may choose to provide a separate Tool Qualification Plan and Tool
Accomplishment Summary referenced by entries in the PSAC and the SAS for software
verification tools. Entries are still required in the PSAC and SAS. This is an acceptable
approach and has the added benefit of providing the ability to reference a data package
for reuse in subsequent certifications or in different certifications where the usage of the
tool can be shown to be identical.

(2) Development Tool Qualification Data. There are additional requirements for a
software development tool. The criteria for qualifying a software development tool are
similar to the approval process for the airborne software. For software development
tool qualification, the following data submittal and availability items should be
considered:

i. The actual qualification approach and data to be provided are specified in the Tool
Qualification Plan. The Tool Qualification Plan should be submitted to the
certification authorities for approval.

ii. The Tool Accomplishment Summary should also be submitted to the certification
authorities for approval. It summarises the results of the tool qualification process
and describes and references the relevant tool qualification data.

iii. The PSAC and SAS should be submitted to and approved by the certification
authorities. However, these documents will likely only reference the Tool
Qualification Plan and the Tool Accomplishment Summary documents.

iv. The Tool Operational Requirements should be documented and made available to
the certification authorities (reference ED-12B / DO-178B, Section 12.2.3.2). The
requirements for the Tool Operational Requirements data are discussed in
paragraph 11.4d of this Certification Memorandum.

v. Data that shows that all of the requirements in the Tool Operational Requirements
have been verified should also be documented and made available for certification
authority review. Sufficient verification data is needed to demonstrate under
normal and abnormal operational conditions. The data will vary depending on the
complexity of the tool, the purpose of the tool, and how the tool is used. The
applicant can package this verification data in any document they choose.

vi. Other tool qualification data, such as design, code, test cases and procedures, etc.
should be available for certification authority review.

(3) The certification authority representatives involved should strive to use the document
format and media used by the applicant. Any repackaging for submittal to the
certification authorities should be undertaken only when the certification authorities
are unable to review the data in the manner presented by the applicant or if the
applicant is unable to meet the data retention requirements.

d. Guidelines for evaluating acceptability of Tool Operational Requirements data: Tool
Operational Requirements for any tool that requires qualification should be completed
and made available for certification authority review. A complete set of operational
requirements is necessary to communicate to both the user and the certification

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 51/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

authority what the tool does, how it is used, and the environment in which it performs.
The Tool Operational Requirements should identify all functional and technical features of
the tool and the environment in which it is installed (see ED-12B / DO-178B, Section
12.2.3.2). The information required is different depending on the type of tool:

(1) For a verification tool, the Tool Operational Requirements should provide at least the
following information:

i. The tool's functionality in terms of specific requirements that are verified as part
of the tool's qualification tests.

ii. A definition of the tool's operational environment, including operating system and
any other considerations (e.g., an analysis of what tools will not do and what is
required to cover that shortage (e.g., extensions to checklists, test cases) and any
specialised hardware requirements (e.g., processors, special test equipment, or
interfaces).

iii. Any other information necessary for the tool's installation or operation (e.g.,
User's Manual) should be included in the Tool Operational Requirements.

(2) A development tool needs to include all the information listed above for verification
tools but should also include at least the following:

i. Software development processes performed by the tool.

ii. Expected response under abnormal operating conditions.

NOTE: In some cases the User’s Manual or other supplier documentation may contain the
needed information. Where additional information is included over and above the
required information, the required information should be clearly identified. In the case
where there is insufficient information from the tool supplier, the applicant should
provide the missing information.

e. Guidelines on acceptable verification of the Tool Operational Requirements: Development
and verification tools require verification of the Tool Operational Requirements. For
verification tools, only verification over the normal operating conditions is required;
whereas for development tools, verification over the abnormal operating conditions is
also required. ED-12B / DO-178B Sections 6.4.2.1 and 6.4.2.2 describe verification for
normal and abnormal conditions and will not be covered in this section of the Certification
Memorandum. However, since the operational requirements may contain additional
information not directly related to the verification activity (e.g., the appearance of
menus, dialog boxes, configuration), additional guidance is needed to reduce
unnecessary verification for verification tools. For verification tools only, those portions of
the operational requirements that are used directly in the setting up, conducting,
monitoring, and reporting of verification need to be verified as part of tool qualification.
The applicant should ensure that those features/portions of the verification tool that are
not used have no adverse impact on those features/portions that are being used. If
additional features are used at a later time, then additional verification will be required.

f. Guidelines on the interpretation of the determinism of tools:

(1) Although only deterministic tools can be qualified (see section 12.2 of ED-12B / DO-
178B), the interpretation of determinism is often too restrictive. A restrictive
interpretation is that the same apparent input necessarily leads to exactly the same
output. However, a more accurate interpretation of determinism for tools is that the
ability to determine correctness of the output from the tool is established. If it can be
shown that all possible variations of the output from some given input are correct
under any appropriate verification of that output, then the tool should be considered
deterministic for the purposes of tool qualification. This results in a bounded problem.

(2) This interpretation of determinism should apply to all tools whose output may vary
beyond the control of the user, but where that variation does not adversely affect the
intended use (e.g., the functionality) of the output and the case for the correctness of

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 52/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

the output is presented. However, this interpretation of determinism does not apply
to tools that have an effect on the final executable image embedded into the airborne
system. The generation of the final executable image should meet the restrictive
interpretation of determinism.

(3) As an example, a tool may have a graphical user interface that allows the user to
interact in a diagrammatic fashion. Underlying this tool are data tables that capture
the intended meaning of those diagrams. Often, however, the output from these tools
is at least partially driven by the physical ordering of the entries in these data tables,
and the ordering of the data table entries is not controlled by the tool user. However,
the correctness of the tool’s output can be established. With the restrictive
interpretation of determinism, this tool could not be qualified. However, with the
expanded interpretation, qualification may be possible.

g. Guidelines for qualifying combined development and verification tools:

(1) The guidelines in this paragraph apply only to tools which provide combined
development and verification functions where the output of both the development and
the verification functions are being used to eliminate, reduce, or automate processes
of ED-12B / DO-178B. Combined tools that are used to eliminate, reduce, or
automate only development objective(s) or only verification objective(s) should be
qualified as such irrespective of the other capabilities present in that tool.

(2) Qualification of combined tools (when both the development and verification functions
are being used to meet or replace objectives of ED-12B / DO-178B) should be
performed to the guidance equivalent to the airborne software level unless
protection/partitioning between the two functions can be demonstrated. Acceptable
evidence of this protection/partitioning would be to show that the output of one
function of the tool has no effect on the output of the other function of the tool (i.e.,
the tool capabilities are functionally isolated).

(3) When protection/partitioning between the development and verification functions is
shown, the protected/partitioned functions may be qualified as if they were separate
development and verification tools (i.e., the verification functions may be qualified to
the criteria for verification tools).

h. Guidelines on configuration management of qualified tools: In order to receive credit
(i.e., meet or replace ED-12B / DO-178B objectives) for the use of qualified tools, those
tools must be kept under configuration management. Not all of the requirements for
configuration management of tools are contained in ED-12B / DO-178B Section 12.2.
Section 12.2.3b of RTCA/DO-178B specifies the control categories for development and
verification tool qualification data (see also Section 7.2.9b of RTCA/DO-178B). The
control category for development tool qualification data should be the same as that
required for airborne software of the same level (that is, the “CC1” and “CC2” criteria in
Annex A tables applies to development tool qualification data). Verification tool
qualification data, on the other hand, may be categorized as control category #2.

i. Guidelines on verifying changes to previously qualified tools: A software change impact
analysis should be conducted on all changes to tools that have been previously qualified.
The analysis should be thorough enough to assess the impact of the tool change on the
product, as well as other tools under the influence of the change. A regression analysis
may form part of the change impact analysis.

j. Guidelines for tools developed before AMC 20-115B issuance: Software tools used on
pre-ED-12B / DO-178B projects may be qualified for use on projects where ED-12B / DO-
178B is the means of compliance, if they meet the guidelines of this section. As an
alternative, service history may be considered for such tools (see Section 4.11 of
RTCA/DO-248B for more information on qualification of tools using service history).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 53/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

12 GUIDELINES FOR THE CERTIFICATION OF SOFTWARE
CHANGES IN LEGACY SYSTEMS USING ED-12B / DO-
178B

12.1 PURPOSE

This section provides guidelines regarding the application of ED-12B / DO-178B to software
for systems that were developed prior the issuance of JAA Temporary Guidance Leaflet No.
4: "Recognition of EUROCAE ED-12B / RTCA DO-178B", on 1 October 1996. These systems
are referred to as legacy systems throughout this section and refer to systems developed
under ED-12 or ED-12A.

AMC 20-115B, published on Nov 5th, 2003 (EASA Decision 2003/12/RM) recognises ED-12B
/ DO-178B as an acceptable means of compliance for the evaluation of software in airborne
systems. The ED-12B / DO-178B guidance for legacy systems is frequently misinterpreted
and is not being consistently applied. This section of the Certification Memorandum does not
change the intent of ED-12B / DO-178B with regard to legacy systems but clarifies the
application of ED-12B / DO-178B.

12.2 BACKGROUND

On January 11, 1993, the FAA issued AC 20-115B which recognised DO-178B as a means to
secure FAA certification of digital computer software. Prior to the issuance of AC 20-115B,
many airborne systems were approved using DO-178 or DO-178A. These systems are
referred to as legacy systems.

On 1 October 1996, the JAA published Temporary Guidance Leaflet (TGL) No. 4, which also
recognised ED-12B / DO-178B as a means to secure JAA certification of digital computer
software. Systems developed under ED-12 or ED-12A thus also became legacy systems.

TGL N°4 was superseded by ACJ 20-115B (published in GAI 20 dated 1st May 2002).

ACJ 20-115B was superseded by AMC 20-115B, published on Nov 5th, 2003 (EASA Decision
2003/12/RM).

Many manufacturers are striving to use ED-12B / DO-178B on their legacy systems. There
are several items to keep in mind when addressing the use of ED-12B / DO-178B on legacy
systems:

a. ED-12B / DO-178B is different from the two previous versions of ED-12. The major
change from the previous versions is the emphasis on a set of co-ordinated objectives
rather than a collection of unrelated goal statements. There is also a change from an
emphasis on documentation to an emphasis on process objectives and the data needed
to demonstrate compliance with those objectives. Software testing is the most visible
difference between ED-12B / DO-178B and previous versions. Therefore, software in
legacy systems approved under a previous version may not have the same level of
software testing assurance as that invoked by ED-12B / DO-178B (i.e., ED-12B / DO-
178B clarifies the scope and extent of software testing and test coverage). For new
projects, AMC 20-115B effectively cancels all previous versions of ED-12 / DO-178 as
acceptable means of compliance in new projects. Therefore, changes/modifications to
software accepted prior to the issuance of AMC 20-115B should be evaluated using ED-
12B / DO-178B when they are migrated to new aircraft and/or engines.

b. Another difference between ED-12B / DO-178B and earlier versions is the classification of
software levels and the need to perform a safety assessment to determine the software
level. Previous versions only recognised three software levels, whereas ED-12B / DO-
178B recognises five software levels. ED-12B / DO-178B provides no guidance to show
correspondence between these levels. This section of the Certification Memorandum will

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 54/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

provide a method to establish that correspondence. Once the correspondence has been
established, then guidance provided by ED-12B / DO-178B may be applied to upgrade
from a lower level to a higher level.

c. Prior versions of ED-12 do not address the qualification of software development and
verification tools. In many cases tools are involved in making changes to legacy systems.
Therefore, modification projects for legacy systems are faced with the issue of how to
address tools that were used and not evaluated as part of the original certification. The
subject of tool qualification is specifically addressed in section 11 of this document.
Section 11.4 j addresses pre ED-12B / DO-178B tools.

d. After reviewing field experience with numerous changes, a procedure was developed to
provide a more consistent approach to address changes to the software of legacy
systems. The approach described in this section takes advantage of previous
certifications while ensuring that software changes are properly implemented and satisfy
current regulations and guidance. (Note: If the system contains multiple levels of
software, the procedure should be applied to each of the partitioned sections that is
affected by the change).

12.3 DISCUSSION

a. If the software level of the legacy system cannot be shown to be equivalent to or better
than that required by the product installation being considered, then the software should
be upgraded in accordance with procedures defined in ED-12B / DO-178B Section 12.1.4,
“Upgrading a Development Baseline.” This will require a complete re-evaluation to
demonstrate assurance to the appropriate objectives of ED-12B / DO-178B. Determining
equivalence is addressed in paragraph 12.4 of this Certification Memorandum; however,
application of ED-12B / DO-178B Section 12.1.4 is not addressed further in this
Certification Memorandum.

b. There are four variables that can affect the actions needed in response to changes to
software in legacy systems:

(1) the certification basis for the original product or installation of the legacy system
containing the legacy software, (i.e. the regulations, the RTCA/DO-178 version, and
software level applied to the original approval),

(2) whether ED-12B / DO-178B or a previous version is the accepted means of
compliance for software for the product or installation under consideration, (and
whether the software level is the same as or equivalent to the software level for the
original certification),

(3) whether the software is being modified or unchanged, (and how many other times it
has been changed since the original certification, and the reason for those changes),
and

(4) whether the software and the legacy system are being installed on the same or a
different aircraft and/or engine.

c. Assuming that the software levels can be shown to be equivalent, the majority of legacy
system issues of concern can be categorised into the following groups:

(1) Legacy systems software is not modified and is reinstalled on the original aircraft
and/or engine (see paragraph 12.4b of this Certification Memorandum)

(2) Legacy systems software is not modified but is installed on a different aircraft and/or
engine where ED-12B / DO-178B is not adopted as the means of compliance for
software (see paragraph 12.4b of this Certification Memorandum).

(3) Legacy systems software is modified and is reinstalled on the original aircraft and/or
engine (see paragraph 12.4c of this Certification Memorandum).

(4) Legacy systems software is modified and is installed on a different aircraft and/or

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 55/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

engine where ED-12B / DO-178B is not adopted as the means of compliance for
software (see paragraph 12.4c of this Certification Memorandum).

(5) Legacy systems software is modified and is installed on a different aircraft and/or
engine where ED-12B / DO-178B is adopted as the means of compliance for software
(see paragraph 12.4d of this Certification Memorandum).

(6) Legacy systems software is not modified but is installed on a different aircraft and/or
engine where ED-12B / DO-178B is adopted as the means of compliance for software
(see paragraph 12.4e of this Certification Memorandum).

d. Legacy systems, by definition, already have a recognised approval for installation or
manufacturing through the Type Certificate (TC), Supplemental Type Certificate (STC) or
Approvals of Changes to Type Design processes. If there are no changes to the software
of these systems, then the original approval of the software may still be valid, assuming
that equivalence to the required software level for the current installation can be
ascertained (as further discussed in paragraph 12.4 of this Certification Memorandum).
Prior to installation of the system in an aircraft or engine, there should be an assessment
to ensure that the legacy system will not be used in a significantly different manner than
that covered by the original installation certification.

e. Systems with small, simple changes should be handled as changes under the original
certification basis (i.e., ED-12B / DO-178B does not need to be applied to the changes).

Examples of software changes that might be classified as small and simple include:

• Gain changes where the new gain is within a band of gain settings originally tested,

• Changes to maintenance information formatting,

• Adding an additional output interface,

• Changing data in a personality module that is within the set of options previously
verified and approved.

1) The certification authorities should be able to readily establish that these changes
have been performed correctly under the original certification basis. The normal data
submittals appropriate to the revision of ED-12 / DO-178 used for the original
certification will still need to be evaluated to ensure that the changes are
implemented correctly. If this cannot be done, then this is not a small, simple
change.

2) The determination of whether a change is small, simple cannot be made by objective
considerations such as metrics or a count of lines of code. Therefore, this
determination will be based on the individual judgement of the certification
authorities specialists involved.

NOTE: This process of allowing small, simple changes should not be followed, if the
system is being used differently than the original certification project, or if the system
has experience service difficulties.

f. When changes are made to legacy systems beyond the small, simple changes, assurance
that the changes have been correctly implemented and verified will be required. The
following items should be considered:

(1) Earlier versions of ED-12 / DO-178 do not contain well-defined acceptance criteria for
several of the objectives and guidelines. One example is in the area of testing. ED-
12B / DO-178B requires that testing be of sufficient rigour to provide specific
structural coverage criteria and provide specific criteria for that rigour, whereas ED-
12A / DO-178A only requires that testing exercise the logic and computations but
does not specify any criteria for how extensively the logic should be exercised.

(2) Additionally, some newer technologies and tool qualification are not even addressed
in the earlier versions of ED-12 / DO-178. In all cases where ambiguities exist, the
material in ED-12B / DO-178B should be used to provide a more exact interpretation.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 56/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(3) To be consistent with prior certifications, ED-12B / DO-178B should be used to
evaluate the processes used to make the change, the changed software components,
and those components affected by the software changes. Affected components should
be identified by performing a change impact analysis of the software changes and
identifying impacts on other components, interfaces, timing, memory, etc. (e.g.,
control coupling analysis, data coupling analysis, timing analysis, memory usage
analysis, etc.). These analyses should also identify the level and extent of regression
testing needed to verify the change.

(4) The unaffected portions of the software already have a certification basis and could
be accepted in accordance with paragraph 12.3c of this Certification Memorandum.
(It should be noted that the unaffected portion is the software that neither changed
nor was affected by the change as determined by analysis of control flow, data flow,
or timing. The change impact analysis is used to determine the affected and
unaffected portions.)
In most cases, the risk of latent errors remaining in the software may be further
mitigated by considering the benefit of service experience in conjunction with the
prior certification. ED-12B / DO-178B Section 12.3.5, “Service Experience,” contains
a number of criteria that should be satisfied to allow the use of service experience. By
virtue of the previous certification of the software, it may be assumed as already
meeting many of the provisions of ED-12B / DO-178B Section 12.3.5. Little or no
additional data may be needed from the applicant regarding service experience under
Section 12.3.5 if the applicant has sufficient relevant service history data and no in-
service problems have occurred with the system.

