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SUMMARY 

This report is a deliverable document labelled D-1.1 about the “Literature and digital solutions review” of the 
research project number EASA.2022.C25 named MODEL-SI (Digital Transformation - Case Studies for Aviation 
Safety Standards - Modelling and Simulation). 
 
We present the result of a literature survey carried in the first months of 2023 and concerning modelling and 
simulation of eVTOL aircraft. We divided the findings into different categories including modelling 
methodologies, the use of simulation for certification, the multi-fidelity approach to modelling. The fast 
increasing pace of publications in these areas is evident. The interest of the research and industrial community 
is so strong that as this report is submitted, a large number of newer papers are being presented at the AIAA 
AVIATION conference and published on scientific journals. 
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ABBREVIATIONS 

 

ACRONYM DESCRIPTION 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

BEM Blade Element Momentum 

CAS Control Augmentation System 

CFD Computational Fluid Dynamics 

DES Detached Eddy Simulation 

DMD Dynamic Mode Decomposition 

DT Digital Twin 

EASA European Union Aviation Safety Agency 

eVTOL electrical Vertical Takeoff and Landing 

FCS Flight Control System 

FEM Finite Element Method 

GP Gaussian process 

ISS International Space Station 

LES Large Eddy Simulation 

MBC Multi-Blade-Coordinates 

ML Machine Learning 

NN Neural Network 

NS Navier-Stokes 

PID Proportional-Derivative-Integral 

POD Proper Orthogonal Decomposition 

QRM Quarterly Report Meetings 

RANS Reynolds-averaged Navier–Stokes 

ROM Reduced Order Model 

SA Spalart-Allmaras 

SAS Stability Augmentation System 

SMT Surrogate Model Toolbox 

SST Shear Stress Transport 

SVM Support Vector Machine 

VLM Vortex Lattice Method 

VPM Vortex Particle Method 
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1. Literature survey 

1.1 Background 

Even though simulations have been exploited for the prediction of aircraft loads and performance for over half 
a century, methodologies and approaches represent still an active field of research. Broadly speaking, 
simulations are classified based on their ”closeness” - or fidelity - to reality. Higher fidelity approaches typically 
rely on Computational Fluid Dynamics (CFD) and Finite Element Method (FEM). Moreover, we tend to add the 
indication ”physics-based” to models which are developed from first principles. 

Numerical simulations are a pre-requisite for Digital Twins; the term Digital Twin (DT) is increasingly popular to 
indicate a mathematical model with which the entire life of a product (aircraft) can be simulated with deviations 
expected not to affect flight safety and the behaviour of the aircraft significantly. Remarkably, DT can be 
exploited for design and certification, further cutting the costs associated with flight testing. This opportunity 
is more interesting for innovative configurations such as those associated with the so-called eVTOL aircraft, 
which are characterized by a substantial complexity of the aerodynamics and dynamic response of the structure 
and systems. 

At the present time, the computational power and software programmes available at virtually all aircraft 
manufacturers allow high-fidelity analysis of complete aircraft configurations. However, the sheer quantity of 
test cases Digital Twins must run, make the high-fidelity approach alone impractical. 

Historically, the industry has relied on lower-fidelity physics-based simulations for design and certification, with 
systematic use of CFD to assess steady-state aerodynamic loads, which is only sporadically used in unsteady 
analysis or aerodynamics-structure coupled analysis. Whereas these models are very reliable for known 
configurations, they may be unsuitable for innovative ones. 

Multi-fidelity approaches are arguably the most promising option to exploit high-fidelity methodologies and 
data. These approaches may be exploited to punctually correct, or tune, low-fidelity models based on higher- 
fidelity analysis or experiments. The approach is well known, it has been systematically exploited ever since 
simulation was born. However, multi-fidelity approaches stand to benefit largely from newly available 
algorithms, mostly classified as Machine Learning (ML). To be fair, some of these algorithms are not new but 
only “re-packaged” in highly efficient form in software packages like TensorFlow or pytorch. 

In practice, data-driven surrogate models can be efficiently derived from high-fidelity simulations and 
experiments (flight testing or wind tunnel measurements) and combined with the conventional lower-fidelity 
models, yielding higher accuracy at a negligible cost increase. The cost of training (building the surrogate 
model), how- ever, is substantial. 

The MODEL-SI case study is carried out by enhancing an initial physics-based mathematical model, exploiting 
data from high-fidelity numerical simulations, computational fluid dynamics (CFD), and structural dynamics, as 
well as from flight testing. The “enhancement” concerns both accuracy and scope and is carried out via 
conventional and ML techniques, each exploited at its best. The final DT is expected to be a hybrid surrogate 
model-based DT, in which the necessary accuracy is provided by the initial physics-based model (partial 
differential equations) coupled to several surrogate models. 

