European Aviation Safety Agency

EASA

TYPE-CERTIFICATE
DATA SHEET

No. EASA.A.151

AIRBUS A350

Type Certificate Holder:

AIRBUS S.A.S.

1 Rond-point Maurice Bellonte
31707 BLAGNAC
FRANCE

Airworthiness Category: Large Aeroplanes

For Model(s): A350-941
Table of Contents

SECTION 1: A350-900 SERIES 3

I. GENERAL 3
 1. Type/Model/Variant 3
 2. Performance Class 3
 3. Certifying Authority 3
 4. Manufacturer 3
 5. EASA Certification Application Date 3
 6. EASA Type Certification Date 3

II. CERTIFICATION BASIS 3
 1. EASA Certification Basis 3
 2. Special Conditions 3
 3. Exemptions / Deviations 5
 4. Equivalent safety findings (21A.21(c)(2)) 5
 5. Environmental requirements 5
 6. Elect to comply 6

III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS 7
 1. A350-900 powered by RR engines 7
 2. Data pertinent to all A350-900 series 8

IV. OPERATING AND SERVICE INSTRUCTIONS 11
 1. Aircraft Flight Manual 11
 2. Maintenance Instructions and Airworthiness Limitations 11
 3. ETOPS 11

V. OPERATIONAL SUITABILITY DATA (OSD) 12
 1. Master Minimum Equipment List 12
 2. Flight Crew Data 12
 3. Cabin Crew Data 12

ADMINISTRATIVE SECTION 14

VI. ACRONYMS AND ABBREVIATIONS 14

VII. CHANGE RECORD 14
SECTION 1: A350-900 SERIES

I. GENERAL

1. Type/Model/Variant

A350-900

2. Performance Class

A

3. Certifying Authority

EASA

4. Manufacturer

AIRBUS
1 Rond-point Maurice Bellonte
31707 Blagnac
FRANCE

5. EASA Certification Application Date

A350-941: 15 November 2009

6. EASA Type Certification Date

A350-941: 30 September 2014

II. CERTIFICATION BASIS

1. EASA Certification Basis

The following EASA airworthiness standards effective on the reference date are:

- EASA Certification Specification 25, Amendment 7 – Large Aeroplanes
- EASA Certification Specification AWO, Initial Issue – All Weather Operations

2. Special Conditions
2.1 Special Conditions issued because the product has novel or unusual design features relative to the design practices on which the applicable airworthiness code is based (21A.16B(a)1):

- SC B-01 Stalling and Scheduled Operating Speeds
- SC B-02 Motion and effect of cockpit controls
- SC B-04 Static Directional, Lateral and Longitudinal Stability and Low Energy Awareness
- SC B-05 Flight envelope protection
- SC B-06 Normal Load Factor limiting System
- SC B-09 Flight in Icing Condition
- SC B-11 Soft Go Around Mode (post-TC)

- SC C-01 Crash Survivability for CFRP Fuselage
- SC C-02 Design dive speed
- SC C-05 Tyre Debris vs. Fuel Leakage for CFRP Fuel Tank
- SC C-06 Dynamic braking
- SC C-07 Limit pilot forces
- SC C-10 Design Manoeuvre Requirements
- SC C-14 Pivoting Loads

- SC D-04 Crew Rest Compartments (post-TC)
- SC D-05 Towbarless Towing
- SC D-07 Control Surface Position Awareness / Electronic Flight Control Systems
- SC D-14 Application of Heat Release and Smoke Density Requirements to Seat Materials
- SC D-16 In Flight Fire - Composite Fuselage Construction
- SC D-20 Lateral Trim Function through Differential Flap Setting
- SC D-21 Type C Passenger Exits
- SC D-32 Use of Magnesium Alloys for Passenger Seat Components (post-TC)

- SC E-08 Fire withstanding Capability of CFRP Wing Fuel Tanks
- SC F-13 Lithium Battery Installations
- SC F-26 Flight Recorders including Data Link Recording
- SC F-38 Security Assurance Process to isolate or protect the Aircraft Systems and Networks from internal and external Security Threats

- SC G-01 ETOPS Approval
- SC G-06 Cancellation of AFM Engine Management Tables

2.2 Special Conditions issued because the intended use of the product is unconventional (21A.16B(a)2):

- SC D-06 High Altitude Operation / High Cabin Heat Load

2.3 Special Conditions issued because experience from other products has shown that unsafe conditions may develop (21A.16B(a)3):

