Operational Evaluation Board Report

Airbus A380-800
Report of the FCL/OPS Subgroup

Report, Revision 1
18 July 2011
Airbus A380-800

Operational Evaluation Board (OEB) – OPS / FCL Subgroup

Revision Record

<table>
<thead>
<tr>
<th>Rev. No.</th>
<th>Content</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>A380-800 new evaluation</td>
<td>27 Oct 2008</td>
</tr>
<tr>
<td>1</td>
<td>A380-800 Three Engine Ferry Flight incorporated</td>
<td>Draft: 05 May 2011 Final: 18 Jul 2011</td>
</tr>
</tbody>
</table>
Contents

Acronyms 5
Operation Evaluation Board – FCL & OPS Subgroup 6
Preamble 7
Subgroup Composition 8
Executive Summary 9
Operational Evaluation Report – FCL & OPS Subgroup 12
 1 Purpose and Applicability 12
 2 Pilot Type rating requirements 13
 3 Airbus family concept and A380 specifics 14
 4 Master Differences Requirements tables (MDR) 17
 5 Operator Differences Requirements Tables (ODR) 19
 6 Specification for Training 19
 6.1 Initial Transition course – A380 Type Rating 19
 6.1.1 Prerequisites 19
 6.1.2 Training areas of special emphasis 20
 6.1.3 A380 Type rating – Standard Transition course 22
 6.1.4 A380 Type rating courses - CCQ 22
 6.2 Familiarization course 23
 6.3 Low visibility training 23
 6.4 Recurrent training 24
 7 Specification for Checking 24
 7.1 Skill test following type-rating courses 24
 7.2 Recurrent Checks 25
 7.3 Line Checks 25
 8 Specification for Currency / Recent experience 25
 9 Specification for LIFUS (Line Flying Under Supervision,)) 25
 9.1 Line Flying Under Supervision (LIFUS) 25
 9.2 LIFUS following A380 Standard type rating course 26
 9.3 LIFUS following A380 CCQ 26
 10 Type rating Instructor training 27
 11 Specifications for Operations of more than one type – MFF (Mixed Fleet Flying) 27
 11.1 Prerequisites 27
 11.2 Recurrent training and proficiency checks 28
 11.3 Line checks 29
 11.4 Currency/recent experience 29
12 Additional operational recommendations 30
 12.1 Aircraft Evacuation at the airport gate 30
 12.2 Refuelling with passengers on board 30
 12.3 Pre-departure external check 30
 12.4 Operations on 45m runways. 31

13 A380 Three Engine Ferry Flight (3EFF) 31
 13.1 Introduction 31
 13.2 Crew qualification and training 31
 13.2.1 Crew prerequisites 32
 13.2.2 Crew training 32
 13.3 Three Engine Flight procedures 33
 13.3.1 Technical condition of the aircraft 33
 13.3.2 MEL 33
 13.3.3 Flight planning and weather conditions 33
 13.3.4 Performance 33
 13.3.5 Operating Limitations 34
 13.3.6 Operating Procedures 34

Annexes

Annex 1: Airbus A380 Type Rating course – Footprint Standard course 35
Annex 2: Airbus A380 Type Rating course – Footprint CCQ A330/A340 to A380 36
Annex 3: Airbus A380 Type Rating course – Footprint CCQ A320 to A380 37
Annex 4: Zero Flight Time Training following CCQ type rating 38
Acronyms

AC Advisory Circular
ACJ Advisory Circular Joint
ACRM Airbus Crew Resource Management
ADT Airplane Difference Table
AFM Airplane Flight Manual
AFCS Automatic Flight Control System
AMC Acceptable Means of Compliance
AOC Airline Operations Communications
AP Autopilot
AR Airworthiness Related items
CAR Canadian Aviation Regulation
CBT Computer Based Training
CCD Cursor Control Device
CCOM Cabin Crew Operation Manual
CCQ Cross Crew Qualification
CDL Configuration Deviation List
CFR Code of Federal Regulations
CMC Centralized Maintenance Computer
CPD Common Procedure Document
CRM Crew Resource Management
EASA European Aviation Safety Agency
ECAM Engine/Warning and System Display
ECL Electronic Check List
EFB Electronic Flight Bag
EFIS Electronic Flight Instrument System (PFD)
EGPWS Enhanced Ground Proximity Warning System
EU-OPS Annex III to Regulation (EEC) No 3922/91
EVS Enhanced Vision System
FAA Federal Aviation Administration
FAR Federal Aviation Regulation
FFS Full Flight Simulator
FGS Flight Guidance System
FLS FMS Landing System
FMA Flight Mode Annunciator
FMS Flight Management System
FSB Flight Standardization Board
GPWS Ground Proximity Warning System
IEM Interpretative / Explanatory Material
ICAO International Civil Aviation Organisation
I-NAV Integrated Navigation Display
INS Inertial Navigation System
JAA Joint Aviation Authorities
JAR Joint Aviation Requirements
JOEB Joint Operational Evaluation Board
KCCU Keyboard and Cursor Control Unit
LIFUS Line Flying Under Supervision
LPC Licence Proficiency check
LOFT Line Orientated Flying Training
MCDU Multi-Function Control Display Units
MDR Master Difference Requirements
MDU Multi-functions Display Units
MEL Minimum Equipment List
MFTD Maintenance Flight Training Device
MFF Mixed Fleet Flying
MKB Multi-functions Key Board
MLW Maximum Landing Weight
MMEL Master Minimum Equipment List
MTOW Maximum Take Off Weight
NAA National Aviation Authority
ND Navigation Display
OEB Operational Evaluation Board
ODR Operation Differences Requirements
OIS Onboard Information System (EFB)
OPS Operations
ORI Operational Review Item
PFD Primary Flight Display
PDU Primary Display Unit
PIC Pilot In Command
SIC Second In Command
TCAS Traffic Alert and Collision Avoidance System
TAWS Traffic Alert Warning System
TCCA Transport Canada Civil Aviation
TRI Type Rating Instructor
TRTO Type Rating Training Organization
VGS Visual Guidance System
VNAV Vertical Navigation
ZFTT Zero Flight Time Training
3EFF Three Engine Ferry Flight
Preamble

The initial operational evaluation of the A380-800 was performed by an integrated team composed of EASA/JAA, FAA and TCCA members. However this OEB report is only applicable to operations under the framework of EASA.

Emanating from the initial evaluation, this report specifies the EASA recommendations for training checking and currency requirements on the A380-800, as specified in JAR-FCL 1 and EU-OPS. The report also contains finding of operational acceptability of the A380-800 with regards to EU-OPS.

The OEB recommends the approval of:
- Airbus referenced ODR tables,
- Airbus proposed type rating courses (standard transition and CCQ courses)
- Airbus familiarization course.

The OEB recommends that the licence endorsement will be A380, and that a single licence endorsement (same type rating) applies to A380-840 series (Rolls Royce engines) and A380-860 series (Engine Alliance engines).

The OEB recommends that the attached conditions for Mixed Fleet Flying are accepted as being in compliance with JAR-FCL 1 and EU-OPS.

