TYPE-CERTIFICATE
DATA SHEET

NO. EASA.IM.A.629

for
DA 62

Type Certificate Holder
Diamond Aircraft Industries Inc.

1560 Crumlin Sideroad
London, ON, N5V 1S2
Canada

For models: DA 62
Intentionally left blank
SECTION A:

A.I. General ... 4
A.II. EASA Certification Basis ... 4
A.III. Technical Characteristics and Operational Limitations ... 6
A.IV. Operating and Service Instructions .. 10
A.V. Operational Suitability Data (OSD) .. 11
A.VI. Notes.. 11

ADMINISTRATIVE SECTION ... 13

I. Acronyms & Abbreviations ... 13
II. Type Certificate Holder Record ... 13
IV. Change Record .. 14
SECTION A: DA 62

A.I. General

1. Type/ Model/ Variant
 1.1 Type DA 62
 1.2 Model DA 62
 1.3 Variant --

2. Airworthiness Category CS-23 Normal Category

3. Type Certificate Holder:
 Diaond Aircraft Industries Inc.
 1560 Crumlin Sideroad
 London, ON, N5V 1S2
 Canada

4. Manufacturer
 Diamond Aircraft Industries Inc.
 1560 Crumlin Sideroad
 London, ON, N5V 1S2
 Canada

 Diamond Aircraft Industries GmbH
 Nikolaus-August-Otto-Strasse 5
 2700 Wiener Neustadt
 Austria

5. Certification Application
 Date: 02-Oct-2015

5. State of Design Authority Transport Canada Civil Aviation

6. (Reserved) N/A

7. (Reserved) N/A

A.II. EASA Certification Basis

1. Reference Date for
determining the applicable
requirements: 02-Oct-2015

2. Airworthiness
 Requirements:
 CS-23, Amendment 4, issued 15-Jul-2015

3. Special Conditions
 CRI E-02 Use of Jet Fuel for Reciprocating Engines
 CRI E-04 Liquid Cooling – Coolant Tank
 CRI E-05 Electronically-controlled Reciprocating Diesel Engine
 CRI E-06 Engine Vibration Level
4. Exemptions
None

5. Deviations
None

6. Equivalent Safety Findings
CRI E-07 Engine Torque
CRI F-04 Power Plant Instruments
CRI F-07 Human Factors in Integrated Avionic System
CRI F-18 Cyber Security
CRI F-21 Battery Endurance

CRI E-10 Electrical Fuel Pump
CRI B-03 Stalling Speed in Icing Conditions

7. Requirements elected to comply:
None

8. Environmental Protection
ICAO, Annex 16, Volume 1, Part II and as implemented in Decision No. 2003/4/RM amended by Decision 2007/007/R of The Executive Director of the Agency dated 2 April 2007, on certification specifications providing for acceptable means of compliance for aircraft noise