The expected result is a living DT able to reliably explore the entire flight envelope as well as the design space 
by accounting for changes in mass, centre of gravity, and configuration. The DT as such is expected to not only 
support certification but also continued airworthiness and follow the drone through its operative life. The 
availability of data from diverse sources is expected to provide sufficient information to also take uncertainties 
(environment, manufacturing tolerances, operative parameters… ) into account and provide a “robust” 
modelling environment. 
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A low-fidelity model is meant to have a short execution time and usually low accuracy when compared to the 
ground truth. However, some codes, such as CAMRAD, run within reasonable computational times (in the order 
of seconds) and provide a good level of accuracy at the expense of a lack of flexibility and limited scope, as they 
also exploit empirical corrections and simpler mathematics. 

On the other hand, high-fidelity models refer to those that have an execution time of several hours per test 
case and configuration. 

1.2 Study objective and methodology 

The goal of the literature review is to understand which are the most promising trends among the digital 
solution that can help to decrease the computational costs, time, and workload effort in the whole aircraft 
development, i.e. from initial design to certification. 

The SciTech conference 2023, held in National Harbor from 23 to 27 January 2023, was the starting point and 
in particular the sessions devoted to multi-fidelity and surrogate modelling as well as the many talks involving 
electrical Vertical Takeoff and Landing (eVTOL) aircrafts. Subsequently, the most relevant references cited by 
the SciTech papers, were added. To complete the review, additional references were added independently. 

1.3 Findings 

1.3.1 White Papers 

Initially, the AIAA white papers [1, 2] are cited as a prominent example of guideline documents. The paper [1] 
proposes DT definition and values by exploring its importance in the aerospace industry. It emphasizes the 
potential of digital twins to enhance engineering processes, improve system performance, and increase 
reliability. The paper’s authors come from a wide range that includes the major part of the aerospace industry, 
i.e. from academia, industry, and government.  

The paper has four major goals: 

• DT shared definitions within the aerospace industry 

• DT real-world applications to demonstrate its potential 

• DT perspective, e.g. advantages and drawbacks, from the aerospace industry and US Department of 
Defense points of view 

• outlook to improve and extend the DT use benefits 

 

The most important definition is about the DT itself. It is described as: 

A set of virtual information constructs that mimic the structure, context and behaviour of an individual/unique 
physical asset, or a group of physical assets, is dynamically updated with data from its physical twin throughout 
its life cycle and informs decisions that realize value. 

The definition expresses perfectly what is our understanding of a DT applied to our case study. 

On the other hand, the work of Pinon et al. [2] discusses the application of digital twin technology by introducing 
reference models and providing a conceptual framework for their development and utilization. It discusses 
various realizations of DT in different industries, highlighting their potential applications and benefits. In 
particular, they reviewed an interesting case of a Cygnus Orbital Ferry Vehicle of Northrop Grumman 
Corporation. It is a spacecraft cargo carrier for the International Space Station (ISS). The DT aims to simulate 
the spacecraft performance during several application stages, such as safe rendezvous, descent, and re-entry. 
Here the DT is built to estimate the propellant usage of the service module. The DT is continuously updated 
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and gives real-time indications of propellant left and about Guidance Navigation and Control. For example, in 
this case, the service module stays in orbit more than planned. Surrogate models of spacecrafts are particularly 
interesting because of the small number of experimental data. In this field, the maximization of the ground 
truth data is even more important. 

Another interesting DT is about the certification testing of Boeing commercial aircraft seat systems. The goal is 
to reduce the number of physical and simulation tests. In both cases, the effort required is significant and the 
DT shows a potential reduction in certification tests of 50% - 70%. 

1.3.2 Low-fidelity modelling of eVTOL 

A number of papers focused on low-fidelity modelling techniques were selected [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19]. They exploit a different number of techniques to model the eVTOL aerodynamics, 
rotors, structure and FCS. Table 1.1 classifies the papers for modelling areas and summarizes the reviewed 
numerical methods. 

Aerodynamics 

The most popular method used to model aerodynamics is the Vortex Lattice Method (VLM), but many different 
has been developed. A valuable and detailed summary can be found in [20]. Drela provides a comprehensive 
introduction to the fundamental principles, theories, and models that recap the basis of aerodynamics. It covers 
a wide range of low-fidelity methods, including the VLM, panel methods, and various analytical models. 