Additional specific items which are related to A380 Three Engine Ferry Flight (3EFF) operations were evaluated by a subsequent OEB and are incorporated in Revision 1 of this report.

The initial evaluation was conducted in accordance with the JAA Terms of Reference and the JOEB Handbook. The A380 3EFF evaluation was conducted in compliance with the applicable EASA OEB Handbook and Common Procedure Document (CPD) for conducting Operational Evaluation Boards.

18 July 2011

Évan Nielsen
Head of Flight Standards Department
Certification Directorate
1. **JOEB A380-800 FCL/OPS Subgroup Composition (Initial Evaluation)**

<table>
<thead>
<tr>
<th>Name</th>
<th>Capacity</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capt. Pete Griffiths</td>
<td>A380 JOEB Chairman - EASA</td>
<td>T2 - Evaluator</td>
</tr>
<tr>
<td>Capt. Pascal Riondel</td>
<td>EASA</td>
<td>T2 - Evaluator</td>
</tr>
<tr>
<td>Capt. Jim Kling</td>
<td>A380 FSB Chairman - FAA</td>
<td>T2 - Evaluator</td>
</tr>
<tr>
<td>Capt. Ron Tidy</td>
<td>A380 OE Chairman – TCCA</td>
<td>T2 - Evaluator</td>
</tr>
<tr>
<td>Capt. Robert Kostecka</td>
<td>TCCA</td>
<td>CCQ A330 to A380</td>
</tr>
<tr>
<td>Capt. François Collins</td>
<td>TCCA</td>
<td>CCQ A330 to A380</td>
</tr>
<tr>
<td>Capt. Yves-Marie Le-Maitre</td>
<td>EASA</td>
<td>CCQ A340 to A380</td>
</tr>
<tr>
<td>Capt. Joachim Fleger</td>
<td>EASA</td>
<td>CCQ A340 to A380</td>
</tr>
<tr>
<td>Capt. Jerry Ostronic</td>
<td>FAA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Dave Robinson</td>
<td>FAA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Alexander Fechner</td>
<td>EASA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Jean-Louis Françon</td>
<td>EASA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Scott Goccia</td>
<td>FAA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Terry Neale</td>
<td>EASA</td>
<td>A380 Standard Transition</td>
</tr>
<tr>
<td>Capt. Pete Neff</td>
<td>FAA</td>
<td>CCQ A320 to A380</td>
</tr>
<tr>
<td>Capt. Jim Harlow</td>
<td>EASA</td>
<td>CCQ A320 to A380</td>
</tr>
<tr>
<td>Capt. Fabrice Montier</td>
<td>EASA</td>
<td>CCQ A320 to A380</td>
</tr>
<tr>
<td>Capt. Markus Jaeger</td>
<td>EASA</td>
<td>CCQ A320 to A380</td>
</tr>
</tbody>
</table>

2. **OEB A380 FCL/OPS Subgroup Composition (3EFF)**

<table>
<thead>
<tr>
<th>Name</th>
<th>Capacity</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capt. Terry Neale</td>
<td>A380 OEB Chairman - EASA</td>
<td>Evaluator</td>
</tr>
<tr>
<td>Capt. Pete Griffiths</td>
<td>EASA</td>
<td>Evaluator</td>
</tr>
<tr>
<td>Jean-Claude Albert</td>
<td>EASA</td>
<td>Evaluator</td>
</tr>
<tr>
<td>Capt. François Fabre</td>
<td>EASA</td>
<td>Flight Test Pilot</td>
</tr>
</tbody>
</table>
Executive Summary

1. Initial Operational Evaluation

The initial Operational Evaluation (OE) was conducted jointly by the European Aviation Safety Agency (EASA), the Federal Aviation Administration (FAA), and Transport Canada Civil Aviation (TCCA) to simultaneously meet the JAA requirement for the JOEB, the FAA requirement for a Flight Standardization Board (FSB) and the Canadian requirement for an Operational Evaluation. Each Authority used the results of the evaluation process to produce a report specific to its particular requirements that, while similar in intent, differs somewhat in detail.

Airbus requested that the following to be evaluated:

- Initial A380 type rating courses:
 - Standard transition course
 - A320 to A380 CCQ
 - A330 to A380 CCQ
 - A340 to A380 CCQ
- A380-840 (RR engines) and A380-860 (EA Engines) differences
- A380 Familiarization course to cover engine differences
- Low visibility training

The operational Evaluation was conducted in accordance with:

- The JAA JOEB terms of reference
- The JAA JOEB handbook dated December 2002
- The JOEB OPS/FLC Common Procedure Document (CPD) for conducting Operational Evaluation Boards dated 10 June 2004, signed jointly by JAA, FAA and TCCA, and
- The FAA AC 120-53.

JAR requirements as in JAR-FCL 1 (§1.215, 1.220, 1.225, 1.230, 1.235 and 1.261 including associated appendices, AMC's and IEM's), and JAR-OPS 1 (§1.940, 1.945, 1.950, 1.970, and 1.980 including associated appendices, AMC’s and IEM’s) have been considered.

Note: At the time of the initial evaluation the reference code was JAR-OPS 1. On 16 July 2008 EU OPS was implemented.

The evaluation process started in January 2004 with a series of 7 meetings during which Airbus presented the operating philosophy and general system arrangements of the A380 to the JOEB, as well as the training development process and evaluation plan.
The first phase of the A380 joint evaluation by EASA, FAA and TCCA was completed by 1 June 2007. This first phase covered evaluation of the A380 Standard transition course (no previous Airbus Fly By Wire experience), as well as Cross Crew Qualification (CCQ) course from A330 and A340 towards A380.

The first training course evaluation started on 16 April and involved 4 pilots as evaluators, 1 crew for the A330 to A380 CCQ, 1 Crew for the A340 to A380 CCQ and 3 crews for the standard transition course evaluation.

Sample Operator Difference Requirements (ODRs) between the A330, A340 and the A380 were proposed by Airbus as a basis for the evaluation. These ODRs were assessed and found acceptable by the Authorities. Some adjustments were incorporated following an A380 flight evaluation. System differences based on the ODR tables provided by Airbus were also assessed and found acceptable.

The second phase of the evaluation to complete the CCQ process was carried out jointly between EASA and FAA and ended on 7 February 2008. This phase covered the CCQ from the A320 to the A380 and also included a comparison of the A380-840 (RR Trent 900 engines) and the A380-860 (EA GP200 engines) to confirm that both variants were covered by the Same Type Rating (A380).

The evaluation, which involved 2 pilots as evaluators and 2 crews for the A320 to A380 CCQ, took place at Toulouse between 14 January and 7 February.

Sample Operator Difference Requirements between A320 and A380, as well as between A380-840 and A380-860 were proposed by Airbus as a basis for the assessment of handling qualities and system differences between the variants. These were found acceptable by the Authorities, following a flight evaluation of handling qualities and comparison of systems differences.

The Authorities determined that level “B” differences training between the A380-840 (RR) and the A340-860 (EA) was acceptable and that the Ground courseware on CBT/Video/Transparencies is adequate to cover differences when transitioning from the A380-840 to the A380-860. Competency checks carried out in a simulator with either engine models are acceptable for both variants provided the differences are covered by an appropriate briefing.