Note: The note in Section 12.3.5g of ED-12B / DO-178B does imply that additional
data may be required to verify system safety objectives for software components and
should be appropriately considered.

(5) Once a DO-178B compliant change process is in place to address a major software
change, that process should be applied to all subsequent changes to that software.

12.4 PROCEDURES

For any project involving changes to a legacy system or a different installation for a legacy
system, the certification authorities should follow the procedures listed in this section of the
Certification Memorandum.

a. The certification authorities should establish that there is equivalence between the legacy
system’s software level (s) and the proposed installation’s software level using Table 12-
1 below. Table 12-1 illustrates the equivalence between ED-12/DO-178, ED-12A/DO-
178A and ED-12B / DO-178B. Table 12-1 is designed as a truth table asking the following
question: “If the Legacy System has a specific ED-12/ED-12A (DO-178/DO-178A)
software level, can it automatically considered ‘equivalent to’ a certain ED-12B / DO-
178B level (and be installed on the product requiring that ED-12B / DO-178B level)?” For
example, if the legacy system has ED-12A/DO-178A Level 2 software, it can be installed
on a product requiring ED-12B / DO-178B Levels C, D, or E.

There are two entries in Table 12-1 that may require additional analysis before
determining equivalency; these instances are shown by an “Analyse” in Table 12-1.
There should be an agreement between the certification authorities and applicant, when
analysis is required.

If equivalency is not established by Table 12-1 (i.e., a "NO" entry in the table), the
provisions of ED-12B / DO-178B Section 12.1.4 should be applied to the software application
or partition to upgrade the software level. Procedures for applying Section 12.1.4 are not
covered by this section of the Certification Memorandum. The remainder of this section of
the Certification Memorandum assumes that equivalency has been established.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 57/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

 Legacy System Software Level per ED-12/ED-12A

ED-12B / DO-

178B SW Level

Required by the
Installation

Critical/Level

1

Essential/Level

2

Non-essential/

Level 3

A Possibly YES
after Analysis

NO NO

B YES NO/Analyse NO

C YES YES NO

D YES YES NO

E YES YES YES

Table 12-1 Software Level Equivalence

b. If the legacy system’s software is unmodified and is being reinstalled on the same aircraft
or engine or a different aircraft or engine where ED-12B / DO-178B is not required, then
the original assurance process and associated data submittals may be accepted. This is
only true if the system is being used in exactly the same way as originally installed in a
certified product, has no added functionality since the original or subsequent certification
approvals, and has not experienced service difficulties (e.g., Airworthiness Directives,
Service Bulletins, etc.).

c. If the legacy system’s software is modified and installed on the same aircraft or engine or
on a different aircraft or engine where ED-12B / DO-178B is not adopted as the means of
demonstrating compliance for software, then either the compliance means of the original
aircraft or engine or the compliance means of the original legacy system may be used.
Again, this is only true if the system is being used in exactly the same way as originally
certified, has no added functionality since the original certification, and has not
experienced in-service difficulties. A change impact analysis should be conducted to
evaluate the software modifications and to apply appropriate regression testing.

d. If the legacy system software is modified and installed on different aircraft or engine
where ED-12B / DO-178B is adopted as the means of demonstrating compliance, it
should be assessed whether the change is a small, simple change (as discussed in
paragraph 12.3d of this Certification Memorandum). Any changes determined to be small,
simple changes may be handled in the same manner as the not modified case discussed
in paragraph 12.4b of this Certification Memorandum. The determination of whether a
change is a small, simple change shall be at the discretion of the certification authorities
specialists involved or under the privileges of a Design Organisation Approval. Some
representative, but not exhaustive examples, of small, simple changes are given in
paragraph 12.3d of this Certification Memorandum.

(1) If the change is not a small, simple change, all the changes to the software and all of
the components affected by the change should be assured using ED-12B / DO-178B
(as discussed in paragraph 12.3f of this Certification Memorandum). The change
impact analysis is the normal means of determining affected components. A
description of change impact analysis is beyond the scope of this Certification
Memorandum. However, the project plans and processes and the change activities
and items of evidence should be shown to meet the objectives of ED-12B / DO-178B.
For example, if the original software was not evaluated using the structural coverage
criteria in ED-12B / DO-178B Section 6 and Annex A, then ED-12B / DO-178B
verification specified for the software level of the changed software will have to be
completed and the coverage criteria satisfied.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 58/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(2) Additional affected, but unchanged, components may not have to be evaluated for
internal structural coverage but would have to meet the requirements for data
coupling and control coupling coverage (such as to verify no changes to component
interfaces with other components using integration testing), as well as requirements
based test coverage for those affected functions. Once this process is complete, the
applicant may be allowed to claim that their legacy system software application or
partition complies with ED-12B / DO-178B at the certification authority’s discretion,
depending on the significance of the modifications and evidence produced.

e. If the legacy system software is not modified but is installed on a different aircraft or
engine (i.e., with a different type certificate) where ED-12B / DO-178B is adopted as the
means of demonstrating compliance, then there should not be a separate compliance
finding for the software. The original certification serves as the installation certification of
the software, unless the operational use of the system is expected to be significantly
different (for example, an air data computer installed on piston-powered general aviation
aircraft flying below 14,500 feet is now installed on a corporate jet flying at 50,000 feet).
When the operational use is significantly different from the original certification basis, an
assurance to ED-12B / DO-178B guidance should be performed. The determination of the
significance in change of the operational use shall be at the discretion of the certification
authorities specialists involved.

f. All changes to legacy systems and the process used to approve those changes should be
documented in the Plan for Software Aspects of Certification (PSAC), Configuration Index
Document (CID), and/or the Software Accomplishment Summary (SAS), as appropriate
for the specific project. If service history is claimed for the legacy system, those data
should be summarized in the SAS as well.

g. If any future changes are proposed, they should be addressed by using the criteria
specified in this section of the Certification Memorandum.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 59/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

13 OVERSIGHT OF SOFTWARE CHANGE IMPACT ANALYSES
USED TO CLASSIFY SOFTWARE CHANGES AS MAJOR OR
MINOR

13.1 BACKGROUND

ED-12B / DO-178B, Section 12.1.1, identifies analysis activities to be performed for
proposed software changes. ED-12B / DO-178B also states that re-verification should be
accomplished on all software changes and areas affected by those changes.

Subpart D of Part 21 addresses the classification of changes to type design as minor or
major. Paragraph 21A.91 proposes criteria for the classification of changes to a type design
as minor or major.

The purpose of this classification is to determine the certification route to be followed in Part
21 Subpart D (either 21A.95 or 21A.97) or alternatively in Subpart E.

13.2 PROCEDURES

Detailed guidance for the classification of changes to type design is given in GM 21A.91.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 60/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

14 GUIDELINES FOR APPROVING REUSED SOFTWARE
LIFE CYCLE DATA

14.1 PURPOSE

This section provides guidelines for determining whether software life cycle data, produced
and approved for one certification project, can be approved on a follow-on certification
project. Approval for reuse could minimize the amount of rework while maintaining an
equivalent level of design assurance.

14.2 DISCUSSION

14.2.1 Software suitable for reuse

a. If properly planned and packaged, software life cycle data can be reused from one
project to the next, with minimal rework. For example, the software plans, requirements,
design, and other software life cycle data (as documented in a Software Configuration
Index) for a System may originally be approved on System #1 (the original certification
project) and reused on System #2 (the subsequent certification project). Sample items
suitable for reuse include:

(1) Software plans and standards. These include software undergoing non-substantive
changes, such as:

i. Program name,

ii. Name change due to consolidations or mergers, and

iii. Configuration changes for reasons other than design changes (for example,
document format change, drawing modifications, or documentation system
changes).

(2) Tool qualification data. The certification authorities can approve reuse, if the tool is
used exactly as specified in the qualification approval as part of the original
certification, and the applicant has access to the tool qualification data. This is true
even if some of the features were qualified but not used during the original
certification. The applicant should ensure that the same version of the tools is being
used as that supported by the qualification data. The certification authorities will not
approve reuse if the applicant uses additional or different tool functionality than was
previously qualified.

(3) Software libraries. The certification authorities can approve library sets in the
original certification project if the library set is used identically (that is, same library
functions are used the same way).

(4) Software requirements, design, code, verification procedures, and

verification results. The certification authorities may approve these for reuse after
the applicant makes a thorough change impact analysis. This is to confirm that the
requirements, design, code, procedures, and so forth are unaffected and unchanged
from the previous certification effort.

(5) Configuration items. These may be approved for reuse in their entirety, if the
certification authority and staff members responsible for certification use paragraph
14-3 of this section to make sure the determination, and the configuration of the
software life cycle data has not changed. Configuration item requirements verified at
a higher level (that is, system level) should be identified in the original configuration
and re-verified before reuse.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 61/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

b. Projects not using ED-12B / DO-178B may have additional considerations not
documented in this section. Certification authorities should evaluate them on a case-by-
case basis. The applicant should contact EASA for guidance.

14.2.2 Safety considerations

If the certification authorities find software life cycle data acceptable for reuse, no further
design approval is required. Table 14-1 illustrates the considerations that govern whether
the certification authorities will approve software reuse.

The certification
authorities may approve
for reuse if:

1. There is no adverse effect on original system safety
margins, and

2. There is no adverse effect on original operational
capability UNLESS accompanied by a justifiable
increase in safety.

The certification
authorities will NOT
approve for reuse if the
reuse:

1. Adversely affects safety, or

2. Exceeds a pre-approved range of data or parameters,
or

3. Exceeds an equipment performance characteristic.

Table 14-1 Reuse Approval Considerations

14.2.3 Factors affecting reuse

a. Any of the software life cycle data items in Section 11 of ED-12B / DO-178B is suitable
for reuse. To meet the guidelines in paragraph 14.3 of this section, the software life cycle
data should be unchanged, and should apply to the project for which reuse is being
considered.

b. In-service problems with previous applications can limit reuse. There may be
Airworthiness Directives or a manufacturer’s unresolved problem reports with the
previously approved system. The applicant needs to analyze all open manufacturer’s
problem reports to ensure that the reusable portion of the new software is not affected.
If the reusable portion of the new software is affected, changes to correct that software
life cycle data should be made or the software should not be used.

c. Applicants should determine whether the software data apply to the subsequent project’s
development by assessing the similarity of both the operational environment and the
software development environment. They should:

(1) Assess the operational environment by evaluating the end-to-end performance
requirements and the operational safety assessment.

(2) Refer to the Software Life Cycle Environment Configuration Index in Section 11.15 of
ED-12B / DO-178B, when assessing the software development environment.

(3) Demonstrate that operational and development environments are the same, or
demonstrated to produce identical results as the previous certification.

(4) Assess any outstanding problem reports.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 62/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

14.3 PROCEDURES

a. The certification authority should ensure that the applicant has met the following
guidelines before granting certification credit for reused software life cycle data:

(1) The software life cycle data have not changed since its previous approval.

(2) The software level of the software application(s) is equal to (or less than) the
software level of the original certification effort.

(3) The range and data type of inputs to the configuration item are equivalent to its
approved predecessor.

(4) The configuration item is embedded on the same target computer and is used the
same way operationally as the original certification project.

(5) Equivalent software/hardware integration testing and system testing were conducted
on the same target computer and system as in the original certification project.

(6) The applicant followed the safety considerations and reuse factors in paragraphs
14.2.2 and 14.2.3 of this section.

(7) The software life cycle data and the rationale for reuse of each item are documented
in the “Additional Considerations” portion of the PSAC. The applicant’s PSAC should
include method of use, integration, and documentation for the reused configuration
item. The PSAC should be submitted as early as possible in the development
program. The applicant should also document all references to the project previously
certified and the project number, as applicable, in the PSAC.

The certification authority representative responsible for the subsequent certification
should review the PSAC and notify the applicant whether the proposal is acceptable or
not (with appropriate rationale).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 63/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

15 PROPERLY OVERSEEING SUPPLIERS

15.1 BACKGROUND

a. Many TC/STC/ETSOA applicants have shifted system and software development,
verification, and certification activities onto their aircraft system suppliers and sub-tier
suppliers. In the past, these suppliers participated in compliance activities only at their
respective system, subsystem, or component levels. With airborne systems becoming
increasingly more complex and integrated, and suppliers and sub-tier suppliers accepting
these new responsibilities, EASA is concerned that their lack of expertise could result in
incomplete or deficient certification activities.

b. Each responsibility that the applicant delegates to a supplier creates an interface with that
supplier that needs to be validated and verified to ensure that the transition from the
supplier's processes to the applicant's processes (or vice-versa) is accomplished correctly
and accurately. Lack of proper validation and verification of life cycle data at the transition
point has resulted in issues with regard to requirements, problem reporting, changes, etc.

c. Finally, retention of substantiating data, such as software life cycle data and other
certification and compliance data, is a critical part of the certification process. When this data
is retained by a sub-tier supplier, it may not be readily available to us. This may also affect
the continued operational safety of the aircraft and its systems, especially with regard to in-
service problems (service difficulties), problem resolution (service bulletins), and mandatory
corrections (airworthiness directives).

15.2 EASA CERTIFICATION POLICY

15.2.1 Supplier oversight aspects in plans and procedures

The applicant should create oversight plans and procedures that will ensure all suppliers and
sub-tier suppliers will comply with all regulations, policy, guidance, agreements, and
standards that apply to the certification program. The applicable publications include, but are
not limited to:

(1) EASA Certification Specifications;
(2) EASA CRIs and Certification Memoranda;
(3) Applicant DOA procedures, airworthiness representative procedures, and memoranda of
agreement;
(4) Applicant standards for software development (including requirements, design, and
coding standards);
(5) Applicant quality assurance plans, procedures, and processes;
(6) Applicant configuration management plans, procedures, and processes;
(7) System supplier standards, plans, procedures and processes.

The applicant's planning documents, such as certification plans and Plans for Software
Aspects of Certification (PSACs), should describe how the applicant will have visibility into
their suppliers' and sub-tier suppliers' activities. This includes commercial off-the-shelf
software component suppliers and vendors. The applicant should submit these plans for
review and approval, preferably early in the program. The applicant should avoid making
changes to the plans late in the program. If late changes are unavoidable, the applicant
must allow adequate time for review and consideration.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 64/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

15.2.2 Supplier oversight: reviewing the applicant's plans

The applicant should address the following concerns in a supplier management plan or other
suitable planning documents. Certification Specialists should review the plan(s) and ensure
that the following areas are addressed to their satisfaction:

1. Visibility into compliance with regulations, policy, plans, standards, and agreements:
The plan should address how the applicant will ensure that all applicable regulations,
policy, plans, standards, CRIs, and memoranda of agreement are conveyed to,
coordinated with, and complied with by prime and sub-tier suppliers.

2. Integration management: The plan should address how the system components will

be integrated, and who will be responsible for validating and verifying the software
and the integrated system. The plan should address:

(a) How requirements will be implemented, managed, and validated; including

safety requirements, derived requirements, and changes to requirements;

(b) How the design will be controlled and approved;

(c) How the integration test environment will be controlled;

(d) How the software build and release process will be controlled (reconcile any
differences between the supplier's and the applicant's release strategies);

(e) What product assurance activities that support the certification requirements

will be conducted and who will be conducting them; and

(f) The applicant's strategy for integrating and verifying the system, including
requirements-based testing and structural coverage analysis.

3. Tasks and responsibilities: The plan should identify who the responsible persons are

and what their responsibilities are, who the focal points are, and how their activities
will be coordinated and communicated. It should identify who will approve or
recommend approval of software life cycle data.

4. Problem reporting and resolution: The plan should establish a system to track

problem reports. It should describe how problems will be reported between the
applicant and all levels of suppliers. The problem reporting system should ensure that
problems are resolved, and that reports and the resulting changes are recorded in a
configuration management system. The plan should describe how the responsible
person(s) will oversee problem reporting.

5. Integration verification activity: The plan should identify who will be responsible for

ensuring that all integration verification activities between all levels of suppliers
comply with applicable guidance. It should describe how the responsible person(s)
will oversee the verification process.

6. Configuration management: The plan should describe the procedures and tools to aid

configuration management of all software life cycle data. It should describe how
configuration control will be maintained across all sub-tier suppliers, including those
in foreign locations, and how responsible persons will oversee configuration
management.

7. Compliance substantiation and data retention: The plan should describe how the

applicant will ensure that all supplier and sub-tier supplier compliance findings are
substantiated and retained for the program. The plan should address, at minimum,
the following certification data:

(a) Evidence that compliance has been demonstrated;
(b) Verification and validation data; and

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 65/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(c) Software life cycle data.

The applicant's supplier management plan (or equivalent plans) should address the concern
identified in paragraph 15.1.b. regarding the transition of life cycle data between the
applicant's processes and the suppliers' processes. The plan should address the validation
and verification of data with regard to all processes, including requirements management,
problem reporting, use of standards, change impact, reviews, etc.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 66/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

16 MANAGEMENT OF PROBLEM REPORTS

16.1 BACKGROUND

Problems related to airborne software may surface relatively late in the industrial
development process. When these problems do not affect the safety of the aircraft/engine
(and compliance with the objectives of the EASA Certification Specifications has been
demonstrated), the applicant may decide to propose for certification some items of airborne
software that still have known problems.

