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Main AM process characteristics
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Thermo-Mechanical => residual stress & distortions

The additive manufacturing (AM) process involves heating, In principle it is possible to simulate the thermo-mechanical
melting and solidification ofar.x alloy by a moving heat source such problem by soIving the heat transfer problem plus the material
as a laser or an electron beam in a layer by layer manner [1,2]. As a ) ] ) o
result, different regions of the work piece experience repeated mechanical problem with non linear plasticity models to capture
heating and cooling [2]. The spatially varied thermal cycles result the residual stresses and deformations.

in residual stresses and distortion in the addmvely manufactured
components [3] Tl

However due to the extremely thin bed layers and small scan

. . . laser tracks it is not viable to simulated the process at the real
The extreme rapid heating close to laser surface first produce

a local expansion which is inhibited by surrounding cooler scale and try to integrate _Up to the part scale
material hence generating a compression layer well beyond Therefore => an aggregation strategy for laser scan layers and
yield limit. After top layer cool down material tends to contract width is needed to compute full thermo-mechanical field at

which is inhibited by underlying material hence generating

full part scale which has to be validated
traction residual stresses

Gaussian distributed moving heat flux
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Fig. 6. (Left) Actual layer (with thickness 8) and (right) meta-layer (with thickness 8). H s the hatch distance.
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Also the effect of separation of the base plate and Heat
Treatment for stress relief is needed to predict final

distortions of part

This can be solved by conventional FEM with right creep

modellization
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$ § j” Computational Materials Science
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Residual stresses and distortion in additively manufactured
compositionally graded and dissimilar joints
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Mechanical (Inherent Strains)

. It allows for replacing
computationally costly thermo-mechanical simulations by a linear-elastic-mechanical one. The key point in this simplified
analysis is to define which is the inherent strain or shrinkage load to apply in the model in order to capture the mechanical

response of the fabricated component.
There are two approaches to determine these inherent strains as proposed in CWM [27]: (a) Multi-scale or local-global

modelling; (b) Empirical approach.
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5 Empirical methodology to determine inherent strains in
additive manufacturing

Iiaki Setien **, Michele Chiumenti -, Sjoerd van der Veen”®,
Maria San Sebastian*, Fermin Garciandia’, Alberto Echeverria*
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Thermo-Mechanical => ITP Sirategy (collaboration
wit IMDEA)

Properties: Powder = Bulk Without considering
latent heat of
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In Validation phase
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Thermo Fluid (melt Pool) S

Phase change and melt pool fluid dynamics is of high complexity with

significant unique phenomena

This is all at meso scale that can not be simplified or aggregated at

larger scale if associated defects are to be predicted

Marangoni effect generated due to surface tension due to temperature

(a) 1693 1733 1900 2300

gradient must be imposed at the melt pool free surface as boundary

condition (1000 times larger than buoyancy force)

Lack of Fusion

<
Temperature, K
%00mms  IEEITTIEE
vy 1693 1733 2000 2200 v

1.000 1.080 1.160 1240 1320 1.400 1480 1,560
Width, mm

Lack of fusion voids 3
Temperature, K |

1.000 1.080 1.160 1240 1.320 1.400 1.480 1560
Width, mm
Very small lack 4

of fusion voids Temperature. K
3000 men's .
v

=
€31 867 1000 1200

s (c)“v \z\/

097
1.000 1080 1.160 1240 1320 1400 1480 1560
ero o

Pores

a Steady state b Tum point Temperature (K)
5 ™
- 2700

Depression collapse
298
Temperature at
contour fine (K)
~~ &

7

Proprietary Information - Confidential

A Rolis-Royce
company



Thermo Fluid (Melt Pool) (collaboration with IMDEA)
LoF & Pores ITP Strategy

LBM ITP code in WIP

In principle LBM seems to be the perfect candidate to simulate the dynamics of Melt Pool
- High Fidelity incompressible fluid flow
- Inherently transient

- Free Surface tracking |
- Phase Change prediction capability

- Two Phase Flow capability

- Opportunity to implement Heat Transfer terms

Risks:
- Difficulties with high density ratios of phases (= 1000)
- Potential impossibility to recover some equation terms (radiation, Marangoni ...) ¢é?
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Material (Microstructure, properties) (colaboration
ITP strateay with IMDEA)

Simulation of grain growth competition, dendritic structure
within grains, solute segregation
In Validation phase Moving heat

Grain map  Composition map (Nb) Souree

liquid
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Material (Microstructure, properties) (colaboration
ITP strategy with IMDEA)

MICROMECH: Microstructure sensitive material

Microstructure RVE: representative .
- P mechanical models, 718 alloy wrought

volume elements

Cristal plasticity models & prediction of monotonic behaviour
(tensile curves)
Strength as a function of microstructure & temperature
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Surface morphology

To simulate the position and arrangement of powder particles
with a representative size distribution in a layer, a method, pro-
posed by Zhou et al. [ 18], which involves dropping particles follow-
ing a trajectory based on the geometry of the objects encountered
has been adopted and modified. This approach ignores the motion
of obstacles encountered by the falling particles and the trajectory
of a particle is determined based on the number of obstacles being
encountered. Several potential obstacles and corresponding trajec-
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Mesoscale modelling of selective laser melting: Thermal fluid dynamics O o
and microstructural evolution

Chinnapat Panwisawas *, Chunlei Qju **, Magnus J. Anderson ', Yogesh Sovani ", Richard P. Turner’,
IT P Ae ro Moataz M. Attallah”, jeffery W. Brooks ', Hector C. Basoalto

250um

To further investigate the thermal fluid flow characteristics giv-
ing rise to surface structure, porosity development and microstruc-
ture simulation, a computational fluid dynamics (CFD) calculation
using the C++ open source CFD toolbox so-called Open Field Oper-
ation and Manipulation (OpenFOAM®) has been developed to
model the interaction between the laser heat source and the ran-
domly distributed Ti-6Al1-4V powder materials, which is illustrated
in Fig. 3(b). In the model, all interfacial phenomena, including sur-
face tension (capillary force), Marangoni's flow (thermo-capillary
force), recoil pressure, drag force due to solid/liquid transition via
Darcy'’s term, and buoyancy force, present within the SLM process
have been included in simulation. The energy dissipation in the

Pores

Unmelted powder

Roughness Ra [um]
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Surface morphology
ITP strategy

Surface LoF _’ Surface Roughness

||

Future plans consider to develop and validate dedicated Al
augmented simulation tools to be able to predict defects and optimize
parameters to further avoid any detrimental surface conditions

Real Case
Probability of Defects
Modification of parameters
for minimum probability
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