As a consequence of this extensive operational evaluation, the OEB recommends:

- Issuance of same pilot type rating (single licence endorsement) for the A380-840 and the A380-860,
- Approval of the Airbus A380 Standard Transition course.
- Approval of the Airbus A320 to A380 CCQ course.
- Approval of the Airbus A330 to A380 CCQ course.
- Approval of the Airbus A340 to A380 CCQ course.
- Approval of the Airbus A380 RR-EA familiarization course.
Acceptance of the enclosed recommendations for Mixed Fleet Flying as being in compliance with JAR-FCL1 and JAR-OPS1.

2. **A380 Three Engine Ferry Flight (3EFF) Operational Evaluation**

In 2010, a subsequent OEB process was performed to evaluate additional specific items which are related to A380 3EFF operations. This included a review of the proposed Airbus documentation and training material, and simulator session to evaluate the 3 EFF training and procedures in June of 2010. A further simulator session carried out in August 2010 to simulate an actual 3 engine ferry flight from New York to Toulouse with diversion to London Heathrow was used to validate the training programme. A final conference was at EASA in Cologne on 8 March 2011 to review and close any outstanding items of the simulator based evaluation.
Operational Evaluation Report – FCL & OPS Subgroup

1. Purposes and Applicability

This report addresses:

- Type Rating assigned to the A380 family.
- Airbus family concept and A380 specifics.
- Master Differences Requirements (MDR) for crews requiring differences training
- Acceptable Operator Difference Requirements (ODR tables).
- Recommendations for initial training (Standard and CCQ)
- Recommendations for familiarization training course
- Recommendations for checking
- Recommendations for currency/recent experience
- Recommendations for operations of more than one type (Mixed Fleet Flying)
- Recommendations for instructor training
- Additional operational recommendations

Terminology:

- Base aircraft: An operator designated aircraft or group of aircraft used as a reference to compare differences with other aircraft within an operator's fleet.

- The term "CROSS CREW QUALIFICATION" (CCQ) refers to a reduced type rating transition course which gives credit for the technical similarities and common operational and handling procedures. The term CCQ is reserved for such courses between Airbus fly-by-wire types.

- The term “STANDARD” type rating, as applied in this report, refers to the full transition programme (full type rating) for a given aircraft type.

- The term "MIXED FLEET FLYING" (MFF) is used in this report to outline the operations of more than one type in compliance with JAR OPS 1.980. In this context MFF refers to the operations of:
 - A330 & A380, or
2. Pilot Type Rating requirements

In accordance with JAR FCL1 Subpart F and the JOEB evaluation procedure, a new pilot type rating is assigned to the Airbus A380-800 and the designated pilot licence endorsement is: **A380**

Following evaluation of A380-840 series (RR engines) and A380-860 series (EA series) in accordance with JAR FCL1 Subpart F and the JOEB evaluation procedure, the same Type Rating and consequently the same licence endorsement (A380) is assigned to the A340-840 series and the A380-860 series.

Accordingly pilots completing the necessary training and testing in the A380-840 or A380-860 as per JAR- FCL 1, prescribed by this report, are assigned the “**A380**” type rating.

Unless otherwise specified “**A380**” means A380-840 or A380-860 variants throughout the report.

When discussing CCQ and MFF operations of A380 with other Airbus aircraft from the fly by wire family, any A320 variant is designated as "A-320", any A330 variant as "A-330" and any A340 variant is designated as "A-340"

This is as per Licence Endorsements defined in JAR FCL1 Subpart F:

<table>
<thead>
<tr>
<th>Aircraft types & variants</th>
<th>Licence endorsement</th>
</tr>
</thead>
<tbody>
<tr>
<td>A318 series</td>
<td>A320</td>
</tr>
<tr>
<td>A319-100 series</td>
<td></td>
</tr>
<tr>
<td>A320-100 series</td>
<td></td>
</tr>
<tr>
<td>-200 series</td>
<td></td>
</tr>
<tr>
<td>A321-100 series</td>
<td></td>
</tr>
<tr>
<td>-200 series</td>
<td></td>
</tr>
<tr>
<td>A330-300 series</td>
<td>A330</td>
</tr>
<tr>
<td>-200 series</td>
<td></td>
</tr>
<tr>
<td>A340-200 series</td>
<td>A340</td>
</tr>
<tr>
<td>-300 series</td>
<td></td>
</tr>
<tr>
<td>-500 series</td>
<td></td>
</tr>
<tr>
<td>-600 series</td>
<td></td>
</tr>
<tr>
<td>A380-800 Series</td>
<td>A380</td>
</tr>
</tbody>
</table>
3. Airbus family concept and A380 specifics.

The A380 design ensures that the following characteristics are similar to the A320, A330 and A340:

1) cockpit layout,
2) system operation, and
3) handling characteristics.

This level of commonality has a direct and significant impact on the design and construction of the training programmes.

3.1 Cockpit Layout

The cockpit arrangement has been designed to:

- provide similar panel arrangements
- provide similar controls (side stick, slats/slaps nomenclature, non-moving thrust levers))
- provide same "dark cockpit and push button" concept

3.2 System Definition and Operation

The following are incorporated into the design:

- EFIS Primary Flight Displays (PFD) and Navigation Displays (ND) provide similar information, with similar symbology, colour coding and display principles

- ECAM Engine/Warning and System displays provide similar information. The "READ and DO" concept minimises the impact of system dissimilarities, when dealing with abnormal and emergency operations. Crew response to CAUTIONS and WARNINGS incorporates the same philosophy.

- AUTO PILOT/FLIGHT DIRECTOR/AUTO THRUST incorporates similar architecture, and generally provides the same functions for auto-flight control
3.3 Handling Characteristics

Although the size, gross weight, and aerodynamic characteristics of the various aircraft may differ, the Fly By Wire (FBW) system was designed to minimize the differences in terms of handling characteristics. This similarity in the flight control laws permits a significant level of commonality in handling qualities.

3.4 Commonality in aircraft operational philosophy

The aircraft have been designed to permit commonality of procedures as far as possible:

- Similar normal procedures, even though the A380 has interfaces which are different when applying these procedures.
- Similar abnormal/emergency procedures dictated by ECAM (ECAM read and do list)
- Similar control location for emergency procedures
- Same task sharing rules (PF-PNF/CM1-CM2)

3.5 Altitude callout during landing

Use of automatic voice callouts for landing is the same for A320, A330, A340 and A380 aircraft.

These callouts may be customized consistent with JARs for low visibility operations (JAR-AWO) in accordance with operator requirements. Unless otherwise agreed to by the NAA, operators seeking mixed fleet flying should standardize those callouts within the applicable fleets.

3.6 Automatic landing

Because of the similarity among the autoland systems of the A320, A330, A340 and A380 autoland training (including CAT II, III procedures) and qualification may occur in the A320 or A330, A340 or A380 aircraft with differences training as specified by ODR tables.

3.7 Flight management system

The FMS's functions are similar in the A320, A330, A340 and A380 aircraft. Training and qualification with the FMS on one type may be applied to other types, as specified by ODR tables, even though on the A380 the interface may be different.
A380 Systems and Procedures Specific to the A380.