For airborne software, this situation is covered by ED-12B/DO-178B, section 11.20(j), as
follows:

“Software status: this section [of the Software Accomplishment Summary - SAS - document
produced for certification] contains a summary of problem reports unresolved at the time of
certification, including a statement of functional limitations.”

Problems may arise due to the methods that are used by the suppliers and sub-tier suppliers
of applicants for tracking and reporting problem reports. There may be inconsistencies in the
reporting and tracking of problem reports and the tools that are used to track them between
the applicant, their suppliers and their sub-tier suppliers. This may make it difficult for the
applicant and the certification authority to gain an accurate picture of the number and the
severity of the open problem reports across the various groups that are involved.

The use of suppliers and sub-tier suppliers may also result in situations where the sub-tier
suppliers do not have sufficient knowledge and visibility of system level requirements and
considerations when evaluating problem reports and their effects. The intent of this section
of this software Certification Memorandum is to discuss the issues related to Problem
Management for airborne software.

16.2 OBJECTIVES

One of the principal objectives of any airborne software development and certification should
be to minimise the number and the severity of Open Problem Reports (OPRs) in any airborne
software release that is proposed for certification. The OPR management principles and
assessment guidelines detailed in this section of this Certification Memorandum should not,
in any case, be understood as a justification for an applicant to deviate from this prevailing
objective.

This section of this Certification Memorandum has three purposes:

1. To clarify the role of the aircraft/engine manufacturer and the equipment supplier in
the assessment of limitations of a piece of equipment with embedded airborne
software because of known problems at the time of certification. It should be noted
that even if the equipment manufacturer has sufficient knowledge to explain the
functional effect of an OPR on the equipment/item, only the aircraft/engine
manufacturer can assess or confirm the potential effect at the system/aircraft/engine
level.

2. To facilitate the assessment of the acceptability of a baseline released with Open
Problems reports, by defining a harmonized categorization of OPRs and an adequate
means of recording the category of an OPR.

3. To clarify the aspects of problem reporting that should be covered in the plans of
suppliers and sub-tier suppliers of the applicant.

16.3 SCOPE

This section of this Certification Memorandum is applicable to all systems containing digital
equipment with a Development Assurance Level (DAL) of A, B, C or D.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 67/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

16.4 TERMINOLOGY

The text in italics in the definitions below is extracted from the glossary of ED-12B/DO-178B.

• Problem: any of the following features: error, fault, failure, deviation from the rules

• Error: a mistake in requirements, design or code.

• Fault: (1) A manifestation of an error in software. A fault, if it occurs, may cause a
failure.

• Failure: The inability of a system or system component to perform a required
function within specified limits. A failure may be produced when a fault is

encountered. But a fault may also remain hidden at system level and have no
operational consequences.

• Failure condition: The effect on the aircraft and its occupants both direct and
consequential caused or contributed to by one or more failures, considering relevant

adverse operational and environmental conditions. A failure condition is classified

according to the severity of its effect […].

• Deviation from the rules: a non-conformity of the development process with the
plans, development standards, applicable CRIs. In the particular case where a non
conformity with the plans or development standards is intentional and the plans or
development standards are planned to be modified accordingly, such a non-
conformity might not be recorded as a problem, but instead be identified and justified
in the compliance status of the HAS.

• Open Problem Report (OPR): a problem which has not been corrected at the time
the airborne electronic hardware is presented for certification.

16.5 TYPOLOGY OF OPEN PROBLEM REPORTS

A logged OPR should be categorized according to the nature and effect of the OPR. One
possible way to classify OPRs that is acceptable to EASA is as follows:

• Type 0: a problem whose consequence is a failure – under certain conditions - of the
system, with a safety impact.

• Type 1: a problem whose consequence is a failure – under certain conditions - of the
system, having no safety impact on the aircraft/engine. (This needs to be confirmed
by the aircraft/engine manufacturer). If agreed between the aircraft/engine
manufacturer and the equipment/software supplier, this type should be divided into
two sub-types:

o Type 1A: a failure with a “significant” functional consequence; the meaning of
“significant” should be defined in the context of the related system in
agreement between the aircraft/engine manufacturer and the
equipment/software supplier (for instance a “cockpit effect”).

o Type 1B: a failure with no “significant” functional consequences.

• Type 2: a fault which does not result in a failure (i.e.: no system functional
consequences and the fault is not detectable by the crew in any foreseeable operating
conditions).

• Type 3: Any problem which is not of type 0, 1 or 2, but which is a deviation from the
rules (i.e. the plans or software development standards, applicable CRIs). If agreed
between the aircraft/engine manufacturer and the equipment/software supplier, this
type should be divided into two sub-types:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 68/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

o Type 3A: a “significant” deviation, whose effects could be to lower the
assurance that the airborne software behaves as intended and has no
unintended behaviour.

o Type 3B: a “non-significant" deviation from the methodology (plans) that
does not affect the assurance obtained.

16.6 GUIDELINES ON OPR MANAGEMENT

EASA considers that, as far as possible, a root cause analysis should be performed for all
OPRs, except in exceptional cases where a root cause analysis is not feasible. Any such
infeasibility should be justified. In the cases of Types 0, 1 or 2, this root cause analysis
should lead to the identification of the corresponding error in the code and of any associated
methodological deviations. For type 3 problems, the root cause analysis consists of the
identification of the methodological deviation associated with the problem.

All OPRs should be categorized according to the typology of problems defined in this CRI, or
an equivalent typology. If an equivalent typology is proposed, any new type(s) should
correspond to only one of the types (0, 1, 2 or 3) as defined in this section of this
Certification Memorandum.

All OPRs should be described in order to substantiate their categorization into adequate
types; this description should be recorded.

When previously developed airborne software is used, previously existing OPRs should be
reassessed in the operational environment of the aircraft/engine to be certified.

In order to avoid decreasing the assurance of the quality of the airborne software to be
certified due to an increasing number of OPRs, the following objectives should be taken into
account and acted upon:

• Limitations should be removed at the earliest opportunity.

• Conformity with the specifications should be restored at the earliest opportunity.

• Any OPR should be rectified within a time period compatible with its assessed
consequences.

Per ED-79/ARP4754 section 9.2.2, problem reporting should be managed at the system
level.

The following type-based objectives should be taken into account:

• Type 0: such OPRs should be rectified before certification or an adequate means of
mitigation (for instance, operating limitations,) should be proposed such that there
are no adverse effects on safety at the aircraft/engine level.

• Type 0 and 1: Potential effects should be assessed at the system level and, if
necessary, at the aircraft/engine level. If necessary, appropriate limitations should be
defined in order to ensure there are no adverse effects on safety.

• Type 1: Any claim that an OPR has no safety impact on the aircraft/engine should be
justified; this justification should be recorded.

• Type 2: The justification that the error cannot cause a failure should be recorded. For
simple cases, this justification may be a simple statement based on engineering
judgement. In some specific cases, this justification may imply that some specific
additional validation and/or verification activities need to be performed.

16.7 CONTENTS OF SOFTWARE ACCOMPLISHMENT SUMMARY (SAS)

All OPRs of types 0 to 3 should be recorded in the SAS or the equivalent certification
document, along with the following information:

• Supplier’s identification of the OPR (configuration management number)

• Type of OPR

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 69/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

• Is the function of the system affected? (Provide a description if “Yes”, or the
Statement “No”)

• Short description (including a brief summary of the root cause, where available)

• Date when the OPR was opened

• Scheduled closure date for the OPR

• Brief justification as to why it can be left open

• Means of mitigation to ensure there are no adverse safety effects - if applicable

• Interrelationships between OPRs - if applicable.

Although a limited number of type 2 or 3 OPRs should normally not prevent certification, a
large number of type 2 or 3 OPRs, or a lack of action plans for the closure of type 2 and 3
OPRs are general indicators of a lack of software assurance. The EASA team may reject a
request for certification if the number of remaining OPRs is too high, or if there is no
evidence of an adequate action plan to close the OPRs.

16.8 CONTENT OF SYSTEM CERTIFICATION SUMMARY OR EQUIVALENT
DOCUMENT

The System Certification Summary or an equivalent certification document should describe:

• The identification of all type 0 and 1 OPRs and the description of their impact at the
system level or, if necessary, at the aircraft/engine level (including, any associated
operational limitations and procedures).

16.9 OVERSIGHT OF PROBLEM REPORTING

16.9.1 Problem reporting and supplier plans

In order to ensure that software problems are consistently reported and resolved, and that
software development assurance is accomplished before certification, the applicant should
discuss in their Software Configuration Management Plan, or other appropriate planning
documents, how they will oversee their supplier's and sub-tier supplier's software problem
reporting process. The engineer responsible for certification should review the plans and
verify that they address the following to their satisfaction:

1) The plans should describe each of the applicant's supplier’s and sub-tier supplier's

problem reporting processes that will ensure problems are reported, assessed, resolved,

implemented, re-verified (regression testing and analysis), closed, and controlled. The

plans should consider all problems related to software, databases, data items, and

electronic files used in any systems and equipment installed on the aircraft.

2) The plans should establish how problem reports will be categorized so that each problem

report can be classified accordingly. The categories described above should be used.

3) The plans should describe how the applicant's suppliers and sub-tier suppliers will notify
the applicant of any problems that could impact safety, performance, functional or
operational characteristics, software assurance, or compliance.
a) The applicant may enter such problems into their own problem reporting and tracking

system. If so, the plan needs to describe how this is accomplished. If the supplier's
problem reporting system is not directly compatible with the applicant's system, the
plan needs to describe a process for verifying the translation between problem
reporting systems.

b) The applicant may allow their suppliers and sub-tier suppliers to have access to their
own problem reporting system. Doing so may help the applicant ensure that they will

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 70/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

properly receive and control their supplier's problem reports. If the applicant allows
this, they should restrict who has such access in order to maintain proper
configuration control, and their suppliers should be trained on the proper use of the
reporting system.

c) The plans should describe any tools that the applicant's suppliers or sub-tier suppliers
plan to use for the purpose of recording action items or observations for the applicant
to review and approve prior to entering them into the applicant's problem reporting
system.

d) The plans should state that suppliers will have only one problem reporting system in
order to assure that the applicant will have visibility into all problems and that no
problems are hidden from the applicant.

e) Any problems that may influence other applications, or that may have system-wide
influence should be made visible to the appropriate disciplines.

4) The plans should describe how flight test, human factors, systems, software, and other

engineers of the appropriate disciplines will be involved in reviewing each supplier's and
sub-tier supplier's problem report resolution process. They should also describe how
these engineers will participate in problem report review boards and change control
boards.

5) The plans should establish the criteria that problem report review boards and change
control boards will use in determining the acceptability of any open problem reports that
the applicant will propose to defer beyond certification.

a) These boards should carefully consider the potential impacts of any open problem

reports on safety, functionality, and operation.
b) Since a significant number of unresolved problem reports indicate that the software

may not be fully mature and its assurance questionable, the applicant should describe
a process for establishing an upper boundary or target limit on the number of
problem reports allowed to be deferred until after type certification.

c) The plan should establish a means of determining a time limit by which unresolved
problem reports deferred beyond certification will be resolved. This applies to problem
reports generated by the applicant, suppliers, and sub-tier suppliers.

16.9.2 Reviewing open problem reports

The person responsible for certification should be involved in certain decisions related to
open problem reports prior to certification and should:

1) Review, as appropriate, any problem reports that are proposed for deferral beyond
certification. This review may require EASA flight test, systems, and other specialists
and may require more information to make the assessment. Where there are
concerns that safety might be impacted, the deferral of specific problem reports may
be disallowed.

2) If the applicant is using previously developed software, ensure that the applicant has

reassessed any open problem reports for their potential impact on the aircraft or
system baseline to be certified.

3) Ensure that the applicant has considered the inter-relationships of multiple open

problem reports and assessed whether any open problem report has become more
critical when considered in conjunction with another related problem report.

4) Ensure that the applicant has reviewed any open problem reports related to

airworthiness directives, service bulletins, or operating limitations and other
mandatory corrections or conditions. The applicant may need help to determine which
problems to resolve before certification.

5) Review any open problem reports with potential safety or operational impact to

determine if operational limitations and procedures are required before EASA test

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 71/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

pilots participate in test flights. Other technical experts should be involved as
necessary in making this determination.

6) Ensure that the applicant has complied with ED-12B / DO-178B, section 11.20(j).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 72/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

17 EMBEDDED SOFTWARE CONFIGURATION FILES

17.1 BACKGROUND

Databases may be used in various aircraft/engine systems and be embedded in pieces of
digital equipment:

• Some databases may be used to store aeronautical data such as navigation or terrain
data, magnetic variation data, or data produced by the applicant, such as aircraft
performance parameters for use by aircraft systems such as navigation systems,
surveillance systems, etc. Such Databases are usually defined as Aeronautical
Databases are not covered in this Certification Memorandum.

• Other databases are segregated from the rest of the embedded software for
modularity and portability purposes, such as data for symbology, bus specifications or
A/C configuration databases. These Databases, referred as configuration files, may be
used to activate or deactivate software components/functions, to adapt the software
computations to the aircraft configuration, or may be used as computational data.
With such Databases, embedded software may be adapted to operate in any one of
several aircraft/engine configurations. They may, for example, embed Boolean flags
for software "Pin Programming" and / or data parameters for the adaptation of the
operational software to the aircraft installation and any installation options. Such
Databases are usually defined as Configuration Files (CF). These configuration files
are the subject of this section of the software Certification Memorandum.

Most databases or Configuration Files may be loaded on the aircraft and may be updated
after delivery without necessitating a change to the related digital equipment. Such
databases and Configuration Files are usually controlled by their own part number or by
aircraft modification numbers, independently of the part numbering of the associated digital
equipment. In addition, they usually have the capability of being loaded without removing
the system or equipment from its installation (in which case the file is ‘field loadable’). Data
loaders or portable devices are used to store the Databases or Configuration Files in the
computer using Non Volatile Memory so that they may later be used by the operational
software.

Any corruption or error in the format or content of databases, or any incompatibility between
databases and aircraft systems, may have an impact on safety and should be considered
when showing compliance with the safety objectives2 of the Certification Specifications (CS)
for those activities for which the applicant is responsible. The intended function of a system
can be affected by the quality of the data contained in the database.

This section of this Certification Memorandum applies to pieces of digital equipment whose
software is composed of a set of executable files (containing operational software) and a set
of configuration files with the following characteristics: the files are -

• Identified by a specific P/N,

• Designed to be updated without necessarily requiring a change to the associated
executable software.

The operational software should also be designed to allow an update of the Configuration
Files.

This section of this Certification Memorandum does not apply to configuration files with a P/N
that is the same as that of the executable software. Such configuration files are certified as
part of the executable software by using ED-12B/DO-178B, which adequately addresses the
development (including verification) of such embedded configuration files and the associated
executable software.

2 CS 25.1309 for Large Aeroplanes, CS 23.1309 for Small Aeroplanes, CS27.1309 for Small Rotorcraft, CS29.1309
for Large Rotorcraft and CS E-50 (f) for engines.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 73/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

On the other hand, ED-12B/DO-178B does not clearly address the development of
configuration files when they are managed separately from the associated executable
software. This section of this Certification Memorandum aims to establish acceptable
guidance material for the development, validation, verification and utilisation of such
configuration files on board an aircraft/engine. Some requirements of this section of this
Certification Memorandum also address additional guidance for the associated executable
software.

Such configuration files will, in most cases, be field-loadable (see the definition below).
Certification issues and the required safety precautions associated with field loading are
further discussed in the specific section on Field Loadable Software of this Certification
Memorandum.

17.2 IDENTIFICATION OF CONFIGURATION FILES

The applicant is requested to provide a list and a description of all the configuration files
which will be used in the pieces of digital equipment of the aircraft/engine. These lists may
be issued system by system and included in the certification plans or at the software level in
the Plan for Software Aspects of Certification (PSAC).

In this list, the applicant should identify the configuration files that will have a separate part
number and separate approval of the files in order to allow them to be updated without
necessarily requiring a change to the associated executable software.

The intent of the requirements stated hereafter is to identify the ED-12B/DO-178B objectives
that are applicable to these Configuration files. Compliance with the ED-12B/DO-178B
requirements referred to hereafter should be demonstrated taking into account the
development assurance level (DAL) allocated to the configuration files. The applicability of
these requirements is dependent on this DAL level in the manner described in the tables of
objectives in ED-12B/DO-178B. (For example, some objectives of ED-12B/DO-178B Table A-
3 are not required for DALs C and D). The documentation to be provided should be according
to the guidelines defined below.

In addition, specific requirements (in addition to those specified in ED-12B/DO-178B) are
also identified hereafter for the operational software that is associated with these
Configuration Files.

17.3 DEVELOPMENT ASSURANCE LEVEL

Configuration files should be integrated into the system development as a particular item in
a similar manner to that used for a software component (see ED-79/ARP4754). The system
safety assessment should include the determination of the failure condition criticality
associated with incorrect data or loss of data of each Configuration File. In other words, the
risk of an unintended and undetected activation of a function due to a data error should be
assessed as part of the system safety assessment process. The CF should then be allocated
a Development Assurance Level between A and E, depending on the outcome of the safety
analysis of the system, as indicated in ED-79/ARP4754.

The requirements stated hereafter are applicable only for Configuration Files of DALs A to D
that are updated on the ground by maintenance operators or crew.

17.4 IDENTIFICATION AND CONFIGURATION CONTROL

• The CF should be identified (Specific P/N).

• The configuration of the CF should be managed.

• For any CF that has an electronic P/N, the electronic identification of the CF may have
to be included as part of the configuration data. (See also the specific section on Field
Loadable Software in this Certification Memorandum.)