The VLM can easily and quickly calculate the aerodynamic forces on any wing or tail. It originates from the 
lifting line theory, which is a potential flow method and therefore it does not consider viscous or dissipation 
effects. The lifting surfaces are discretized in thin panels or sheets and a corresponding horseshoe vortex. The 
determination of the forces is done by solving the circulation around each panel in a system of equations.  

Another advantage is the relatively easy calculation of stability and control derivatives. They can be useful for 
several applications, such as a simple aerodynamic database for the development of a dynamic flight simulator.  

Another convenient and rapid method takes advantage of the so-called strip theory. It originates from the Blade 
Element Momentum (BEM) theory, usually employed in rotor modelling, but it can be also applied to lifting sur- 
faces. The wing is discretized into spanwise parallel strips each treated as 2D airfoil independently. The strips 
can rely on predefined look-up tables and they can be corrected for 3D effects caused by local relative speed 
variation. The 2D look-up tables can even derive from high-fidelity data such as CFD or wind tunnel testing. 

Among our low-fidelity paper selection, the works of [5, 9, 10, 11] rely on the VLM approach. Clarke et al. [11] 
compared three different three passengers electric aircraft: a general aviation, a distributed propeller, and an 
eVTOL. They also coupled VLM with a BEM model for the propeller successfully. The papers exploiting strip 
theory are [3, 21, 17]. Even in this case, the approach was coupled with a rotor model of a tilt-wing eVTOL. 

The comprehensive code SUAVE [22] is widely exploited. It is a cutting-edge platform for conceptual aircraft 
design that can assess and enhance both traditional and innovative designs. It differs from other software tools 
that rely on predetermined empirical relationships and handbook approximations for aircraft 
conceptualization. On the other hand, it offers a versatile framework with many physics-based methodologies 
that varies from aerodynamics, structures and noise. For mission performance optimization, it takes advantage 
of a force balance-based mission solver which can simulate predefined flight points on the mission path 
calculated from the other modules (such as aerodynamics, propulsion, weight and balance). 

 

Rotors 

The main critical issues of rotor modelling can be traced back to the following three aspects, mutually affecting 
one another: 
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• blade aerodynamics is different and more complex compared to a fixed wing, due to phenomena of 
reverse flow, dynamic stall, compressibility and radial flow; 

• blade dynamics includes flapping (out-of-plane deflection), lead-lag (in-plane deflection) and feathering 
(torsion) motions; 

• the complex vortex wake generated by the rotor interacts heavily with the blades as well as with the 
other airframe components and with the ground. 

Each of these aspects can be modelled with varying levels of fidelity; a review of the available techniques can 
be found for instance in [23]. 

The simplest approach, the so-called actuator disk model, comes directly from the momentum theory [24]. The 
rotor is modelled as a continuous circular disk with an infinite number of blades, which induces an acceleration 
in the axial flow direction by generating a pressure difference across the rotor plane. A simplified, 2D airfoil 
aerodynamic model is typically used, in which the lift force is a linear function of the blade angle of attack and 
the drag force is a quadratic function of lift. The rotor-induced downwash is assumed to be uniform and 
calculated as a function of thrust using a simple formula derived from the momentum theory. The rotor 
equations of motion are expressed in Multi-Blade-Coordinates (MBC), i.e. considering the degrees of freedom 
of the rotor disc as a whole rather than the singe blades, and solved analytically [25, 26]. 

A more accurate approach to rotor modelling is the blade-element theory, which is based on the simple idea 
of splitting the rotor blade along its span into multiple thin sections [27, 28, 26]. The airfoil aerodynamic 
coefficients are usually stored in look-up tables as nonlinear functions of angle of attack and Mach number, 
with the data originating from wind tunnel tests, numerical or theoretical predictions; the forces and moments 
are calculated separately for each section and integrated over the entire blade span. Theoretical or empirical 
corrections can be used to account for dynamic stall effects [29, 30], tip losses [26], and other three dimensional 
effects [27, 31]. 

In most blade-element models, the equations of motion are solved independently for each blade using 
numerical methods. A classic approach consists in assuming rigid blades and concentrating the degrees of 
freedom in an equivalent hinge with spring constraint [32, 33]; more refined techniques including elastic blades 
also exist, based for instance on modal representation [34, 35, 36]. 