- New FMS interface using KCCU
- ECAM: implementation of electronic checklists and not sensed abnormal/emergency procedures
- New surveillance panel for Radar, TAWS, TCAS
- New OIS (Onboard Information System) including the following Airbus Application package:
 o Electronic library (FCOM, FCTM, CCOM, MEL/CDL, AFM, WBM)
 o Performance applications (TO, In Flight, Landing, W&B)
 o AOC (Airline Operations Communication)

Note: additional applications like e-logbook, EFF and charts are scheduled to be available in the future on A380 OIS. For more information refer to JOEB EFB/OIS report)

3.9 Hazardous weather and winter operations

While specific operational differences are identified, precautions and procedures regarding hazardous weather/winter operations are similar for A320, A330, A340 and A380 aircraft. Nonetheless, differences training as applicable in the ODR tables should be carried out for the aircraft types and engine variants.

3.10 Aircraft Approach and circling categories
Ref: Appendix 2 to JAR-OPS 1.430(c)

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>A318, A319, A320, A321*</td>
<td>C (* A321 : C or D based on MLW of the variant)</td>
</tr>
<tr>
<td>A330</td>
<td>C</td>
</tr>
<tr>
<td>A340-200/300</td>
<td>C</td>
</tr>
<tr>
<td>A340-500/600</td>
<td>D</td>
</tr>
<tr>
<td>A380-800</td>
<td>C</td>
</tr>
</tbody>
</table>
4. Master Differences Requirements tables

Master Difference Requirements for the A320/A330/A340 and A380 aircraft are shown in the table below. (For A320/A330/A340 family refer to dedicated CCQ & MFF JOEB report dated 12 March 2004)

Definitions of the various levels for Training/ Checking/ Currency are the ones from the JOEB handbook, and the relevant definitions are included after the table for reference.

<table>
<thead>
<tr>
<th>TO</th>
<th>FROM</th>
<th>A320</th>
<th>A330</th>
<th>A340</th>
<th>A380</th>
</tr>
</thead>
<tbody>
<tr>
<td>A330</td>
<td>E/E/D</td>
<td>NA</td>
<td>E/E/B</td>
<td>E/E/D*</td>
<td></td>
</tr>
<tr>
<td>A340</td>
<td>E/E/D</td>
<td>B/E/C</td>
<td>NA</td>
<td>E/E/D*</td>
<td></td>
</tr>
<tr>
<td>A380</td>
<td>Not evaluated</td>
<td>Not evaluated</td>
<td>Not evaluated</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

* See Para. 8 for detailed currency requirements

Difference level definitions Training/Checking/Currency extracted from the JOEB handbooks:

TRAINING LEVELS:

**Level B Training.** Level B difference training is applicable to functionally similar aircraft with system or procedure differences that can adequately be addressed through aided instruction. At Level B, aided instruction is appropriate to ensure crew understanding, emphasize issues, provide a standardised method of presentation of material, or to aid retention of material following training. Level B aided instruction typically employs such methods as slide/tape presentations, computer based training (CBT), stand-up lectures, or video tapes.
Level E Training. Level E is training applicable to candidate aircraft having such significant “full task” differences that the equivalent of a full transition training course is required to meet the training objectives. The training requires a “high fidelity” environment to attain or maintain knowledge, skills, or abilities that can only be satisfied by use of a FFS certified to Level C or higher, or the aircraft itself. Level E training, if done in an aircraft, should be modified for safety reasons where manoeuvres can result in a high degree of risk (example: engine set at idle thrust to simulate an engine failure). As with other levels, when Level E training is assigned, suitable credit or constraints may be applied for knowledge, skills, and/or abilities related to other pertinent variants and/or types. Credits or constraints are specified for the subjects, procedures, or manoeuvres shown in JOEB reports and are applied through ODR tables.

CHECKING LEVELS:

Level E Checking. Level E checking indicates that a full proficiency check according to each authority’s regulations/policy is conducted in a Level C or D FFS or aircraft for each variant following both transition and recurrent differences training. Alternating checks in accordance with national regulations are permitted. Credit for manoeuvres common to level E variants may also be permitted.

CURRENCY LEVELS:

Level B Currency. Level B currency is "knowledge related" currency, typically achieved through self-review by individual crew members for a particular variant. Self-review is usually accomplished by review of material provided by the operator to crew members for that purpose. It may be undertaken at an individual crew member's initiative, but the operator must identify the material and the frequency or other situations in which the material should be reviewed. Self-review may be based on manual information, bulletins, aircraft placards, memos, class handouts, video tapes, or other memory aids that describe the differences, procedures, manoeuvres, or limits for pertinent variant(s) that crews are flying.

Level C Currency Level C currency is applicable to one or more designated systems or procedures, and relates to skill as well as knowledge requirements. An example would be establishment of INS currency, FMS currency, flight guidance control system currency, or other particular currency that is necessary for safe operation of a variant. Establishment of Level C for a variant with a flight management system (FMS) would typically require a crewmember to fly that variant within the specified period or re-establish currency. Currency constraints for level C typically are 90 days.
Level D Currency. Level D currency is related to designated manoeuvres, and addresses knowledge and skills required for performing aircraft control tasks in real time, with integrated use of associated systems and procedures. Level D currency may also address certain differences in flight characteristics; including performance of any manoeuvres including related normal/abnormal/emergency procedures for a particular variant

5. Operator Differences Requirements Tables

ODR tables are used to show an operator’s compliance method. Detailed Airbus generic ODR tables are on file with EASA Certification directorate – Flight Standards. Copies are available on request. These ODR tables are provided as Airbus generic, and therefore may not include items that are applicable to particular operators. The ODR tables assume that pilots are qualified, current and experienced in operating the base aircraft. The Airbus ODR tables have been developed in accordance with AMC 1.980(b) & IEM 1.980(b) of JAR-OPS 1 Subpart N.

For establishment of ODR tables, a base aircraft must be selected. For A330 to A380 ODR table base aircraft is A330-200 enhanced, for A340 to A380 base aircraft is A340-300 enhanced, and for A320 Family to A380 base aircraft is A320. These ODR tables have been found acceptable by the OEB. They represent an acceptable means of compliance with MDR provisions for the aircraft evaluated based on those differences and compliance methods shown. These tables do not necessarily represent the only means of compliance for operators with aircraft having other differences.

Operators flying “more than one type or variant” (Mixed fleet between A330, A340 and A380) must have approved ODR tables pertinent to their fleet.

6. Specification for Training

6.1 Initial Transition course – A380 Type Rating

6.1.1 Prerequisites

6.1.1.1 A380 Standard Transition Course

The A380 standard transition course is designed for pilots who have previous experience in commercial operations and have been previously qualified on multi-engine transport turbojet aircraft equipped with glass cockpit technology, including FMS.
6.1.1.2 A380 CCQ courses

Pilots who are designated to commence the CCQ course on the difference aircraft must be current, qualified (valid LPC) and experienced on the base aircraft.

Minimum experience on the base aircraft, as required by Appendix 1 to JAR-OPS 1.980 § 3, is 3 months and 150 hours on the base aircraft.