- SC E-12 Water / Ice in Fuel System
3. Exemptions / Deviations

None

4. Equivalent safety findings (21A.21(c)(2))

ESF C-11 Ground Loads Conditions
ESF C-12 Undercarriage Lateral Turning Loads
ESF D-11 Packs off operations
ESF D-15 Post Crash Fire - Composite Fuselage Construction
ESF D-19 Overpressure Relief Valves and Outflow Valves
ESF D-23 Indication of the Passenger Door from outside Position if the Door is not fully Closed, Latched and Locked
ESF D-28 Green Arrow and “Open” Placard for Emergency Exit Marking
ESF D-30 Installation of Angled Seats (post-TC)
ESF D-31 Application of reduced Intrusion Loads in certain Areas of the Flight Deck Boundaries
ESF D-34 APU Doors Compliance to CS 25.783(a)
ESF E-04 Thrust Reverser Testing
ESF E-07 Warning Means for Rolls Royce Engine Fuel Filters
ESF E-09 Rolls Royce Engine Turbine Overheat Detection
ESF E-13 Fire Extinguishing Agent Concentration
ESF E-14 Pressure fuelling system shut-off operation check
ESF F-22 Minimum Mass Flow of Supplemental Oxygen
ESF F-23 Landing Light Switch
ESF F-33 Pneumatic Systems – harmonised 25.1438
ESF F-52 Crew Determination of Quantity of Oxygen in Passenger Oxygen System
ESF F-63 Improved Passenger Oxygen Mask Deployment System
ESF F-69 Pitot Heat Indication Systems
ESF G-05 Engine Oil Temperature Indication
ESF K-03 Localizer Excessive Deviation Alerts (post-TC)
ESF K-04 Limit Risk (post-TC)
ESF K-08 CAT 3 Operations - Super Fail Passive Anomalies (post-TC)

5. Environmental requirements

Fuel venting and emissions:
EASA Certification Specification 34, Initial Issue.
Noise:
EASA Certification Specification 36, Amendment 3.

6. Elect to comply

III. TECHNICAL CHARACTERISTICS AND OPERATIONAL LIMITATIONS

1. A350-900 powered by RR engines

1.1 Type Design Definition

A350-941 Type Design Definition: 00 V 000 A0941 / C90 Issue 2
Note: The MOD 107279 need to get EASA approval Post-TC before EIS.

1.2 Engines

A350-941: Two (2) Rolls Royce Trent XWB-84 turbofan engines

<table>
<thead>
<tr>
<th>ENGINE LIMITS</th>
<th>A350-941</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA SHEET EASA E-111</td>
<td>RR Trent XWB-84</td>
</tr>
<tr>
<td>Net Take-off (5 minutes)</td>
<td>374.5 kN (84,200 lbf)</td>
</tr>
<tr>
<td>Net Maximum Continuous</td>
<td>317.6 kN (71,400 lbf)</td>
</tr>
</tbody>
</table>

The take-off thrust, with the associated limits, shall not be used continuously more than 5 minutes. The duration may be extended to 10 minutes in case of engine failure in multi-engine aircraft. If the duration exceeds 5 minutes, this shall be recorded in the engine log book.

Other engine limitations: See the relevant Engine Type Certificate Data Sheet.

1.3 Fuel and fuel additives

The fuel system has been certified with: JET A, JET A1, JP5, JP8, N° 3 Jet Fuel, RT and TS-1.

Refer to applicable engine “Operating Instructions” document for additives.

1.4 Oil

Refer to applicable engine “Operating Instructions” document.

1.5 Limit Speeds

Refer to approved Airplane Flight Manual.