A detailed review of wake modelling methods for flight dynamics applications can be found in [37]. Among the 
lower-fidelity techniques, a widely used approach is the so-called finite-state wake model: here, the inflow at 
the rotor is modelled as a series of harmonic and radial modal functions, each satisfying the rotor boundary 
conditions as well as the continuity and momentum equations, through the relationship with the blade lift 
distribution; this results in a series of first-order ordinary differential equations for the coupled inflow/lift, 
which can be added to the rotor dynamic model without excessively increasing the computational load. The 
original dynamic inflow model was introduced by Pitt and Peters [38, 39], and subsequently generalized by 
Peters and He [40, 41] to accommodate an arbitrary number of modal functions; in addition, enhancements to 
both models have been introduced to account for wake distortions during manoeuvring flight [42, 43, 44, 45, 
46, 47, 48, 49, 50]. 

Another technique for wake modelling is based on ”prescribed” wakes, where wake geometry parameters are 
prescribed in space based on experimental studies, and the wake vorticity is transported downstream by sheets 
or filaments; the strength of the vorticity is a function of the lift when the vorticity was shed from the rotor, 
and the induced velocity at any point in the wake can be calculated using the Biot-Savart law [27, 28, 51]. 
Prescribed wake methods were frequently used in the past to model rotor wake-induced velocities on other 
helicopter components such as the tail empennages and tail rotor [33, 52, 53]; other available approaches 
range from extensions of the finite-state dynamic wake model [54, 55, 56], to simple empirical corrections 
derived from flight test data [57, 58]. 
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Among our papers selection on eVTOL modelling, the most used method is the Blade Element Momentum 
(BEM), which combines the momentum theory and the blade-element theory [4, 8, 9, 10, 11]. In the BEM 
approach, the blade forces and moments are evaluated separately for each blade section and integrated along 
the span; the induced velocity at each section is instead calculated using the momentum theory. Apart from 
some hover empirical correction, the papers do not model the motors further. The inflow is considered steady 
and there is no wake interaction. 

 

Structures 

The most well-known methods to model aircraft structure are Finite Element Method (FEM) [59] and Rayleigh–
Ritz method [60]. The former is based on the system breakdown in finite elements, such as beams and nodes. 
Each element has its properties, such as stiffness and inertia, and it is interconnected with each other. Then 
based on the structural problem complexity, a set of partial differential equations is needed. In the low-fidelity 
case, we are talking about linear equilibrium equations solvable analytically with the help of linear algebra. 

On the other hand, the Rayleigh–Ritz method can be applied to simpler problems with accurate results. It is 
based on the variational formulation of the boundary value problem. For example, the well-known code CAM- 
RAD [61] is using this method for the rotor structure modelling. However, thanks to its implementation 
simplicity, FEM models were widely used for eVTOL structural simulation [4, 8, 18, 19, 10]. Relevant for low-
fidelity implementation is the implementation of the tool OpenAeroStruct. The toolbox is described in the work 
of Jasa et al. [19], where they coupled a VLM with a six-degree of freedom FEM for multi-disciplinary design 
and optimization purposes. Hendricks et al. use it as well to represent the wing of the tilt-wing vehicle concept 
of NASA. 

 

Flight Control System 

A simple way to model the flight dynamics behaviour is through linear control techniques. Detailed information 
can be found on [62, 63], which are often used as a reference during Flight Control System (FCS) lectures. The 
first step would be to model the system dynamics using a set of differential questions. The classical equations 
of motion best describe aircraft dynamics.  

The states of the system represent the motion variables in translation and rotation. Input and outputs are 
defined depending on the eVTOL type and needs. The next step would be to trim the aircraft at a given condition 
and linearize it around that point. The small perturbation method is a valuable approach. By doing so, the 
resulting linearized model captures the system local behaviour near the operating point. We can express the 
system in a classical state-space form and design a suitable controller.  

Various control design approaches are known, such as Proportional-Derivative-Integral (PID) cascaded 
controllers. It involves selecting appropriate control gains or designing feedback control laws to achieve desired 
stability, performance, and robustness. Finally, we can analyse the stability and performance of the designed 
controller using tools such as eigenvalue analysis, or simply by simulation. 

Several papers do not develop an aircraft controller although they optimize the eVTOL geometry over a specific 
mission profile. In general, the aircraft is trimmed under the required conditions of the flight mission, such as 
in [3, 5, 9, 8, 4].  

A trim routine is the baseline for an effective eVTOL design. For example, we can start defining the conversion 
corridor and therefore better understand the aircraft behaviour. The analysis of the transition between 
helicopter/airplane is one of the most challenging design tasks. In fact, the eVTOL needs to be dimensioned 
considering the conversion corridor required size as well. 
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In general, the selected studies goal was mainly focused to explore the interactions, and characteristics of 
eVTOLs during different flight regimes, such as cruise and landing for multidisciplinary design improvements, 
sensitivity analysis and design control strategies. 