It is highly recommended that operators ensure that crews have a very good knowledge of base aircraft systems prior to commencing a CCQ course, as the flight training programme will only presents the differences between the 2 types.

Note: Pilots without a valid LPC on the base aircraft may be eligible for CCQ via a refresher programme to be approved by their NAA.

6.1.2 Training areas of special emphasis

These are divided as follows:

- features that apply throughout the Airbus fly by wire family and that should be considered as part of the “Standard Course” (6.1.2.1)
- features that are specific to the A380 and that should also be highlighted in the standard course, and more specifically during the CCQ programme (6.1.2.2).

6.1.2.1 In addition to the Airbus A380 specific features under § 6.1.2.2, all the following characteristics of the Airbus Fly by wire family should be emphasised during the A380 standard course as they have been identified in previous JOEB reports of the Airbus A320, A330 and A340 family.

- **Fly by wire**
 - Knowledge of flight characteristics and the degree of flight envelope protection provided by the various flight control laws for pitch, roll and yaw control.
 - Procedural and handling consequences following multiple failures that result in alternate and/or direct law.
 - Knowledge of the use of side stick controller with a special emphasis on the relationship between the two controllers and the transfer of control.

- **Use of Flight Management System**
 - Knowledge of the various modes of automation
 - Knowledge and skills related to MFD / FCU use
 - Recognition of mode awareness and transition modes through the FMA
- CRM issue linked to automation (task sharing and crosschecks)

- **Use of ECAM**
 - Knowledge of appropriate use of ECAM in conjunction with system failures
 - Crew discipline for ECAM actions: respect of the depicted procedure, crosscheck of irreversible actions, aircraft status analysis

- **Auto Thrust system**
 - Knowledge of the thrust control system in conjunction with the “non-moving throttles”
 - Recognition of all messages associated to Auto Thrust failure, engagement and disconnection

6.1.2.2 A380 Specific features that should receive special emphasis in an A380 initial pilot type rating training course as well as in CCQ courses:

- **CRM:**
 - Strict respect of SOP’s when using FMS and OIS to avoid both pilots head down

- **FMS / MFD:**
 - New interface using the KCCU
 - Knowledge and use of new specific FMS features such as FLS function
 - Knowledge of back-up systems associated with the MFD such as software control of the FCU

- **ECAM:**
 - Use of normal electronic checklists
 - Management of not sensed failures using abnormal / emergency procedures and the distinction between sensed and non-sensed procedures

- **Use of OIS**
 - Take-off and landing performance computation in normal operations
 - Performance computation associated with ECAM aircraft status in abnormal / emergency conditions caused by aircraft systems failure(s).
 - Use of electronic library with a particular emphasis on how to use the MEL
 - Cross check of vital data and gross error checks
6.1.3 Type rating course: Standard Transition course

The Airbus proposed type-rating training – A380 Standard transition course is in compliance with the AMC 1.261 (c) (2) of JAR-FCL 1 (A).

The course is divided into the following phases:
- Ground phase, including CBT and MFTD sessions, performance course and cabin trainer
- Systems and performance written test
- Simulator phase (including normal, abnormal and emergency procedures)
- LOFT phase
- Skill test (See checking Para. 7 for details)
- Flight phase (base training or ZFTT if applicable)

Note: The footprint included in Annex 1 of this report only represents a typical A380 Standard course. Course structure and content at TRTO or Operator level may vary based on company specific training media and procedures.

6.1.4 A380 Type Rating courses – CCQ

The Airbus CCQ courses are built in accordance with the ODR tables, and are designed to transition pilots within the Airbus fly-by-wire family.

A CCQ course is a course that is designed to address the differences between the base aircraft and the difference aircraft (new type).

The Airbus proposed CCQ courses towards A380 have been assessed by the JOEB and found to be in compliance with the AMC 1.261 (c) (2) of JAR-FCL 1 (A) Subpart F and JAR-OPS 1.980.

The CCQ courses are divided into the following phases, as appropriate:
- Ground phase:
 - System study is achieved by CBT (Computer Based Training).
 - Performance course and cabin trainer
 - MFTD sessions including all items identified in the ODR tables
 - At the end of the CBT the system test is a full system test on the new type as for a standard type rating.
- Simulator Phase:
 - All items identified in the ODR tables must be trained.
- Skill test (See §7 for details)
- Flight Phase (base training or ZFTT if applicable)

*Note: ZFTT session content following CCQ is included in annex 4.
 a) CCQ A330/A340 to A380*
CCQ footprint and detailed content is identical whether the base aircraft is an A330 or an A340. The CCQ A330/A340 to A380 footprint is included in Annex 2 for reference and reflects the status of the Airbus A380 CCQ course at the time of the evaluation.

Note: The footprint included in Annex 1 of this report only represents a typical A380 Standard course. Course structure and content at TRTO or Operator level may vary based on company specific training media and procedures.

b) **CCQ A320 to A380**

The CCQ A320 to A380 footprint is included in Annex 3 for reference and reflects the status of the Airbus A380 CCQ course at the time of the evaluation.

Note: The footprint included in Annex 1 of this report only represents a typical A380 Standard course. Course structure and content at TRTO or Operator level may vary based on company specific training media and procedures.

6.2 A380 Familiarization course

The JOEB has determined that the maximum level of differences that exist between the A380-840 series (R.R engines) and the A380-860 series (E.A engines) were level B as per accepted ODR tables.

Familiarization training is based upon clearly defined objectives and addresses all items as identified in the ODR tables validated by the integrated OE team in the joint evaluation.

Airbus familiarization course provided under CBT has been assessed and found acceptable.

6.3 Low visibility training

Low visibility training is required by JAR-OPS 1.450. Under Appendix 1 to JAR-OPS 1.450 § (d), an abbreviated course may be acceptable subject to NAA approval for a pilot already experienced in low visibility operations.

In addition for a pilot qualified and experienced in low visibility operations on one of the Airbus fly-by wire aircraft, additional credit can be granted, subject to NAA approval, in accordance with low visibility ODR tables and the JOEB recommends the following:

- Between A320/A330/A340 and A380, one low visibility approach and landing should be included in the CCQ syllabi.
6.4 Recurrent training

The recurrent training programme must comply with JAR-OPS 1.965.

Both A380 variants are covered under the same licence endorsement and therefore, recurrent training on one variant is valid for the other, provided that the differences between variants are covered.

Differences between A380 variants are identified in ODR tables, as specified under JAR-OPS 1.980.

The differences between the A380 variants have been assessed as maximum to be level B. For variants at level B, recurrent training shall be addressed through aided instruction such as:

- Slide / tape presentations
- Computer Based Training (CBT) which may be interactive
- Video
- Classroom instruction

Consequently recurrent training can be conducted on any A380 simulator, provided that the differences identified in ODR tables are covered.

For Airbus Mixed Fleet Flying considerations, refer to paragraph 11.