1.6 Centre of Gravity Range

Refer to approved Airplane Flight Manual.
1.7 Maximum Certified Weights

<table>
<thead>
<tr>
<th>VARIANT (Mod number)</th>
<th>000 (Basic)</th>
<th>001 (104052)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTOW (t)</td>
<td>268</td>
<td>275</td>
</tr>
<tr>
<td>MLW (t)</td>
<td>205</td>
<td>207</td>
</tr>
<tr>
<td>MZFW (t)</td>
<td>192</td>
<td>195.7</td>
</tr>
</tbody>
</table>

1.8 Notes

None

2. Data pertinent to all A350-900 series

2.1 Description

Two turbo-fan, long range, twin-aisle, large category airplane

2.2 Fuel quantity

<table>
<thead>
<tr>
<th>Tanks</th>
<th>Usable Fuel (l)</th>
<th>Usable Fuel (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wing</td>
<td>29,963</td>
<td>23,520</td>
</tr>
<tr>
<td>Center</td>
<td>81,052</td>
<td>63,625</td>
</tr>
<tr>
<td>Total</td>
<td>140,978</td>
<td>110,665</td>
</tr>
</tbody>
</table>

Fuel density is 0.785 kg/l

2.3 Minimum Flight Crew

Two (2): Pilot and Co-pilot

2.4 Maximum Seating Capacity

The maximum number of passengers approved for emergency evacuation is:

- 385 for the basic passenger emergency exit configuration C-A-A-A and A-A-C-A,
- 330 for the optional passenger emergency exit configuration C-A-C-A,

See interior layout drawing for the maximum passenger capacities approved for each aeroplane when delivered.
2.5 Cargo compartment loading

<table>
<thead>
<tr>
<th>Cargo compartment</th>
<th>Maximum load (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>22,000</td>
</tr>
<tr>
<td>Aft</td>
<td>19,000</td>
</tr>
<tr>
<td>Rear (bulk)</td>
<td>3,468</td>
</tr>
</tbody>
</table>

For the positions and the loading conditions authorized in each position (references of containers, pallets and associated weights), see Weight and Balance Manual Chapter 1.10 ref. 00 V 080 A0001 / C9S.

2.6 Environmental Flight Envelope

Maximum operating altitude is 43,100 ft.

Refer to approved Airplane Flight Manual.

2.7 Other Limitations

Refer to approved Airplane Flight Manual.

2.8 Auxiliary Power Unit (APU)

One APU, Honeywell HGT1700.

Fuel and Oil: Refer to applicable approved Manuals.

2.9 Equipment

The equipment required by the applicable requirements shall be installed.

Cabin seats shall conform to the “Passenger Seat Frame Specification” document ref. 00V252K0005/C91 Issue 4.

2.10 All Weather Capabilities

The aircraft has no All Weather Capabilities at TC.

2.11 Wheels and Tyres

<table>
<thead>
<tr>
<th>Gear</th>
<th>Quantity</th>
<th>Wheel size</th>
<th>Tyre size</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLG</td>
<td>2</td>
<td>16"</td>
<td>1050 x 395R16 28PR</td>
</tr>
<tr>
<td>MLG</td>
<td>8</td>
<td>23"</td>
<td>1400 x 530R23 42PR</td>
</tr>
</tbody>
</table>

2.12 Hydraulics

Fluid specifications: TYPE IV LD and TYPE V LD, as per NSA 307-110, or any mixture of both.
2.13 Electrical Power Center Configuration Data File Tool

An Airline Configuration Tool (EPDS* Tool Suite) is being developed and qualified to allow airlines to manage the Configuration Data Files of Secondary Power Distribution Boxes (SPDB). This tool will be available for A350 Entry Into Service.
IV. OPERATING AND SERVICE INSTRUCTIONS

1. Aircraft Flight Manual

The document “A350 Operations Engineering Bulletins – Applicable to TC only”, reference STL D14029252 Issue 2, is providing a temporary list of Operations Engineering Bulletins (OEB) applicable to the A350 at time of TC and until further notice.

2. Maintenance Instructions and Airworthiness Limitations

- Safe Life Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 1, Revision 00 (Document 00 V 050 ALS01 / C01 Issue 1, approved by EASA [1]);

- Damage-Tolerant Airworthiness Limitation Items are provided in the A350 Airworthiness Limitations Section (ALS) Part 2, Revision 00 (Document 00 V 050 ALS02 / C01 Issue 1, approved by EASA [1]);

- Certification Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 3, Revision 00 (Document 00 V 050 ALS03 / C01 Issue 2, approved by EASA [1]);

- A350 System Equipment Maintenance Requirements are provided in the A350 Airworthiness Limitations Section (ALS) Part 4, Revision 00 (Document 00 V 050 ALS04 / C01 Issue 1, approved by EASA [1]);

- A350 Fuel System Airworthiness Limitations are provided in the A350 Airworthiness Limitations Section (ALS) Part 5, Revision 00 (Document 00 V 050 ALS05 / C01 Issue 2, approved by EASA [1]);

- Maintenance Review Board Report 00 V 050 AMRBR / C01.