9. (Reserved)
N/A

10. (Reserved)
N/A

11. Operational Suitability
OSD MMEL: CS-GEN-MMEL, Initial Issue dated 31 January 2014

Requirements
A.III. Technical Characteristics and Operational Limitations

1. Type Design Definition: Doc. No. D62-AW-0004, latest revision
2. Description: Twin engine, up to seven-seated cantilever low wing airplane, composite construction, retractable tricycle landing gear, T-tail
3. Equipment Equipment list, AFM, Section 6
4. Dimensions
 - Span 14.57m (47 ft 10 in)
 - Length 9.17m (30 ft 1 in)
 - Height 2.82m (9 ft 3 in)
 - Wing Area 17.10 m² (184.1 sqft)
5. Engine
 - 5.1 Model 2 Austro Engine E4P see Note 4
 - 5.2 Type Certificate EASA Engine Type Certificate E.200
 - 5.3 Limitations
 - Max take-off rotational speed (5 min.) 2300 r.p.m.
 - Max continuous rotational speed 2200 r.p.m.
 - Max T/O Power (5min) 100% (132 kW)
 - Max. continuous Power 95% (126 kW)
 - For power-plants limits refer AFM, Section 2
 - 5.4 Firmware: see DAI MSB 62-002 See Note 4
 - 5.5 Mapping: see DAI MSB 62-002 See Note 4
6. Load factors
 - Positive 3.8
 - Negative -1.52
 - at Vₐ at Vₑ with flaps in T/O Or LDG position
 - 2.0
7. Propeller
 - 7.1 Model 2 MT-Propeller MTV-6-R-C-F/CF 194-80
 - 7.2 Type Certificate EASA Prop. Type Certificate P.094
 - 7.3 Number of blades 3
 - 7.4 Diameter 1940 mm
 - 7.5 Sense of Rotation CW
 - 7.6 Settings:
 - Low pitch setting 11 °
 - Feather position: 80 °
 - Start Lock: 15 °
8. Fluids
 - 8.1 Fuel: Jet A-1 (ASTM 1655), see note 6
 - 8.2 Oil Engine: Shell Helix Ultra 5W30 or 5W40
 - 8.3 Gearbox: Shell SPIRAX GSX 75W-80 or
Shell SPIRAX S6 GXME 75W-80
or see AFM, Section 2

8.3 Coolant: Water / Coolant Protection
for more details see AFM, Section 2

8.4 Ice Protection Fluids: Fluids according DTD 406B

9. Fluid capacities

9.1 Fuel: Standard Fuel Tank
Total: 196.8 litres 52 US Gallons
Usable 189.2 litres 50 US Gallons

Auxiliary Fuel Tank
Total: 140 litres 37 US Gallons
Usable: 137.8 litres 36.4 US Gallons

9.2 Oil: each engine
Maximum: 7 litres
Minimum: 5 litres

9.3 Coolant system capacity: Approx. 7 litres

10. Air Speeds: Operating Manoeuvring Speed \(V_0 \)
Up to 1700 kg 117 KEAS
1800 to 1900 kg 126 KEAS
1901 kg to 1999 kg 130 KEAS
2000 kg to 2100 kg 133 KEAS
2101 kg to 2200 kg 136 KEAS
Above 2201 kg 140 KEAS

Flap Extended Speed \(V_{FE} \)
Approach 135 KEAS
Landing 118 KEAS

Maximum Landing Gear
Operation Speed \(V_{LO} \) 160 KEAS

Maximum Landing Gear
Extended Speed \(V_{LE} \) 201 KEAS

Minimum Control Speed
Airborne \(V_{MCA} \) 75 KEAS

Maximum structural
Cruising Speed \(V_{NO} \) 160 KEAS
(= Maximum structural design speed \(V_{C} \))

Never exceed speed \(V_{NE} \) 201 KEAS

11. Maximum Operating Altitude: 6096 m (20 000 ft)

12. All weather operations Capability: Day/Night-VFR, IFR
Flights into known or forecast icing conditions,
See Note 8
13. Maximum Weights:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>1999 kg (4406 lb)</td>
</tr>
<tr>
<td>With MAM 62-001 installed</td>
<td>2300 kg (5017 lb)</td>
</tr>
<tr>
<td>Zero Fuel</td>
<td>2036 kg (4489 lb)</td>
</tr>
<tr>
<td>With MAM 62-063 installed</td>
<td>2200 kg (4850 lb)</td>
</tr>
<tr>
<td>Landing</td>
<td>2300 kg (5017 lb)</td>
</tr>
</tbody>
</table>

14. Centre of Gravity

<table>
<thead>
<tr>
<th>Range</th>
<th>Distance from Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward limit</td>
<td>2.340 m</td>
</tr>
<tr>
<td>From 1600 kg to 1800 kg</td>
<td>2.460 m</td>
</tr>
<tr>
<td>At 2300 kg</td>
<td>2.460 m</td>
</tr>
</tbody>
</table>

Varying linearly with mass between

<table>
<thead>
<tr>
<th>Rear limit</th>
<th>Distance from Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 1600 kg</td>
<td>2.460 m</td>
</tr>
<tr>
<td>At 1900 kg to 1999 kg</td>
<td>2.510 m</td>
</tr>
<tr>
<td>At 2300 kg</td>
<td>2.530 m</td>
</tr>
</tbody>
</table>