7. Specification for Checking

7.1 Skill test following type-rating courses (Standard course or CCQ course)

In addition to the mandatory items from the skill test as per Appendix 2 to of JAR-FCL 1.240 the following features must be checked:

- Use of side-stick controller
- Knowledge of the various modes of automation
- Knowledge and skills related to the use of MFD/ KCCU / FCU and crosschecks using the FMA
- Use of ECAM: electronic checklists, abnormal/emergency not sensed procedures
- Use of auto thrust system
- Use of OIS
- Use of FLS landing system.
7.2 Recurrent Checks

Proficiency checks must be conducted in compliance with JAR-FCL 1.245 and JAR-OPS 1.965. The JOEB confirms that a proficiency check conducted on one A380 variant is valid for both variants, provided that the differences have been covered during the recurrent training, as per the approved ODR tables.

Consequently proficiency checks can be conducted on any A380 simulator.

For Airbus Mixed Fleet Flying considerations, refer to paragraph 11.

7.3 Line checks

As all A380 variants share same type rating (single licence endorsement), a line check on any of them is valid for both.

For Airbus Mixed Fleet Flying considerations, refer to paragraph 11.

8. Specification for Currency / Recent experience

Compliance with JAR-OPS 1.970 or JAR-FCL 1.026 as appropriate is required for recent experience.

Concerning the A380 family, JOEB concluded that take-offs and landings performed on one A380 variant, within ninety days, are valid for all variants. This means that for pilots flying more than one A380 variant, the recent experience requirement is satisfied as soon as they achieve 3 take-offs and landings, as handling pilot, regardless the variant flown.

For Airbus Mixed Fleet Flying considerations, refer to paragraph 11.

9. Specification for LIFUS

9.1. Line Flying Under Supervision (LIFUS)

There are a variety of reasons why the JOEB may specify LIFUS in conjunction with Master Difference Requirements (MDR). One or more of the reasons described below may apply:

a. Introduction of new aircraft types or variants;
b. Introduction of new systems (e.g., FMS,);
c. Introduction of new operation (e.g. oceanic operation);
d. Experience for a particular crew position (e.g. PIC, SIC, F/E);
e. Post qualification skill refinement (e.g. refining alternate or multiple ways to use particular equipment to increase operating efficiency, operating flexibility, or convenience);
f. Special characteristics (e.g. unique airports, mountainous areas, unusual or adverse weather, special air traffic control procedures, non-standard runway surfaces, etc.)

9.2 LIFUS following A380 Standard type rating course

In the case of an initial type rating onto the A380, a minimum of 10 sectors including a line check is recommended for Line Flying Under Supervision (LIFUS), meaning 8 sectors plus 2 sectors line check.

Where there is a change of operating conditions or route structure this should also be taken into account and may need the addition of sectors to cover these elements.

9.3 LIFUS following A380 CCQ

Pilots completing the A380 CCQ may, subject to NAA approval, undertake a reduced number of sectors. Based upon ODR tables, the JOEB recommend the following table.

<table>
<thead>
<tr>
<th>Base training (aircraft) or Zero Flight Time Training (Simulator)</th>
<th>Sectors – CCQ</th>
<th>Sectors – CCQ</th>
<th>A380 Line checks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A330 or A340 to A380</td>
<td>A320 to A380</td>
<td></td>
</tr>
<tr>
<td>LIFUS Standard</td>
<td>4 Sectors</td>
<td>6 Sectors</td>
<td>1 PF 2 Sectors</td>
</tr>
<tr>
<td></td>
<td>3 PF</td>
<td>5 PF</td>
<td>1 PNF</td>
</tr>
<tr>
<td></td>
<td>1 PNF</td>
<td>1 PNF</td>
<td>1 PNF</td>
</tr>
<tr>
<td>See Note 1 below</td>
<td>2 Sectors</td>
<td>1 PF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 PNF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The number of sectors may need to be increased if mission and operational procedures are assessed to be different (e.g. oceanic, polar vs. short haul domestic routes/operations) and if those elements are not covered during the sectors flown under the “LIFUS Standard” requirement.

Note 2: A sector is defined in JAR-FCL1 to be a flight comprising take-off, departure, cruise of not less than 15 minutes, arrival, approach and landing phases.
Under Zero Flight Time Training (ZFTT), the first 4 sectors of LIFUS is to be conducted by a Type Rating Instructor. LIFUS training must be commenced within 21 days after the skill test.

In case of base Training completed in an aircraft, the LIFUS is to be conducted by a flight crewmember nominated by the Operator and acceptable to the Authority.

10 Type Rating Instructor training

JAR-FCL 1.365(b), the JOEB recommends the following:
For a TRI already qualified and current as TRI on one of the Airbus types (A320, A330, A340), to qualify for an additional Airbus TRI qualification, the instructor must:
- hold the type rating of the new aircraft (CCQ programme),
- have completed the relevant LIFUS
- have completed the 15 sectors as per JAR-FCL 1.365(b)(1)

The JOEB considers that there is no need to repeat on the new type, the requirements from JAR-FCL 1.365(b)(3), provided that the TRI is familiar with the operation of the relevant simulator.
The above does not remove any TRI restriction.

11. Specification for Operations of more than one type – MFF (Mixed Fleet Flying)

Below are listed the JOEB recommendations for operators to conduct Mixed Fleet Flying with the Airbus fly-by-wire family of aircraft. (Long range aircraft only)

11.1 Prerequisites

Prerequisites for flying more than one type (Mixed Fleet Flying – MFF) are set up in JAR-OPS 1.980. Typically it consists of a consolidation period following the initial line check on the new type of 50 flying hours or 20 sectors, to be achieved solely on aircraft of the new type rating.
11.2 Recurrent training and proficiency checks

Recurrent training should comply with JAR-OPS 1.965. However under MFF, for operations of more than one type, JAR-OPS 1.980 applies.

In accordance with Appendix 1 to JAR-OPS 1.980 §(d)(7)(i), an alternate recurrent training and checking programme can be established. Therefore, the NAA may approve an alternate recurrent training and checking programme for the Operator, and the OEB recommend the following implementation plan:

![Diagram of implementation plan](image)

The above scheme allows compliance with the mandatory 1 year for type rating revalidation under JAR-FCL 1.245 (b), as well as with the operator proficiency check requirement taking benefit of the alternate provision as set up in Appendix 1 to JAR-OPS 1.980 (see § (d)(7)(i)).

Note: Concerning the recurrent training for low visibility operations, the OEB team considers that full credit applies between types, provided that low visibility training is conducted during recurrent training every 6 months.
11.3 Line checks

Line checks are required in compliance with JAR-OPS 1.965 (c), however, for MFF credit may be given in accordance with Appendix 1 to JAR-OPS 1.980 § (d)(7)(ii), The OEB considers that alternating line checks between types is acceptable.

For example

```
A380 1 year A330 1 year A380 1 year A330
```

Each line check revalidates the line check for the other type flown under MFF.

11.4 Currency / Recent experience

Compliance with JAR-OPS 1.970 or JAR-FCL 1.026 as appropriate is required for recent experience. Under Mixed Fleet Flying, JAR-OPS 1.980 applies.