The document “A350-900 Temporary TC limitations document”, reference 00 V 050 T TCLD / C91 Issue 3, is recording the temporary limitations identified at TC, that are not published within the A350 ALS Part 3 and Part 4. This document is applicable to the A350 at TC and until further notice.

Note: Only ALS part 3 impacts have been identified in chapter 5.4 of this document.

The document “A350-900 - Temporary TC Limitation Document not ALS related and to be removed before EIS”, reference 00 V 207 A TTCL / C91 Issue 1, is recording an additional temporary limitation identified at TC, that is not ALS related. This document is applicable to the A350 at TC and until further notice.

Note [1]: Including last approved revision and ALS variations

3. ETOPS
The Type Design, system reliability and performance of the following A350 model(s) were found capable for Extended Range Operations (ETOPS) when configured, maintained and operated in accordance with the current revision of the ETOPS Configuration, Maintenance and Procedures (CMP) document, XWB/EASA: CS 25.1535/CMP. This finding does not constitute an approval to conduct Extended Range Operations (operational approval must be obtained from the responsible Authority).

The following table provides details on the ETOPS approvals.

<table>
<thead>
<tr>
<th>Model</th>
<th>Engine Type</th>
<th>180 min. Approval date</th>
<th>Beyond 180 min. Approval date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A350-941</td>
<td>Trent XWB-84</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

V. OPERATIONAL SUITABILITY DATA (OSD)

The Operational Suitability Data elements listed below are approved by the European Aviation Safety Agency under the EASA Type Certificate [original TC number] as per Commission Regulation (EU) 748/2012 as amended by Commission Regulation (EU) No 69/2014.

1. Master Minimum Equipment List
 a. The MMEL is in the process of being approved as per the defined Operational Suitability Data Certification Basis until aircraft entry into service.
 b. Required for entry into service by EU operator *

2. Flight Crew Data
 a. The Flight Crew data is in the process of being approved as per the defined Operational Suitability Data Certification Basis until aircraft entry into service.
 b. Required for entry into service by EU operator *
 c. Pilot Type Rating: The licence endorsement for the A350-900 series aircraft is "A330/A350". The A350-900 and the A330 series aircraft are variants of the same type of aircraft.

3. Cabin Crew Data
 a. The Cabin Crew data is in the process of being approved as per the defined Operational Suitability Data Certification Basis until aircraft entry into service.
 b. Required for entry into service by EU operator *
 c. The A350-900 is determined to be a variant of the A330/A340 series aircraft. Based on the comparison conducted using the aircraft differences table ADT (as per Appendix 1 of CS CCD.200(b)(1)) it has been concluded that the A350-941 is to be considered a variant of the A330-200.
 d. The minimum required cabin crew number resulting from the certification evacuation evaluation of the A350-900 is 8 for all of the emergency exit configurations shown in section 2.4, irrespective of the Maximum Operational Passenger Seating Capacity (MOPSC) for the concerned aeroplane.
However, in accordance with operational rules, if the MOPSC for the concerned aeroplane exceeds 400, the minimum required cabin crew number becomes 9.

e. The document “A350-900 Cabin Areas of Special Emphasis” (CASE), reference V01RP1428088 Issue 2.2 is the mean to provide “special instructions” to the Operators.
ADMINISTRATIVE SECTION

VI. ACRONYMS AND ABBREVIATIONS

AFM Aircraft Flight Manual
ALS Airworthiness Limitations Section
APU Auxiliary Power Unit
AWO All Weather Operations
CFRP Carbon Fibre Reinforced Plastic
EASA European Aviation Safety Agency
ESF Equivalent Safety Finding
ETOPS Extended Range Operation with Two-Engine Aeroplanes
HIRF High Intensity Radiated Field
P/N Part Number
RR Rolls Royce
SC Special Condition
TC Type Certification
TCDS Type Certificate Data Sheet
XWB Extra Wide Body

VII. CHANGE RECORD

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>30 September 2014</td>
<td>Initial Issue for TC</td>
</tr>
</tbody>
</table>