 

 

 

Modelling area Numerical Methods References 

Aerodynamics VLM, strip theory, empirical models [20, 5, 9, 10, 11, 3, 21, 17, 22] 

Structures FEM, Rayleigh–Ritz method [59, 60, 61, 4, 8, 18, 19, 10, 19] 

Rotors BEM, Actuator disk [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 
33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 
55, 56, 57, 58, 4, 8, 9, 10, 11] 

FCS Transfer functions, State-space models [62, 63, 3, 5, 9, 8, 4] 

 Table 1.1: Summary of low-fidelity methods. 

 

1.3.3 High-fidelity modelling of eVTOL 
High-fidelity methods are more accurate but more computationally expensive than low-fidelity methods, firstly 
by the aerodynamics simulation of external forces. Usually, when one grasps high-fidelity methods, it focuses 
on a few aircraft components and physical phenomena, for example on the interaction of rotor-wing which, 
depending on the geometry arrangement, can influence each other. 
 
Aerodynamics 
Nowadays, CFD is ubiquitous, the level of complexity to carry out a simulation is always decreasing in the so- 
called democratization of simulations. Even the number of numerical methods is large and the choice of the 
correct approach depends heavily on which physical phenomenon you want to capture and what are your 
computational resources. High-fidelity models require heavy computational grids, i.e. millions of cells to solve 
the flow correctly. The vast majority of the methods tried to solve the Navier-Stokes (NS) equations, but 
unfortunately, the computing time to solve them directly in a full aircraft configuration is in the scale of 
decades. Therefore, modelling of NS equations is required and many different methods have been developed.  
 
Among them, the most used ones are the Reynolds-averaged Navier–Stokes (RANS) equations. They are based 
on the averaged NS equations in time and coupled with a turbulence model. Many different approaches are 
available and successfully used by the aerospace industry, among them the Spalart-Allmaras (SA) and k-omega 
Shear Stress Transport (SST) models. They use a one and two-equations turbulence model, respectively. If RANS 
equations are not sufficient to capture the flow physics, more computationally expensive approaches are Large 
Eddy Simulation (LES) and Detached Eddy Simulation (DES). The former solves large-scale turbulent flows, e.g. 
large eddies, and it filters out sub-grid scale ones. Depending on the case, they could significantly improve the 
simulation results, especially when flow separation occurs. However, the computational costs can be even one 
order of magnitude higher than that. While the latter is a hybrid method that takes advantage of RANS and LES.  
Usually, you solve the boundary layer near the walls with RANS turbulence modelling, while the rest of the 
domain with LES. 
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A large number of papers that exploits high-fidelity methods in the framework of urban mobility were published 
in the lasts years [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 74]. In order to keep the problem simpler, some 
works [70, 72, 73, 76] model only the rotor-wing interaction. The wing surface area is discretized and simulated 
with a state-of-the-art CFD RANS model, whereas the rotor contribution is considered by means of CFD- 
embedded BEM or actuator disk models. The analyses aim to optimize the wing and/or rotor shape under a 
certain type of constraint. 
On the other hand, other works are centred on the analysis of an entire aircraft, in particular the NASA urban 
air mobility concept vehicles [77], where the studies goal are related to multi-disciplinary analysis and 
optimization. Those concept vehicles were introduced as reference aircrafts in different eVTOL categories. 
They address the simultaneous optimization of various design aspects, including aerodynamics, structures, 
actuator parameters, and propulsion configurations, to achieve enhanced performance and safer trajectories. 
 
Rotors 
A well-known class of mid-fidelity rotor analysis tools is represented by the so-called comprehensive analyses, 
typically combining finite-element, multi-body models of the blades structural dynamics with lifting-line aero- 
dynamics models and free-wake models of the rotor vortex wake [78, 37, 23]. Today, these features are also 
offered by well-known commercial codes such as CAMRAD [61, 79] and FLIGHTLAB [80]. 
 
A modern, mid-fidelity and promising approach is the so-called Vortex Particle Method (VPM) [81]. It is based 
on a free-mesh Lagrangian approach that solves the Navier-Stokes equation in its vorticity form. Compared to 
conventional CFD, it can be one to four orders of magnitude faster with similar results [82]. However, the 
available codes still have some limitations, in particular, they are limited to low angle of attack simulations. Two 
of the most promising of these types of research codes are DUST [83] and FLOWUnsteady [84]. They are both 
based on VPM but the implementations are slightly different. The image below portrays the flow field of a two-
blade propeller simulated with a VPM code. This could be a reasonable approach instead of using brute force 
and grasping CFD by discretizing the real rotor blades. 
 
