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Introduction

Composite parts are extensively used on primary fuselage structures of many
AIRBUS HELICOPTERS products like:
-H135, Tail Boom, bottom shell and roof
-H145 T2, Tail Boom, bottom shell and roof
-H225, Intermediate Structure
-NH90, complete airframe
-Tiger, complete airframe

Fig.1. : EC 135 tail boom structure Fig.2. : NH90, fuselage %—’/ AIRBUS
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Introduction, cont'd
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|dentification of composite airframe Principal Structural
Elements (PSE)

Definition of PSE (acc. to Ref.(1) : ,,a structural element that
contributes significantly to the carrying of flight- and ground loads and
whose failure can lead to catastrophic failure of the rotorcraft.”

Failure mode effect and criticality analysis (FMECA) is one means to
identify composite airframe PSE.

It is proposed to assume as failure of a PSE its loss of capability to
sustain DUL, due to possible in-service damages which led to a partial
destruction of the PSE. To regard as failure a complete disappearance
of a PSE is not regarded as meaningful.
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|dentification of composite airframe PSE, cont'd

Examples for typical composite airframe PSE:

Fig. 5: Typical composite main frame. Fig. 6: Typical composite tail boom shell structure.
(monOIIthIC teChnO) (Sandwich techno)
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A method for a threat assessment
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Fig. 7: Possible impact energy threats
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vs. their probability acc. to Ref. (2).
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A method for a threat assessment, cont'd

Examples: Assumed threats for a main frame- & a sandwich panel - PSE

Obstacle impact: 50 J

Tooldrop:9J

Edge cornerimpact: 25 J

it

Fig.8: Identified possible threats on a
typical composite main frame.

Tooldrop:9J

Edge cornerimpact: 25 J

Fig.9: Identified possible threats on a typical
composite sandwich panel.

&) AIRBUS

HELICOPTERS



A. Honold, AHD / EASA Sandwich Structure WS, Cologne, Oct. 2016 / © Airbus Helicopters rights reserved

A Damage Tolerance & Fatigue Evaluation Approach for Composite Rotorcraft Airframe Structures

A method for determination of detectability thresholds

Several dents (>800) were made on diff. composite panels
Dent depths ranged from 0.05 mm to 1.1mm
Detailed visual inspection means used to find them (acc. to Ref.3)

Results of an investigation carried out at EADS - IW

0.3mm Recommended value :1 mm dent depth

120~ as a nunimum, which allows for
relaxation after ageing. Other figures :
- 0.1 mnch in the USAF,

100+

o . -

E - 0.05 inch n the US Navy,

- 807 - 0.01 to 0.02 mnch for Boeing at 5 feet.
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Fig.10: Dent detectability vs. Dent depth %‘7 AIRBUS
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A method for determination of detectability thresholds, cont'd

 Dent depth relaxation plays a role for detectability
Impact energies: 18J to 23J, dent depth was measured
1500h at 70°C/95% r.H., dent depth measured again after exposure
tested at RT & -40°C at R=-1 & R=0.1, dent depth measured finally
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Fig.11: Dent depth relaxation vs. time under hot/wet ageing acc. to Ref. (5).
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A method for determination of detectability thresholds, cont'd

Recommendation for dent depth visibility:

Relaxation effects due to hot/wet ageing should be considered

BVID zone: from zero up to 0.3mm (i.e. undetectable)

CVID zone: > 0.3mm up to 1mm (i.e. detectable):

Obvious damage zone: Dent depth > 1mm (i.e. action necessary,
e.g. repair)
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Detectability thresholds vs. impact energies
Example: Typical sandwich panel PSE
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Fig.12: Detecabilty thresholds vs. impact energies,
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A method for showing no-growth behaviour

Determination of impact energies for BVID/CVID thresholds per PSE
Impacts done & delaminated areas determined via UT C-Scans
Static testing (Compression after impact testing, Ocai) of coupons,

performed under hot/wet conditions
Determination of ,,DUL Strength“ prior to repeated loading

Fig.13: Example Sandwich coupon (CFRP facings & NOMEX honeycomb core), impacted

with 5J, picture and C-Scan thereof '
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A method for showing no-growth behaviour, cont'd

Impacted coupons loaded under constant amplitude (R=0.1) for 10° load cycles
No-growth of delaminated area checked periodically with UT C-scans

Residual static strength tested after fatigue loading
Residual static strength used to derive max. allowable strains for sizing
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Fig.14: Demo. of Delamination no-growth in area under constant amplitude load cycling @& AIRBUS
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Demonstration of Design Ultimate Load capability, no-growth behaviour &
residual strength capability

Fig.15: Example, test set up for composite tail boom full scale test.
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Demonstration of Design Ultimate Load capability, no-growth behaviour &
residual strength capability, cont'd

GFEM check UL test, compliance Test at k*LL, compliance
(up to LL?) with §§xx.305 & 307 with §xx.573(571)
Simulation of one design service goal Simulation of one inspection interval
(with factors to cover variability) h (with factors to cover variability)

Damage tolerance phase for severe in-service
accidental damages
Demonstration of the no-growth concept

Crack free life demonstration from initial
flaws™ or sensitive design features

Start with a structure representative Introduction of damage detectable at
of the lower bound initial quality scheduled inspection

Residual static strength is demonstrated allowing for worst environmental condition

Fig.16: Test sequence for a new structure, full scale test. !@ AIRBUS
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Demonstration of Design Ultimate Load capability, no-growth behaviour &
residual strength capability, cont'd

GFEM check UL test, compliance
(up to LL?) with §§xx.305 & 307

|muI lon of gne design seryice go
hfac rstoc erva ablllty

Test at k*LL, compliance
with §xx.573(571)

Simulation of one inspection interval
(with factors to cover variability)

/ Crack fre¢/life demonstration frgm initj4l
flawg™ or sensitive design feature

Damage tolerance phase for severe in-service
accidental damages
Demonstration of the no-growth concept

Start with a structure representative
of the lower bound initial quality

Introduction of damage detectable at
scheduled inspection

With known materials and already proven design principles, the first phase of
the fatigue test (more and more interpreted as a durability phase) is
progressively deleted on provision of demonstrated equivalent stress levels

Fig.17: Alleviated test sequence for “similar new structure” acc. to Ref. (4) & Ref.(7).
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Conclusion

Proposed methodology is based on a stepwise approach:
 Threat assessment for impact damages
« Derivation of visibility thresholds for impact damages

« Application of a zoning diagram per PSE for necessary load capabilty
evaluation

« Derivation of design allowables by CAIl, CAI&F and no-growth
demonstration on coupon level

* Full scale / component testing for demonstration of Design Ultimate
Load capability, no-growth behaviour & residual strength capability
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Thank you for your attention

Questions?
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