In compliance with Appendix 1 to JAR-OPS 1.980 § (d) (5) & (7), and based on feedback from all OEB members and initial operating crews, the OEB recommends the following:

<table>
<thead>
<tr>
<th>MIXED FLEET FLYING</th>
<th>CURRENCY/RECENT EXPERIENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft types</td>
<td>Requirements</td>
</tr>
<tr>
<td>(A330 or A340) and A380</td>
<td>- 3 take-offs and landing in either (A330 or A340) or A380</td>
</tr>
<tr>
<td></td>
<td>- 1 take-off and landing in each type every 45 days.</td>
</tr>
</tbody>
</table>

Re-establishing currency /recent experience: When currency is lost, currency may be re-established by a training flight or use of a flight simulator of the aeroplane type to be used
12 Additional Operational recommendations

12.1 Aircraft Evacuation at the airport gate.

An evacuation demonstration with 853 passengers plus 18 crew was carried out on 26 March 2006 in accordance with CS25-803. The demonstration was satisfactory as all passengers and crew were evacuated well within the 90 seconds time limit. More details on A380 Cabin aspects are contained in the A380 JOEB Cabin Crew report dated 22 August 2007. Clearly, the A380 has an adequate number of emergency exits and will be operated by most airlines with far less than the 853 passengers used for the demonstration. However, even in a typical airline “3 class” configuration the number of passengers carried will still be in excess of 500. Operators should therefore ensure that they have contingency plans in place, which have been agreed with the airport operator. These contingency plans should include procedures for evacuation at the gate where some exits may be obstructed by ground equipment and where it may be necessary or preferable to evacuate the passengers back into the airport terminal.

12.2 Refuelling with passengers on board.

Refuelling with passengers on board is not recommended but where this is necessary for operational reasons, operators should have contingency plans in place to stop the refuelling and, if necessary disembark or evacuate the passengers from the aircraft in the event of a fuel spillage or fumes in the aircraft.

12.3 Pre-departure External Check

The double deck arrangement of the A380 means that special ground handling equipment needs to be used in order to clean and cater the aircraft for service. Some of this equipment is, by necessity, remote from the driver/operator of the equipment and is also used in close proximity to the aircraft wings and engines. The possibility of this equipment coming into contact with the aircraft structure is therefore probably greater than with other large commercial aircraft and there is also more chance that if any damage is caused it may go unnoticed. It is therefore recommended that the pre-departure external check is carried out by a suitably qualified person after catering and cleaning and any other ground servicing has finished.
12.4 Operation from 45 metre runways.

In accordance with ICAO classification for airfield design, the A380 would be classified as requiring code “F” runways. However, the key parameter (outer main gear wheel span) exceeds the ICAO limit by only a very small margin (~2%).

The A380 has been certified for operations on 45m wide runways in agreement with EASA and FAA, and the A380 Flight Manual includes in the limitations section--operational parameters the following statement:

"The aircraft has been shown to be safely controllable and to be compliant with applicable airworthiness requirements when operating on runways with a width of 45m (150ft) or more."

The operational evaluation was carried out using 45m runways with no special training required or necessary.

As with the A340-600 and B777-300 (similar wheel bases), it is not possible to perform a 180-degree U-Turn on a 45 metre runway but this operation was demonstrated to the OEB using a suitable turn pad at the end of a 45m wide runway.

The aircraft presents no particular difficulty during ground taxiing and is aided by the ETACS where fitted. However, operators should ensure that taxiway routes to be used are suitable for the A380 and have been cleared as such by the airfield operator.

13 A380 Three Engine Ferry Flight (3EFF)

13.1 Introduction

The operator/holder of the Air Operator’s Certificate (AOC) is responsible for obtaining operational approval for the 3 Engine Ferry Flight (3EFF) from the National Aviation Authority.

The operator must refer to the manufacturer's approved documentation which provides the conditions to perform the 3EFF operation. This includes the Aircraft Flight Manual (AFM) the MMEL and the Flight Crew Operating Manual (FCOM). Reference should also be made to the Airbus Flight Crew Training Program (FCTP) and the recommended Standard Operating Procedures for 3 Engine Ferry Flights. Cross reference to these documents should be made when developing the operators own SOPs, MEL and briefing guides to ensure that all the relevant requirements have been met.

13.2 Crew qualification and training

The 3 EFF approval should be supervised by a nominated post holder for flight operations or crew training and this should be included in his/her terms of reference. To ensure a safe preparation and management of an A380 3 Engine Ferry Flight, the following requirements and training should be applied.
13.2.1 Crew prerequisites

The flight crew members must be qualified, current, and experienced on A380 (minimum 150 flying hours) and be specifically designated to carry out 3EFF operations. Both flight crew members shall be qualified instructors on A380.

13.2.2 Crew training

Initial training / qualification

Before conducting a 3EFF operation, all crew members shall follow the approved A380 “THREE ENGINE FERRY FLIGHT” course (Airbus course reference LF26).

The training must be conducted by an instructor who has completed the 3EFF training course. This instructor must also observe a 3EFF training session or be supervised by a qualified 3EFF instructor when conducting his first training session.

Prior to any actual Three Engine Ferry Flight

Prior to conducting any Three Engine Ferry Flight, all crew members must perform a simulator session in order to practice handling techniques and operational items. This practice session will use the forecast weather conditions, the actual aircraft conditions (inoperative engine, aircraft weight, etc.) and, ideally, the airport from which the Three Engine Ferry Flight will depart.

Briefing and Simulator session

Prior to the simulator session a dedicated briefing should be set up. It should include the following key points:

- Technical condition of the aircraft - MEL
- Performance computation
- Operating Limitations
- CG and TRIM setting
- Weather minima
- 3EFF operating procedures
- ECAM messages
- Takeoff procedures - Runway lineup
- Thrust setting procedures, highlighting the importance of coordination and communication between crewmembers. It is important that the recommended thrust setting is achieved at each speed “gate” so that the required take off performance is met.
- 2nd Engine failure procedure and performance implications
13.3 Three Engine Flight procedures

13.3.1 Technical condition of the aircraft

The inoperative engine must be configured in a specific condition by the maintenance crew as per Aircraft Maintenance Manual procedures (i.e. in windmilling or in core blank condition).

The 3 operative engines must be inspected by the maintenance crew as per Aircraft Maintenance Manual procedures.

Other systems must be configured or set in specific position for the flight.

Reference must be made to the AFM and FCOM.

13.3.2 MEL

Some aircraft systems are required operative prior to dispatch. The Three Engine Ferry Flight is limited to 3 sectors without passengers and without any freight that would not belong to the 'spare parts kit'.

Reference must be made to the MEL.

13.3.3 Flight planning and weather conditions

A careful study of the route has to be performed. Weather minima for actual and forecast weather conditions should be considered. Icing conditions must be avoided. During the en-route phase, all obstacles should be cleared if a second engine should fail, and at all times the aircraft should not be further from a suitable alternate than the distance flown in 240 minutes at the two engine-inoperative cruise speed.

For suitability of the weather conditions, the OEB recommends a minimum ceiling of 1000ft and a minimum visibility of 3 kilometres at departure, destination and alternate airports.

13.3.4 Performance

The RTOW performance determination differs from that normally applied for public transport operations. Careful reading of the PERFORMANCE chapter in the FCOM – Special operations – Three Engine Ferry Flight is mandatory.