A more complex and computationally expensive approach is to model completely the rotor blade thanks to 
multi-domain CFD. The works of [75, 85, 86, 87] pursue this path successfully for various aerospace applications.  
 
The method used is very similar and it discretized and resolve completely the blade rotation. Apart from the 
large grid size, the domain needs to be divided into a fixed, which contains the farfield domain and fixed aircraft 
parts such as fuselage and wings, and a moving reference frame for the rotors. For example, Lewis et al. [75] 
studied the rotor performance related to the hybrid VTOL SureFly S250. It is a single seater aircraft with four 
pair of counter-rotating propellers. By means of CFD, they analysed and compared the rotors efficiency in 
normal and critical conditions, such as integrated loads and vortex ring state. 
 
Structures 
From a structural point of view, FEM is always used, but with higher model complexity. For example, instead of 
modelling the wing only as a spatial beam elements, one could model the entire aircraft with wing lay-ups and 
internal spars. This approach results as well in better prediction of the aircraft weight and its distribution. In 
the frame of the development of new aircrafts design, Hansen et al. [88] performed a multidisciplinary 
optimization of a blended wing body. Their process included a parametric creation of the aircraft primary 
structure to be then modelled and simulated by a classical FEM solver. 
 
The structures were coupled with an aerodynamic panel method to assess the loads and aircraft performance 
to better size the new configuration. Another interesting work that models an entire aircraft was done by 
Hermanutz et al. [89]. They optimized a UAV demonstrator under flutter-related constraints.  
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Here the main aircraft parts were considered: rigid fuselage, rigid empennage and wings. The last part was 
modelled in detail including a composite sandwich shell with corresponding spars. On the other hand, the works 
of [90, 76] modelled only the aircraft wing with FEM. Both these researches concern the structural optimization 
of a high-aspect-ratio wing and analyse their flutter behaviour. 
 
Flight Control System 
An improvement of the FCS could be related to the flight dynamic model and the flight controllers. The book of 
Stevens [63] covers several classical techniques, such as stability augmentation systems (SAS) or control 
augmentation systems (CAS) to improve the aircraft flight behaviour. The SAS is usually designed to help the 
pilot to maintain the aircraft under control, e.g. the attitude, introducing automated control inputs to prevent 
not desired movements or oscillations. On the other hand, a CAS is designed to facilitate the pilots work 
enabling him to operate the aircraft easily. 
 
In addition, it covers modern approaches, such as linear-quadratic regulator optimal control and robust control. 
The former method is used in the works of Wang et al. [91, 74]. They designed an optimal control for various 
flight phases, such as cruise, descent, and landing under operational constraints. The aircraft modelled was a 
single seater eVTOL and the goal was to implement an optimal controller with real-time trajectory optimization.  
 
Finally, the works of [92, 93] exploited another modern control technique, the nonlinear dynamic inversion. As 
the name suggests, this method involves the inversion of the system dynamics to achieve desired control 
objectives. This process results in having an equivalent linear system and therefore we could apply linear 
control techniques, like PID controllers. The research focused on hover and landing controllers, respectively. 
 
Table 1.2 classifies the papers for modelling areas and summarizes the reviewed numerical methods. 
 

Modelling area Numerical Methods References 

Aerodynamics CFD, RANS, DES, LES [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 
74, 75] 

Structures VPM, multi-domain CFD [78, 37, 23, 61, 79, 80, 81, 82, 83, 84, 
75, 85, 86, 87] 

Rotors FEM [76, 90, 89, 88] 

FCS SAS, CAS, optimal control, nonlinear 
dynamic inversion 

[63, 91, 74, 92, 93] 

 Table 1.2: Summary of high-fidelity methods. 
 

1.3.4 Certification 
This section is devoted to the use of analysis for certification purposes. Ref. [94] stands out for relevance and 
publication date. This work is focused on the concept of ”Certification by Analysis” of airplane and engine 
certification. The proposed approach provides several advantages such as targeted testing programs at reduced 
costs while maintaining safety levels.  
 
The development of advanced numerical flight models, including high fidelity methods such as CFD, is crucial 
for the effectiveness of this approach. The document emphasizes the need for improved analysis capabilities, 
validation against full-scale aircraft data, and the quantification of modelling       uncertainties. It proposes a 
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technology roadmap by identifying technical challenges and provides recommendations to overcome the 
current challenges and to successfully pursue the Certification by Analysis.  
 
Another document relevant to this topic is the European Union Aviation Safety Agency (EASA) certification 
memorandum on CS-25 Structural Certification Specifications [95]. It focuses on some more high level aspects 
of the Certification by Analysis, such as the verification and validation of the model itself and its related 
errors/uncertainties. Another interesting work is the so-called ”Rotorcraft Certification by Simulation” [96].  
 