Varying linearly with the mass in between

15. Datum:

2.196 m in front of leading edge of stub-wing at the wing joint

16. Control surface deflections:

<table>
<thead>
<tr>
<th>Surface</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aileron</td>
<td>Trailing edge up: 25° ± 2°</td>
</tr>
<tr>
<td></td>
<td>Trailing edge down: 15° ± 2°/0°</td>
</tr>
<tr>
<td>Elevator</td>
<td>Trailing edge up: 18° ± 0.5°</td>
</tr>
<tr>
<td></td>
<td>Trailing edge down: 15° ± 1°</td>
</tr>
<tr>
<td>Elevator Trim Tab</td>
<td>Nose up at elevator 10° up: + 17° ± 5°</td>
</tr>
<tr>
<td></td>
<td>Nose down at elevator 10° up: - 35° ± 5°</td>
</tr>
<tr>
<td>Rudder</td>
<td>Left: 30° ± 1°</td>
</tr>
<tr>
<td></td>
<td>Right: 30° ± 1°</td>
</tr>
<tr>
<td>Rudder Trim Tab</td>
<td>Trim RH at rudder 20° LH: + 45° ± 5°</td>
</tr>
<tr>
<td></td>
<td>Trim LH at rudder 20° LH: + 28° ± 3°</td>
</tr>
<tr>
<td>Flaps</td>
<td>Cruise flap setting: 0° ± 2° - 0°</td>
</tr>
<tr>
<td></td>
<td>Approach flap setting: 20° ± 4° - 2°</td>
</tr>
<tr>
<td></td>
<td>Landing flap setting: 42° ±3° - 1°</td>
</tr>
</tbody>
</table>

17. Levelling Means:

Floor of front baggage compartment levelled

18. Minimum Flight Crew:

1 (Pilot)

19. Maximum Passenger Seating Capacity:

With OAM 62-019 installed: 6
20. Baggage/Cargo Compartments:

<table>
<thead>
<tr>
<th>Location</th>
<th>max. allowable Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH Nose Baggage</td>
<td>30 kg (66 lb)</td>
</tr>
<tr>
<td>RH Nose Baggage</td>
<td>30 kg (66 lb)</td>
</tr>
<tr>
<td>Rear Baggage</td>
<td>120 kg (265 lb)</td>
</tr>
</tbody>
</table>

With OAM 62-019 inst. 46 kg (101 lb)

21. Wheels and Tyres:

<table>
<thead>
<tr>
<th>Tyre Size</th>
<th>see Note 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nose Wheel Tyre Size</td>
<td>6.00-6</td>
</tr>
<tr>
<td>Main Wheel Tyre Size</td>
<td>6.00-6</td>
</tr>
</tbody>
</table>
A.IV. Operating and Service Instructions

1. **Flight Manual**
 - Document 11.01.05-E (Revision of 7.01.25-E under new document number), see Note 10

2. **Technical Manual**
 - Airplane Maintenance Manual (AMM)
 - Document No. 7.02.25 (incl. Airworthiness Limitations)
 - Service Information and Service Bulletins

3. **Spare Parts Catalogue (IPC)**
 - Document No. 7.03.25

4. **Instruments and aggregates**
 - Refer to AMM Doc. No. 7.02.25 Chapter 1
A.V. Operational Suitability Data (OSD)

The Operational Suitability Data elements listed below are approved by the European Aviation Safety Agency under the EASA Type Certificate EASA.A.005 as per Commission Regulation (EU) 748/2012 as amended by Commission Regulation (EU) No 69/2014.

1. Master Minimum Equipment List (MMEL)
 The MMEL is defined in the Document No: 11.11.01, Revision Original or later approved revisions.

A.VI. Notes

1. Serial Numbers Eligible: see also Note 2
 62.007 and 62.009 and subsequent (Austrian Production)
 62.C001 and subsequent (Canadian Production, marked with “C”)

2. Design Responsibility History

 Originally the model DA 62 was designed by Diamond Aircraft Industries GmbH in Austria (DAI-A) and initially certified by EASA as a derivative of the DA 42 (EASA TC / TCDS No. EASA.A.005).