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 74/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

17.5 DATA QUALITY

The development of configuration files should follow the requirements stated hereafter.
These requirements originate from ED-12B/DO-178B requirements, which are cross-
referenced whenever possible. Some requirements may impact the design and development
activities for the executable software.

• Planning process: The applicant should document the CF development process that
is used so as to take into account the requirements stated hereafter. The
documentation may be specific or may be part of the executable SW documentation.

• Description: A document should describe the structure of each configuration file and
the usage of its data, including the types and ranges of the data. This document will
be referred to hereafter as the ‘CF design specification’. This document will be
equivalent to the Software Requirements Specification data of the executable
software. This document should also be managed as an item of CC1 data (see ED-
12B/DO-178B section 7).

• Validation: The CF design specification should be validated (to be accurate,
consistent, verifiable, correct, complete – as described in ED-12B/DO-178B section
5.1). All items from ED-12B/DO-178B table A-3 (covering the verification of the
outputs of the requirement process) should be assessed for applicability.

• Verification: The implementation of the CF should be verified against the CF design
specification (see also ED-12B/DO-178B Table A-6). All items from ED-12B/DO-178B
table A-6 (testing of outputs of integration process) should be assessed for
applicability.

• Deactivated code: Some values in the CF may result in the deactivation of certain
sections of code in the executable software. ED-12B/DO-178B requirements (mainly
sections 4.2.h, 5.4.3.a, 5.4.3.b, 6.4.4.3.d of ED-12B/DO-178B) concerning any such
deactivated code should be considered for the executable software. The activation or
deactivation of a function, through the parameter values in the configuration files,
should not affect the behaviour of any other function (see also ED-12B/DO-178B
section 2.4.e).

• CF modification without modification of the executable software: In addition
to CF activities, assurance should be given (through documented justifications such
as analysis and/or tests) that the performance of the executable software (e.g. timing
requirements, memory and stack margins, communication and scheduling) is not
affected beyond specified limits (as defined in the development process of the
executable software). In cases where these performance limits are exceeded, the
development and verification life cycles of the executable software should be re-
entered in order to perform all the activities that are necessary: for example, the
executable software might have to be modified and re-tested so as to be compatible
with the new CF.

• Documentation: for each identified CF, the means to fulfil the following objectives
should be documented:

o configuration management

o description of the development process

o accomplishment summary

o configuration index document

The certification documents affected by a modification of a Configuration File should
be identified in the system certification plan, which should be reissued as necessary.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 75/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

17.6 COMPATIBILITY / MIXABILITY

Each Configuration File (CF) should be considered as a separate configuration item with the
same compatibility/mixability concerns as any software configuration item.

The following requirements are applicable to the executable software -

• Assurance should be provided that the executable software does not use any
corrupted or non-acceptable CF (where "acceptable" means that the considered
Configuration File is compliant with its specified format and parameter ranges). For
this purpose, appropriate means should be proposed that are able to ensure the
required level of safety, such as automatic detection mechanisms and/or maintenance
procedures.

• Assurance should be provided that the associated executable software is developed,
validated and verified for any CF to be certified.

• Compatibility of the load: When the CF requires a specific executable software
version, the compatibility between the executable software and the Configuration File
has to be ensured.

Note: A means which could detect any inappropriate combinations of software and/or
hardware and/or airframe and revert to a certified configuration in the event of
detecting any incorrect combinations would cover partially this concern. For other
topics linked with compatibility or integrity, refer to the specific section on Field
Loadable Software in this Certification Memorandum.

The following requirement is applicable to Configuration Files (CF).

• CF evolution: the new configuration (executable SW + CF) should be identified in the
CF Accomplishment Summary, which should include a summary of the validation and
verification activities performed. The accepted associations / compatibilities between
the CF and the executable software should be described in documents produced at
the Configuration File level or at the system level.

In cases where CFs are used to activate several functions or components (“software pin
programming”), the applicant should identify the procedures they propose to put in place to
ensure that the functions or components to be activated have been properly certified prior to
the release of the CF, and that the compatibility/mixability issues associated with it have
been properly controlled. The certification documents affected by such CFs should be
identified and reissued as needed.

17.7 GENERATION OF CONFIGURATION FILES

In cases where a tool is used to produce the CF, the need for tool qualification should be
considered, taking into account the recommendations of ED-12B/DO-178B (section 12.2).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 76/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

18 MANAGING THE SOFTWARE DEVELOPMENT AND
VERIFICATION ENVIRONMENT

18.1 BACKGROUND

ED-12B / DO-178B requires that the verification test activities take place on the target
computer, a target emulator, or a host computer simulator. Software development and
verification teams typically utilize an environment designed specifically to emulate the target
computer to satisfy this requirement. Because the environment may go through several
iterations during software development and verification, it may not be clear how
representative the environment is of the actual production hardware at any point in time in
the verification process.

Additionally, the environment may not be identical to the final production version of the
hardware to be installed in the aircraft. Therefore, the applicant should establish and
maintain configuration control of the environment, and implement a structured problem
reporting system for the environment available to users of the environment.

18.2 CONTROLLING THE DEVELOPMENT AND VERIFICATION
ENVIRONMENT

The applicant should address the following aspects in their Software Development Plan,
Software Verification Plan and Software Configuration Management Plan.

The applicant should convey these aspects to all participating software suppliers, and ensure
that they comply with them. The person responsible for certification should review these
plans and assess their adequacy.

The Software Verification Plan should include:

1) A description of the software development and verification environment, and an
explanation of the differences between it and the production version of the system
hardware and software to be installed on the aircraft.

2) An analysis for each identified difference (cf. (1)) and a justification that for each
objective (cf. (3)), that the difference does not prevent the ED-12B / DO-178B
objective from being fulfilled.

3) An explanation of how the software development and verification environment will be

used by system software suppliers and with which ED-12B / DO-178B objectives it
will be used to show compliance.

4) An explanation of how the software development and verification environment will be

used to show compliance with ED-12B / DO-178B objectives that involve verification
of the software executable object code. This should address the entire executable
object code, not just individual functional software components. If development tools
are being used in the integrated environment, then verification should also be
performed in the integrated environment.

5) A process for analyzing completed verification activities and assessing the need to

repeat any of those activities after changes are made to the software development
and verification environment. The process should ensure that all affected verification
activities will be repeated, or ensure that a documented analysis is conducted
showing why retesting is not required.

The Software Configuration Management Plan should include:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 77/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1) A description of the configuration control system to be used for the software
development and verification environment. The plan should identify the person who is
responsible for administering this system.

2) A problem reporting and assessing system for the software development and

verification environment that is available to all users of the environment (see section
16 of this Certification Memorandum).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 78/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

19 THE USE OF OBJECT ORIENTED TECHNIQUES AT THE
DESIGN OR SOURCE CODE LEVEL

19.1 BACKGROUND

Object-oriented techniques (OOTs) have several features that can make them undesirable
for use in airborne systems if specific precautions are not taken and/or specific limitations
are not imposed. For systems whose embedded software is to be designed using OOTs at the
design level or the source code level, it might not be obvious how compliance with ED-12B /
DO-178B can be achieved.

The use of OOTs also results in some new areas of concern that are specified in this section
of this Certification Memorandum.

19.2 GUIDANCE

The OOT features listed below, if not properly controlled and verified, can result in software
code that is non-deterministic, unused, and difficult to verify and maintain and whose
configuration can change depending on the run-time state of the system.

The applicant should address the 17 background concerns (referred as Items) of this section
of this Certification Memorandum.

The applicant should provide substantiating software plans, standards (requirements, design
and code) and life cycle data to show that each of these concerns will be controlled for each
system intended to use these OOTs on the aircraft/engine project and to ensure that an
appropriate level of assurance is achieved for each.

The following areas of concern have been identified as being relevant to OOTs at either the
design or source code level:

(a) - Software life cycle

As an adaptation to the growing complexity of systems and to the growing number of
components and functions on the last generation of airborne software, OOTs could provide a
new vision of the classical waterfall development process. By isolating functions in classes
(even if they are involved in different requirements), it is possible to build and upgrade
successive prototypes of the product. This process is known as ‘Iterative Prototyping’ or
sometimes ‘Fast Iterative Prototyping’ and is beginning to be used more frequently. Without
the application of a minimum set of rules, there is a risk of getting lost in a maze of
upgrades, modifications and corrections, with the consequence of losing the capability to
trace a code sequence to its requirement.

As applicable, the following items should be addressed:

• Item 1: The kind of iterative process (classical, iterative, etc).

• Item 2: Definition of the exit control process for each iteration (review, checklist,
analysis).

• Item 3: Definition, hierarchy, granularity and coupling of classes, subclasses, method,
attributes, etc.

• Item 4: Development and verification tool capabilities to reach the ED-12B/DO-178B
objectives with regards to OOTs (functional areas, usage of features, capability, etc).

• Item 5: Specific complex features used in object-oriented languages compilers/
linkers/ builders and associated libraries (mathematics, semantics, etc.).

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 79/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

(b) - Traceability from function oriented requirements to object-oriented design or

code

Traceability is the evidence of a link between a requirement, its implementation and test
cases, etc.

It is used to identify derived requirements and architectural design decisions made during
the software design process and to assess the implementation. Between the low-level
requirements and the source-code, it allows verification of the absence of undocumented
source code and that all low level requirements are verified.

Both classical or OOTs mentioned should address this concept, but object-oriented methods
add a new area of concern. A system is designed from its objects instead of its functions.
More precisely, objects are considered as the actors and the functions as some messages or
events between the actors. But, in general, a system is described (in natural language) from
a functional point of view. When a requirement engineer captures the functional behaviour of
a system in an object-oriented view, it is likely that most of the required traceability will be
lost.

As a possible means to overcome this problem, but not the only means, the SW team could
use the following OOT features: use-cases in conjunction with dedicated diagrams.

• Use-cases are built at the first step of the requirement analysis and are typically
used to specify and characterise the functionality of the software interacting with one
or more external actors. Use-cases are developed to capture the software
requirements and to understand what they are supposed to do and how their
components interact together and with the outside.

• Additional diagrams are often used in conjunction with use cases: interaction
diagrams, sequence diagrams, collaboration diagrams, state-chart diagrams, activity
diagrams, class diagrams, component diagrams, deployment diagrams. These
diagrams allow traceability, maintainability, portability, etc. The use of these
diagrams depends on SW (complexity, real time constraints, interaction with external
inputs or SW, number of class or use cases, OOTs, state machines, etc.). Usually, the
complexity of a diagram is directly linked to the precision, focus and conciseness of a
requirement.

As an example, criteria for a good OOT use-case could be:

• Completion of the events,

• Use driven,

• Simple enough to understand.

Use-cases with diagrams allow traceability from a functional description of software to an
object-oriented design and therefore naturally promote traceability from the requirements
down to the code.

The polymorphism capability of some OOT languages is also an issue for traceability that has
to be addressed. Actually, if the same function name may lead to several different
implementations depending on the context, this will increase the traceability workload in
order to avoid wrong function call situations.

As applicable, the following items should be addressed:

• Item 6: Traceability between functional requirements and object design and/or
object source code.

• Item 7: Definition of use case granularity.

• Item 8: Description of the usage of diagrams.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 80/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

• Item 9: Specific additional analysis to complete the source to object code traceability
for Level A SW.

(c) - Test coverage assessment (software requirements coverage assessment and

structural coverage analysis)

Some concerns remain about the fulfilment of test coverage objectives described in ED-
12B/DO-178B section 6.4:

With the hierarchy capability of certain OOTs, a class may inherit from one or several
other classes. This means that an operation of an ancestor is propagated to its
descendants. Dynamic binding will convert at the very last moment which operations
will have to be executed, depending on the instantiated class. In this environment,
the result may be a polymorphic call. The functional coverage and the real time
constraints of a class may then not be ensured.

The following concerns remain:

• The evaluation of the functional coverage (including the propagated methods).

• The structural coverage analysis.

• The flow analysis.

• The timing analysis.

• At a low level, to exercise requirements based tests for each class and method
(including for instantiated derived classes).

Furthermore, with the possible use of the OOT encapsulation capability, sequences of code
addressing a specific class may only have access to the public methods and data exported by
the class. Programmers that implement a class have no access to the internal data of the
class and may exercise unintended functionality if the description of the class is incompletely
documented. The programmer may have no sight of what is really executed at lower levels
of the class. Possible means (but not the only means) to prevent that could be:

• The class definition should be well documented in term of side effects, property
bounds, pre-conditions and post conditions.

• Each method of a class (included hidden methods) should be considered as a
software unit with its requirement and test cases.

• Functional, performance and robustness test cases should exercise all the
encapsulated items, operations and attributes with structural coverage criteria
depending on the software level.

• Regression activities (tests, analysis, etc.) should take into account the above items.

The use of the above-described diagrams may be helpful to support the definition of test
cases and procedures.

As applicable, the following items should be addressed:

• Item 10: Strategy to achieve functional coverage (including the timing and flow
analysis).

• Item 11: Strategy to achieve structural coverage (including the flow analysis).

• Item 12: Strategy to ensure the robustness behaviour of the SW.

• Item 13: Worst case demonstration for CPU workload and memory usage.

• Item 14: Detailed description of regression analysis (particularly for post TC).

(d) - Configuration management (Reuse of numerous classes)

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 81/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Classes are generally designed to match definite objects (data buses, messages, screens,
keyboard, etc.). They are generally built in order to ensure easy reuse of the classes in
future applications. Some classes are purely abstract and are only bases for further
specialised classes. In this context, the applicant should consider that:

• Parts of the classes will be considered as deactivated code. Software engineers will
have to assess and give evidence that this deactivated code is not dead code. In any
case, the software planning process should describe how the deactivated code (for
classes, methods, attributes, etc. that are not used) would be defined, verified and
handled to achieve the system safety objectives.

As applicable, the following items should be addressed:

• Item 15: Compliance with ED-12B/DO-178B objectives regarding deactivated code.

(e) – Other areas

OOT has several features that, if not controlled properly, may lead to unknown
configurations of object code and to unverified code.

Moreover, many OOT features, if not properly controlled and verified, can result in software
that is unpredictable, unused, and difficult to verify and whose configuration can change
depending on the run-time state of the system:

Dynamic Binding/Dispatch: The matching of calls to methods (functions) at run-time as
opposed to compile-time or link-time. This results from a polymorphic call. There are a
number of concerns regarding the use of dynamic binding/dispatch in airborne software.

a) It complicates the flow analysis (e.g., data coupling and control coupling) and
structural coverage analysis;

b) It can lead to complex and error-prone code;
c) It can complicate source code to object code traceability;
d) The matching of calls to methods can be difficult, if implicit type conversion is

used; and
e) The behaviour of the execution of the compiler-generated code may not

correspond to the expectations of the programmer.

Inheritance: A mechanism whereby a class is defined in terms of others (its parents), adding
the features of its parents to its own. A class may have a single parent (which is known as
‘single inheritance’) or multiple parents (known as ‘multiple inheritance’). Either the
interface, or the interface and the implementation can be inherited. Where multiple
inheritance is allowed, repeated inheritance is a possibility (two or more parents have a
common ancestor in the class hierarchy). Multiple inheritance is particularly a concern in
airborne systems. It can lead to overly complex and potentially unpredictable interactions
between classes. It can also complicate traceability and verification.

Polymorphism: The ability of a name in software text to denote, at run-time, one or more
possible entities, such as a function, a variable or an operator. For example, given the text:
f(x), determining which f() should be called may be dependent on which class x belongs to,
and x may belong to multiple classes, depending on the run-time state of the system.
Polymorphism is generally supported by dynamic binding/dispatch. The concern with
polymorphism in airborne systems is the potential for ambiguity, which might lead to coding
errors, traceability problems, complexity, and difficulties for verification.

As applicable, the following items should be addressed (some of them are already addressed
above and are not recalled hereafter – traceability, test coverage, etc.):

• Item 16: The perimeter, the depth and the determinism of the usage of inheritance
(with the inherent dynamic binding/dispatch effects) and, particularly: the initialisation
phase during on time calls, parent and child classes, methods, interfaces, definitions,
previously developed SW components, hierarchy respects,

• Item 17: The monitoring of the usage of polymorphism.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 82/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

20 THE USE OF (OCC) OBJECT CODE COVERAGE FOR
EQUIVALENCE TO MODIFIED CONDITION DECISION
COVERAGE (MCDC)

20.1 BACKGROUND

The use of Object Code Coverage (OCC) may be proposed by some applicants in order to
satisfy the ED-12B / DO-178B Modified Condition Decision Coverage (MCDC) objective. MCDC
is specified by ED-12B/DO-178B, Table A-7, objective 5, as the degree of test coverage of
software structure that should be achieved for Level A software.

Object Code Coverage (OCC) attempts to achieve structural coverage on the object code (i.e.
assembly language code) instead of the source code by adhering to strict grammar rules and
taking advantage of the “short-circuiting” aspects of modern compilers.

Currently, there is no guidance that would allow the use of OCC as an acceptable alternative to
meet the MCDC objective of ED-12B/ DO-178B, Table A-7, and objective 5. This section of this
Certification Memorandum is intended to provide the necessary guidance, while meeting the
safety objectives, for the use of Assembly Branch Coverage in cases where this approach is
selected by an applicant.

20.2 GUIDANCE

EASA has identified the following issues associated with this concept.

When structural coverage analysis at the object (assembly) code level is proposed the
applicant should demonstrate that the coverage analysis at the object code level and source
code level provide the same level of assurance and addressed in the relevant documentation
(i.e. plans, standards and SW life cycle data). The following issues should be addressed (as
a minimum):

• The approach should generate the same minimum number of test cases as that
needed at the source code level appropriate to the software level of the application
(e.g., MC/DC for Level A, decision coverage for Level B).

