

MAHEPA – EASA Webinar

03 July 2020

Your safety is our mission.

Aim of the webinar / panel discussion

Inform about the MAHEPA project and its research results

Inform about EASA's role in research and innovation in general and for the MAHEPA project in particular

Facilitate a dialogue between webinar participants and the panellists

Some recommendations

- → Use your headset and keep your microphone muted when not speaking
- → If you would like to participate in the discussion:
 - → Use the 'raising hand' button on the right top corner next to your name, or
 - → Use the 'chat tool' and draft a comment or question to 'everyone'

Panellists

Fabrizio Gaspari Lorenzo Trainelli Tine Tomažič

EASA Alain Leroy Gernot Kessler

Moderator: Willy Sigl

MAHEPA Project Presentation

MAHEPA consortium – 03 July 2020

Your safety is our mission.

Compact Dynamics

Modular Approach to Hybrid-Electric Propulsion Architecture

Fabrizio Gaspari

Project Coordinator

At the verge of a new era for aviation

Hybrid-electric propulsion

MAHEPA

Towards hybrid-electric flying

- MAHEPA: Modular Approach to Hybrid-Electric Propulsion Architecture
- 9 M€ project entirely funded by European Union Horizon 2020 research and innovation programme
- 8 Partners:

MAHEPA

Objectives of the project

Main objectives:

- To advance two variants of a low emission, highly efficient, serial hybrid-electric propulsion architecture to TRL 6
- In-flight demonstrations on two different aircraft to showcase flexibility and scalability of the powertrains
- Scalability studies towards megawatt scale hydrocarbon driven hybrids and zeroemission hydrogen-powered solutions

MAHEPA Project direct value propositions

Methods

Modular Approach

Emission measurements

Cooling system design

Market Demands Estimations

Flex FC hybrid architecture

Ground infrastructure assessments

MAHEPA Project direct value propositions

Components

Electric Drive

Structure adaptations

Power Generation Module

Liquid cooled battery

Fuel Cell System

Battery Management System

MAHEPA - Electric motor

Light and powerful

- ✓ Dual motor mechanically and electrically decoupled
- ✓ Free wheel to run only one motor in case of **failure**
- Peak power: 300 kW (50% more powerful than previous generations)
- ✓ Weight (excl. gearbox and prop shaft):30 kg (25% lighter than previous generations)

MAHEPA - Power controller

As light as possible

- ✓ Silicon-Carbide technology
- ✓ Peak power: 180 kW
- ✓ Power density: 25.7 kW/kg
- ✓ Efficiency: **97.5** %
- ✓ Weight: 7 kg (each) (29% lighter than previous generation)

MAHEPA – Liquid cooled battery

- ✓ Lithium-ion technology
- Peak power: 75 kW (each)
- ✓ Weight: 60 kg (each)
- ✓ Fully **integrated** in the airframe
- ✓ Allowing **all-electric** take-off

MAHEPA – Fuel Cell System

An intrinsic redundant system

From a FC Module to FC-line

12kW FC-Module

MAHEPA – Fuel Cell hybrid-electric airframe

Airframe adaptations

- New structural challenges to integrate the fuel cell system
- Ground tests to toroughly understand system behaviour
- New Cooling System design

MAHEPA - Next steps

Flight tests and consolidation of results

- Flight test campaigns of two HE aircraft
- Advanced power management methods validation
- Flight data analysis and consolidation of results
- Scalability studies: design freeze of DEP and classic architectures

MAHEPA – not only about flying aircraft

Scalability studies

Definition of **parametric** models for the powertrain **components** and system performance.

2000

MAHEPA – not only about flying aircraft

19-seat microfeeder: a real business case for today's hybrid-electric technology

Compact Dynamics

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723368.

Innovation and related activities

Alain LEROY - 03 July 2020

Your safety is our mission.

03 July 2020 - Alain LEROY

Your safety is our mission.

Innovation & related activities

Manage & coordinate changes necessary to <u>adapt the Agency</u> activities and processes <u>to innovation</u>

Create a <u>dynamic of innovation</u> in the Agency and foster the <u>sharing of innovation</u> <u>knowledge and information</u> across domains

We need to be prepared for the FUTURE

EASA Partnership with Industry on Innovation 1

Memorandums of Cooperation on innovation

Establish a formal framework enabling....

- Cooperation in the early stages
- Identification of key risk areas linked to innovation projects
- Evaluate possible EASA support
- Adapt our processes, organisation, procedures, rules and staff competence plans to support innovative industry projects.

Possible related tasks & actions

- Specific Innovation Partnership Contracts
- Workshops
- Research cooperation (PhD thesis, ...)
- Universities networking
- Exchanges of experts (limited period)
- Training

EASA Partnership with Industry on Innovation 2

Innovation Partnership Contracts

Cover the supply of technical knowledge and support within an innovation project to encourage the development of:

- o novel technologies
- new business models
- hew services

Focus on the exchange of expertise on a multi-disciplinary scale (certification, operation, crew qualification, ATM, etc...)

Address the concept development phase (feasibility)

do not cover any pre-certification task (this is done via Technical Advice Contracts)

General concept of operations

MAHEPA consortium - 03 July 2020

Your safety is our mission.