It is related to the development of guidelines on the exploitation of rotorcraft flight models and simulators for 
certification purposes. The method should shorten the certification process, and reduce the costs and risks 
during the process of an innovative vehicle. Some ideas could be also used for the certification of eVTOL 
aircrafts. 
 
Related to certification, the following papers address the propagation of uncertainties and the validation of 
computational modelling [97, 98, 99, 100, 101, 102, 103]. They include the assessment and quantification of 
uncertainties in computational models and validation methods used for certification. The understanding of 
these uncertainties allows aircraft developers for a more accurate and reliable prediction of their vehicles, 
ensuring their safety and regulatory compliance. 
 
In addition, the EASA proposed several interesting papers about Artificial Intelligence (AI) and certification. The 
concept paper [104] is part of the EASA AI Roadmap, which should help developers that want to grasp AI 
technology for safety-related tasks.  
The objective is to provide guidance to applicants on the integration of AI or ML technologies across all activities 
governed by the EASA Basic Regulation. It defines four ”AI trustworthiness building blocks”, which are 
trustworthiness analysis: AI assurance, AI human-factors and AI safety risk mitigation. These blocks are all linked 
together with seven ”gears”, where each gear corresponds to a specific topic, such as privacy and data 
governance. The paper tries as well to identify the impact of AI in all major domains of the EASA Basic 
Regulation. Finally, it provides some use cases as well. Among them, the visual landing guidance system 
developed by Daedalean is analysed. Their AI-based system should reduce the workload of the pilot during a 
landing. They also suggest how the user should interact and interface with the Daedalean landing system. 
Always in the EASA AI roadmap, these two documents should also be considered [105, 106]. 
 
The former goal is to assess if Formal Methods techniques can potentially be used in evaluating the reliability 
of ML applications, while the latter analyses novel concepts for assessing and certifying AI-based systems. Both 
aim to assist industry stakeholders in the development of AI applications. 
 

1.3.5 Multi-fidelity modelling and data fusion 
This section shows references to the actual building of the mathematical model and in particular, the 
techniques exploited to match data with different fidelity levels [107, 108, 109, 110, 111, 112, 113, 114, 115, 
116, 117, 118, 114, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 
137, 138, 139, 140, 141, 142, 143]. 
 
Gaussian Processes 
Gaussian processes (GP) are stochastic models that describe a certain amount of data with functions. It is com- 
posed of a mean function and covariance function, also known as kernel function. The former represents the 
average behaviour of the data distribution, while the latter determines how the functions vary with each other 
across different data points. They are widely used in statistics for regression, interpolation and uncertainty 
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quantification. In fact, one of the advantages of GP is that it can predict the evolution of observed data 
alongside with its confidence. GP regression is the branch where the observed data is fitted using a function, 
often referred to Kriging.  
 
In this method, it is assumed that the spatial relationship between data points, whether in terms of distance or 
direction, can be utilized to explain the changes or differences observed in the space being studied. In the 
framework of our research, GP regression can be applied to relieve the computational cost. 
 
Rasmussen’s book [117] contains an extensive overview of GP. It explains what kernel machines are and their 
basic principles. In the last few years, the ML community is also looking into GP to build data-driven models. It 
contains both theoretical and practical aspects of GP covering supervised learning for regression and 
classification and it provides detailed algorithms. For example, it describes the most used covariance functions 
along with their properties. 
 
Reduced Order Models 
Another popular technique used in the framework of multi-fidelity modelling is called reduced order models 
(ROM). This method reduces the complexity of a mathematical model by decreasing its degrees of freedom. 
The resulting ROM is an efficient but still accurate representation of a complex system. Various algorithms can 
be exploited, such as Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD). The 
works of [76, 108, 109, 113] used ROM. 
 
Neural Networks 
On the other hand, other applications exist to make predictions based on prior data. Another popular area 
involves the employment of Artificial Neural Networks (ANN). They are a consolidated powerful data processing 
technique used as well in the aerospace sector. They consist of interconnected layers, each composed of 
neurons, where the input layer typically represents the original input variables, such as speed, density, and 
temperature. While the output layer, located at the end of the ANN, provides the desired output data, such as 
aerodynamic coefficients. The hidden layers are intermediate connections between the input and output 
layers. The neurons within a layer are the weighted sum of inputs from the preceding layer, then an activation 
function is applied to them and it is transmitted to the next layer. Being usually the activation function 
nonlinear, it allows the ANN to learn the trend between the input and output. The training task optimizes the 
values of the weights to achieve the best correlation with the train data set. 
 