• The test cases used for coverage should be generated from the requirements (e.g.,
“structural testing” with module tests based on the code structure should not be
used).

• All design and coding rules used to enforce the equivalence should be included in the
design and coding standards, verification checklists, etc. and strictly followed.

• Data should be provided to substantiate all assumed compiler behaviour (e.g., short-
circuit forms with the appropriate optimization settings). (Note: In some cases,
when compilers aggressively optimize or use self-optimization the behaviour becomes
unpredictable.)

• Analysis of the object code or qualification of a tool may be necessary to ensure that
design and coding rules were followed and that the compiler performed as expected.

• Traceability between object code, source code, design, and requirements should
exist.

• Architecture and complexity limitations should be documented and followed (e.g.,
number of nested ifs, number of conditions in a decision, nested function calls, etc.).

• The approaches for data coupling analysis and control coupling analysis should be
performed by the applicant/developer, whether the coverage is performed on the
linked object code or not.

• Data should be available to substantiate any object code not covered.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 83/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

• The following questions should also be addressed (these are areas that are known to
cause problems for many of the object coverage approaches):

o How are parentheses addressed?

o How are conditional calls addressed (e.g., jumps in branches)?

o How are long jump and long throw addressed (do they allow multiple entries
and exits)?

o Are functions limited to only one entry point?

o Where does transfer of control in the function occur? (Note: It should typically
be at the beginning.)

o How is control from outside to inside a function addressed?

o How are jump statements addressed (e.g., break, continue, return, goto)?

o Are bitwise operators used as Boolean operators prohibited?

o Do functions of the compiler (e.g., pre-parser) need to be qualified for the
proposed compiler options and optimizations intended to be used?

o Is analysis of the object code needed to ensure design and coding rules were
followed and that the compiler behaved as expected?

o Is structural coverage at the appropriate level also achieved for compiler-
provided library functions and run-time system-provided library functions used
or included in the airborne application?

o Does the linkage editor (and linking and loading procedures) have the
capability to link into the application only those components and functions to
be used and for which structural coverage has been achieved, or are unused
(dead code) components and functions linked into the application also?

o Should linker or loader functions be qualified?

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 84/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

21 MERGING HIGH-LEVEL AND LOW-LEVEL
REQUIREMENTS

21.1 BACKGROUND

Section 5.0 (second paragraph) of ED-12B / DO-178B states that: “Software development
processes produce one or more levels of software requirements. High-level requirements are

produced directly through analysis of system requirements and system architecture. Usually,

these high-level requirements are further developed during the software design process, thus

producing one or more successive, lower levels of requirements. However, if Source Code is

generated directly from high-level requirements, then the high-level requirements are also

considered low-level requirements, and the guidelines for low-level requirements also apply.”

This part of section 5.0 addresses the case where the system-level requirements are "directly"
highly refined (i.e., created in one refinement step); hence, allowing a single level of software
requirements. However, applicants sometimes misuse this paragraph to justify combining
high-level requirements (HLR) and low-level requirements (LLR) into the same data item. They
establish development cycles that are intended to expand HLR with requirements built during
the software design phase. Thus, they are “flattening” the requirements tree and merging all
the requirements into a single data item, without establishing traceability between LLR and
HLR.

In general, HLR represent “what” is to be designed and LLR represent “how” to carry out the
design. Merging these two levels leads to several certification concerns, as described in this
section.

21.1.1 ED-12B / DO-178B compliance concerns

Applicants’ motivation to expand HLRs and merge them with LLRs during the design phase
seems to be to keep all the requirements in a single data item. The resulting data item is the
result of a development process that may not comply with ED-12B / DO-178B, since some
objectives may not be satisfied. Combining HLRs and LLRs into the same data item is not a
recommended practice because process assurance may be affected as follows (as a
minimum):

• The complexity of the software requirement document is significantly increased. With no
distinction between HLR and LLR, it is difficult to ensure compliance with traceability and
verification objectives as defined in DO-178B/ED-12B. Traceability is “the evidence of an
association between items, such as between process outputs, between an output and its
originating process, or between a requirement and its implementation.”

• Demonstration of the correct requirements "management" (particularly for large and
complex systems and software) is much more difficult.

• The combination of the “what” (HLR) and “how” (LLR) may impact the relevance of the
software life cycle data and the ability to verify the requirements.

• Derived requirements could get missed, which may have safety impacts (since derived
requirements should be fed back to the system safety assessment process).

• Compliance demonstration with verification objectives during initial development is more
difficult to achieve.

• Compliance demonstration with re-verification objectives for software modifications is more
difficult, because change impact analysis will be more complex.

• The ability to manage and analyze the impact of changes/modifications to the airborne
software becomes difficult or impossible.

• The consistency of the software requirements document is not ensured when modifying
airborne software.

• The consistency and relevance of software requirements document with other development
life cycle output data (source code, design architecture, system specification, etc.) is not
ensured.

• Transition criteria are difficult or impossible to define and follow when HLR and LLR are
combined.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 85/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Basically, compliance with DO-178B/ED-12B tables A-4, A-5 and A-6 objectives is weakened
when HLR and LLR are merged into a single data item.

For compliance demonstration of DO-178B/ED-12B objectives, applicants should propose
further justification and alternate means of compliance to satisfy the applicable objectives and
to address the above concerns.

21.1.2 Verification concerns

When airborne software components are large or complex, the software requirements process
produces the HLRs and the software design process produces the LLRs and architecture. Thus,
HLRs and LLRs are not the outputs of the same development processes (whatever the
development process is) and cannot be considered as the same type of requirements (i.e.,
cannot be HLRs and LLRs at the same time). Therefore, there is no reason to reduce the
amount of verification activities required for compliance demonstration with ED-12B / DO-
178B section 6, depending on the development cycle followed. In addition, verification
activities performed on HLR and LLR cannot be achieved at the same time, since the
production processes are distinct.

Therefore, even in case where HLRs and LLRs are merged, the only way to perform verification
activities seems to be the same way as it would have been performed in a standard
development cycle (distinction maintained between HLRs and LLRs in the software life cycle
data).

Furthermore, as documented traceability between HLRs and LLRs is required by ED-12B / DO-
178B for verification purposes, loss of traceability is an issue. Alternative methods should be
proposed to satisfy the same objectives as the ones satisfied when maintaining documented
traceability between HLRs and low-level requirements.

21.1.3 Re-verification concerns (modification of the airborne

software)

When LLRs and HLRs are merged into one data item, without traceability between HLRs and
LLRs, accurate and applicable re-verification is more difficult. A good change impact analysis
is dependent on traceability in order to determine affected components during change. If the
HLR to LLR trace is not documented, re-verification becomes difficult or impossible. Therefore:

• the change impact analysis method should establish relevance of the impact perimeter
determination and the relevance of verification means (e.g., test subset) chosen to
satisfy verification objectives for the modification. If the change impact analysis
method is not satisfactory, alternative methods should be proposed to address links
between requirements embedded in the software requirements document.

• the level of assurance should be the same level as the one reached when HLRs and
LLRs are traceable, maintained, and verified in separate data items.

21.2 GUIDANCE

As described in this Certification Memorandum, EASA does not recommend the merging of
HLRs and LLRs into a single data item, because it makes satisfying the objectives of ED-12B /
DO-178B difficult or impossible. HLRs state what the system software is to do, and LLRs
states how the system software components are to do it. There are different verification
approaches and objectives for HLRs and LLRs. For example, many of the HLRs should be
verified by the system level and hardware-software integration verification; whereas LLRs
typically cannot be verified at that level.

To use section 5 of ED-12B / DO-178B to justify merging of HLRs and LLRs such that visibility
of parts of the development process is lost represents a misinterpretation of the original
objective of section 5. Combining HLRs and LLRs complicates the ability to demonstrate
compliance with ED-12B / DO-178B objectives, introducing confusion and increasing the
certification task for software aspects.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 86/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Note: There may be some systems where the system-level requirements are "directly" highly
refined (i.e., generated in one refinement step). In this case, a single level of software
requirements may be feasible, however, if an applicant wishes to use a single level of
requirements, they should provide EASA with a rationale to justify this and to show how they
will comply with each of the objectives of ED-12B / DO-178B.

ED-12B / DO-178B established objectives to manage and reduce software development
complexity, and it recommends separation of development processes and decomposition of
associated output data. Merging HLRs and LLRs increases the complexity of software
requirements document, software verification process, and software re-verification process.
Merging HLRs and LLRs into a single data item for large and complex systems omits some of
the objectives and benefits of applying ED-12B / DO-178B (i.e., assurance is lost). Therefore,
the practice of combining HLRs and LLRs is not recommended, particularly for large, complex,
or safety-critical airborne software. Combining HLRs and LLRs increases the complexity of
software development assurance and the risk for undetected errors.

Although, compliance with ED-12B / DO-178B may eventually be shown, when merging HLRs
and LLRs, the level of confidence that maintainability will be ensured over a long period of time
is not equivalent to the one provided when following the ED-12B / DO-178B objectives. Even if
compliance with the ED-12B / DO-178B objectives could be shown, maintainability may not be
ensured for the entire life of the product. In reality, if the HLRs and LLRs are merged into a
single data item, the impact of such an alternate approach will need to be re-evaluated each
time a change is made to the software (to ensure that the objectives of ED-12B / DO-178B
section 6 are addressed).

Below is a copy of ED-94B / DO-248B frequently asked question (FAQ) #71. FA Q#71 provides
additional insight into the objectives of the ED-12B / DO-178B requirement for traceability.

21.3 EXPLANATION OF THE PURPOSE OF TRACEABILITY FROM ED-94B
/ DO-248B

FAQ#71: What is the purpose of traceability, how much is required, and how is it

documented? For example, is a matrix required or are other methods acceptable?

Reference: DO-178B/ED-12B: Sections 5.5, 6.2, 6.3, 6.4, 7.2.2, Annex A, and Annex

B

Keywords: traceability

Answer:

Traceability is used to:
(1) enable verification of implemented system requirements, high-level requirements, and
low-level requirements;
(2) to verify the absence of unintended function and/or undocumented source code; and
(3) to provide visibility to the derived requirements. Traceability applies to both the
verification and configuration management processes.

The format for documenting traceability is at the discretion of the applicant or developer.
Whilst a matrix format is not required, it has proven successful for many past programs for
capturing traceability data in a very usable and concise manner. In some respects, traceability
may assist in tracking and controlling the entire software development and its status.
Traceability may also assist in establishing the acceptability of derivations of previously
developed and approved baselines.

The DO-178B/ED-12B glossary defines traceability as "the evidence of an association between
items, such as between process outputs, between an output and its originating process, or
between a requirement and its implementation" (reference Annex B). It facilitates evaluation
of the processes and their outputs to facilitate the assurance of DO-178B/ED-12B objectives.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 87/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Traceability is bi-directional. DO-178B/ED-12B objectives call for both forward (top-down) and
backward (bottom-up) traceability. The evidence of traceability may be in a format such that
it can demonstrate both forwards and backwards traceability.

Forward traceability shows where each of the requirements, including derived requirements,
trace down through the design to their implementation and provides a means to demonstrate
that all requirements have been implemented. Forward traceability may also support change
analysis by showing those lower-level components (e.g., design, code, test cases) that are
affected when a requirement is changed.

Backward traceability shows the origin of the implementation traced up through the design to
the requirements. Additionally, the traceability evidence may help demonstrate that nothing
has been included in the implementation that is not traceable to the requirements.

To understand traceability, one should consider all aspects of traceability referred to in the
following discussion, which lists some of the benefits of traceability and refers to sections of
DO-178B/ED-12B that discuss its various objectives, guidance, and activities. Traceability is
used in conjunction with the integral processes to provide the following benefits:

• To ensure completeness between development data elements, for example, between
system requirements and software requirements, between software requirements
(high-level) and software design (low-level), and between software design elements
and source code components (reference Section 5.5 of DO-178B/ED-12B).

• To ensure completeness for verification coverage objectives, for example, between
software requirements and the verification procedures and verification results for
establishing requirements-based test coverage (reference DO-178B/ED-12B Sections
6.2a, 6.2b, 6.3.1f, 6.3.2f, 6.3.4e, 6.4.4.1a, 6.4.4.2.b, and Annex A objectives).

• To facilitate the certification liaison process and certification authority visibility and
confidence by providing a usable means for assessing the status and completeness of
software life cycle data and its processes throughout the project (for on-site
certification authority and designee reviews) and for follow-on certification efforts
(reference Sections 9.2 and 12.1.1d of DO-178B/ED-12B).

• To enable the developer to perform change impact analysis; to readily identify software
life cycle data that may be affected by changes, both during the development and for
post-certification changes; and to determine the scope and required effort to “re-verify”
the affected software data items.

• To assist new project personnel implementing software changes to understand the
relationships between the software life cycle data during the potentially long service life
of many airborne systems and equipment.

With respect to the level of traceability, the developer should select an appropriate level of
granularity for which traceability will be provided for each type of element. For example,
requirements – one or several functionally related; source code – module or procedure or line
of code; verification tests – procedure or case. Since traceability supports efficient access to
related elements of different data items, the level of granularity should be selected that best
supports effective and efficient access. If the granularity is too coarse, it may be difficult to
identify and access all relevant elements efficiently. On the other hand, if the granularity is
too fine, maintaining the traceability data itself may become unwieldy and burdensome. Some
combination of approaches could be used, for example, using a matrix for general location of
related elements and using embedded features such as code comments for correlation at a
finer level.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 88/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

22 CLARIFICATION OF STRUCTURAL COVERAGE
ANALYSES OF DATA COUPLING AND CONTROL
COUPLING

22.1 BACKGROUND

Numerous misinterpretations exist regarding the purpose of structural coverage analyses of
data coupling and control coupling, and acceptable approaches to satisfying EUROCAE/ED-12B
/ RTCA/DO-178B Objective 8 of Annex A Table A-7. This objective (“Test coverage of software
structure (data coupling and control coupling) is achieved”) references section 6.4.4.2c of ED-
12B / DO-178B, which states that structural coverage “analysis should confirm the data
coupling and control coupling between the code components.”

This section of this Certification Memorandum discusses the purpose, benefits, challenges, and
future concerns of data coupling and control coupling coverage analyses.

Objective 8 of Table A-7 in ED-12B / DO-178B specifies the analysis of data and control
coupling for Levels A, B, and C software. ED-12B / DO-178B Annex B defines data coupling
and control coupling as follows:

“Data coupling - The dependence of a software component on data not exclusively under the
control of that software component.”

“Control coupling - The manner or degree by which one software component influences the
execution of another software component.”

Additionally, ED-12B / DO-178B defines a component as: “A self-contained part, combination
of parts, sub-assemblies or units, which performs a distinct function of a system.”

Note: ED-94B/ DO-248B, Final Report for Clarification of DO-178B Software Considerations in
Airborne Systems and Equipment Certification, Frequently Asked Question (FAQ) #67 provides
some clarification on data coupling and control coupling. For reference purposes, the FAQ text
is included in this section.

22.2 CLARIFICATIONS

22.2.1 Purpose of data coupling and control coupling analyses

The intent of structural coverage analyses is to provide a measure of the completeness of
the testing process of software to ensure that the requirements-based testing (R-BT) of a
software program exercised that program’s functions and structure adequately to an
appropriate level of “completeness” depending on that program’s software level and needed
integrity. For example, structural coverage analyses of Level C software only needs to
provide a measure that all statements were exercised; Level B needs a measure that all
statements and all decisions were exercised; and Level A needs a measure that all
statements, all decisions and all conditions (plus some independence) were exercised (see
Objectives 5, 6 and 7 of Annex A Table A-7). These measurements can be taken and
analyzed at the computer program “module” level by reviewing test cases and executing
requirements-based tests of that module in isolation from other program modules, and
examining, either manually or with a tool, that every statement, decision, and condition
(depending on the software level of the module) were exercised, and the module functioned
correctly as designed.

“Module” is used in this context to denote a piece or component of the software program
rather than the entire program. If an airborne software program consisted of one “module,”
the above structural coverage would likely be adequate to ensure that that the software
program functioned correctly and would not have any side effects leading to anomalous
behaviour. However, because of the size and complexity of embedded airborne software
programs, having the program consist of a single, self-contained module is neither practical

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 89/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

nor good engineering. Thus, developers construct programs of modules or components
(both functional and data components) that interact with one another and depend on one
another to perform the program’s functions.

The intent of the structural coverage analyses of data coupling and control coupling is to
provide a measurement and assurance of the correctness of these modules/components’
interactions and dependencies. That is, the intent is to show that the software
modules/components affect one another in the ways in which the software designer intended
and do not affect one another in ways in which they were not intended, thus resulting in
unplanned, anomalous, or erroneous behaviour. Typically, the measurements and assurance
should be conducted on R-BT of the integrated components (that is, on the final software
program build) in order to ensure that the interactions and dependencies are correct, the
coverage is complete, and the objective is satisfied.

Satisfaction of this objective is dependent on the detail of the specification of the
modules/components’ interfaces and the thoroughness of the R-BT for normal range and
robustness of the software program. That is, if the interfaces and dependencies are
specified in the design requirements, and if those requirements are tested for both normal
functioning and robustness, satisfaction of the objective may be a by-product of the design
and verification processes. However, if the interfaces and dependencies are not well-
specified, and the testing program is minimal, it will be much more difficult to demonstrate
the objective has been satisfied.