Compact Dynamics

Hybrid-electric short-haul air transportation scenarios

Lorenzo Trainelli, PhD

MAHEPA-EASA Webinar 03/07/2020

MAHEPA and UNIFIER19 framework

In the **MAHEPA** H2020 project, an important research effort is devoted to:

- Hybrid-electric powertrain technology and component scalability
- Hybrid-electric aircraft **design, performance and environmental impact analysis** methods
- Strategies for maximizing the impact of hybrid-electric aircraft in future commercial aviation

In the **UNIFIER19** Clean Sky project, a **near-zero emission 19-pax commuter** is conceptually designed

 Scenario studies are carried out to derive top-level aircraft requirements

MAHEPA-EASA Webinar 03/07/2020

Future European mobility

- Short-haul air transportation is a key for the enhancement of personal mobility in Europe
- Flightpath 2050 vision
 - Four-hours door-to-door goal: virtually all EU citizens shall reach any continental destination in less than four hours, door to door, by the year 2050
- Hybrid-electric aircraft are ideal candidates to contribute to this ambitious goal
 - Environmentally-sustainable operations
 - Technology maturity
 - Hybrid-electric propulsion shall enter the market starting with lower-weight aircraft categories
 - Scalability to commuter aircraft is feasible

MAHEPA-EASA Webinar 03/07/2020

General concept

- Scenario studies specifically address the short-haul regional air transportation system
 - Miniliner market (point-to-point)
 A minliner provides a commuting service connecting small towns, substituting less-effective ground transportation means
 - Microfeeder market (hub-and-spoke)
 A microfeeder service brings passengers from small towns and open-country to hubs, feeding medium-range and long-range flights
- Exploiting the European smaller airports and even airstrips is a crucial enabler

MAHEPA-EASA Webinar

03/07/2020

European aerodromes

MAHEPA-EASA Webinar

03/07/2020

European aerodromes

Runway length distribution

• 50% of the aerodromes feature a length over 800 m

Aerodrome mutual distance

• 88% of the aerodromes have another one closer than 100 km.

MAHEPA-EASA Webinar 03/07/2020

Potential demand estimation

 Potential demand is assessed based on the advantage of using a miniliner/microfeeder service when compared to ground transportation means

 Multiple elements may contribute: cost, comfort, time

The time advantage is crucial

MAHEPA-EASA Webinar 03/07/2020

Potential demand estimation

- Based on the time (possibly other parameters) advantage, a **catchment area** can be attributed to each candidate route
 - The potential traveller demand can be estimated

Microfeeder case

Catchment are a for the Lamezia Terrme
-Naples International Airport route

MAHEPA-EASA Webinar

03/07/2020

Miniliner scenario studies

Italian scenario example

- Trip distance 200 km
- Cruising speed 200 KTAS
- Runway length 800 m or longer

Potential demand estimation

MAHEPA-EASA Webinar 03/07/2020

Microfeeder scenario studies

Venice International Airport example: distribution of towns and secondary aerodromes involved

Case of 800 m or longer runways and a cruising speed of 200 KTAS

Maximum trip distance: 200 km

Maximum trip distance: 250 km

MAHEPA-EASA Webinar 03/07/2020

Optimal transportation network

- Potential demand assessment allows to derive effective top-level aircraft design requirements
 - These drive the **conceptual design** of innovative, near-zero emission commuter aircraft
- It also provides the input for a location and routing algorithm that defines the optimal route network
 - Maximizes the total demand satisfied while minimizing the number of active secondary airports
 - Provides the complete time-scheduling of flights operated with the miniliner/microfeeder

case

Multi-hub microfeeder case

Optimal network between 8-9 a.m., using a fleet of 80 aircraft

MAHEPA-EASA Webinar 03/07/2020

Thank you for your attention!

Lorenzo Trainelli, PhD

Department of Aerospace Science and Technology

- Politecnico di Milano
- MAHEPA WP10 leader
- UNIFIER19 WP1 leader

Closing

Politecnico di Milano

Compact Dynamics

This project has received funding from the Clean Sky 2 Joint Undertaking (JU) under grant agreement No 864901. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union

Check out <u>www.unifier19.eu</u>

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 723368.

Check out www.mahepa.eu

Innovation integration into the regulatory framework

Gernot KESSLER - 03 July 2020

Your safety is our mission.

Regulatory Concept: How to best accommodate New Technologies

The rules we need will be:

- → Timely available
- → Clear and robust
- → Easy to adjust
- → Outlooking
- → Technologically neutral
- → Enforcable

The art of regulation is to combine these aspects!

Regulatory Concept: How to best accommodate New Technologies

To master challenges:

- → Find proper balance
- → Do NOT 'All New'
- → Subsidiarity
 - → What for EU?
 - → What for local bodies?
 - → Formal borders?
- → Mind recognition: ICAO, FAA, ...
- → Involve upfront:
 - → Closest involvement by all
 - → Research
 - → EASA TACs, IPCs, ...

Clear and robust
Easy to adjust
Outlooking
Technologically neutral
Enforcable