ANNs are discussed by Neal [123], where he discusses the use of ANN models with limited training data for 
classification and regression tasks. It describes theoretical investigations into the underlying priors of complex 
Bayesian models and provides practical implementation using Markov chain Monte Carlo methods. 
 
Data fusion 
In addition, and since we will have more than one fidelity level for each quantity of interest, such as a lift 
coefficient, we can exploit further GP methods to fuse the data together. The approach refers to co-Kringing 
and it belongs to the GP regression family. It leverages a densely sampled first data set, generated with low-
fidelity methods, that is correlated with a second data set, generated with high-fidelity methods, to improve 
the function prediction. In order to be successful, the two data sets need to be somehow correlated, and the 
sampling density of the first data set should be higher than the second. 
 
Data fusion can be performed as well from ML. Different techniques exist, and Mneg et al. [144] made an 
extensive survey about this topic by introducing some performance evaluation criteria. such as efficiency, 
stability, robustness, extensibility. They also divided the techniques based on data fusion type: signal, feature 
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and decision levels. Among the ML methods analysed, support vector machine (SVM), ANN and 
backpropagation NN are distinguished for their efficiency and applicability. 
 
Multi-fidelity modelling 
The applications of principles described in the previous section can surely be applied to data-driven models 
with single fidelity. Often the raw data comes from only one source and therefore, researchers try to grasp 
them as effectively as possible. 
 
On the other hand, it is possible to have different data sources that describe the same quantity of interest, for 
example, the wing displacement from both numerical and experimental tests. In this case, multi-fidelity 
methods can be exploited. The theory is very similar to the one used to build a surrogate model with single 
fidelity, but here data fusion techniques are applied. Two surveys on multi-fidelity methods stand out for 
relevance by comparing the methods from different points of view. 
 
Peherstorfer et al. [135] analyses the combination of multi-fidelity models for outer-loop applications (e.g. 
optimization) and categorizes them into adaptation, filtering, and fusion methods. The latter one, nowadays 
seems to be the most used method in the aerospace sector. Among the different approaches in fusion, co-
Kriging is also present. 
 
Whereas, Fernandez et al. [136] divide multi-fidelity methods by their year of publication, area of study (e.g. 
fluid dynamics, solid mechanics), application field (e.g. optimization, uncertainty quantification), surrogate 
method (e.g. Kriging, basis regression function), and fidelity combination. They also explained that non-
deterministic methods, such as co-Kringing, are preferred to the deterministic ones. Another interesting finding 
is about the choice of low and high-fidelity models in fluid dynamics: the lowest category is represented here 
by analytical, empirical and linear theories, whereas the highest one by RANS-based simulations. 
 
Another work [137] stands out for relevance and year of publication. Brevault et al. gave an overview of only 
GP-based approaches to build a multi-fidelity model. They tested co-Kriging, Auto-Regressive (AR1), nonlinear 
Auto-Regressive and deep GP methods in several aerospace problems. The most interesting is an aerostructural 
multidisciplinary analysis problem of a flying wing. The best method was found to be a multi-fidelity deep GP 
followed closely by co-Kriging. 
 
Recently, the same institute, published a paper about the Surrogate Model Toolbox (SMT) [145]. It is a collection 
of surrogate modelling methods, Kriging and co-Kriging included, sampling methods, along with benchmark 
problems. It aims to facilitate the development of new surrogate models by offering a python open-source plat- 
form with a comprehensive library of surrogate modelling methods. 
 
Table 1.3 collect several works divided between number of fidelity and ML method, i.e. GP and NN: 
 

Fidelity GP NN 

Single-fidelity [117, 118, 125] [110, 111, 112, 116, 120, 121, 124] 

Multi-fidelity [114, 131, 126, 127, 128, 129, 130, 131, 
132, 133, 134, 135, 136, 137, 138, 139, 
141, 142, 143] 

[115, 122, 144, 146] 

 Table 1.3: ML methods division. 
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1.4 Conclusions 

The interest in eVTOL is strong and rapidly increasing. This is more than evident from our findings. Researchers 
rely on low and higher fidelity approaches to analyse and optimize configurations, in order to maximize 
performance, operational effectiveness and minimize the environmental impact, including the acoustic 
footprint. 
 
Researchers are also actively investigating numerical simulation approaches; on one hand, Digital Twins are 
systematically exploited to improve the design and certification process. On the other hand, newer algorithms 
are proposed in order to raise the accuracy and reliability of numerical simulations. 
 
These two trends combine in the analysis of eVTOL aircraft, showing a rapidly evolving design environment. 
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