 On request of DAI-A, the model DA 62 was split out to a separate TC later on (EASA TC / TCDS No. EASA.A.629) as a separate type. All DA 62 aircraft manufactured under EASA TC No EASA.A.005 were eligible to be transferred to EASA TC No EASA.A.629 using DAI Factory Campaign FC 62-010.

 Effective 15-Nov-2017 the design responsibility for the type DA 62 certified under TC EASA.A.629 was transferred from DAI-A and EASA to Diamond Aircraft Industries Inc. (DAI-C) and Transport Canada (TCCA), issuing TCCA TC No. A-273, validated by EASA cancelling EASA TC No EASA.A.629 and issuing EASA TC No EASA.IM.A.629.

 With the transfer, all model DA 62 serial numbers produced on EASA TC No EASA.A.629, are under the responsibility of DAI-C and TCCA now.

 With the transfer, all aircraft manufactured on EASA TC No EASA.A.005 and still associated with that TC, are eligible to be transferred TCCA TC No A-273 using DAI Factory Campaign FC 62-010 now, but remain under the responsibility of DAI-A and EASA until they are transferred.

 No further serial numbers will be produced under EASA.A.005 or EASA.A.629

3. Approved Noise Levels in accordance to the EASA data sheet for noise TCDSN IM.A.629.

4. For approved software versions of Gamin G1000 Integrated Avionic System see, until further notice, DAI MSB 62-003, at latest issue.

5. Approved engine model for installation in the DA 62: E4P-C

 The approved firmware and mapping is, until further notice, according to DAI MSB 62-002 at latest issue.

6. Propeller Equipment: Governor P-877-16
7. For additional approved Jet Fuel specifications see AFM Section 2.

8. Only specific brand names and types of tires are allowed for installation, see AMM and IPC

9. Flights into known or forecast icing conditions is approved if the liquid fluid ice protection system in accordance to Major Design Change OÂM 62-003 is installed.

10. As indicated in NOTE 2, the type design responsibility for the DA 62 was transferred effective 15 November 2017 to DAI-C and TCCA. Temporary Revision TR-17-05 to the pre-existing AFM, 7.01.25-E, was issued to reflect the change in type design responsibility and identify AFM 7.01.25-E as the Transport Canada approved AFM until such time as the Temporary Revision had been incorporated into the AFM.

 Temporary Revision TR-17-05 has now been incorporated in the AFM by reissuing it in full with new Doc. No. 11.01.05-E as a revision to AFM Doc. No. 7.01.25-E.

 AFM 11.01.05-E, latest revision, is the approved AFM required for use in accordance with the Canadian Aviation Regulations
I. Acronyms & Abbreviations

AFM Airplane Flight Manual
Amdt. Amendment
AMM Airplane Maintenance Manual
CG Centre of Gravity
DWN down
EASA European Aviation Safety Agency
IAS Indicated Airspeed
ICAO International Civil Aviation Organization
kg kilograms
km/h kilometres per hour
MAC Mean Aerodynamic Chord
N.A. Not applicable
SC Special Condition
TCDSN Type Certificate Datasheet Noise
VFR Visual Flight Rules

II. Type Certificate Holder Record

Until 15-Nov-2017
Diamond Aircraft Industries GmbH
Nikolaus-August-Otto-Straße 5
2700 Wiener Neustadt
Austria

Since 15-Nov-2017
Diamond Aircraft Industries Inc.
1560 Crumlin Sideroad
London, ON, N5V1S2
Canada
IV. Change Record

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Changes</th>
<th>TC Issue No. & Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 4</td>
<td>15-Nov-2017</td>
<td>Revisions as done prior transfer of TC. Kept for record only</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>20-May-2020</td>
<td>A.IV.: Item 1: AFM document updated from 7.01.25-E to 11.01.05-E</td>
<td>26-May-2020</td>
</tr>
<tr>
<td>7</td>
<td>31-May-2022</td>
<td>A.III Propeller Model corrected to MTV-6-R-C-F/CF 194-80</td>
<td>26-May-2020</td>
</tr>
</tbody>
</table>

-END-