22.2.2 The intent of objective 8 of table A-7 according to the authors

of DO-178B

Several questions about the intent of the structural coverage analysis objective of data
coupling and control coupling were posed to the verification group of the committee that
produced ED-12B / DO-178B (i.e. the members of SC-167/WG-12 sub-group #4). The
majority indicated that the objective was added to address coverage analysis of the testing
of the entire software program related to its architecture and the integration of its
modules/components. Before the objective was added, the committee recognized that an
analysis existed to ensure that all requirements were examined for proper operation by
testing of the binary image (i.e., requirements coverage). Additionally, analysis existed to
demonstrate that the testing ensured that all of the statements of the source code were
executed and for more critical software all the logic statements were thoroughly exercised.
However, there was no guarantee that the integration and architecture were fully exercised
in the execution environment. Therefore, the data coupling and control coupling objective
was added to address this deficit. Committee members claim that the original notion was
that call trees/scheduler graphs (control coupling) and data flow diagrams (data coupling)
could be annotated (preferably by some tool) with test cases to demonstrate coverage.
However, in reality, it turned out to be more complex than this.

To summarize, SC-167/WG-12 sub-group #4 members claimed that the purpose of the
structural coverage of the data coupling and control coupling was to evaluate the adequacy
of the integrated testing and provide an analysis of the integration activities (e.g., evaluation
of call trees, set-use tables, and integration test results). Satisfying the objective occurs
during integration and ensures that there is a complete suite of integration tests.

22.2.3 Data and control coupling FAQ from ED-94/ DO-248B

FAQ #67: What are data coupling and control coupling and how are they verified?

Reference: DO-178B/ED-12B: Sections 2.3.1 and 6.4.4.2, Table A-7 of Annex A, and Annex
B.

Keywords: data coupling; control coupling; verification; coupling

Answer:

The DO-178B/ED-12B glossary (reference Annex B of DO-178B/ED-12B) contains the
following definitions:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 90/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

“Data coupling - The dependence of a software component on data not exclusively under the

control of that software component.”

“Control coupling - The manner or degree by which one software component influences the

execution of another software component.”

An example of data coupling is a software component that utilizes parameters with a value
that is calculated by a different software component, perhaps being executed at a different
iteration rate.

An example of control coupling is a real-time software executive that initiates execution of a
software component depending upon external parameters or influences.

Specific testing of data or control coupling is not a DO-178B/ED-12B objective, although this
may be an acceptable approach to meet the related coverage objective. DO-178B/ED-12B
does have an objective (reference Table A-7, objective 8) that data and control couplings are
confirmed (reference Section 6.4.4.2c). This is typically accomplished by review and
analysis of test cases and results. Data and control coupling are typically exercised during
requirements-based testing (reference Section 6.4.3). Any deficiencies should be addressed
by additional verification, as stated in Section 6.4.4.3 of DO-178B/ED-12B.

The verification of data and control coupling depends on the hardware/software interface,
software architecture, code structure, and source code language. The verification of data
and control coupling involves a combination of:

• Reviews and analysis of Software Architecture, as stated in DO-178B/ED-12B
Sections 6.3.3b, 6.3.3c, and 6.3.3f;

• Reviews and analysis of Source Code, as stated in DO-178B/ED-12B Sections
6.3.4b and 6.3.4f; and

• Testing

22.2.4 Design versus integration verification activity

A number of manufacturers perform activities during software design to minimize the data
coupling and control coupling issues during integration. This is recognized as a good
engineering practice as the Meiler Page-Jones’ book entitled The Practical Guide to
Structured Systems Design (1980) points out. Page-Jones identifies different kinds of
coupling to be considered during design (e.g., data coupling, stamp coupling, common
coupling, control coupling, and content coupling). In some cases (depending on the
architecture), this analysis in the software design phase can be used to supplement the
software/software integration activity.

However, the DO-178B/ED-12B objective 8 of Table A-7 is primarily intended to be a
verification of the integration activity; that is, verification that the interfaces and
dependencies between the software program’s modules/components were implemented as
designed and are correct. Satisfying the objective is intended to provide a measure of the
completeness of integration verification (R-BT of the integrated software program’s
structure, interfaces, and dependencies).

Many applicants find that documenting the data coupling and control coupling during
software design provides the requirements to verify during the software/software integration
and hardware/software integration verification process. That is, good documentation of the
design helps to satisfy the objective during the integration testing (R-BT coverage of
interface and dependency requirements).

22.2.5 EASA perspective on the purpose of data coupling analysis

EASA proposes that the purpose of data coupling analysis is to:

• Be a completion check of the integration testing effort. The analysis also provides

insight into the structural robustness of the data structures used by the program.

Basically, data coupling analysis is intended to enforce good software engineering

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 91/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

practices. Data coupling analysis becomes particularly important when partitioning

and other protection means are implemented in the software.

• Identify data dependencies. As an example, a data dependence exists between two

components when one component defines a data object and the other component

uses the definition of that data object under some operational scenario. In this

example, the data user is dependent on the data definer.

• Verify data interfaces between modules/components through testing and analysis

(test it, then measure it).

• Identify inappropriate data dependencies.

• Define and evaluate the extent of interface depth.

• Determine and minimize coupling interdependencies.

• Determine and maximize cohesion.

• Evaluate need for and accurate use of global data.

• Evaluate input/output data buffers.
• Bound impact of change and requirements effect(s).

22.2.6 EASA Perspective on the purpose of control coupling analysis

EASA proposes that the purpose of control coupling analysis is to:
• Be a complementary completion check of the integration testing effort (i.e., it

complements data coupling analysis). The analysis also provides insight into the
structural robustness of the execution, timing, and scheduling. Basically, control
coupling is intended to enforce good software engineering practices. Control coupling
becomes particularly important when partitioning and other protection means are
implemented in software.

• Identify control dependencies. A control dependence exists between two components
when the execution of one depends on the other. For example, one
module/component calls the other under some operational scenario (i.e., the callee is
dependent on the caller). Another example is where one module/component defines
the data objects that determine the execution sequence taken by the other
module/component under some operational scenario.

• Identify inappropriate control dependencies.
• Verify correct execution call sequence (across

modules/components/parts/units/objects).
• Define and evaluate the extent of interface depth.
• Assist in verifying scheduling (e.g., detects problems with call sequences that may

cause frame overrun).
• Assist in worst-case execution time (WCET) analysis (a side benefit).
• Bound impact of change and requirements effect(s).

22.3 COMMON BENEFITS AND PROBLEMS WITH APPLYING DATA
COUPLING AND CONTROL COUPLING ANALYSES

22.3.1 Benefits of good design and integration practices

Certification authorities have observed that applicants who specify a good design and have
well-defined integration practices can identify and address data coupling and control coupling
issues, and are able to:

• Provide a better awareness of functionality.
• Reduce the number of test cases needed to cover functionality and the supporting code

structure, code interfaces, and requirements.
• Perform more efficient and effective change impact analysis.
• Find errors that are difficult to find in the lab testing and could be costly to fix in the

field.
• Perform more effective maintenance.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 92/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

22.4 GUIDANCE FOR SATISFYING THE DATA COUPLING AND CONTROL
COUPLING ANALYSES OBJECTIVE

EASA and other certification authorities have observed a number of problems with the
application of data coupling and control coupling analyses to airborne software. The guidance
below should be followed in order to proactively address these issues:

• Applicants should address the data coupling and control coupling analyses in their plans
(i.e., plan upfront how they will perform these analyses). In some cases, it may be
distributed among several plans. However it is documented, it must provide complete
and accurate rationale (i.e., it must be thorough).

• Applicants should consider data coupling and control coupling as part of their
development/design effort (e.g., specify interface (I/O) requirements and dependencies
between components).

• Applicants should substantiate their rationale for “analysis” and/or “testing” aspects of
satisfying the objective. The objective may be satisfied as a static activity (e.g.,
looking at a link map or call tree), a dynamic activity (e.g., running tests), or a
combination.

• Applicants should realize that data and control coupling analysis are two different
analyses (i.e., they should not be combined into one activity).

• If tools are used, the determination of whether they need to be qualified or not should
be evaluated and justified.

• If selective linkers are used, their effect on data coupling and control coupling must be
analyzed.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 93/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23 THE VALIDATION AND VERIFICATION OF FORMALISED
AND MODEL-BASED SOFTWARE REQUIREMENTS AND
DESIGNS

23.1 BACKGROUND

Some pieces of aircraft equipment may embed software that was designed by using
formalised specification languages such as SAO (Specification Assistée par Ordinateur), or
LDS (Langage De Spécification), or by using model-based specifications produced by means
of tools such as SCADE or Matlab/Simulink.

Neither the current standard applicable for airborne software (ED-12B / DO-178B) nor the
current standard for system development (ED-79 / ARP4754) directly addresses the
verification or validation activities that should be carried out when formalized specifications
or model-based specifications are used. This section of this Certification Memorandum is
intended to provide clarification as to which validation and verification objectives apply in
such cases and which verification and validation activities should be conducted.

Some applicants might not have ED-79 / ARP4754 as part of their certification basis. For the
paragraphs of this section that refer to activities of ED-79 / ARP4754 to be carried out in
order to comply with its objectives, such applicants should state which activities they will
conduct that are equivalent to the specific ED-79 / ARP4754 activities that are called for.

23.2 GUIDANCE

23.2.1 Formalized designs, formalized requirements and higher-

level requirements

Since this section introduces some new terms that do not exist within ED-12B / DO-178B
and that are necessary in order to understand this section, the definitions of the following
terms are repeated here for the sake of clarity and to ensure that the guidance contained in
these definitions is applied.

Formalized Design - A Formalized Design may be a model produced by the use of a
modelling tool or it may be a design stated in a formalized language. In either case, a
Formalized Design should contain sufficient detail of such aspects as code structures and
data / control flow for Source Code to be produced directly from it, either manually or by the
use of a tool, without any further information. A Formalized Design is therefore equivalent in
its role to a conventional ED-12B / DO-178B software design, but it is stated in a formalized
manner.

Formalized Requirements - Formalized Requirements may be produced by the use of a
modelling tool or they may be requirements stated in a formalized language. They contain
high level requirements that can later be implemented in either a Formalized Design or in a
conventional software design. Formalized Requirements should neither contain Software
design nor Software architecture details. A set of Formalized Requirements is therefore
equivalent in its role to a set of conventional ED-12B / DO-178B software high-level
requirements, but the requirements are instead stated in a formalized manner.

It is not necessary to produce a set of Formalized Requirements in order to produce a
Formalized Design, and in most cases, the only formalized part of the software life-cycle
data will be a Formalized Design. Formalized Requirements have been included here as a
provision for future developments in which they may be used.

Applicants should categorize any formalized specification / model they intend to use as being
either a Formalized Design or as a set of Formalized Requirements so that the objectives and
activities that apply to them can be clearly determined. (See section 23.2.2 below.) In cases
where such a formalized specification or model contains any design details, the formalized

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 94/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

specification or model should be categorized by the applicant as a Formalized Design, as this
is how EASA will categorize it.

Higher-level Requirements - In order to produce either a set of Formalized Requirements
or a Formalized Design, a set of requirements at a higher-level of abstraction is needed in
order to capture the requirements for the Formalized Requirements or Formalized Design
and to describe what the resulting formalized item should contain. Such requirements are
therefore known hereafter in this Certification Memorandum as ‘higher-level requirements’.
The data item(s) that act as higher-level requirements should be identified during the
planning stage, as described in the paragraph immediately below.

Higher-Level Requirements should be developed and stated in a different manner than is
used for the Formalised Requirements or Formalized Design that is to be developed from
them.

The objective to be fulfilled by producing Higher-Level Requirements is to describe and
define the functional and performance requirements that are then either further elaborated
into a set of Formalized Requirements or that are directly implemented in a Formalized
Design.

23.2.2 The system / software planning process

When an applicant intends to develop any Formalized Requirements or Formalized Designs
as part of their processes for producing airborne software, the applicant should, in their
software planning process:

a) Clearly state that their system / software life cycle data will include items that fit into
the categories of Formalized Requirements and / or Formalized Designs and identify
which of their data items fits which of these categories. If the applicant does not use
the terms ‘Formalized Requirements’ and ‘Formalized Designs’ in their
documentation, they should indicate which terms they use for these items.

b) Identify which CSCIs will be wholly or partially developed by the use of which
formalized items, which parts of the functionality of those CSCIs those formalized
items will represent, and which CSCIs or parts of CSCIs will be developed in a
conventional manner.

c) Identify their processes for system development, requirement validation, software
development and verification for both their formalized items and for the conventional
ED-12B / DO-178B software of their system, clearly identifying and detailing the parts
of their process that are common to both formalized and conventional software and
the parts that are different.

d) Identify which set of requirements in their set of documentation acts as the Higher
Level Requirements for their Formalized Design and/or their Formalized
Requirements.

e) If a Formalized Design will be used, identify the design standards with which the
Formalized Design should comply.

f) If Formalized Requirements will be used, identify the requirement standards with
which the Formalized Requirements should comply, (NOTE – the sets of standards
that apply to Formalized Designs and to Formalized Requirements should be different
due to their different levels of abstraction and their different content).

g) Identify the requirement and design standards with which components developed
using conventional methods should comply and the coding standards with which all
the Source Code should comply.

h) Identify which parts of their system and software processes / documentation will
demonstrate compliance with each of the objectives of ED-12B / DO-178B for their
conventionally-developed components and for their formalized components, given the
process clarifications that are provided below, and their processes for compliance with
the objectives of ED-79 / ARP4754.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 95/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

i) State which tools will be used during the development and verification of their
conventionally developed software components and which will be used for
development and verification of their formalized system / software components,
stating which tools will be qualified, and identifying any certification credit sought
against ED-12B / DO-178B objectives for the use of qualified tools.

j) Where the tools used include a simulator or emulator, the applicant should identify
the differences between the simulator / emulator and the target processor and justify
why those differences are acceptable. If the applicant seeks any certification credit
against ED-12B / DO-178B objectives for use of a simulator or emulator, then tool
qualification may be required, and the applicant should clearly state in their plans
which certification credit is sought against which ED-12B / DO-178B objectives and
whether the simulator / emulator will be qualified.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 96/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.3 Types of system / software life-cycle

Higher-level requirements and the Formalized Requirements and / or Formalized Design that
are developed from those requirements may be produced at various stages of the system
life-cycle or the software life-cycle. The figure below shows five different types of life-cycle,
which life-cycle data items are produced in each life-cycle, which of them are formalized and
the system or software processes that produce them.

The shading in the figure below shows the types of life-cycle that have common aspects, as
described below, allowing them to be grouped and handled in a similar manner in terms of
activities that should be conducted and objectives with which compliance should be shown.

Process that
generates the
life-cycle data

Type #1 Type #2a Type #2b Type #3a Type #3b

Higher-level
requirements

System
Requirement
and System
Design
Processes

System
requirements
allocated to
software

Higher-level
requirements

Higher-level
requirements

Higher-level
requirements

Higher-level
requirements
(= Software
high-level
requirements)

Formalized
Requirements
(= Higher-Level
Requirements
for Formalized
Design.)

Formalized
Requirements

Software
Requirement
and Software
Design
Processes

Formalized
Design

Formalized
Design

Formalized
Design

Formalized
Design

ED-12B / DO-
178B Design
Description

Software
Coding
Process

Source Code Source Code Source Code Source Code Source Code

Figure 1 – Types of System / Software Life-Cycle

For each of their CSCIs that are developed using Formalized Requirements or Formalized
Designs, applicants should identify in their plans which of the types of life-cycle described
below they intend to use for those formalized items.

In the paragraphs that follow, the artefacts produced and the activities to be conducted on
them are mapped to the conventional system and software artefacts and activities described
in ED-79 / ARP4754 and ED-12B / DO-178B.

For software related artefacts, the ED-12B / DO-178B objectives that apply and that have to
be fulfilled are also listed.

Activities for the review and analysis of requirements at the system level are referred to in
ED-79 / ARP4754 as being validation activities but in ED-12B / DO-178B, the review and
analysis of requirements at the software level are referred to as being verification activities.
This Certification Memorandum will, therefore, use the term ‘validation’ for these activities at
the system level and ‘verification’ for these activities at the software level.

23.2.4 Type 1 – Formalized design replaces conventional ED-12B /
DO-178B software design

Process that generates Type #1

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 97/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

the life-cycle data

System Requirement and
System Design Processes

System requirements
allocated to software

Higher-level requirements
(= Software high-level
requirements)

Software Requirement
and Software Design
Processes

Formalized Design

Software Coding Process Source Code

In this life-cycle, the System Requirements Allocated to Software are elaborated into
conventional ED-12B / DO-178B Software High-level Requirements.

The Software High-level Requirements are then used as the higher-level requirements from
which a Formalized Design is developed instead of a conventional ED-12B / DO-178B
software design.

Source Code is produced directly from the Formalized Design.

This is partly a conventional ED-79 / ARP4754 and ED-12B / DO-178B system and software
life-cycle, with the exceptions that a Formalized Design is used instead of a conventional
software design and that the Source Code may be produced by an auto-coding tool if such a
tool is used, rather than by manual coding.

23.2.4.1 System Requirement Validation

In this life-cycle, the System Requirements Allocated to Software should be validated as
described in ED-79 / ARP4754 Section 7 so as to ensure they are complete and correct. The
applicant should identify in their System Validation Plan the means they intend to use to
validate the system requirements allocated to software, which may include reviews, analysis,
simulation or test.

23.2.4.2 Software Requirement / Higher-level Requirement Verification

In this life-cycle, the ED-12B / DO-178B Software High-level Requirements act as the
higher-level requirements from which a Formalized Design is developed. These higher-level
requirements / Software High-level Requirements should be shown to comply with the
System Requirements Allocated to Software as in a conventional ED-12B / DO-178B process
and should be reviewed and analyzed as described in ED-12B / DO-178B paragraph 6.3.1 to
ensure that they comply with the objectives for Software High-level Requirements shown in
ED-12B / DO-178B Table A-3.