The performance application on board of the aircraft (OIS/OIT) can be configured for 3 Engine Ferry Flight with the failed engine condition. Refer to operator procedures to set up the application.

The 3 Engine Ferry takeoff, en route net flight path, go-around and landing performance must be determined by using the performance application and selecting the 3 Engine Ferry Flight case.

Reference must be made to the AFM and FCOM.

Special note should be taken of the implications of Vstop compared to V1.Vstop is the speed to which the aircraft can be accelerated with all serviceable engines operating, and bought to a full
stop within the accelerate-stop distance available. Full handling accountability with regard to the failure of the serviceable engine is provided from Vr, whilst permitting a reduced level of performance, less than that normally assumed by CS 25. It is considered suitable for non-revenue, non-passenger operations to return the aircraft to a place where an engine may be repaired or changed. At or above Vstop and with a second engine failure, the decision should always be to continue the take-off, as the crew has no means to predict at which speed the aircraft will cross the runway end in case of takeoff abortion above Vstop.

13.3.5 Operating Limitations

Take off is only authorised on a dry or wet runway. It is not authorised on a contaminated runway. The maximum crosswind allowed for take-off is 10kt.

Slats/flaps configuration for take-off is 1+F only.

Avoid icing conditions.

Reference must be made to the AFM, MMEL and FCOM.

13.3.6 Operating Procedures

Specific operating procedures must be applied for the following:

- Aircraft line-up
- Rudder Trim Setting
- Thrust application

Reference must be made to the AFM and FCOM.

The OEB recommends that operators consider developing callouts for the thrust setting procedure which would provide the Pilot Flying (PF) with sufficient information to increase the thrust on the asymmetric engine appropriately during the take-off roll. Emphasis on crew coordination and communication should be part of the briefing, as listed above. This is required because the handling pilot’s attention is focused outside in order to maintain directional control during the asymmetric thrust application. The non-handling pilot will therefore need to monitor the engine thrust settings at defined speeds (speed gates) and call these out to the handling pilot.
Annex 1

Typical A380 Standard Transition Course footprint

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT (7:20)</td>
<td>CBT (6:00)</td>
<td>CBT (4:00)</td>
<td>CBT (4:00)</td>
<td>CBT (6:00)</td>
</tr>
<tr>
<td>MFTD A (2:00)</td>
<td>MFTD B (4:00)</td>
<td>MFTD C (4:00)</td>
<td>MFTD D (2:00)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
<th>Day 9</th>
<th>Day 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPI (2:30)</td>
<td>CBT (2:40)</td>
<td>CBT (1:10)</td>
<td>MFTD 2 (4:00)</td>
<td>MFTD 3 (4:00)</td>
</tr>
<tr>
<td>CBT (5:30)</td>
<td>OIS & PERFORMANCE (5:00)</td>
<td>MFTD 1 (4:00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 11</th>
<th>Day 12</th>
<th>Day 13</th>
<th>Day 14</th>
<th>Day 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFTD 4 (4:00)</td>
<td>MFTD 5 (4:00)</td>
<td>MFTD 6 (4:00)</td>
<td>CEET safety presentation self study (1:00)</td>
<td>Systems Test (4:00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Cabin presentation (ATA 25) 0:25</td>
<td>Performance Test (2:00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MFTD 7 (Progress Check) (4:00)</td>
<td>Door Trainer (1:00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 16</th>
<th>Day 17</th>
<th>Day 18</th>
<th>Day 19</th>
<th>Day 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFS 1 (4:00)</td>
<td>FFS 2 (4:00)</td>
<td>FFS 3 (4:00)</td>
<td>FFS 4 (4:00)</td>
<td>FFS 5 (4:00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 21</th>
<th>Day 22</th>
<th>Day 23</th>
<th>Day 24</th>
<th>Day 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFS 6 (4:00)</td>
<td>FFS 7 (4:00)</td>
<td>LOFT (4:00)</td>
<td>Skill Test (4:00)</td>
<td>LOW VIS (4:00)</td>
</tr>
</tbody>
</table>
Annex 2

Typical CCQ A330/A340 to A380 footprint

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT (6:30)</td>
<td>CBT (5:20)</td>
<td>CBT (7:00)</td>
<td>CBT (1:00)</td>
</tr>
<tr>
<td>MFTD A (1:30)</td>
<td></td>
<td></td>
<td>OIS & Performance (5:00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 5</th>
<th>Day 6</th>
<th>Day 7</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT (3:20)</td>
<td>CBT (3:10)</td>
<td>CBT (2:50)</td>
<td>CBT (1:30)</td>
</tr>
<tr>
<td>MFTD 1 (4:00)</td>
<td>MFTD 2 (4:00)</td>
<td>MFTD 3 (4:00)</td>
<td>Cabin Trainer (1:00) System Test (4:00)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 9</th>
<th>Day 10</th>
<th>Day 11</th>
<th>Day 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Briefing (1:30)</td>
<td>Briefing (1:30)</td>
<td>Briefing (1:30)</td>
<td>CBT</td>
</tr>
<tr>
<td>FFS 1 (4:00)</td>
<td>FFS 2 (4:00)</td>
<td>FFS 3 (4:00)</td>
<td>Walk around 3D (1:30) FFS - Skill Test (4:00)</td>
</tr>
</tbody>
</table>

Base Training (0:45 / trainee) or ZFTT (FFS : 4:00 / crew) if applicable
Annex 3

Typical CCQ A320 to A380 footprint

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBT (6:30)</td>
<td>CBT (5:20)</td>
<td>CBT (7:00)</td>
<td>CBT (1:00)</td>
<td>CBT (3:20)</td>
</tr>
<tr>
<td></td>
<td>MFTD A (1:30)</td>
<td></td>
<td>OIS & Performance (5:00)</td>
<td>MFTD 1 (4:00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 6</td>
<td>Day 7</td>
<td>Day 8</td>
<td>Day 9</td>
<td>Day 10</td>
</tr>
<tr>
<td>CBT (3:10)</td>
<td>CBT (2:50)</td>
<td>CBT (1:30)</td>
<td>Briefing (1:30)</td>
<td>Briefing (1:30)</td>
</tr>
<tr>
<td>MFTD 2 (4:00)</td>
<td>MFTD 3 (4:00)</td>
<td>Cabin Trainer (1:00)</td>
<td>FFS 1 (4:00)</td>
<td>FFS 2 (4:00)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>System Test (4:00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 11</td>
<td>Day 12</td>
<td>Day 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Briefing (1:30)</td>
<td>Briefing (1:30)</td>
<td>CBT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFS 3 (4:00)</td>
<td>FFS 4 (4:00)</td>
<td>Walk around 3D (1:30)</td>
<td>FFS -Skill Test (4:00)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Training (0:45 / trainee) or ZFTT (FFS : 4:00 / crew) if applicable
Annex 4

Zero Flight Time Training following A330/A340 CCQ

The session must include the following:
- Taxi
- 4 Take-offs
 - One at MTOW
 - One with cross wind
- 4 Landings
 - One at MLW
 - One with cross wind

Note: If the course is not approved for Zero Flight Time Training, 4 landings on the aircraft would also be required.