23.2.4.3 Formalized Design Verification Activities

ED-12B / DO-178B verification activities should be conducted on the Formalized Design
produced in this life-cycle as described in the sections below with the following headings -

• Verification of Formalized Designs

• Coverage of Formalized Designs.

Simulation may be used as part of these verification activities, in which case the text in the
following section also applies –

• Simulation of Executable Formalized Designs.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 98/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.4.4 Verification of the Executable Object Code

The Executable Object Code (EOC) should be shown to comply with the objectives in ED-12B
/ DO-178B Table A-6, including compliance with the software high-level requirements (which
are the higher-level requirements for the Formalized Design) and compliance with the low-
level requirements, which are within the Formalized Design.

Requirement-based test cases and procedures to be executed against the EOC should cover
normal range and robustness values, the equivalence classes of the input data and any
potential singularities.

The ED-12B / DO-178B Hardware / Software Integration testing as described in ED-12B /
DO-178B paragraph 6.4.3 a. must be conducted with the ED-12B / DO-178B Executable
Object Code loaded onto the target processor in the host environment.

23.2.4.5 Other Required Activities

The other general activities and objectives that are applicable to this life-cycle are shown
below in the section dealing with General Principles and Activities.

These include –

• Traceability and Granularity of Requirements / Design Elements.

• Derived Requirements / Elements.

• Non-Functional Requirements.

• Requirement Coverage Analysis.

• Verification that Source Code Complies with Requirements and Standards.

• Structural Coverage of Source / Object Code.

• Qualification of Auto-coding Tools.

• Compliance with Standards.

• Independence.

23.2.4.6 System Requirement Verification

Once the testing of the software and airborne electronic hardware components of a system
has been completed, the complete set of system level requirements needs to be verified to
the degree required by section 8 of ED-79 / ARP4754 for the DAL of the system. The
verification methods and activities to be used for system level verification should be
described in the System Verification Plan and conducted in accordance with that plan. The
results should be recorded in the System Verification Data.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 99/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.5 Types 2a and 2b – Formalized design replaces software high-

level requirements and software design

Process that
generates the life-
cycle data

Type #2a Type #2b

Higher-level
requirements

System
Requirement and
System Design
Processes

Higher-level
requirements

Software
Requirement and
Software Design
Processes

Formalized Design

Formalized Design

Software Coding
Process

Source Code Source Code

In these types of life-cycle, the system development processes produce a set of higher-level
requirements that are developed into a Formalized Design, either by the system
development processes or by the software development processes.

Source Code is produced directly from the Formalized Design, either manually or
automatically.

These life-cycles differ considerably from a conventional ED-79 / ARP4754 and ED-12B / DO-
178B system and software life-cycle, as conventional software high-level requirements and a
conventional software design are both replaced by a Formalized Design. An auto-coding tool
may be used to produce the Source Code automatically rather than by manual coding.

23.2.5.1 Validation of Higher-level Requirements

In these life-cycles, the higher-level requirements from which the Formalized Design is
developed are at the system level. These higher-level requirements at the system level
should be validated in the manner described in ED-79 / ARP4754 Section 7 so as to ensure
that they are complete and correct. The applicant should identify in their System Validation
Plan the means they intend to use to validate the system level requirements allocated to
software, which may include reviews, analysis, simulation or test.

23.2.5.2 Formalized Design Verification Activities.

ED-12B / DO-178B verification activities should be conducted on the Formalized Design
produced in this life-cycle as described in the sections below with the following headings -

• Verification of Formalized Designs.

• Coverage of Formalized Designs.

Simulation may be used as part of these verification activities, in which case the text in the
following section also applies –

• Simulation of Executable Formalized Designs.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 100/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.5.3 Verification of the Executable Object Code

The Executable Object Code (EOC) should be shown to comply with the objectives in ED-12B
/ DO-178B Table A-6, including compliance with the higher-level requirements (which take
the place of the software high-level requirements in Table A-6) and compliance with the
requirements contained within the Formalized Design (which take the place of the software
low-level requirements in Table A-6).

Requirement-based test cases and procedures to be executed against the EOC should cover
normal range and robustness values, the equivalence classes of the input data and any
potential singularities.

The ED-12B / DO-178B Hardware / Software Integration testing as described in ED-12B /
DO-178B paragraph 6.4.3 a. must be conducted with the ED-12B / DO-178B Executable
Object Code loaded onto the target processor in the host environment.

23.2.5.4 Other Required Activities.

The other general activities and objectives that are applicable to this life-cycle are shown
below in the section dealing with General Principles and Activities.

These include –

• Traceability and Granularity of Requirements / Design Elements.

• Derived Requirements / Elements.

• Non-Functional Requirements.

• Requirement Coverage Analysis.

• Verification that Source Code Complies with Requirements and Standards.

• Structural Coverage of Source / Object Code.

• Qualification of Auto-coding Tools.

• Compliance with Standards.

• Independence.

23.2.5.5 System Requirement Verification.

Once the testing of the software and airborne electronic hardware components of a system
has been completed, the complete set of system level requirements need to be verified to
the degree required by section 8 of ED-79 / ARP4754 for the DAL of the system. The
verification methods and activities to be used for system level verification should be
described in the System Verification Plan and conducted in accordance with that plan. The
results should be recorded in the System Verification Data.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 101/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.6 Types 3a and 3b - Formalized requirements replace software

high-level requirements

Process that generates the
life-cycle data

Type #3a Type #3b

System Requirement and
System Design Processes

Higher-level requirements Higher-level requirements

Formalized Requirements
(= Higher-Level
Requirements for
Formalized Design.)

Formalized Requirements Software Requirement and
Software Design
Processes

Formalized Design ED-12B / DO-178B Design
Description

Software Coding Process Source Code Source Code

In these types of life-cycle, Formalized Requirements are developed from system level
higher-level requirements and are used in place of conventional ED-12B / DO-178B software
high-level requirements. These Formalized Requirements may then be further developed into
either a Formalized Design or into a conventional ED-12B / DO-178B software design.

Source Code is then produced from the Formalized Design / the software design.

These life-cycles differ from a conventional life-cycle involving both ED-79 / ARP4754 and
ED-12B / DO-178B in that the software high-level requirements are replaced by a set of
Formalized Requirements, and in the first case, a conventional software design is replaced
by a Formalized Design. In the case where a Formalized Design is produced, an auto-coding
tool may be used to automatically produce the Source Code rather than by producing it by
means of manual coding.

23.2.6.1 Validation of Higher-level Requirements

In these cases, the higher-level requirements from which the Formalized Requirements are
developed are at the system level. These higher-level requirements at the system level
should be validated in the manner described in ED-79 / ARP4754 Section 7 so as to ensure
that they are complete and correct. The applicant should identify in their System Verification
Plan the means they intend to use to validate the system level requirements allocated to
software, which may include reviews, analysis, simulation or test.

23.2.6.2 Verification of Formalized Requirements.

The Formalized Requirements produced in these life-cycles should be shown to comply with
their higher-level requirements (which are at the system level) by conducting activities to
show compliance with the objectives for software high-level requirements shown in ED-12B /
DO-178B Table A-3 as in a conventional ED-12B / DO-178B process. The Formalized
Requirements should, therefore, be reviewed and analyzed as described in ED-12B / DO-
178B paragraph 6.3.1.

If a Formalized Design is developed from the Formalized Requirements, then the Formalized
Requirements serve as the higher-level requirements for the Formalized Design, and these
higher-level requirements are verified by verifying the Formalized Requirements as described
above. Testing conducted in a simulation of the Formalized Design (as described below in the
paragraph on Simulation of Executable Formalized Designs) may be used to provide partial
evidence that the Formalized Requirements were complete and correct.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 102/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.6.3 Formalized Design Verification Activities (where applicable).

If the life-cycle includes a Formalized Design, then ED-12B / DO-178B verification activities
should be conducted on that Formalized Design.

The activities for the verification of Formalized Designs are described in the paragraphs
below that have the following headings –

• Verification of Formalized Designs.

• Coverage of Formalized Designs.

Simulation may be used as part of these verification activities, in which case the text in the
following section also applies –

• Simulation of Executable Formalized Designs.

23.2.6.4 Verification of a Conventional ED-12B / DO-178B Design (in Type 3b).

If a conventional ED-12B / DO-178B software design is produced, then that software design
should be shown to comply with the Formalized Requirements by conducting the review and
analysis activities described in ED-12B / DO-178B paragraphs 6.3.2 and 6.3.3 so as to
comply with the objectives of Table A-4.

23.2.6.5 Verification of the Executable Object Code.

The Executable Object Code (EOC) should be shown to comply with the objectives in ED-12B
/ DO-178B Table A-6. This includes compliance with the Formalized Requirements (which
take the place of the software high-level requirements in Table A-6). For Type 3a, this also
includes compliance with the requirements contained within the Formalized Design (which
take the place of the software low-level requirements in Table A-6). For Type 3b, this also
includes compliance with the software low-level requirements within the conventional DO-
178B software design.

Requirement-based test cases and procedures to be executed against the EOC should cover
normal range and robustness values, the equivalence classes of the input data and any
potential singularities.

In all cases, the ED-12B / DO-178B Hardware / Software Integration testing as described in
ED-12B / DO-178B paragraph 6.4.3 a. must be conducted with the ED-12B / DO-178B
Executable Object Code loaded onto the target processor in the host environment.

23.2.6.6 Other Required Activities.

The other general activities and objectives that are applicable to this life-cycle are shown
below in the section dealing with General Principles and Activities.

These include –

• Traceability and Granularity of Requirements / Design Elements.

• Derived Requirements / Elements.

• Non-Functional Requirements

• Requirement Coverage Analysis.

• Verification that Source Code Complies with Requirements and Standards.

• Structural Coverage of Source / Object Code.

• Qualification of Auto-coding Tools.

• Compliance with Standards.

• Independence.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 103/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.6.7 System Requirement Verification.

Once the testing of the software and airborne electronic hardware components of a system
has been completed, the complete set of system level requirements need to be verified to
the degree required by section 8 of ED-79 / ARP4754 for the DAL of the system. The
verification methods and activities to be used for system level verification should be
described in the System Verification Plan and conducted in accordance with that plan. The
results should be recorded in the System Verification Data.

23.2.7 Verification of formalized designs

In the types of life-cycle described above where Formalized Designs are produced, those
designs take the place of conventional ED-12B / DO-178B software designs. Activities should
be identified and conducted by each applicant to show that each Formalized Design is
complete and correct, that it complies with its higher-level requirements and that it does not
include unintended functionality.

In ED-12B / DO-178B, these activities are described as verification activities. The applicant
should conduct reviews and analyses of their Formalized Designs in compliance with ED-12B
/ DO-178B paragraphs 6.3.2 and 6.3.3 so as to show compliance of each Formalized Design
with the objectives in Table A-4 of ED-12B / DO-178B.

In these cases, the Formalized Design is taken to contain the low-level requirements and the
architecture.

An additional means to show the compliance of a Formalized Design with these ED-12B /
DO-178B objectives may be the use of simulation, as described below.

23.2.8 Simulation of executable formalized designs

Executing a simulation of a Formalized Design may allow problems with the design and
possibly with its higher-level requirements to be detected early in the software development
process and to be corrected even before the production of the Source Code and the testing
of the Executable Object Code.

Where the tools used to produce a Formalized Design permit that design to be executed
within a simulator, simulation cases and procedures may be developed against the higher-
level requirements in order to support the verification of the Formalized Design (cf. 23.2.7).
To this purpose, the guidance in section 23.2.8.1 below should be followed.

Under certain conditions and with proper planning, it may also be possible to take some
credit from simulation activities to support the verification of the Executable Object Code. To
this purpose, the guidance in section 23.2.8.2 should be followed. However, as simulation
involves a different environment and potentially different source code or executable object
code from those used when testing the Source Code and Executable Object Code on the
target processor, it is not possible to claim credit for the use of simulation instead of
conducting Hardware/Software integration testing activities.

23.2.8.1 Simulation for verification of the Formalized Designs (reviews and analyses)

Simulation of the Formalized Design against the higher-level requirements can provide some
evidence as to whether the Formalized Design complies with the higher-level requirements,
which can be used to show compliance with some of the objectives in ED-12B / DO-178B
Table A-4 (typically objectives 1, 2, 4, 7, 8, 9, 11). Other objectives such as compatibility
with the target computer, conformance to standards or partitioning integrity cannot be
demonstrated through simulation and should be fulfilled by means of conventional reviews
and analyses.

To this purpose, the applicant should:

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 104/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

a. Determine precisely in the PSAC which objectives related to reviews and analyses are
planned to be covered by simulation and justify how the identified simulation activity
fulfils those objectives.

b. Ensure that the simulation cases and procedures are developed and reviewed
according to the guidance in section 23.2.8.3.

23.2.8.2 Simulation for verification of the Executable Object Code (testing)

It may be possible to take some credit from executing a simulation of the Formalized Design
in order to support compliance with objectives 1 and 2 of ED-12B / DO-178B Table A-6 and
objective 3 of Table A-7.

Note: As the Formalized Design cannot be used to verify itself, compliance with objectives 3
and 4 of Table A-6 cannot be wholly or partly claimed based on the use of simulation of the
Formalized Design. Similarly, compliance with objective 5 of Table A-6 cannot be wholly or
partly claimed based on the use of simulation of the Formalized Design because this
objective is related to hardware compatibility aspects.

To this purpose, the applicant should:

a. Ensure that the Formalized Design used for simulation is identical to the one used to
produce the Source Code.

b. Determine precisely in the PSAC which testing objectives are planned to be covered
by simulation and justify how the identified simulation activity fulfils those objectives.

c. Perform an analysis to identify any differences between the target environment and
the simulation environment and provide a rationale for why these differences are
acceptable.

d. Ensure that there are no differences between the source code used for simulation
and the Source Code of the final software product.

e. Perform an analysis to identify any differences between the executable object code
used for simulation and the Executable Object Code of the final Software product.
These differences should be justified and a rationale provided for why they are
acceptable.

f. Ensure that the simulation cases and procedures are developed and reviewed
according to the guidance in section 23.2.8.3.

For Hardware/Software integration testing (ED-12B / DO-178B section 6.4.3.a), the test
procedures must be executed with the Executable Object Code of the final Software product
loaded into the target hardware and therefore no credit can be taken for the use of
simulation instead of Hardware / Software integration testing.

23.2.8.3 Considerations on simulation cases, procedures and results

In order to gain any certification credit as described in 23.2.8.1 and 23.2.8.2, the simulation
cases and procedures should be reviewed against the higher-level requirements. In
particular, the applicant should perform analyses to verify that:

- The simulation cases are correct.

- The simulation cases satisfy the criteria of normal range and robustness as
defined in section 6.4.2.of ED-12B / DO-178B.

- Simulation cases exist for each requirement that is intended to be verified by
simulation.

- The simulation cases were accurately developed into simulation procedures
and expected results.

- The simulation results are correct and that discrepancies between actual and
expected results are explained.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 105/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

The same cases and procedures that have been formally reviewed and corrected may be
later re-used, if desired, as the basis for the test cases and procedures that are used to test
the Executable Object Code against the higher-level requirements (cf. sections 23.2.4.4,
23.2.5.3 and 23.2.6.5).

23.2.9 Coverage of formalized designs

The objective of showing coverage of a Formalized Design is to ensure that it contains no
unintended functionality.

It should be demonstrated that full coverage of the functions of each Formalized Design is
obtained by executing test cases and procedures that are based on the higher-level
requirements.

Coverage of derived low-level requirements in a Formalized Design may be obtained by the
use of test cases based on the Formalized Design itself if full coverage of those aspects
cannot be obtained by use of test cases based on the higher-level requirements.

Coverage of a Formalized Design may be shown by testing based on the formal verification
cases and procedures that are used for ED-12B / DO-178B verification or by the use of
simulation test cases and procedures.

The following criteria may be used to assess the coverage of the Formalized Design:

• All the conditions of the logic components.

• All equivalence classes (valid/in-range and invalid/out-of-range classes) and singular
points of the functional components and algorithms.

• All transitions of the state machines.

• Coverage of all characteristics of the functionality in context (e.g. Watchdog function
is triggered).

The applicant should identify in their Software Verification Plan how they intend to
demonstrate coverage of any Formalized Design that they produce.

Deficiencies in the coverage of a Formalized Design should be resolved by actions such as
augmentation of the test cases, modification of the higher-level requirements, identification
of deactivated elements of the Formalized Design, and the removal of any unintended
functionality.

23.2.10 General principles and activities

The following activities apply to any of the cases where either Formalized Requirements or a
Formalized Design is used.

23.2.10.1 Traceability and Granularity of Requirements / Design Elements.

In any of these cases where Formalized Requirements and /or Formalized Designs are used,
traceability must be shown and maintained from the system level of requirements through
each of the successive levels of requirements and / or design to the Source Code. The
individual requirements and the design functions of each level need to be identifiable so that
they can be traced.

At each level of requirements or design, the requirements or the formalized designs should
be expressed with a level of granularity that permits the next level of requirements / design
/ Source Code to be produced from them, and that permits the requirements / elements /
Source Code of the next level to be traced to the requirements or to the design functions
from which they were developed.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 106/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.10.2 Derived Requirements / Elements.

Derived requirements / derived design elements may be introduced during the development
of requirements and designs, whether or not the requirements or designs are formalized.
Any derived requirements introduced at any level of requirements or designs should be
identified as derived requirements / derived design elements and should be provided to the
safety assessment process so they can be assessed for any potential impact on safety. Any
impact on safety due to a derived requirement / design element may result in the alteration
or deletion of that derived requirement / design element, or the introduction of some form of
mitigation.

23.2.10.3 Non-Functional Requirements or Elements.

There may be elements of Formalized Requirements or Formalized Designs that are non-
functional. These should be identified, since non-functional elements do not need to be
covered by testing or by traceability. It must be ensured that no functional requirement /
element traces to a non-functional requirement / element. Non-functional elements should
still be reviewed to ensure that they are pertinent to the functional requirements and that
they are consistent with them.

23.2.10.4 Requirement Coverage Analysis.

Analysis should be performed to ensure that all requirements at all levels of the system and
software are covered by test cases and procedures, whether or not the requirements are
developed and captured in a conventional manner, and the test cases and procedures should
be augmented if any requirements are not covered by tests.

Coverage of requirements at the software level shows compliance with ED-12B / DO-178B
objectives A-7.3 and A-7.4. Coverage of requirements at the system level shows compliance
with ARP4754 paragraph 8.4.2.2.

NOTE - If a test case and its corresponding test procedure are developed and executed for
higher-level requirement-based testing and satisfy the objectives for coverage of the
requirements and of the Formalized Design as well as the structural coverage objectives, it is
not necessary to duplicate the tests at the Formalized Design level. The use of tests at the
Formalized Design level instead of tests based on higher-level requirements may be less
effective because less of the overall functionality in context will be tested.

23.2.10.5 Verification that Source Code Complies with Requirements and Standards.

In any of the above cases, the Source Code should be shown to comply with the objectives
in ED-12B / DO-178B Table A-5. In the case of a Formalized Design, the low-level
requirements and the architecture with which the Source Code has to comply are contained
in the Formalized Design. The Source Code should be reviewed against both the Formalized
Design and the Coding Standards and analyzed as described in ED-12B / DO-178B
paragraph 6.3.4 in order to comply with the objectives of Table A-5.

23.2.10.6 Structural Coverage of Source / Object Code.

In all these life-cycles described above, structural coverage of the Source Code as described
in ED-12B / DO-178B paragraph 6.4.4.2 and Table A-7 of ED-12B / DO-178B should be
demonstrated to the degree required for the DAL of the software.

Applicants should identify in their Software Verification Plan the means they intend to use in
order to demonstrate structural coverage.

Any deficiencies in structural coverage should be resolved as described in ED-12B / DO-178B
paragraph 6.4.4.3.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 107/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.10.7 Qualification of Auto-coding Tools.

In some cases, the software developer may develop or utilize an auto-coding tool so as to
produce code directly from a Formalized Design without the need for manual coding of the
elements of the Formalized Design. (Manual coding is often necessary for other parts of the
Source Code with which the auto-code has to interface.)

If the software developer wishes to take certification credit against any of the ED-12B / DO-
178B objectives due to the use of auto-coding tools, the auto-coding tool will need to be
qualified as a development tool as described in ED-12B / DO-178B section 12, and the tool
qualification will have to be documented and verified as described in ED-12B / DO-178B
section 12.

In addition, if a library of model elements is used to produce Formalized Designs, each of
these elements should be developed and verified according to ED-12B / DO-178B guidance
at the DAL at which it is intended to be used.

Where certification credit due to the use of an auto-coding tool is sought for the ED-12B /
DO-178B verification objectives related to structural coverage analysis, the auto-coding tool
will also need to be qualified as a software development tool in the context of the target
processor and of the tools used to produce the Source Code.

As part of the qualification of an auto-coding tool, the actual operational context in which the
tool is used needs to be taken into account. The aspects to consider may include, but are not
limited to, the following:

• The definition of a set of representative input files that include, in particular –

o All the library elements used to produce Formalized Designs in accordance
with the applicable standards.

o Representative combinations of those library elements.

o Limits imposed by the applicable standards.

o The degree of complexity that is permitted for Formalized Designs.

• The execution of the auto-code generator on the set of input files and the generation
of Source Code.

• The generation of the Executable Object Code by using the same generation
environment as is used for the airborne software, including the same compiler/linker
with the same selected options.

• The verification of the compliance of the Executable Object Code with respect to the
representative input files.

If the tool used to produce the Source Code from the Formalized Design is not qualified as a
ED-12B / DO-178B development tool, no certification credit will be granted for the use of
that tool against any of the ED-12B / DO-178B objectives for the verification of the Source
Code by review, analysis or test, and the activities corresponding to those objectives should
be fully conducted as in a conventional ED-12B / DO-178B software development.

23.2.10.8 Compliance with Standards.

All the formalized and conventional life-cycle data items that capture requirements, designs
or Source Code should be shown to comply with the standards that are applicable to them
and that were identified and documented during the system and software Planning
Processes.

According to the level of each item, the standards applicable may be System Requirement
Standards, System Design Standards, Software Requirement Standards, Software Design
Standards, Software Coding Standards, Formalized Requirement Standards, or Formalized
Design Standards. Each standard to be used should be identified and provided in the system
/ software plans.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 108/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

23.2.10.9 Independence

Independence in software activities should be ensured in compliance with ED-12B / DO-
178B.

Independence in system level activities should be ensured in compliance with the intent of
ED-79 / ARP4754 section 7: “The validation process at each level of the requirements
hierarchy should involve all relevant technical disciplines, including the safety assessment
process”

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 109/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

24 THE USE OF PSEUDO-CODE AS LOW-LEVEL
REQUIREMENTS

24.1 BACKGROUND

EASA wishes to discourage the use of pseudo-code as a statement of low-level requirements.

Some applicants have chosen not to carry out the normal ED-12B / DO-178B cycle of
developing high-level requirements, low-level requirements and then source code with
separate software life-cycle data items for each. Some of them have instead chosen to design
their source code in the form of pseudo-code that obviously specifies the structure of the
source code that is to be implemented from it. These applicants claim that their pseudo-code
is the statement of their low-level requirements and of their functional requirements and some
even claim that the pseudo-code design of each code module constitutes a single low-level
requirement.

This runs contrary to the normal practice of requirement development, in which there is a
gradual elaboration of requirements, such that each successive level of requirements contains
more requirements than the previous level, and the requirements are at successively lower
levels of abstraction. The pattern of requirements in a pseudo-code design as described above
is actually the reverse of a requirement elaboration process and may even be understood as a
reverse engineering process. This indicates that requirement information is gradually being
absorbed or hidden in the successively lower levels of requirements in a pseudo-code design,
which is contrary to the normal practice of ED-12B / DO-178B software life-cycles and
prevents requirements being properly traced and tested.

If the normal cycle is followed of developing high-level requirements, more-detailed low-level
requirements and then source code, there is no need to produce pseudo-code and it serves no
useful function in an ED-12B / DO-178B project.

24.2 PROBLEMS WITH THE USE OF PSEUDO-CODE

EASA considers that the use of pseudo-code to express low-level requirements is not
compatible with the ED-12B / DO-178B definition of low-level requirements. Per ED-12B/DO-
178B, low-level requirements are requirements from which source code can be developed
without additional information. Pseudo-code is developed in order to actually be a specification
of the structure and the contents of the source code. The source code is then deliberately
almost identical to the pseudo-code, so the source code cannot be said to be developed from
the corresponding pseudo-code, except in the sense that it may be stated slightly differently in
a compilable language. In such a case, there are no low-level requirements that are actually
stated as requirements and all that is provided instead is an implementation of some un-stated
low-level requirements in pseudo-code. The source code cannot then be said to be developed
from any low-level requirements in such a case because no actual low-level requirements are
developed or stated. Consequently, there are no conventional low-level requirements to
review, to trace or to test.

The steps of reviewing or testing source code against low-level requirements that are
supposedly expressed in pseudo-code, to which the source code is almost identical, cannot
therefore be as effective as a review of the source code against conventional low-level
requirements and can only produce limited results.

This also means that the step of conducting structural coverage analysis of the source code by
executing tests based on low-level requirements that are supposedly stated in pseudo-code is
an ineffective activity because tests based on code modules are tests of the structure of the
code (which is a kind of structural testing) and are not tests of real requirements. Module tests
that are written to drive all the decisions and variables of a code module, based on knowledge
of the structure of the code module in either pseudo-code or the source code, will naturally
produce complete coverage of the module. Such apparently complete coverage would be
obtained even though parts of the module or the entire module might not actually be executed

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 110/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

or reachable when the Executable Object Code is run due to the values of variables being
changed during execution of the rest of the code, resulting in some decision paths not being
taken. If such module tests were to be misinterpreted as being structural coverage tests then
the result should always be 100% structural coverage, which means that the activity would
not be effective in detecting unintended functionality or unexpected behaviour.

Tests of modules of code, i.e. structural testing, were required in ED-12A / DO-178A, but
structural testing is not part of ED-12B / DO-178B and is not equivalent to ED-12B / DO-178B
structural coverage analysis or the testing of high and low-level requirements. This distinction
is described in depth in ED-94 / DO-248B FAQs #43 and #44.

24.3 CAN TRACEABILITY COMPENSATE FOR NON-PRODUCTIVE
STRUCTURAL COVERAGE ANALYSIS?

Software developers using pseudo-code as low-level requirements often claim that they can
ensure that the contents of the pseudo-code and source code modules are correct by
reviewing them against the high-level requirements and ensuring traceability, even though
they are actually performing structural testing rather than structural coverage analysis.
Although traceability is a valuable activity in ensuring that the functionality of requirements is
fulfilled and that only that functionality is fulfilled, the argument that traceability compensates
for the absence of proper structural coverage analysis incorporates several problems.

Firstly, such an argument means that pseudo-code (and therefore the source code) has been
developed directly from the high-level requirements, which is not a recommended practice, as
shown by the contents of section 21 of this Certification Memorandum.

Secondly, the absence of real low-level requirements means that there is no review of real
low-level requirements against the high-level requirements and there is no real review of the
source code against real low-level requirements. This is a short-cut of the ED-12B / DO-178B
review activities and of the opportunities to discover and remove errors that those reviews
provide.

Thirdly, even if the normal stages of review of the low-level requirements and of the source
code are conducted in a normal development life-cycle, there may still be dead code,
deactivated code or unintended functionality or unexpected behaviour remaining in the source
code because review activities are rarely conducted with 100% effectiveness due to human
error in the activities. Structural coverage analysis was included in ED-12B / DO-178B as a
complementary activity that can catch problems in the source code that were missed during
the review activities, or that might not have been readily apparent due to the complexity of
data and control flow. It is therefore important that proper structural coverage analysis against
high-level requirements and real low-level requirements is conducted in addition to the
reviewing activities called for in ED-12B / DO-178B. The reviewing and traceability activities of
ED-12B / DO-178B are therefore not a substitute for structural coverage analysis, especially
when the reviewing and traceability activities are not properly conducted, which is the case
when pseudo-code is used to express so-called low-level requirements, as mentioned in the
second item above.

24.4 GUIDANCE

EASA considers that when pseudo-code is used instead of real low-level requirements from
which code can be developed, this prevents the usual ED-12B / DO-178B review and
traceability activities on low-level requirements and source code from being conducted as
required and it prevents meaningful structural coverage analysis from being conducted, as a
form of structural testing is conducted instead. Structural testing is not required in ED-12B /
DO-178B and it cannot be used to replace the structural coverage analysis activities of ED-12B
/ DO-178B. Traceability cannot be used to compensate for the lack of structural coverage
analysis.

EASA therefore considers that -

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 111/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

1 - The use of pseudo-code alone to express ED-12B / DO-178B low-level requirements
is neither required nor useful and that developers of airborne software should not use
pseudo-code alone to express low-level requirements and should not incorporate it in
their software life-cycle data. Source code should be developed from low-level
requirements that are not stated in the form of pseudo-code and that do not specify
the structure of the source code.

2 – When pseudo-code is used in low-level requirement development in addition to
other life cycle data (e.g. a data dictionary, real low-level requirements, etc.), some
issues still remain. In some cases, the use of a kind of pseudo-code may ease the
understanding of the flow of the low-level requirements (e.g. where there is an if-
then-else structure). In such cases, the developer should perform:

- An analysis against the high-level requirements showing that none of the
pseudo code included in the low-level requirements introduces any
unintended functionality or unexpected behaviour.

- An analysis that all the verification cases cover actual low-level requirements
and that they do not cover the structural form of the pseudo-code.

- An analysis showing that the activities defined in ED-12B / DO-178B section
6.4.3.c have not been affected by the use of pseudo-code (e.g. due to the
use of implicit else statements).

- An analysis that the structural coverage analysis defined in ED-12B / DO-
178B section 6.4.4.3 has not been affected by the use of pseudo-code (due
to conducting structural testing vs. requirement-based testing).

In cases where pseudo code structures are expressed using semantic constructions
that are not common in spoken English (e.g. case, default, until, etc.), this would not
be considered as an aid to understanding the low-level requirements. This would be
considered to be too close to real source code and therefore, instead, to fall into the
category of bullet 1 above.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 112/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

25 STACK OVERFLOWS

25.1 PURPOSE

The purpose of this Section is to provide guidance for determining whether software designs
should implement protection mechanisms to cope with stack overflows.

ED-12B / DO-178B already provides guidance regarding stack usage and stack overflows in
the areas of code reviews and requirement based verification, however, it does not cover the
possibility that a data corruption may occur and lead to a stack overflow.

The purpose of this section is not to change the intent of ED-12B / DO-178B but rather to
provide details of specific aspects of stack usage and stack overflows to which attention
should be paid. Although this section only refers to stack overflows, it should be understood
that stack underflows also need to be taken into account in each case where stack overflows
are mentioned and that the guidance in this section also applies to any other area of
dynamic memory that is used during the runtime of an airborne software program, such as a
heap.

25.2 BACKGROUND

Most avionics systems incorporate a real-time operating system, which may have many
stacks that are used dynamically. In addition, there may be secondary stacks which may be
used to manage aggregate data (for example dynamically sized arrays) or data whose
lifetime extends beyond its calling frame (e.g. a locally declared record being returned from
the function where it is declared).

Depending on the programming language used and the implementation of the compiler,
various problems may arise in the event of a stack overflow. The problems may manifest
themselves as:

1. A corruption of data (if the stack overflow causes the software to write into a
data location).

2. A machine exception (if the stack overflow is adjacent to protected memory,
either code or read-only memory).

3. An unpredictable program execution (if the corruption of data occurs and code
addresses are corrupted, e.g. the return address of a function).

4. A software exception (if the program contains code to check the stack).

As secondary stacks are used less frequently and their use is typically under the control of
run-time functions, stack checks are often put in place to monitor all secondary stack usage.
Typically, run-time checks on primary stacks are avoided for performance reasons.

ED-12B/DO-178B requests that stack usage should be addressed appropriately by review of
the source code and stack overflows should be addressed by requirement-based
hardware/software integration testing.

Analysis of the theoretical worst case scenario helps to determine whether the use and
implementation of stacks has been well-designed in order to adequately manage data that
needs to be handled through stack usage.

Static analysis of worst case stack use consists of identifying all the functions in the program
and obtaining their stack frame sizes, determining the call graph of each separate execution
thread (typically a task), and combining this data into a set of worst case stack sizes for
each stack. This can be done at the source code level by counting the sizes of all data
declarations and parameters. This raises the problems that the sizes chosen by the compiler,
any alignment gaps and any temporary compiler-allocated data on the stack would all need
to be accounted for.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 113/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

Stack analysis may also be performed by testing. The typical approach is to fill the memory
with a certain memory pattern and to execute tests which force the maximum usage of the
stack. As this behaviour is dynamic, it may be difficult to determine the worst-case scenario
except for simple programs.

Nonetheless, there is an additional potential risk that an unintended stack overflow may
occur during the execution of a program for various reasons, such as:

� A hardware failure.

� A software development error.

� An unintended software behaviour.

� A memory corruption.

� A single event upset (SEU).

� etc.

In such cases, when a stack overflow occurs during the execution of level A software, the
consequences could be catastrophic as the software may be out of control.

Although an SEU is unlikely to be repeated, if a stack corruption or an overflow occurs due to
a software error, then given the same program state and input conditions, the software error
will be repeated. Such a repetition may cause the recovery mechanism to be ineffective.

25.3 GUIDANCE

EASA considers that for Level A software, there is a need to consider the possibility of a stack
overflow occurring in flight. This means that theoretical measurements performed to
determine that stack overflows cannot occur may be not sufficient to ensure that the software
behaves as intended. Consequently, stack monitoring may be necessary to detect any stack
overflows and handle the potential risks.

To conduct run time monitoring of stack overflow is not trivial and usually implies the
incorporation of specific requirements to cover those concerns. The following activities have
been identified:

a) An analysis should be performed to define whether or not it is necessary to perform
continuous stack monitoring, based on criteria such as the software criticality, the
stack type, the use of built-in monitors, etc.),

b) If continuous monitoring of the stack is used, it should be performed in real time,
c) The monitoring mechanism (e.g. the monitoring of the stack pointer) should be

specified in the requirements,
d) In the event that the monitor detects an overflow, the expected behaviour (e.g.

exception) should be specified and verified accordingly,
There may be several stacks with different monitoring policies (data, executive-level,
program counters, etc.) and the above analyses may be needed for each stack.

EASA Proposed CM No.: EASA Proposed CM – SWCEH – 002 Issue: 01

© European Aviation Safety Agency. All rights reserved. Page 114/114
Proprietary document. Copies are not controlled. Confirm revision status through the EASA-Internet/Intranet.

26 REMARKS

1. This EASA Proposed Certification Memorandum will be closed for public consultation on
the 25th of March 2011.

2. Comments regarding this EASA Proposed Certification Memorandum should be referred
to the Certification Policy and Planning Department, Certification Directorate, EASA. E-
mail CM@easa.europa.eu or fax +49 (0) 221 89990 4459.

3. For any questions concerning the technical content of this EASA Proposed Certification
Memorandum, please refer to CM@easa.europa.eu.

